Learn_Numpy.py 174 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613
  1. from scipy.fftpack import fft, ifft, ifftn, fftn # 快速傅里叶变换
  2. from sklearn.svm import SVC, SVR # SVC是svm分类,SVR是svm回归
  3. from pyecharts.components import Table as Table_Fisrt # 绘制表格
  4. from scipy import optimize
  5. from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
  6. from sklearn.manifold import TSNE
  7. from sklearn.neural_network import MLPClassifier, MLPRegressor
  8. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  9. from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA, NMF
  10. from sklearn.impute import SimpleImputer
  11. from sklearn.preprocessing import *
  12. from sklearn.feature_selection import *
  13. from sklearn.metrics import *
  14. from sklearn.ensemble import (
  15. RandomForestClassifier,
  16. RandomForestRegressor,
  17. GradientBoostingClassifier,
  18. GradientBoostingRegressor)
  19. from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz
  20. from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
  21. from sklearn.linear_model import *
  22. from sklearn.model_selection import train_test_split
  23. import re
  24. import numpy as np
  25. from pandas import DataFrame, read_csv
  26. import matplotlib.pyplot as plt
  27. from scipy.cluster.hierarchy import dendrogram, ward
  28. from pyecharts.options.series_options import JsCode
  29. from pyecharts.charts import Tab as tab_First
  30. from pyecharts.charts import *
  31. from random import randint
  32. from pyecharts import options as opts
  33. from pyecharts.components import Image
  34. from os.path import split as path_split
  35. from os.path import exists, basename, splitext
  36. from os import mkdir, getcwd
  37. import tarfile
  38. import pickle
  39. import joblib
  40. from pyecharts.globals import CurrentConfig
  41. CurrentConfig.ONLINE_HOST = f"{getcwd()}/assets/"
  42. # 设置
  43. np.set_printoptions(threshold=np.inf)
  44. global_Set = dict(
  45. toolbox_opts=opts.ToolboxOpts(
  46. is_show=True), legend_opts=opts.LegendOpts(
  47. pos_bottom='3%', type_='scroll'))
  48. global_Leg = dict(
  49. toolbox_opts=opts.ToolboxOpts(
  50. is_show=True), legend_opts=opts.LegendOpts(
  51. is_show=False))
  52. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  53. More_Global = False # 是否使用全部特征绘图
  54. All_Global = True # 是否导出charts
  55. CSV_Global = True # 是否导出CSV
  56. CLF_Global = True # 是否导出模型
  57. TAR_Global = True # 是否打包tar
  58. NEW_Global = True # 是否新建目录
  59. class Tab(tab_First):
  60. def __init__(self, *args, **kwargs):
  61. super(Tab, self).__init__(*args, **kwargs)
  62. self.element = {} # 记录tab组成元素 name:charts
  63. def add(self, chart, tab_name):
  64. self.element[tab_name] = chart
  65. return super(Tab, self).add(chart, tab_name)
  66. def render(
  67. self,
  68. path: str = "render.html",
  69. template_name: str = "simple_tab.html",
  70. *args,
  71. **kwargs,
  72. ) -> str:
  73. if All_Global:
  74. Dic = path_split(path)[0]
  75. for i in self.element:
  76. self.element[i].render(Dic + '/' + i + '.html')
  77. return super(Tab, self).render(path, template_name, *args, **kwargs)
  78. class Table(Table_Fisrt):
  79. def __init__(self, *args, **kwargs):
  80. super(Table, self).__init__(*args, **kwargs)
  81. self.HEADERS = []
  82. self.ROWS = [[]]
  83. def add(self, headers, rows, attributes=None):
  84. if len(rows) == 1:
  85. new_headers = ['数据类型', '数据']
  86. new_rows = list(zip(headers, rows[0]))
  87. self.HEADERS = new_headers
  88. self.ROWS = new_rows
  89. return super().add(new_headers, new_rows, attributes)
  90. else:
  91. self.HEADERS = headers
  92. self.ROWS = rows
  93. return super().add(headers, rows, attributes)
  94. def render(self, path="render.html", *args, **kwargs,) -> str:
  95. if CSV_Global:
  96. Dic, name = path_split(path)
  97. name = splitext(name)[0]
  98. try:
  99. DataFrame(
  100. self.ROWS,
  101. columns=self.HEADERS).to_csv(
  102. Dic + '/' + name + '.csv')
  103. except BaseException:
  104. pass
  105. return super().render(path, *args, **kwargs)
  106. def make_list(first, end, num=35):
  107. n = num / (end - first)
  108. if n == 0:
  109. n = 1
  110. re = []
  111. n_first = first * n
  112. n_end = end * n
  113. while n_first <= n_end:
  114. cul = n_first / n
  115. re.append(round(cul, 2))
  116. n_first += 1
  117. return re
  118. def list_filter(list_, num=70):
  119. # 假设列表已经不重复
  120. if len(list_) <= num:
  121. return list_
  122. n = int(num / len(list_))
  123. re = list_[::n]
  124. return re
  125. def Prediction_boundary(x_range, x_means, Predict_Func, Type): # 绘制回归型x-x热力图
  126. # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  127. # a-特征x,b-特征x-1,c-其他特征
  128. o_cList = []
  129. if len(x_means) == 1:
  130. return o_cList
  131. for i in range(len(x_means)):
  132. for j in range(len(x_means)):
  133. if j <= i:
  134. continue
  135. n_ra = x_range[j]
  136. Type_ra = Type[j]
  137. n_rb = x_range[i]
  138. Type_rb = Type[i]
  139. if Type_ra == 1:
  140. ra = make_list(n_ra[0], n_ra[1], 70)
  141. else:
  142. ra = list_filter(n_ra) # 可以接受最大为70
  143. if Type_rb == 1:
  144. rb = make_list(n_rb[0], n_rb[1], 35)
  145. else:
  146. rb = list_filter(n_rb) # 可以接受最大为70
  147. a = np.array([i for i in ra for _ in rb]).T
  148. b = np.array([i for _ in ra for i in rb]).T
  149. data = np.array([x_means for _ in ra for i in rb])
  150. data[:, j] = a
  151. data[:, i] = b
  152. y_data = Predict_Func(data)[0].tolist()
  153. value = [[float(a[i]), float(b[i]), y_data[i]]
  154. for i in range(len(a))]
  155. c = (HeatMap()
  156. .add_xaxis(np.unique(a))
  157. # value的第一个数值是x
  158. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)
  159. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  160. yaxis_opts=opts.AxisOpts(
  161. is_scale=True, type_='category'), # 'category'
  162. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  163. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1, min_=int(min(y_data)),
  164. pos_right='3%')) # 显示
  165. )
  166. o_cList.append(c)
  167. return o_cList
  168. def Prediction_boundary_More(x_range, x_means, Predict_Func, Type): # 绘制回归型x-x热力图
  169. # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  170. # a-特征x,b-特征x-1,c-其他特征
  171. o_cList = []
  172. if len(x_means) == 1:
  173. return o_cList
  174. for i in range(len(x_means)):
  175. if i == 0:
  176. continue
  177. n_ra = x_range[i - 1]
  178. Type_ra = Type[i - 1]
  179. n_rb = x_range[i]
  180. Type_rb = Type[i]
  181. if Type_ra == 1:
  182. ra = make_list(n_ra[0], n_ra[1], 70)
  183. else:
  184. ra = list_filter(n_ra) # 可以接受最大为70
  185. if Type_rb == 1:
  186. rb = make_list(n_rb[0], n_rb[1], 35)
  187. else:
  188. rb = list_filter(n_rb) # 可以接受最大为70
  189. a = np.array([i for i in ra for _ in rb]).T
  190. b = np.array([i for _ in ra for i in rb]).T
  191. data = np.array([x_means for _ in ra for i in rb])
  192. data[:, i - 1] = a
  193. data[:, i] = b
  194. y_data = Predict_Func(data)[0].tolist()
  195. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  196. c = (HeatMap()
  197. .add_xaxis(np.unique(a))
  198. # value的第一个数值是x
  199. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)
  200. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  201. yaxis_opts=opts.AxisOpts(
  202. is_scale=True, type_='category'), # 'category'
  203. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  204. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1, min_=int(min(y_data)),
  205. pos_right='3%')) # 显示
  206. )
  207. o_cList.append(c)
  208. return o_cList
  209. def Decision_boundary(x_range, x_means, Predict_Func, class_, Type, nono=False): # 绘制分类型预测图x-x热力图
  210. # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  211. # a-特征x,b-特征x-1,c-其他特征
  212. # 规定,i-1是x轴,a是x轴,x_1是x轴
  213. class_dict = dict(zip(class_, [i for i in range(len(class_))]))
  214. if not nono:
  215. v_dict = [{'min': -1.5, 'max': -0.5, 'label': '未知'}] # 分段显示
  216. else:
  217. v_dict = []
  218. for i in class_dict:
  219. v_dict.append(
  220. {'min': class_dict[i] - 0.5, 'max': class_dict[i] + 0.5, 'label': str(i)})
  221. o_cList = []
  222. if len(x_means) == 1:
  223. n_ra = x_range[0]
  224. if Type[0] == 1:
  225. ra = make_list(n_ra[0], n_ra[1], 70)
  226. else:
  227. ra = n_ra
  228. a = np.array([i for i in ra]).reshape(-1, 1)
  229. y_data = Predict_Func(a)[0].tolist()
  230. value = [[0, float(a[i]), class_dict.get(y_data[i], -1)]
  231. for i in range(len(a))]
  232. c = (HeatMap()
  233. .add_xaxis(['None'])
  234. # value的第一个数值是x
  235. .add_yaxis(f'数据', np.unique(a), value, **Label_Set)
  236. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  237. yaxis_opts=opts.AxisOpts(
  238. is_scale=True, type_='category'), # 'category'
  239. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  240. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  241. min_=-1,
  242. is_piecewise=True, pieces=v_dict,
  243. orient='horizontal', pos_bottom='3%'))
  244. )
  245. o_cList.append(c)
  246. return o_cList
  247. # 如果x_means长度不等于1则执行下面
  248. for i in range(len(x_means)):
  249. if i == 0:
  250. continue
  251. n_ra = x_range[i - 1]
  252. Type_ra = Type[i - 1]
  253. n_rb = x_range[i]
  254. Type_rb = Type[i]
  255. if Type_ra == 1:
  256. ra = make_list(n_ra[0], n_ra[1], 70)
  257. else:
  258. ra = n_ra
  259. if Type_rb == 1:
  260. rb = make_list(n_rb[0], n_rb[1], 35)
  261. else:
  262. rb = n_rb
  263. a = np.array([i for i in ra for _ in rb]).T
  264. b = np.array([i for _ in ra for i in rb]).T
  265. data = np.array([x_means for _ in ra for i in rb])
  266. data[:, i - 1] = a
  267. data[:, i] = b
  268. y_data = Predict_Func(data)[0].tolist()
  269. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i], -1)]
  270. for i in range(len(a))]
  271. c = (HeatMap()
  272. .add_xaxis(np.unique(a))
  273. # value的第一个数值是x
  274. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)
  275. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  276. yaxis_opts=opts.AxisOpts(
  277. is_scale=True, type_='category'), # 'category'
  278. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  279. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()), min_=-1,
  280. is_piecewise=True, pieces=v_dict, orient='horizontal', pos_bottom='3%'))
  281. )
  282. o_cList.append(c)
  283. return o_cList
  284. # 绘制分类型预测图x-x热力图
  285. def Decision_boundary_More(
  286. x_range,
  287. x_means,
  288. Predict_Func,
  289. class_,
  290. Type,
  291. nono=False):
  292. # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  293. # a-特征x,b-特征x-1,c-其他特征
  294. # 规定,i-1是x轴,a是x轴,x_1是x轴
  295. class_dict = dict(zip(class_, [i for i in range(len(class_))]))
  296. if not nono:
  297. v_dict = [{'min': -1.5, 'max': -0.5, 'label': '未知'}] # 分段显示
  298. else:
  299. v_dict = []
  300. for i in class_dict:
  301. v_dict.append(
  302. {'min': class_dict[i] - 0.5, 'max': class_dict[i] + 0.5, 'label': str(i)})
  303. o_cList = []
  304. if len(x_means) == 1:
  305. return Decision_boundary(
  306. x_range,
  307. x_means,
  308. Predict_Func,
  309. class_,
  310. Type,
  311. nono)
  312. # 如果x_means长度不等于1则执行下面
  313. for i in range(len(x_means)):
  314. for j in range(len(x_means)):
  315. if j <= i:
  316. continue
  317. n_ra = x_range[j]
  318. Type_ra = Type[j]
  319. n_rb = x_range[i]
  320. Type_rb = Type[i]
  321. if Type_ra == 1:
  322. ra = make_list(n_ra[0], n_ra[1], 70)
  323. else:
  324. ra = n_ra
  325. if Type_rb == 1:
  326. rb = make_list(n_rb[0], n_rb[1], 35)
  327. else:
  328. rb = n_rb
  329. a = np.array([i for i in ra for _ in rb]).T
  330. b = np.array([i for _ in ra for i in rb]).T
  331. data = np.array([x_means for _ in ra for i in rb])
  332. data[:, j] = a
  333. data[:, i] = b
  334. y_data = Predict_Func(data)[0].tolist()
  335. value = [[float(a[i]), float(b[i]), class_dict.get(
  336. y_data[i], -1)] for i in range(len(a))]
  337. c = (HeatMap()
  338. .add_xaxis(np.unique(a))
  339. # value的第一个数值是x
  340. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)
  341. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  342. yaxis_opts=opts.AxisOpts(
  343. is_scale=True, type_='category'), # 'category'
  344. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  345. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()), min_=-1,
  346. is_piecewise=True, pieces=v_dict, orient='horizontal', pos_bottom='3%'))
  347. )
  348. o_cList.append(c)
  349. return o_cList
  350. def SeeTree(Dic):
  351. node_re = re.compile(r'^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  352. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  353. node_Dict = {}
  354. link_list = []
  355. with open(Dic, 'r') as f: # 貌似必须分开w和r
  356. for i in f:
  357. try:
  358. get = re.findall(node_re, i)[0]
  359. if get[0] != '':
  360. try:
  361. v = float(get[0])
  362. except BaseException:
  363. v = 0
  364. node_Dict[get[0]] = {'name': get[1].replace(
  365. '\\n', '\n'), 'value': v, 'children': []}
  366. continue
  367. except BaseException:
  368. pass
  369. try:
  370. get = re.findall(link_re, i)[0]
  371. if get[0] != '' and get[1] != '':
  372. link_list.append((get[0], get[1]))
  373. except BaseException:
  374. pass
  375. father_list = [] # 已经有父亲的list
  376. for i in link_list:
  377. father = i[0] # 父节点
  378. son = i[1] # 子节点
  379. try:
  380. node_Dict[father]['children'].append(node_Dict[son])
  381. father_list.append(son)
  382. if int(son) == 0:
  383. print('F')
  384. except BaseException:
  385. pass
  386. father = list(set(node_Dict.keys()) - set(father_list))
  387. c = (
  388. Tree()
  389. .add("", [node_Dict[father[0]]], is_roam=True)
  390. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  391. toolbox_opts=opts.ToolboxOpts(is_show=True))
  392. )
  393. return c
  394. def make_Tab(heard, row):
  395. return Table().add(headers=heard, rows=row)
  396. def scatter(w_heard, w):
  397. c = (Scatter() .add_xaxis(w_heard) .add_yaxis('',
  398. w,
  399. **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'),
  400. **global_Set))
  401. return c
  402. def bar(w_heard, w):
  403. c = (Bar() .add_xaxis(w_heard) .add_yaxis('',
  404. abs(w).tolist(),
  405. **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'),
  406. **global_Set))
  407. return c
  408. # def line(w_sum,w,b):
  409. # x = np.arange(-5, 5, 1)
  410. # c = (
  411. # Line()
  412. # .add_xaxis(x.tolist())
  413. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  414. # )
  415. # for i in range(len(w)):
  416. # y = x * w[i] + b
  417. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  418. # return c
  419. def see_Line(x_trainData, y_trainData, w, w_sum, b):
  420. y = y_trainData.tolist()
  421. x_data = x_trainData.transpose
  422. re = []
  423. for i in range(len(x_data)):
  424. x = x_data[i]
  425. p = int(x.max() - x.min()) / 5
  426. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  427. y_num = x_num * w[i] + (w[i] / w_sum) * b
  428. c = (
  429. line() .add_xaxis(
  430. x_num.tolist()) .add_yaxis(
  431. f"{i}预测曲线",
  432. y_num.tolist(),
  433. is_smooth=True,
  434. **Label_Set) .set_global_opts(
  435. title_opts=opts.TitleOpts(
  436. title=f"系数w曲线"),
  437. **global_Set))
  438. t = (
  439. Scatter() .add_xaxis(
  440. x.tolist()) .add_yaxis(
  441. f'{i}特征',
  442. y,
  443. **Label_Set) .set_global_opts(
  444. title_opts=opts.TitleOpts(
  445. title='类型划分图'),
  446. **global_Set))
  447. t.overlap(c)
  448. re.append(t)
  449. return re
  450. def get_Color():
  451. # 随机颜色,雷达图默认非随机颜色
  452. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  453. color = '#'
  454. for a in rgb:
  455. color += str(hex(a))[-2:].replace('x',
  456. '0').upper() # 转换为16进制,upper表示小写(规范化)
  457. return color
  458. def is_continuous(data: np.array, f: float = 0.1):
  459. data = data.tolist()
  460. l = np.unique(data).tolist()
  461. try:
  462. re = len(l) / len(data) >= f or len(data) <= 3
  463. return re
  464. except BaseException:
  465. return False
  466. def make_Cat(x_data):
  467. Cat = Categorical_Data()
  468. for i in range(len(x_data)):
  469. x1 = x_data[i] # x坐标
  470. Cat(x1)
  471. return Cat
  472. # 根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  473. def Training_visualization_More_NoCenter(x_trainData, class_, y):
  474. x_data = x_trainData.transpose
  475. if len(x_data) == 1:
  476. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  477. Cat = make_Cat(x_data)
  478. o_cList = []
  479. for i in range(len(x_data)):
  480. for a in range(len(x_data)):
  481. if a <= i:
  482. continue
  483. x1 = x_data[i] # x坐标
  484. x1_con = is_continuous(x1)
  485. x2 = x_data[a] # y坐标
  486. x2_con = is_continuous(x2)
  487. o_c = None # 旧的C
  488. for class_num in range(len(class_)):
  489. n_class = class_[class_num]
  490. x_1 = x1[y == n_class].tolist()
  491. x_2 = x2[y == n_class]
  492. x_2_new = np.unique(x_2)
  493. x_2 = x2[y == n_class].tolist()
  494. # x与散点图不同,这里是纵坐标
  495. c = (
  496. Scatter() .add_xaxis(x_2) .add_yaxis(
  497. f'{n_class}',
  498. x_1,
  499. **Label_Set) .set_global_opts(
  500. title_opts=opts.TitleOpts(
  501. title=f'[{a}-{i}]训练数据散点图'),
  502. **global_Set,
  503. yaxis_opts=opts.AxisOpts(
  504. type_='value' if x1_con else 'category',
  505. is_scale=True),
  506. xaxis_opts=opts.AxisOpts(
  507. type_='value' if x2_con else 'category',
  508. is_scale=True)))
  509. c.add_xaxis(x_2_new)
  510. if o_c is None:
  511. o_c = c
  512. else:
  513. o_c = o_c.overlap(c)
  514. o_cList.append(o_c)
  515. means, x_range, Type = Cat.get()
  516. return o_cList, means, x_range, Type
  517. # 根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  518. def Training_visualization_More(x_trainData, class_, y, center):
  519. x_data = x_trainData.transpose
  520. if len(x_data) == 1:
  521. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  522. Cat = make_Cat(x_data)
  523. o_cList = []
  524. for i in range(len(x_data)):
  525. for a in range(len(x_data)):
  526. if a <= i:
  527. continue
  528. x1 = x_data[i] # x坐标
  529. x1_con = is_continuous(x1)
  530. x2 = x_data[a] # y坐标
  531. x2_con = is_continuous(x2)
  532. o_c = None # 旧的C
  533. for class_num in range(len(class_)):
  534. n_class = class_[class_num]
  535. x_1 = x1[y == n_class].tolist()
  536. x_2 = x2[y == n_class]
  537. x_2_new = np.unique(x_2)
  538. x_2 = x2[y == n_class].tolist()
  539. # x与散点图不同,这里是纵坐标
  540. c = (
  541. Scatter() .add_xaxis(x_2) .add_yaxis(
  542. f'{n_class}',
  543. x_1,
  544. **Label_Set) .set_global_opts(
  545. title_opts=opts.TitleOpts(
  546. title=f'[{a}-{i}]训练数据散点图'),
  547. **global_Set,
  548. yaxis_opts=opts.AxisOpts(
  549. type_='value' if x1_con else 'category',
  550. is_scale=True),
  551. xaxis_opts=opts.AxisOpts(
  552. type_='value' if x2_con else 'category',
  553. is_scale=True)))
  554. c.add_xaxis(x_2_new)
  555. # 添加簇中心
  556. try:
  557. center_x_2 = [center[class_num][a]]
  558. except BaseException:
  559. center_x_2 = [0]
  560. b = (
  561. Scatter() .add_xaxis(center_x_2) .add_yaxis(
  562. f'[{n_class}]中心',
  563. [
  564. center[class_num][i]],
  565. **Label_Set,
  566. symbol='triangle') .set_global_opts(
  567. title_opts=opts.TitleOpts(
  568. title='簇中心'),
  569. **global_Set,
  570. yaxis_opts=opts.AxisOpts(
  571. type_='value' if x1_con else 'category',
  572. is_scale=True),
  573. xaxis_opts=opts.AxisOpts(
  574. type_='value' if x2_con else 'category',
  575. is_scale=True)))
  576. c.overlap(b)
  577. if o_c is None:
  578. o_c = c
  579. else:
  580. o_c = o_c.overlap(c)
  581. o_cList.append(o_c)
  582. means, x_range, Type = Cat.get()
  583. return o_cList, means, x_range, Type
  584. # 根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  585. def Training_visualization_Center(x_trainData, class_, y, center):
  586. x_data = x_trainData.transpose
  587. if len(x_data) == 1:
  588. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  589. Cat = make_Cat(x_data)
  590. o_cList = []
  591. for i in range(len(x_data)):
  592. x1 = x_data[i] # x坐标
  593. x1_con = is_continuous(x1)
  594. if i == 0:
  595. continue
  596. x2 = x_data[i - 1] # y坐标
  597. x2_con = is_continuous(x2)
  598. o_c = None # 旧的C
  599. for class_num in range(len(class_)):
  600. n_class = class_[class_num]
  601. x_1 = x1[y == n_class].tolist()
  602. x_2 = x2[y == n_class]
  603. x_2_new = np.unique(x_2)
  604. x_2 = x2[y == n_class].tolist()
  605. # x与散点图不同,这里是纵坐标
  606. c = (
  607. Scatter() .add_xaxis(x_2) .add_yaxis(
  608. f'{n_class}',
  609. x_1,
  610. **Label_Set) .set_global_opts(
  611. title_opts=opts.TitleOpts(
  612. title=f'[{i-1}-{i}]训练数据散点图'),
  613. **global_Set,
  614. yaxis_opts=opts.AxisOpts(
  615. type_='value' if x1_con else 'category',
  616. is_scale=True),
  617. xaxis_opts=opts.AxisOpts(
  618. type_='value' if x2_con else 'category',
  619. is_scale=True)))
  620. c.add_xaxis(x_2_new)
  621. # 添加簇中心
  622. try:
  623. center_x_2 = [center[class_num][i - 1]]
  624. except BaseException:
  625. center_x_2 = [0]
  626. b = (
  627. Scatter() .add_xaxis(center_x_2) .add_yaxis(
  628. f'[{n_class}]中心',
  629. [
  630. center[class_num][i]],
  631. **Label_Set,
  632. symbol='triangle') .set_global_opts(
  633. title_opts=opts.TitleOpts(
  634. title='簇中心'),
  635. **global_Set,
  636. yaxis_opts=opts.AxisOpts(
  637. type_='value' if x1_con else 'category',
  638. is_scale=True),
  639. xaxis_opts=opts.AxisOpts(
  640. type_='value' if x2_con else 'category',
  641. is_scale=True)))
  642. c.overlap(b)
  643. if o_c is None:
  644. o_c = c
  645. else:
  646. o_c = o_c.overlap(c)
  647. o_cList.append(o_c)
  648. means, x_range, Type = Cat.get()
  649. return o_cList, means, x_range, Type
  650. def Training_visualization(x_trainData, class_, y): # 根据不同类别绘制x-x分类散点图
  651. x_data = x_trainData.transpose
  652. if len(x_data) == 1:
  653. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  654. Cat = make_Cat(x_data)
  655. o_cList = []
  656. for i in range(len(x_data)):
  657. x1 = x_data[i] # x坐标
  658. x1_con = is_continuous(x1)
  659. if i == 0:
  660. continue
  661. x2 = x_data[i - 1] # y坐标
  662. x2_con = is_continuous(x2)
  663. o_c = None # 旧的C
  664. for n_class in class_:
  665. x_1 = x1[y == n_class].tolist()
  666. x_2 = x2[y == n_class]
  667. x_2_new = np.unique(x_2)
  668. x_2 = x2[y == n_class].tolist()
  669. # x与散点图不同,这里是纵坐标
  670. c = (
  671. Scatter() .add_xaxis(x_2) .add_yaxis(
  672. f'{n_class}',
  673. x_1,
  674. **Label_Set) .set_global_opts(
  675. title_opts=opts.TitleOpts(
  676. title='训练数据散点图'),
  677. **global_Set,
  678. yaxis_opts=opts.AxisOpts(
  679. type_='value' if x1_con else 'category',
  680. is_scale=True),
  681. xaxis_opts=opts.AxisOpts(
  682. type_='value' if x2_con else 'category',
  683. is_scale=True)))
  684. c.add_xaxis(x_2_new)
  685. if o_c is None:
  686. o_c = c
  687. else:
  688. o_c = o_c.overlap(c)
  689. o_cList.append(o_c)
  690. means, x_range, Type = Cat.get()
  691. return o_cList, means, x_range, Type
  692. def Training_visualization_NoClass(x_trainData): # 根据绘制x-x分类散点图(无类别)
  693. x_data = x_trainData.transpose
  694. if len(x_data) == 1:
  695. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  696. Cat = make_Cat(x_data)
  697. o_cList = []
  698. for i in range(len(x_data)):
  699. x1 = x_data[i] # x坐标
  700. x1_con = is_continuous(x1)
  701. if i == 0:
  702. continue
  703. x2 = x_data[i - 1] # y坐标
  704. x2_con = is_continuous(x2)
  705. x2_new = np.unique(x2)
  706. # x与散点图不同,这里是纵坐标
  707. c = (
  708. Scatter() .add_xaxis(x2) .add_yaxis(
  709. '',
  710. x1.tolist(),
  711. **Label_Set) .set_global_opts(
  712. title_opts=opts.TitleOpts(
  713. title='训练数据散点图'),
  714. **global_Leg,
  715. yaxis_opts=opts.AxisOpts(
  716. type_='value' if x1_con else 'category',
  717. is_scale=True),
  718. xaxis_opts=opts.AxisOpts(
  719. type_='value' if x2_con else 'category',
  720. is_scale=True)))
  721. c.add_xaxis(x2_new)
  722. o_cList.append(c)
  723. means, x_range, Type = Cat.get()
  724. return o_cList, means, x_range, Type
  725. def Training_W(x_trainData, class_, y, w_list, b_list, means: list): # 针对分类问题绘制决策边界
  726. x_data = x_trainData.transpose
  727. if len(x_data) == 1:
  728. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  729. o_cList = []
  730. means.append(0)
  731. means = np.array(means)
  732. for i in range(len(x_data)):
  733. if i == 0:
  734. continue
  735. x1_con = is_continuous(x_data[i])
  736. x2 = x_data[i - 1] # y坐标
  737. x2_con = is_continuous(x2)
  738. o_c = None # 旧的C
  739. for class_num in range(len(class_)):
  740. n_class = class_[class_num]
  741. x2_new = np.unique(x2[y == n_class])
  742. # x与散点图不同,这里是纵坐标
  743. # 加入这个判断是为了解决sklearn历史遗留问题
  744. if len(class_) == 2: # 二分类问题
  745. if class_num == 0:
  746. continue
  747. w = w_list[0]
  748. b = b_list[0]
  749. else: # 多分类问题
  750. w = w_list[class_num]
  751. b = b_list[class_num]
  752. if x2_con:
  753. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  754. w = np.append(w, 0)
  755. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (
  756. means[i + 1:] * w[i + 1:]).sum() # 假设除了两个特征意外,其余特征均为means列表的数值
  757. c = (
  758. line() .add_xaxis(x2_new) .add_yaxis(
  759. f"决策边界:{n_class}=>[{i}]",
  760. y_data.tolist(),
  761. is_smooth=True,
  762. **Label_Set) .set_global_opts(
  763. title_opts=opts.TitleOpts(
  764. title=f"系数w曲线"),
  765. **global_Set,
  766. yaxis_opts=opts.AxisOpts(
  767. type_='value' if x1_con else 'category',
  768. is_scale=True),
  769. xaxis_opts=opts.AxisOpts(
  770. type_='value' if x2_con else 'category',
  771. is_scale=True)))
  772. if o_c is None:
  773. o_c = c
  774. else:
  775. o_c = o_c.overlap(c)
  776. # 下面不要接任何代码,因为上面会continue
  777. o_cList.append(o_c)
  778. return o_cList
  779. def Regress_W(x_trainData, y, w: np.array, b, means: list): # 针对回归问题(y-x图)
  780. x_data = x_trainData.transpose
  781. if len(x_data) == 1:
  782. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  783. o_cList = []
  784. means.append(0) # 确保mean[i+1]不会超出index
  785. means = np.array(means)
  786. w = np.append(w, 0)
  787. for i in range(len(x_data)):
  788. x1 = x_data[i]
  789. x1_con = is_continuous(x1)
  790. if x1_con:
  791. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  792. x1_new = np.unique(x1)
  793. # 假设除了两个特征意外,其余特征均为means列表的数值
  794. y_data = x1_new * \
  795. w[i] + b + (means[:i] * w[:i]).sum() + (means[i + 1:] * w[i + 1:]).sum()
  796. y_con = is_continuous(y_data)
  797. c = (
  798. line() .add_xaxis(x1_new) .add_yaxis(
  799. f"拟合结果=>[{i}]",
  800. y_data.tolist(),
  801. is_smooth=True,
  802. **Label_Set) .set_global_opts(
  803. title_opts=opts.TitleOpts(
  804. title=f"系数w曲线"),
  805. **global_Set,
  806. yaxis_opts=opts.AxisOpts(
  807. type_='value' if y_con else None,
  808. is_scale=True),
  809. xaxis_opts=opts.AxisOpts(
  810. type_='value' if x1_con else None,
  811. is_scale=True)))
  812. o_cList.append(c)
  813. return o_cList
  814. def regress_visualization(x_trainData, y): # y-x数据图
  815. x_data = x_trainData.transpose
  816. y_con = is_continuous(y)
  817. Cat = make_Cat(x_data)
  818. o_cList = []
  819. try:
  820. visualmap_opts = opts.VisualMapOpts(
  821. is_show=True,
  822. max_=int(
  823. y.max()) + 1,
  824. min_=int(
  825. y.min()),
  826. pos_right='3%')
  827. except BaseException:
  828. visualmap_opts = None
  829. y_con = False
  830. for i in range(len(x_data)):
  831. x1 = x_data[i] # x坐标
  832. x1_con = is_continuous(x1)
  833. # 不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  834. if not y_con and x1_con: # y不是连续的但x1连续,ry和ry_con是保护y的
  835. ry_con, x1_con = x1_con, y_con
  836. x1, ry = y, x1
  837. else:
  838. ry_con = y_con
  839. ry = y
  840. c = (
  841. Scatter()
  842. .add_xaxis(x1.tolist()) # 研究表明,这个是横轴
  843. .add_yaxis('数据', ry.tolist(), **Label_Set)
  844. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"), **global_Set,
  845. yaxis_opts=opts.AxisOpts(
  846. type_='value' if ry_con else 'category', is_scale=True),
  847. xaxis_opts=opts.AxisOpts(
  848. type_='value' if x1_con else 'category', is_scale=True),
  849. visualmap_opts=visualmap_opts
  850. )
  851. )
  852. c.add_xaxis(np.unique(x1))
  853. o_cList.append(c)
  854. means, x_range, Type = Cat.get()
  855. return o_cList, means, x_range, Type
  856. def Feature_visualization(x_trainData, data_name=''): # x-x数据图
  857. seeting = global_Set if data_name else global_Leg
  858. x_data = x_trainData.transpose
  859. only = False
  860. if len(x_data) == 1:
  861. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  862. only = True
  863. o_cList = []
  864. for i in range(len(x_data)):
  865. for a in range(len(x_data)):
  866. if a <= i:
  867. continue # 重复内容,跳过
  868. x1 = x_data[i] # x坐标
  869. x1_con = is_continuous(x1)
  870. x2 = x_data[a] # y坐标
  871. x2_con = is_continuous(x2)
  872. x2_new = np.unique(x2)
  873. if only:
  874. x2_con = False
  875. # x与散点图不同,这里是纵坐标
  876. c = (
  877. Scatter() .add_xaxis(x2) .add_yaxis(
  878. data_name,
  879. x1,
  880. **Label_Set) .set_global_opts(
  881. title_opts=opts.TitleOpts(
  882. title=f'[{i}-{a}]数据散点图'),
  883. **seeting,
  884. yaxis_opts=opts.AxisOpts(
  885. type_='value' if x1_con else 'category',
  886. is_scale=True),
  887. xaxis_opts=opts.AxisOpts(
  888. type_='value' if x2_con else 'category',
  889. is_scale=True)))
  890. c.add_xaxis(x2_new)
  891. o_cList.append(c)
  892. return o_cList
  893. def Feature_visualization_Format(x_trainData, data_name=''): # x-x数据图
  894. seeting = global_Set if data_name else global_Leg
  895. x_data = x_trainData.transpose
  896. only = False
  897. if len(x_data) == 1:
  898. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  899. only = True
  900. o_cList = []
  901. for i in range(len(x_data)):
  902. for a in range(len(x_data)):
  903. if a <= i:
  904. continue # 重复内容,跳过(a读取的是i后面的)
  905. x1 = x_data[i] # x坐标
  906. x1_con = is_continuous(x1)
  907. x2 = x_data[a] # y坐标
  908. x2_con = is_continuous(x2)
  909. x2_new = np.unique(x2)
  910. x1_list = x1.astype(np.str).tolist()
  911. for i in range(len(x1_list)):
  912. x1_list[i] = [x1_list[i], f'特征{i}']
  913. if only:
  914. x2_con = False
  915. # x与散点图不同,这里是纵坐标
  916. c = (
  917. Scatter() .add_xaxis(x2) .add_yaxis(
  918. data_name,
  919. x1_list,
  920. **Label_Set) .set_global_opts(
  921. title_opts=opts.TitleOpts(
  922. title=f'[{i}-{a}]数据散点图'),
  923. **seeting,
  924. yaxis_opts=opts.AxisOpts(
  925. type_='value' if x1_con else 'category',
  926. is_scale=True),
  927. xaxis_opts=opts.AxisOpts(
  928. type_='value' if x2_con else 'category',
  929. is_scale=True),
  930. tooltip_opts=opts.TooltipOpts(
  931. is_show=True,
  932. axis_pointer_type="cross",
  933. formatter="{c}")))
  934. c.add_xaxis(x2_new)
  935. o_cList.append(c)
  936. return o_cList
  937. def Discrete_Feature_visualization(x_trainData, data_name=''): # 必定离散x-x数据图
  938. seeting = global_Set if data_name else global_Leg
  939. x_data = x_trainData.transpose
  940. if len(x_data) == 1:
  941. x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
  942. o_cList = []
  943. for i in range(len(x_data)):
  944. for a in range(len(x_data)):
  945. if a <= i:
  946. continue # 重复内容,跳过
  947. x1 = x_data[i] # x坐标
  948. x2 = x_data[a] # y坐标
  949. x2_new = np.unique(x2)
  950. # x与散点图不同,这里是纵坐标
  951. c = (
  952. Scatter() .add_xaxis(x2) .add_yaxis(
  953. data_name,
  954. x1,
  955. **Label_Set) .set_global_opts(
  956. title_opts=opts.TitleOpts(
  957. title=f'[{i}-{a}]数据散点图'),
  958. **seeting,
  959. yaxis_opts=opts.AxisOpts(
  960. type_='category',
  961. is_scale=True),
  962. xaxis_opts=opts.AxisOpts(
  963. type_='category',
  964. is_scale=True)))
  965. c.add_xaxis(x2_new)
  966. o_cList.append(c)
  967. return o_cList
  968. def Conversion_control(y_data, x_data, tab): # 合并两x-x图
  969. if isinstance(x_data, np.ndarray) and isinstance(y_data, np.ndarray):
  970. get_x = Feature_visualization(x_data, '原数据') # 原来
  971. get_y = Feature_visualization(y_data, '转换数据') # 转换
  972. for i in range(len(get_x)):
  973. tab.add(get_x[i].overlap(get_y[i]), f'[{i}]数据x-x散点图')
  974. return tab
  975. def Conversion_Separate(y_data, x_data, tab): # 并列显示两x-x图
  976. if isinstance(x_data, np.ndarray) and isinstance(y_data, np.ndarray):
  977. get_x = Feature_visualization(x_data, '原数据') # 原来
  978. get_y = Feature_visualization(y_data, '转换数据') # 转换
  979. for i in range(len(get_x)):
  980. try:
  981. tab.add(get_x[i], f'[{i}]数据x-x散点图')
  982. except IndexError:
  983. pass
  984. try:
  985. tab.add(get_y[i], f'[{i}]变维数据x-x散点图')
  986. except IndexError:
  987. pass
  988. return tab
  989. def Conversion_Separate_Format(y_data, tab): # 并列显示两x-x图
  990. if isinstance(y_data, np.ndarray):
  991. get_y = Feature_visualization_Format(y_data, '转换数据') # 转换
  992. for i in range(len(get_y)):
  993. tab.add(get_y[i], f'[{i}]变维数据x-x散点图')
  994. return tab
  995. def Conversion_SeparateWH(w_data, h_data, tab): # 并列显示两x-x图
  996. if isinstance(w_data, np.ndarray) and isinstance(w_data, np.ndarray):
  997. get_x = Feature_visualization_Format(w_data, 'W矩阵数据') # 原来
  998. get_y = Feature_visualization(
  999. h_data.transpose, 'H矩阵数据') # 转换(先转T,再转T变回原样,W*H是横对列)
  1000. print(h_data)
  1001. print(w_data)
  1002. print(h_data.transpose)
  1003. for i in range(len(get_x)):
  1004. try:
  1005. tab.add(get_x[i], f'[{i}]W矩阵x-x散点图')
  1006. except IndexError:
  1007. pass
  1008. try:
  1009. tab.add(get_y[i], f'[{i}]H.T矩阵x-x散点图')
  1010. except IndexError:
  1011. pass
  1012. return tab
  1013. def make_bar(name, value, tab): # 绘制柱状图
  1014. c = (
  1015. Bar()
  1016. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  1017. .add_yaxis(name, value, **Label_Set)
  1018. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1019. )
  1020. tab.add(c, name)
  1021. def judging_Digits(num: (int, float)): # 查看小数位数
  1022. a = str(abs(num)).split('.')[0]
  1023. if a == '':
  1024. raise ValueError
  1025. return len(a)
  1026. class Learner:
  1027. def __init__(self, *args, **kwargs):
  1028. self.numpy_Dic = {} # name:numpy
  1029. self.Fucn_Add() # 制作Func_Dic
  1030. def Add_Form(self, data: np.array, name):
  1031. name = f'{name}[{len(self.numpy_Dic)}]'
  1032. self.numpy_Dic[name] = data
  1033. def read_csv(self, Dic, name, encoding='utf-8', str_must=False, sep=','):
  1034. type_ = np.str if str_must else np.float
  1035. pf_data = read_csv(Dic, encoding=encoding, delimiter=sep, header=None)
  1036. try:
  1037. data = pf_data.to_numpy(dtype=type_)
  1038. except ValueError:
  1039. data = pf_data.to_numpy(dtype=np.str)
  1040. if data.ndim == 1:
  1041. data = np.expand_dims(data, axis=1)
  1042. self.Add_Form(data, name)
  1043. return data
  1044. def Add_Python(self, Text, sheet_name):
  1045. name = {}
  1046. name.update(globals().copy())
  1047. name.update(locals().copy())
  1048. exec(Text, name)
  1049. exec('get = Creat()', name)
  1050. if isinstance(name['get'], np.array): # 已经是DataFram
  1051. get = name['get']
  1052. else:
  1053. try:
  1054. get = np.array(name['get'])
  1055. except BaseException:
  1056. get = np.array([name['get']])
  1057. self.Add_Form(get, sheet_name)
  1058. return get
  1059. def get_Form(self) -> dict:
  1060. return self.numpy_Dic.copy()
  1061. def get_Sheet(self, name) -> np.array:
  1062. return self.numpy_Dic[name].copy()
  1063. def to_CSV(self, Dic: str, name, sep) -> str:
  1064. get = self.get_Sheet(name)
  1065. np.savetxt(Dic, get, delimiter=sep)
  1066. return Dic
  1067. def to_Html_One(self, name, Dic=''):
  1068. if Dic == '':
  1069. Dic = f'{name}.html'
  1070. get = self.get_Sheet(name)
  1071. if get.ndim == 1:
  1072. get = np.expand_dims(get, axis=1)
  1073. get = get.tolist()
  1074. for i in range(len(get)):
  1075. get[i] = [i + 1] + get[i]
  1076. headers = [i for i in range(len(get[0]))]
  1077. table = Table_Fisrt()
  1078. table.add(
  1079. headers,
  1080. get).set_global_opts(
  1081. title_opts=opts.ComponentTitleOpts(
  1082. title=f"表格:{name}",
  1083. subtitle="CoTan~机器学习:查看数据"))
  1084. table.render(Dic)
  1085. return Dic
  1086. def to_Html(self, name, Dic='', type_=0):
  1087. if Dic == '':
  1088. Dic = f'{name}.html'
  1089. # 把要画的sheet放到第一个
  1090. Sheet_Dic = self.get_Form()
  1091. del Sheet_Dic[name]
  1092. Sheet_list = [name] + list(Sheet_Dic.keys())
  1093. class TAB_F:
  1094. def __init__(self, q):
  1095. self.tab = q # 一个Tab
  1096. def render(self, Dic):
  1097. return self.tab.render(Dic)
  1098. # 生成一个显示页面
  1099. if type_ == 0:
  1100. class TAB(TAB_F):
  1101. def add(self, table, k, *f):
  1102. self.tab.add(table, k)
  1103. tab = TAB(tab_First(page_title='CoTan:查看表格')) # 一个Tab
  1104. elif type_ == 1:
  1105. class TAB(TAB_F):
  1106. def add(self, table, *k):
  1107. self.tab.add(table)
  1108. tab = TAB(
  1109. Page(
  1110. page_title='CoTan:查看表格',
  1111. layout=Page.DraggablePageLayout))
  1112. else:
  1113. class TAB(TAB_F):
  1114. def add(self, table, *k):
  1115. self.tab.add(table)
  1116. tab = TAB(
  1117. Page(
  1118. page_title='CoTan:查看表格',
  1119. layout=Page.SimplePageLayout))
  1120. # 迭代添加内容
  1121. for name in Sheet_list:
  1122. get = self.get_Sheet(name)
  1123. if get.ndim == 1:
  1124. get = np.expand_dims(get, axis=1)
  1125. get = get.tolist()
  1126. for i in range(len(get)):
  1127. get[i] = [i + 1] + get[i]
  1128. headers = [i for i in range(len(get[0]))]
  1129. table = Table_Fisrt()
  1130. table.add(
  1131. headers,
  1132. get).set_global_opts(
  1133. title_opts=opts.ComponentTitleOpts(
  1134. title=f"表格:{name}",
  1135. subtitle="CoTan~机器学习:查看数据"))
  1136. tab.add(table, f'表格:{name}')
  1137. tab.render(Dic)
  1138. return Dic
  1139. def Merge(self, name, axis=0): # aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
  1140. sheet_list = []
  1141. for i in name:
  1142. sheet_list.append(self.get_Sheet(i))
  1143. get = {0: np.hstack, 1: np.vstack, 2: np.dstack}[axis](sheet_list)
  1144. self.Add_Form(np.array(get), f'{name[0]}合成')
  1145. def Split(self, name, split=2, axis=0): # aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
  1146. sheet = self.get_Sheet(name)
  1147. get = {0: np.hsplit, 1: np.vsplit, 2: np.dsplit}[axis](sheet, split)
  1148. for i in get:
  1149. self.Add_Form(i, f'{name[0]}分割')
  1150. def Two_Split(self, name, split, axis): # 二分切割(0-横向,1-纵向)
  1151. sheet = self.get_Sheet(name)
  1152. try:
  1153. split = float(eval(split))
  1154. if split < 1:
  1155. split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
  1156. else:
  1157. raise Exception
  1158. except BaseException:
  1159. split = int(split)
  1160. if axis == 0:
  1161. self.Add_Form(sheet[:, split:], f'{name[0]}分割')
  1162. self.Add_Form(sheet[:, :split], f'{name[0]}分割')
  1163. def Deep(self, sheet: np.ndarray):
  1164. return sheet.ravel()
  1165. def Down_Ndim(self, sheet: np.ndarray): # 横向
  1166. down_list = []
  1167. for i in sheet:
  1168. down_list.append(i.ravel())
  1169. return np.array(down_list)
  1170. def LongitudinalDown_Ndim(self, sheet: np.ndarray): # 纵向
  1171. down_list = []
  1172. for i in range(len(sheet[0])):
  1173. down_list.append(sheet[:, i].ravel())
  1174. return np.array(down_list).T
  1175. def Reval(self, name, axis): # axis:0-横向,1-纵向(带.T),2-深度
  1176. sheet = self.get_Sheet(name)
  1177. self.Add_Form({0: self.Down_Ndim, 1: self.LongitudinalDown_Ndim, 2: self.Deep}[
  1178. axis](sheet).copy(), f'{name}伸展')
  1179. def Del_Ndim(self, name): # 删除无用维度
  1180. sheet = self.get_Sheet(name)
  1181. self.Add_Form(np.squeeze(sheet), f'{name}降维')
  1182. def T(self, name, Func: list):
  1183. sheet = self.get_Sheet(name)
  1184. if sheet.ndim <= 2:
  1185. self.Add_Form(sheet.transpose.copy(), f'{name}.T')
  1186. else:
  1187. self.Add_Form(np.transpose(sheet, Func).copy(), f'{name}.T')
  1188. def reShape(self, name, shape: list):
  1189. sheet = self.get_Sheet(name)
  1190. self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r')
  1191. def Fucn_Add(self):
  1192. self.Func_Dic = {
  1193. 'abs': lambda x, y: np.abs(x),
  1194. 'sqrt': lambda x, y: np.sqrt(x),
  1195. 'pow': lambda x, y: x**y,
  1196. 'loge': lambda x, y: np.log(x),
  1197. 'log10': lambda x, y: np.log10(x),
  1198. 'ceil': lambda x, y: np.ceil(x),
  1199. 'floor': lambda x, y: np.floor(x),
  1200. 'rint': lambda x, y: np.rint(x),
  1201. 'sin': lambda x, y: np.sin(x),
  1202. 'cos': lambda x, y: np.cos(x),
  1203. 'tan': lambda x, y: np.tan(x),
  1204. 'tanh': lambda x, y: np.tanh(x),
  1205. 'sinh': lambda x, y: np.sinh(x),
  1206. 'cosh': lambda x, y: np.cosh(x),
  1207. 'asin': lambda x, y: np.arcsin(x),
  1208. 'acos': lambda x, y: np.arccos(x),
  1209. 'atan': lambda x, y: np.arctan(x),
  1210. 'atanh': lambda x, y: np.arctanh(x),
  1211. 'asinh': lambda x, y: np.arcsinh(x),
  1212. 'acosh': lambda x, y: np.arccosh(x),
  1213. 'add': lambda x, y: x + y, # 矩阵或元素
  1214. 'sub': lambda x, y: x - y, # 矩阵或元素
  1215. 'mul': lambda x, y: np.multiply(x, y), # 元素级别
  1216. 'matmul': lambda x, y: np.matmul(x, y), # 矩阵
  1217. 'dot': lambda x, y: np.dot(x, y), # 矩阵
  1218. 'div': lambda x, y: x / y,
  1219. 'div_floor': lambda x, y: np.floor_divide(x, y),
  1220. 'power': lambda x, y: np.power(x, y), # 元素级
  1221. }
  1222. def Cul_Numpy(self, data, data_type, Func):
  1223. if 1 not in data_type:
  1224. raise Exception
  1225. func = self.Func_Dic.get(Func, lambda x, y: x)
  1226. args_data = []
  1227. for i in range(len(data)):
  1228. if data_type[i] == 0:
  1229. args_data.append(data[i])
  1230. else:
  1231. args_data.append(self.get_Sheet(data[i]))
  1232. get = func(*args_data)
  1233. self.Add_Form(get, f'{Func}({data[0]},{data[1]})')
  1234. return get
  1235. class Study_MachineBase:
  1236. def __init__(self, *args, **kwargs):
  1237. self.Model = None
  1238. self.have_Fit = False
  1239. self.have_Predict = False
  1240. self.x_trainData = None
  1241. self.y_trainData = None
  1242. # 有监督学习专有的testData
  1243. self.x_testData = None
  1244. self.y_testData = None
  1245. # 记录这两个是为了克隆
  1246. def Fit(self, x_data, y_data, split=0.3, Increment=True, **kwargs):
  1247. y_data = y_data.ravel()
  1248. try:
  1249. if self.x_trainData is None or not Increment:
  1250. raise Exception
  1251. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1252. self.y_trainData = np.vstack(y_data, self.y_trainData)
  1253. except BaseException:
  1254. self.x_trainData = x_data.copy()
  1255. self.y_trainData = y_data.copy()
  1256. x_train, x_test, y_train, y_test = train_test_split(
  1257. x_data, y_data, test_size=split)
  1258. try: # 增量式训练
  1259. if not Increment:
  1260. raise Exception
  1261. self.Model.partial_fit(x_data, y_data)
  1262. except BaseException:
  1263. self.Model.fit(self.x_trainData, self.y_trainData)
  1264. train_score = self.Model.score(x_train, y_train)
  1265. test_score = self.Model.score(x_test, y_test)
  1266. self.have_Fit = True
  1267. return train_score, test_score
  1268. def Score(self, x_data, y_data):
  1269. Score = self.Model.score(x_data, y_data)
  1270. return Score
  1271. def Class_Score(self, Dic, x_data: np.ndarray, y_Really: np.ndarray):
  1272. y_Really = y_Really.ravel()
  1273. y_Predict = self.Predict(x_data)[0]
  1274. Accuracy = self._Accuracy(y_Predict, y_Really)
  1275. Recall, class_ = self._Macro(y_Predict, y_Really)
  1276. Precision, class_ = self._Macro(y_Predict, y_Really, 1)
  1277. F1, class_ = self._Macro(y_Predict, y_Really, 2)
  1278. Confusion_matrix, class_ = self._Confusion_matrix(y_Predict, y_Really)
  1279. kappa = self._Kappa_score(y_Predict, y_Really)
  1280. tab = Tab()
  1281. def gauge_base(name: str, value: float) -> Gauge:
  1282. c = (
  1283. Gauge()
  1284. .add("", [(name, round(value * 100, 2))], min_=0, max_=100)
  1285. .set_global_opts(title_opts=opts.TitleOpts(title=name))
  1286. )
  1287. return c
  1288. tab.add(gauge_base('准确率', Accuracy), '准确率')
  1289. tab.add(gauge_base('kappa', kappa), 'kappa')
  1290. def Bar_base(name, value) -> Bar:
  1291. c = (
  1292. Bar() .add_xaxis(class_) .add_yaxis(
  1293. name, value, **Label_Set) .set_global_opts(
  1294. title_opts=opts.TitleOpts(
  1295. title=name), **global_Set))
  1296. return c
  1297. tab.add(Bar_base('精确率', Precision.tolist()), '精确率')
  1298. tab.add(Bar_base('召回率', Recall.tolist()), '召回率')
  1299. tab.add(Bar_base('F1', F1.tolist()), 'F1')
  1300. def heatmap_base(name, value, max_, min_, show) -> HeatMap:
  1301. c = (
  1302. HeatMap() .add_xaxis(class_) .add_yaxis(
  1303. name,
  1304. class_,
  1305. value,
  1306. label_opts=opts.LabelOpts(
  1307. is_show=show,
  1308. position='inside')) .set_global_opts(
  1309. title_opts=opts.TitleOpts(
  1310. title=name),
  1311. **global_Set,
  1312. visualmap_opts=opts.VisualMapOpts(
  1313. max_=max_,
  1314. min_=min_,
  1315. pos_right='3%')))
  1316. return c
  1317. value = [[class_[i], class_[j], float(Confusion_matrix[i, j])] for i in range(
  1318. len(class_)) for j in range(len(class_))]
  1319. tab.add(
  1320. heatmap_base(
  1321. '混淆矩阵', value, float(
  1322. Confusion_matrix.max()), float(
  1323. Confusion_matrix.min()), len(class_) < 7), '混淆矩阵')
  1324. desTo_CSV(Dic, '混淆矩阵', Confusion_matrix, class_, class_)
  1325. desTo_CSV(
  1326. Dic, '评分', [
  1327. Precision, Recall, F1], class_, [
  1328. '精确率', '召回率', 'F1'])
  1329. save = Dic + r'/分类模型评估.HTML'
  1330. tab.render(save)
  1331. return save,
  1332. def _Accuracy(self, y_Predict, y_Really): # 准确率
  1333. return accuracy_score(y_Really, y_Predict)
  1334. def _Macro(self, y_Predict, y_Really, func=0):
  1335. Func = [recall_score, precision_score, f1_score] # 召回率,精确率和f1
  1336. class_ = np.unique(y_Really).tolist()
  1337. result = (Func[func](y_Really, y_Predict, class_, average=None))
  1338. return result, class_
  1339. def _Confusion_matrix(self, y_Predict, y_Really): # 混淆矩阵
  1340. class_ = np.unique(y_Really).tolist()
  1341. return confusion_matrix(y_Really, y_Predict), class_
  1342. def _Kappa_score(self, y_Predict, y_Really):
  1343. return cohen_kappa_score(y_Really, y_Predict)
  1344. def Regression_Score(self, Dic, x_data: np.ndarray, y_Really: np.ndarray):
  1345. y_Really = y_Really.ravel()
  1346. y_Predict = self.Predict(x_data)[0]
  1347. tab = Tab()
  1348. MSE = self._MSE(y_Predict, y_Really)
  1349. MAE = self._MAE(y_Predict, y_Really)
  1350. r2_Score = self._R2_Score(y_Predict, y_Really)
  1351. RMSE = self._RMSE(y_Predict, y_Really)
  1352. tab.add(make_Tab(['MSE', 'MAE', 'RMSE', 'r2_Score'],
  1353. [[MSE, MAE, RMSE, r2_Score]]), '评估数据')
  1354. save = Dic + r'/回归模型评估.HTML'
  1355. tab.render(save)
  1356. return save,
  1357. def Clusters_Score(self, Dic, x_data: np.ndarray, *args):
  1358. y_Predict = self.Predict(x_data)[0]
  1359. tab = Tab()
  1360. Coefficient, Coefficient_array = self._Coefficient_clustering(
  1361. x_data, y_Predict)
  1362. def gauge_base(name: str, value: float) -> Gauge:
  1363. c = (Gauge() .add("", [(name, round(value * 100, 2))], min_=0, max_=10**(
  1364. judging_Digits(value * 100))) .set_global_opts(title_opts=opts.TitleOpts(title=name)))
  1365. return c
  1366. def Bar_base(name, value, xaxis) -> Bar:
  1367. c = (
  1368. Bar() .add_xaxis(xaxis) .add_yaxis(
  1369. name, value, **Label_Set) .set_global_opts(
  1370. title_opts=opts.TitleOpts(
  1371. title=name), **global_Set))
  1372. return c
  1373. tab.add(gauge_base('平均轮廓系数', Coefficient), '平均轮廓系数')
  1374. def Bar_(Coefficient_array, name='数据轮廓系数'):
  1375. xaxis = [f'数据{i}' for i in range(len(Coefficient_array))]
  1376. value = Coefficient_array.tolist()
  1377. tab.add(Bar_base(name, value, xaxis), name)
  1378. n = 20
  1379. if len(Coefficient_array) <= n:
  1380. Bar_(Coefficient_array)
  1381. elif len(Coefficient_array) <= n**2:
  1382. a = 0
  1383. while a <= len(Coefficient_array):
  1384. b = a + n
  1385. if b >= len(Coefficient_array):
  1386. b = len(Coefficient_array) + 1
  1387. Cofe_array = Coefficient_array[a:b]
  1388. Bar_(Cofe_array, f'{a}-{b}数据轮廓系数')
  1389. a += n
  1390. else:
  1391. split = np.hsplit(Coefficient_array, n)
  1392. a = 0
  1393. for Cofe_array in split:
  1394. Bar_(Cofe_array, f'{a}%-{a + n}%数据轮廓系数')
  1395. a += n
  1396. save = Dic + r'/聚类模型评估.HTML'
  1397. tab.render(save)
  1398. return save,
  1399. def _MSE(self, y_Predict, y_Really): # 均方误差
  1400. return mean_squared_error(y_Really, y_Predict)
  1401. def _MAE(self, y_Predict, y_Really): # 中值绝对误差
  1402. return median_absolute_error(y_Really, y_Predict)
  1403. def _R2_Score(self, y_Predict, y_Really): # 中值绝对误差
  1404. return r2_score(y_Really, y_Predict)
  1405. def _RMSE(self, y_Predict, y_Really): # 中值绝对误差
  1406. return self._MSE(y_Predict, y_Really) ** 0.5
  1407. def _Coefficient_clustering(self, x_data, y_Predict):
  1408. means_score = silhouette_score(x_data, y_Predict)
  1409. outline_score = silhouette_samples(x_data, y_Predict)
  1410. return means_score, outline_score
  1411. def Predict(self, x_data, *args, **kwargs):
  1412. self.x_testData = x_data.copy()
  1413. y_Predict = self.Model.predict(x_data)
  1414. self.y_testData = y_Predict.copy()
  1415. self.have_Predict = True
  1416. return y_Predict, '预测'
  1417. def Des(self, Dic, *args, **kwargs):
  1418. return (Dic,)
  1419. class prep_Base(Study_MachineBase): # 不允许第二次训练
  1420. def __init__(self, *args, **kwargs):
  1421. super(prep_Base, self).__init__(*args, **kwargs)
  1422. self.Model = None
  1423. def Fit(self, x_data, y_data, Increment=True, *args, **kwargs):
  1424. if not self.have_Predict: # 不允许第二次训练
  1425. y_data = y_data.ravel()
  1426. try:
  1427. if self.x_trainData is None or not Increment:
  1428. raise Exception
  1429. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1430. self.y_trainData = np.vstack(y_data, self.y_trainData)
  1431. except BaseException:
  1432. self.x_trainData = x_data.copy()
  1433. self.y_trainData = y_data.copy()
  1434. try: # 增量式训练
  1435. if not Increment:
  1436. raise Exception
  1437. self.Model.partial_fit(x_data, y_data)
  1438. except BaseException:
  1439. self.Model.fit(self.x_trainData, self.y_trainData)
  1440. self.have_Fit = True
  1441. return 'None', 'None'
  1442. def Predict(self, x_data, *args, **kwargs):
  1443. self.x_testData = x_data.copy()
  1444. x_Predict = self.Model.transform(x_data)
  1445. self.y_testData = x_Predict.copy()
  1446. self.have_Predict = True
  1447. return x_Predict, '特征工程'
  1448. def Score(self, x_data, y_data):
  1449. return 'None' # 没有score
  1450. class Unsupervised(prep_Base): # 无监督,不允许第二次训练
  1451. def Fit(self, x_data, Increment=True, *args, **kwargs):
  1452. if not self.have_Predict: # 不允许第二次训练
  1453. self.y_trainData = None
  1454. try:
  1455. if self.x_trainData is None or not Increment:
  1456. raise Exception
  1457. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1458. except BaseException:
  1459. self.x_trainData = x_data.copy()
  1460. try: # 增量式训练
  1461. if not Increment:
  1462. raise Exception
  1463. self.Model.partial_fit(x_data)
  1464. except BaseException:
  1465. self.Model.fit(self.x_trainData, self.y_trainData)
  1466. self.have_Fit = True
  1467. return 'None', 'None'
  1468. class UnsupervisedModel(prep_Base): # 无监督
  1469. def Fit(self, x_data, Increment=True, *args, **kwargs):
  1470. self.y_trainData = None
  1471. try:
  1472. if self.x_trainData is None or not Increment:
  1473. raise Exception
  1474. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1475. except BaseException:
  1476. self.x_trainData = x_data.copy()
  1477. try: # 增量式训练
  1478. if not Increment:
  1479. raise Exception
  1480. self.Model.partial_fit(x_data)
  1481. except BaseException:
  1482. self.Model.fit(self.x_trainData, self.y_trainData)
  1483. self.have_Fit = True
  1484. return 'None', 'None'
  1485. class To_PyeBase(Study_MachineBase):
  1486. def __init__(self, args_use, model, *args, **kwargs):
  1487. super(To_PyeBase, self).__init__(*args, **kwargs)
  1488. self.Model = None
  1489. # 记录这两个是为了克隆
  1490. self.k = {}
  1491. self.Model_Name = model
  1492. def Fit(self, x_data, y_data, *args, **kwargs):
  1493. self.x_trainData = x_data.copy()
  1494. self.y_trainData = y_data.ravel().copy()
  1495. self.have_Fit = True
  1496. return 'None', 'None'
  1497. def Predict(self, x_data, *args, **kwargs):
  1498. self.have_Predict = True
  1499. return np.array([]), '请使用训练'
  1500. def Score(self, x_data, y_data):
  1501. return 'None' # 没有score
  1502. def num_str(num, f):
  1503. num = str(round(float(num), f))
  1504. if len(num.replace('.', '')) == f:
  1505. return num
  1506. n = num.split('.')
  1507. if len(n) == 0: # 无小数
  1508. return num + '.' + '0' * (f - len(num))
  1509. else:
  1510. return num + '0' * (f - len(num) + 1) # len(num)多算了一位小数点
  1511. def desTo_CSV(Dic, name, data, columns=None, row=None):
  1512. Dic = Dic + '/' + name + '.csv'
  1513. DataFrame(
  1514. data,
  1515. columns=columns,
  1516. index=row).to_csv(
  1517. Dic,
  1518. header=False if columns is None else True,
  1519. index=False if row is None else True)
  1520. return data
  1521. class Des(To_PyeBase): # 数据分析
  1522. def Des(self, Dic, *args, **kwargs):
  1523. tab = Tab()
  1524. data = self.x_trainData
  1525. def Cumulative_calculation(data, func, name, tab):
  1526. sum_list = []
  1527. for i in range(len(data)): # 按行迭代数据
  1528. sum_list.append([])
  1529. for a in range(len(data[i])):
  1530. s = num_str(func(data[:i + 1, a]), 8)
  1531. sum_list[-1].append(s)
  1532. desTo_CSV(Dic, f'{name}', sum_list)
  1533. tab.add(make_Tab([f'[{i}]' for i in range(
  1534. len(sum_list[0]))], sum_list), f'{name}')
  1535. def Geometric_mean(x): return np.power(np.prod(x), 1 / len(x)) # 几何平均数
  1536. def Square_mean(x): return np.sqrt(
  1537. np.sum(np.power(x, 2)) / len(x)) # 平方平均数
  1538. def Harmonic_mean(x): return len(x) / np.sum(np.power(x, -1)) # 调和平均数
  1539. Cumulative_calculation(data, np.sum, '累计求和', tab)
  1540. Cumulative_calculation(data, np.var, '累计方差', tab)
  1541. Cumulative_calculation(data, np.std, '累计标准差', tab)
  1542. Cumulative_calculation(data, np.mean, '累计算术平均值', tab)
  1543. Cumulative_calculation(data, Geometric_mean, '累计几何平均值', tab)
  1544. Cumulative_calculation(data, Square_mean, '累计平方平均值', tab)
  1545. Cumulative_calculation(data, Harmonic_mean, '累计调和平均值', tab)
  1546. Cumulative_calculation(data, np.median, '累计中位数', tab)
  1547. Cumulative_calculation(data, np.max, '累计最大值', tab)
  1548. Cumulative_calculation(data, np.min, '累计最小值', tab)
  1549. save = Dic + r'/数据分析.HTML'
  1550. tab.render(save) # 生成HTML
  1551. return save,
  1552. class CORR(To_PyeBase): # 相关性和协方差
  1553. def Des(self, Dic, *args, **kwargs):
  1554. tab = Tab()
  1555. data = DataFrame(self.x_trainData)
  1556. corr = data.corr().to_numpy() # 相关性
  1557. cov = data.cov().to_numpy() # 协方差
  1558. def HeatMAP(data, name: str, max_, min_):
  1559. x = [f'特征[{i}]' for i in range(len(data))]
  1560. y = [f'特征[{i}]' for i in range(len(data[0]))]
  1561. value = [(f'特征[{i}]', f'特征[{j}]', float(data[i][j]))
  1562. for i in range(len(data)) for j in range(len(data[i]))]
  1563. c = (HeatMap()
  1564. .add_xaxis(x)
  1565. # 如果特征太多则不显示标签
  1566. .add_yaxis(f'数据', y, value, label_opts=opts.LabelOpts(is_show=True if len(x) <= 10 else False, position='inside'))
  1567. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1568. yaxis_opts=opts.AxisOpts(
  1569. is_scale=True, type_='category'), # 'category'
  1570. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1571. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_, min_=min_, pos_right='3%')) # 显示
  1572. )
  1573. tab.add(c, name)
  1574. HeatMAP(corr, '相关性热力图', 1, -1)
  1575. HeatMAP(cov, '协方差热力图', float(cov.max()), float(cov.min()))
  1576. desTo_CSV(Dic, f'相关性矩阵', corr)
  1577. desTo_CSV(Dic, f'协方差矩阵', cov)
  1578. save = Dic + r'/数据相关性.HTML'
  1579. tab.render(save) # 生成HTML
  1580. return save,
  1581. class View_data(To_PyeBase): # 绘制预测型热力图
  1582. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1583. super(View_data, self).__init__(args_use, Learner, *args, **kwargs)
  1584. self.Model = Learner.Model
  1585. self.Select_Model = None
  1586. self.have_Fit = Learner.have_Fit
  1587. self.Model_Name = 'Select_Model'
  1588. self.Learner = Learner
  1589. self.Learner_name = Learner.Model_Name
  1590. def Fit(self, *args, **kwargs):
  1591. self.have_Fit = True
  1592. return 'None', 'None'
  1593. def Predict(self, x_data, Add_Func=None, *args, **kwargs):
  1594. x_trainData = self.Learner.x_trainData
  1595. y_trainData = self.Learner.y_trainData
  1596. x_name = self.Learner_name
  1597. if x_trainData is not None:
  1598. Add_Func(x_trainData, f'{x_name}:x训练数据')
  1599. try:
  1600. x_testData = self.x_testData
  1601. if x_testData is not None:
  1602. Add_Func(x_testData, f'{x_name}:x测试数据')
  1603. except BaseException:
  1604. pass
  1605. try:
  1606. y_testData = self.y_testData.copy()
  1607. if y_testData is not None:
  1608. Add_Func(y_testData, f'{x_name}:y测试数据')
  1609. except BaseException:
  1610. pass
  1611. self.have_Fit = True
  1612. if y_trainData is None:
  1613. return np.array([]), 'y训练数据'
  1614. return y_trainData, 'y训练数据'
  1615. def Des(self, Dic, *args, **kwargs):
  1616. return Dic,
  1617. class MatrixScatter(To_PyeBase): # 矩阵散点图
  1618. def Des(self, Dic, *args, **kwargs):
  1619. tab = Tab()
  1620. data = self.x_trainData
  1621. if data.ndim <= 2: # 维度为2
  1622. c = (Scatter()
  1623. .add_xaxis([f'{i}' for i in range(data.shape[1])])
  1624. .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg)
  1625. )
  1626. if data.ndim == 2:
  1627. for num in range(len(data)):
  1628. i = data[num]
  1629. c.add_yaxis(f'{num}', [[f'{num}', x]
  1630. for x in i], color='#FFFFFF')
  1631. else:
  1632. c.add_yaxis(f'0', [[0, x]for x in data], color='#FFFFFF')
  1633. c.set_series_opts(
  1634. label_opts=opts.LabelOpts(
  1635. is_show=True,
  1636. color='#000000',
  1637. position='inside',
  1638. formatter=JsCode("function(params){return params.data[2];}"),
  1639. ))
  1640. elif data.ndim == 3:
  1641. c = (
  1642. Scatter3D() .set_global_opts(
  1643. title_opts=opts.TitleOpts(
  1644. title=f'矩阵散点图'),
  1645. **global_Leg))
  1646. for num in range(len(data)):
  1647. i = data[num]
  1648. for s_num in range(len(i)):
  1649. s = i[s_num]
  1650. y_data = [[num, s_num, x, float(s[x])]
  1651. for x in range(len(s))]
  1652. c.add(
  1653. f'{num}',
  1654. y_data,
  1655. zaxis3d_opts=opts.Axis3DOpts(
  1656. type_="category"))
  1657. c.set_series_opts(
  1658. label_opts=opts.LabelOpts(
  1659. is_show=True,
  1660. color='#000000',
  1661. position='inside',
  1662. formatter=JsCode("function(params){return params.data[3];}")))
  1663. else:
  1664. c = Scatter()
  1665. tab.add(c, '矩阵散点图')
  1666. save = Dic + r'/矩阵散点图.HTML'
  1667. tab.render(save) # 生成HTML
  1668. return save,
  1669. class Cluster_Tree(To_PyeBase): # 聚类树状图
  1670. def Des(self, Dic, *args, **kwargs):
  1671. tab = Tab()
  1672. x_data = self.x_trainData
  1673. linkage_array = ward(x_data) # self.y_trainData是结果
  1674. dendrogram(linkage_array)
  1675. plt.savefig(Dic + r'/Cluster_graph.png')
  1676. image = Image()
  1677. image.add(
  1678. src=Dic + r'/Cluster_graph.png',
  1679. ).set_global_opts(
  1680. title_opts=opts.ComponentTitleOpts(
  1681. title="聚类树状图"))
  1682. tab.add(image, '聚类树状图')
  1683. save = Dic + r'/聚类树状图.HTML'
  1684. tab.render(save) # 生成HTML
  1685. return save,
  1686. class Class_To_Bar(To_PyeBase): # 类型柱状图
  1687. def Des(self, Dic, *args, **kwargs):
  1688. tab = Tab()
  1689. x_data = self.x_trainData.transpose
  1690. y_data = self.y_trainData
  1691. class_ = np.unique(y_data).tolist() # 类型
  1692. class_list = []
  1693. for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
  1694. class_list.append(y_data == n_class)
  1695. for num_i in range(len(x_data)): # 迭代每一个特征
  1696. i = x_data[num_i]
  1697. i_con = is_continuous(i)
  1698. if i_con and len(i) >= 11:
  1699. # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1700. c_list = [[0] * 10 for _ in class_list]
  1701. start = i.min()
  1702. end = i.max()
  1703. n = (end - start) / 10 # 生成10条柱子
  1704. x_axis = [] # x轴
  1705. num_startEND = 0 # 迭代到第n个
  1706. while num_startEND <= 9: # 把每个特征分为10类进行迭代
  1707. # x_axis添加数据
  1708. x_axis.append(
  1709. f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')
  1710. try:
  1711. if num_startEND == 9:
  1712. raise Exception # 执行到第10次时,直接获取剩下的所有
  1713. s = (start <= i) == (i < end) # 布尔索引
  1714. except BaseException: # 因为start + n有超出end的风险
  1715. s = (start <= i) == (i <= end) # 布尔索引
  1716. # n_data = i[s] # 取得现在的特征数据
  1717. for num in range(len(class_list)): # 根据类别进行迭代
  1718. # 取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
  1719. now_class = class_list[num]
  1720. # 切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1721. bool_class = now_class[s].ravel()
  1722. # 用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1723. c_list[num][num_startEND] = (int(np.sum(bool_class)))
  1724. num_startEND += 1
  1725. start += n
  1726. else:
  1727. iter_np = np.unique(i)
  1728. # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1729. c_list = [[0] * len(iter_np) for _ in class_list]
  1730. x_axis = [] # 添加x轴数据
  1731. for i_num in range(len(iter_np)): # 迭代每一个i(不重复)
  1732. i_data = iter_np[i_num]
  1733. # n_data= i[i == i_data]#取得现在特征数据
  1734. x_axis.append(f'[{i_data}]')
  1735. for num in range(len(class_list)): # 根据类别进行迭代
  1736. now_class = class_list[num] # 取得class_list的布尔数组
  1737. # 切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1738. bool_class = now_class[i == i_data]
  1739. # 用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1740. c_list[num][i_num] = (int(np.sum(bool_class).tolist()))
  1741. c = (
  1742. Bar() .add_xaxis(x_axis) .set_global_opts(
  1743. title_opts=opts.TitleOpts(
  1744. title='类型-特征统计柱状图'),
  1745. **global_Set,
  1746. xaxis_opts=opts.AxisOpts(
  1747. type_='category'),
  1748. yaxis_opts=opts.AxisOpts(
  1749. type_='value')))
  1750. y_axis = []
  1751. for i in range(len(c_list)):
  1752. y_axis.append(f'{class_[i]}')
  1753. c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
  1754. desTo_CSV(Dic, f'类型-[{num_i}]特征统计柱状图', c_list, x_axis, y_axis)
  1755. tab.add(c, f'类型-[{num_i}]特征统计柱状图')
  1756. # 未完成
  1757. save = Dic + r'/特征统计.HTML'
  1758. tab.render(save) # 生成HTML
  1759. return save,
  1760. class Numpy_To_HeatMap(To_PyeBase): # Numpy矩阵绘制热力图
  1761. def Des(self, Dic, *args, **kwargs):
  1762. tab = Tab()
  1763. data = self.x_trainData
  1764. x = [f'横[{i}]' for i in range(len(data))]
  1765. y = [f'纵[{i}]' for i in range(len(data[0]))]
  1766. value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j]))
  1767. for i in range(len(data)) for j in range(len(data[i]))]
  1768. c = (HeatMap()
  1769. .add_xaxis(x)
  1770. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1771. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1772. yaxis_opts=opts.AxisOpts(
  1773. is_scale=True, type_='category'), # 'category'
  1774. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1775. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  1776. min_=float(data.min()),
  1777. pos_right='3%')) # 显示
  1778. )
  1779. tab.add(c, '矩阵热力图')
  1780. tab.add(make_Tab(x, data.transpose.tolist()), f'矩阵热力图:表格')
  1781. save = Dic + r'/矩阵热力图.HTML'
  1782. tab.render(save) # 生成HTML
  1783. return save,
  1784. class Predictive_HeatMap_Base(To_PyeBase): # 绘制预测型热力图
  1785. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1786. super(
  1787. Predictive_HeatMap_Base,
  1788. self).__init__(
  1789. args_use,
  1790. Learner,
  1791. *
  1792. args,
  1793. **kwargs)
  1794. self.Model = Learner.Model
  1795. self.Select_Model = None
  1796. self.have_Fit = Learner.have_Fit
  1797. self.Model_Name = 'Select_Model'
  1798. self.Learner = Learner
  1799. self.x_trainData = Learner.x_trainData.copy()
  1800. self.y_trainData = Learner.y_trainData.copy()
  1801. self.means = []
  1802. def Fit(self, x_data, *args, **kwargs):
  1803. try:
  1804. self.means = x_data.ravel()
  1805. except BaseException:
  1806. pass
  1807. self.have_Fit = True
  1808. return 'None', 'None'
  1809. def Des(
  1810. self,
  1811. Dic,
  1812. Decision_boundary,
  1813. Prediction_boundary,
  1814. *args,
  1815. **kwargs):
  1816. tab = Tab()
  1817. y = self.y_trainData
  1818. x_data = self.x_trainData
  1819. try: # 如果没有class
  1820. class_ = self.Model.classes_.tolist()
  1821. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1822. # 获取数据
  1823. get, x_means, x_range, Type = Training_visualization(
  1824. x_data, class_, y)
  1825. # 可使用自带的means,并且nan表示跳过
  1826. for i in range(min([len(x_means), len(self.means)])):
  1827. try:
  1828. g = self.means[i]
  1829. if g == np.nan:
  1830. raise Exception
  1831. x_means[i] = g
  1832. except BaseException:
  1833. pass
  1834. get = Decision_boundary(
  1835. x_range, x_means, self.Learner.predict, class_, Type)
  1836. for i in range(len(get)):
  1837. tab.add(get[i], f'{i}预测热力图')
  1838. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1839. data = class_ + [f'{i}' for i in x_means]
  1840. c = Table().add(headers=heard, rows=[data])
  1841. tab.add(c, '数据表')
  1842. except BaseException:
  1843. get, x_means, x_range, Type = regress_visualization(x_data, y)
  1844. get = Prediction_boundary(
  1845. x_range, x_means, self.Learner.predict, Type)
  1846. for i in range(len(get)):
  1847. tab.add(get[i], f'{i}预测热力图')
  1848. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1849. data = [f'{i}' for i in x_means]
  1850. c = Table().add(headers=heard, rows=[data])
  1851. tab.add(c, '数据表')
  1852. save = Dic + r'/预测热力图.HTML'
  1853. tab.render(save) # 生成HTML
  1854. return save,
  1855. class Predictive_HeatMap(Predictive_HeatMap_Base): # 绘制预测型热力图
  1856. def Des(self, Dic, *args, **kwargs):
  1857. return super().Des(Dic, Decision_boundary, Prediction_boundary)
  1858. class Predictive_HeatMap_More(Predictive_HeatMap_Base): # 绘制预测型热力图_More
  1859. def Des(self, Dic, *args, **kwargs):
  1860. return super().Des(Dic, Decision_boundary_More, Prediction_boundary_More)
  1861. class Near_feature_scatter_class_More(To_PyeBase):
  1862. def Des(self, Dic, *args, **kwargs):
  1863. tab = Tab()
  1864. x_data = self.x_trainData
  1865. y = self.y_trainData
  1866. class_ = np.unique(y).ravel().tolist()
  1867. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  1868. get, x_means, x_range, Type = Training_visualization_More_NoCenter(
  1869. x_data, class_, y)
  1870. for i in range(len(get)):
  1871. tab.add(get[i], f'{i}训练数据散点图')
  1872. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1873. data = class_ + [f'{i}' for i in x_means]
  1874. c = Table().add(headers=heard, rows=[data])
  1875. tab.add(c, '数据表')
  1876. save = Dic + r'/数据特征散点图(分类).HTML'
  1877. tab.render(save) # 生成HTML
  1878. return save,
  1879. class Near_feature_scatter_More(To_PyeBase):
  1880. def Des(self, Dic, *args, **kwargs):
  1881. tab = Tab()
  1882. x_data = self.x_trainData
  1883. x_means = make_Cat(x_data).get()[0]
  1884. get_y = Feature_visualization(x_data, '数据散点图') # 转换
  1885. for i in range(len(get_y)):
  1886. tab.add(get_y[i], f'[{i}]数据x-x散点图')
  1887. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1888. data = [f'{i}' for i in x_means]
  1889. c = Table().add(headers=heard, rows=[data])
  1890. tab.add(c, '数据表')
  1891. save = Dic + r'/数据特征散点图.HTML'
  1892. tab.render(save) # 生成HTML
  1893. return save,
  1894. class Near_feature_scatter_class(To_PyeBase): # 临近特征散点图:分类数据
  1895. def Des(self, Dic, *args, **kwargs):
  1896. # 获取数据
  1897. class_ = np.unique(self.y_trainData).ravel().tolist()
  1898. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1899. tab = Tab()
  1900. y = self.y_trainData
  1901. x_data = self.x_trainData
  1902. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1903. for i in range(len(get)):
  1904. tab.add(get[i], f'{i}临近特征散点图')
  1905. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1906. data = class_ + [f'{i}' for i in x_means]
  1907. c = Table().add(headers=heard, rows=[data])
  1908. tab.add(c, '数据表')
  1909. save = Dic + r'/临近数据特征散点图(分类).HTML'
  1910. tab.render(save) # 生成HTML
  1911. return save,
  1912. class Near_feature_scatter(To_PyeBase): # 临近特征散点图:连续数据
  1913. def Des(self, Dic, *args, **kwargs):
  1914. tab = Tab()
  1915. x_data = self.x_trainData.transpose
  1916. y = self.y_trainData
  1917. get, x_means, x_range, Type = Training_visualization_NoClass(x_data)
  1918. for i in range(len(get)):
  1919. tab.add(get[i], f'{i}临近特征散点图')
  1920. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1921. data = [f'{i}' for i in x_means]
  1922. tab.add(make_Tab(columns, [data]), '数据表')
  1923. save = Dic + r'/临近数据特征散点图.HTML'
  1924. tab.render(save) # 生成HTML
  1925. return save,
  1926. class Feature_scatter_YX(To_PyeBase): # y-x图
  1927. def Des(self, Dic, *args, **kwargs):
  1928. tab = Tab()
  1929. x_data = self.x_trainData
  1930. y = self.y_trainData
  1931. get, x_means, x_range, Type = regress_visualization(x_data, y)
  1932. for i in range(len(get)):
  1933. tab.add(get[i], f'{i}特征x-y散点图')
  1934. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1935. data = [f'{i}' for i in x_means]
  1936. tab.add(make_Tab(columns, [data]), '数据表')
  1937. save = Dic + r'/特征y-x图像.HTML'
  1938. tab.render(save) # 生成HTML
  1939. return save,
  1940. class Line_Model(Study_MachineBase):
  1941. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1942. super(Line_Model, self).__init__(*args, **kwargs)
  1943. Model = {'Line': LinearRegression, 'Ridge': Ridge, 'Lasso': Lasso}[
  1944. model]
  1945. if model == 'Line':
  1946. self.Model = Model()
  1947. self.k = {}
  1948. else:
  1949. self.Model = Model(
  1950. alpha=args_use['alpha'],
  1951. max_iter=args_use['max_iter'])
  1952. self.k = {
  1953. 'alpha': args_use['alpha'],
  1954. 'max_iter': args_use['max_iter']}
  1955. # 记录这两个是为了克隆
  1956. self.Alpha = args_use['alpha']
  1957. self.max_iter = args_use['max_iter']
  1958. self.Model_Name = model
  1959. def Des(self, Dic, *args, **kwargs):
  1960. tab = Tab()
  1961. x_data = self.x_trainData
  1962. y = self.y_trainData
  1963. w_list = self.Model.coef_.tolist()
  1964. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  1965. b = self.Model.intercept_.tolist()
  1966. get, x_means, x_range, Type = regress_visualization(x_data, y)
  1967. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1968. for i in range(len(get)):
  1969. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1970. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1971. for i in range(len(get)):
  1972. tab.add(get[i], f'{i}预测热力图')
  1973. tab.add(scatter(w_heard, w_list), '系数w散点图')
  1974. tab.add(bar(w_heard, self.Model.coef_), '系数柱状图')
  1975. columns = [
  1976. f'普适预测第{i}特征' for i in range(
  1977. len(x_means))] + w_heard + ['截距b']
  1978. data = [f'{i}' for i in x_means] + w_list + [b]
  1979. if self.Model_Name != 'Line':
  1980. columns += ['阿尔法', '最大迭代次数']
  1981. data += [self.Model.alpha, self.Model.max_iter]
  1982. tab.add(make_Tab(columns, [data]), '数据表')
  1983. desTo_CSV(Dic, '系数表', [w_list] +
  1984. [b], [f'系数W[{i}]' for i in range(len(w_list))] +
  1985. ['截距'])
  1986. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  1987. f'普适预测第{i}特征' for i in range(len(x_means))])
  1988. save = Dic + r'/线性回归模型.HTML'
  1989. tab.render(save) # 生成HTML
  1990. return save,
  1991. class LogisticRegression_Model(Study_MachineBase):
  1992. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1993. super(LogisticRegression_Model, self).__init__(*args, **kwargs)
  1994. self.Model = LogisticRegression(
  1995. C=args_use['C'], max_iter=args_use['max_iter'])
  1996. # 记录这两个是为了克隆
  1997. self.C = args_use['C']
  1998. self.max_iter = args_use['max_iter']
  1999. self.k = {'C': args_use['C'], 'max_iter': args_use['max_iter']}
  2000. self.Model_Name = model
  2001. def Des(self, Dic='render.html', *args, **kwargs):
  2002. # 获取数据
  2003. w_array = self.Model.coef_
  2004. w_list = w_array.tolist() # 变为表格
  2005. b = self.Model.intercept_
  2006. c = self.Model.C
  2007. max_iter = self.Model.max_iter
  2008. class_ = self.Model.classes_.tolist()
  2009. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  2010. tab = Tab()
  2011. y = self.y_trainData
  2012. x_data = self.x_trainData
  2013. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  2014. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  2015. for i in range(len(get)):
  2016. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  2017. for i in range(len(w_list)):
  2018. w = w_list[i]
  2019. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  2020. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  2021. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  2022. columns = class_heard + \
  2023. [f'截距{i}' for i in range(len(b))] + ['C', '最大迭代数']
  2024. data = class_ + b.tolist() + [c, max_iter]
  2025. c = Table().add(headers=columns, rows=[data])
  2026. tab.add(c, '数据表')
  2027. c = Table().add(
  2028. headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  2029. tab.add(c, '系数数据表')
  2030. c = Table().add(headers=[f'普适预测第{i}特征' for i in range(
  2031. len(x_means))], rows=[[f'{i}' for i in x_means]])
  2032. tab.add(c, '普适预测数据表')
  2033. desTo_CSV(Dic, '系数表', w_list, [
  2034. f'系数W[{i}]' for i in range(len(w_list[0]))])
  2035. desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2036. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2037. f'普适预测第{i}特征' for i in range(len(x_means))])
  2038. save = Dic + r'/逻辑回归.HTML'
  2039. tab.render(save) # 生成HTML
  2040. return save,
  2041. class Categorical_Data: # 数据统计助手
  2042. def __init__(self):
  2043. self.x_means = []
  2044. self.x_range = []
  2045. self.Type = []
  2046. def __call__(self, x1, *args, **kwargs):
  2047. get = self.is_continuous(x1)
  2048. return get
  2049. def is_continuous(self, x1: np.array):
  2050. try:
  2051. x1_con = is_continuous(x1)
  2052. if x1_con:
  2053. self.x_means.append(np.mean(x1))
  2054. self.add_Range(x1)
  2055. else:
  2056. raise Exception
  2057. return x1_con
  2058. except BaseException: # 找出出现次数最多的元素
  2059. new = np.unique(x1) # 去除相同的元素
  2060. count_list = []
  2061. for i in new:
  2062. count_list.append(np.sum(x1 == i))
  2063. index = count_list.index(max(count_list)) # 找出最大值的索引
  2064. self.x_means.append(x1[index])
  2065. self.add_Range(x1, False)
  2066. return False
  2067. def add_Range(self, x1: np.array, range_=True):
  2068. try:
  2069. if not range_:
  2070. raise Exception
  2071. min_ = int(x1.min()) - 1
  2072. max_ = int(x1.max()) + 1
  2073. # 不需要复制列表
  2074. self.x_range.append([min_, max_])
  2075. self.Type.append(1)
  2076. except BaseException:
  2077. self.x_range.append(list(set(x1.tolist()))) # 去除多余元素
  2078. self.Type.append(2)
  2079. def get(self):
  2080. return self.x_means, self.x_range, self.Type
  2081. class Knn_Model(Study_MachineBase):
  2082. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2083. super(Knn_Model, self).__init__(*args, **kwargs)
  2084. Model = {
  2085. 'Knn_class': KNeighborsClassifier,
  2086. 'Knn': KNeighborsRegressor}[model]
  2087. self.Model = Model(
  2088. p=args_use['p'],
  2089. n_neighbors=args_use['n_neighbors'])
  2090. # 记录这两个是为了克隆
  2091. self.n_neighbors = args_use['n_neighbors']
  2092. self.p = args_use['p']
  2093. self.k = {'n_neighbors': args_use['n_neighbors'], 'p': args_use['p']}
  2094. self.Model_Name = model
  2095. def Des(self, Dic, *args, **kwargs):
  2096. tab = Tab()
  2097. y = self.y_trainData
  2098. x_data = self.x_trainData
  2099. y_test = self.y_testData
  2100. x_test = self.x_testData
  2101. if self.Model_Name == 'Knn_class':
  2102. class_ = self.Model.classes_.tolist()
  2103. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  2104. get, x_means, x_range, Type = Training_visualization(
  2105. x_data, class_, y)
  2106. for i in range(len(get)):
  2107. tab.add(get[i], f'{i}训练数据散点图')
  2108. if y_test is not None:
  2109. get = Training_visualization(x_test, class_, y_test)[0]
  2110. for i in range(len(get)):
  2111. tab.add(get[i], f'{i}测试数据散点图')
  2112. get = Decision_boundary(
  2113. x_range, x_means, self.Predict, class_, Type)
  2114. for i in range(len(get)):
  2115. tab.add(get[i], f'{i}预测热力图')
  2116. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2117. data = class_ + [f'{i}' for i in x_means]
  2118. c = Table().add(headers=heard, rows=[data])
  2119. tab.add(c, '数据表')
  2120. else:
  2121. get, x_means, x_range, Type = regress_visualization(x_data, y)
  2122. for i in range(len(get)):
  2123. tab.add(get[i], f'{i}训练数据散点图')
  2124. get = regress_visualization(x_test, y_test)[0]
  2125. for i in range(len(get)):
  2126. tab.add(get[i], f'{i}测试数据类型图')
  2127. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2128. for i in range(len(get)):
  2129. tab.add(get[i], f'{i}预测热力图')
  2130. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  2131. data = [f'{i}' for i in x_means]
  2132. c = Table().add(headers=heard, rows=[data])
  2133. tab.add(c, '数据表')
  2134. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2135. f'普适预测第{i}特征' for i in range(len(x_means))])
  2136. save = Dic + r'/K.HTML'
  2137. tab.render(save) # 生成HTML
  2138. return save,
  2139. class Tree_Model(Study_MachineBase):
  2140. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2141. super(Tree_Model, self).__init__(*args, **kwargs)
  2142. Model = {
  2143. 'Tree_class': DecisionTreeClassifier,
  2144. 'Tree': DecisionTreeRegressor}[model]
  2145. self.Model = Model(
  2146. criterion=args_use['criterion'],
  2147. splitter=args_use['splitter'],
  2148. max_features=args_use['max_features'],
  2149. max_depth=args_use['max_depth'],
  2150. min_samples_split=args_use['min_samples_split'])
  2151. # 记录这两个是为了克隆
  2152. self.criterion = args_use['criterion']
  2153. self.splitter = args_use['splitter']
  2154. self.max_features = args_use['max_features']
  2155. self.max_depth = args_use['max_depth']
  2156. self.min_samples_split = args_use['min_samples_split']
  2157. self.k = {
  2158. 'criterion': args_use['criterion'],
  2159. 'splitter': args_use['splitter'],
  2160. 'max_features': args_use['max_features'],
  2161. 'max_depth': args_use['max_depth'],
  2162. 'min_samples_split': args_use['min_samples_split']}
  2163. self.Model_Name = model
  2164. def Des(self, Dic, *args, **kwargs):
  2165. tab = Tab()
  2166. importance = self.Model.feature_importances_.tolist()
  2167. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  2168. export_graphviz(self.Model, out_file=f)
  2169. make_bar('特征重要性', importance, tab)
  2170. desTo_CSV(
  2171. Dic, '特征重要性', [importance], [
  2172. f'[{i}]特征' for i in range(
  2173. len(importance))])
  2174. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"), '决策树可视化')
  2175. y = self.y_trainData
  2176. x_data = self.x_trainData
  2177. y_test = self.y_testData
  2178. x_test = self.x_testData
  2179. if self.Model_Name == 'Tree_class':
  2180. class_ = self.Model.classes_.tolist()
  2181. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  2182. get, x_means, x_range, Type = Training_visualization(
  2183. x_data, class_, y)
  2184. for i in range(len(get)):
  2185. tab.add(get[i], f'{i}训练数据散点图')
  2186. get = Training_visualization(x_test, class_, y_test)[0]
  2187. for i in range(len(get)):
  2188. tab.add(get[i], f'{i}测试数据散点图')
  2189. get = Decision_boundary(
  2190. x_range, x_means, self.Predict, class_, Type)
  2191. for i in range(len(get)):
  2192. tab.add(get[i], f'{i}预测热力图')
  2193. tab.add(make_Tab(class_heard +
  2194. [f'普适预测第{i}特征' for i in range(len(x_means))] +
  2195. [f'特征{i}重要性' for i in range(len(importance))], [class_ +
  2196. [f'{i}' for i in x_means] +
  2197. importance]), '数据表')
  2198. else:
  2199. get, x_means, x_range, Type = regress_visualization(x_data, y)
  2200. for i in range(len(get)):
  2201. tab.add(get[i], f'{i}训练数据散点图')
  2202. get = regress_visualization(x_test, y_test)[0]
  2203. for i in range(len(get)):
  2204. tab.add(get[i], f'{i}测试数据类型图')
  2205. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2206. for i in range(len(get)):
  2207. tab.add(get[i], f'{i}预测热力图')
  2208. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(
  2209. len(importance))], [[f'{i}' for i in x_means] + importance]), '数据表')
  2210. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2211. f'普适预测第{i}特征' for i in range(len(x_means))])
  2212. save = Dic + r'/决策树.HTML'
  2213. tab.render(save) # 生成HTML
  2214. return save,
  2215. class Forest_Model(Study_MachineBase):
  2216. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2217. super(Forest_Model, self).__init__(*args, **kwargs)
  2218. Model = {'Forest_class': RandomForestClassifier,
  2219. 'Forest': RandomForestRegressor}[model]
  2220. self.Model = Model(
  2221. n_estimators=args_use['n_Tree'],
  2222. criterion=args_use['criterion'],
  2223. max_features=args_use['max_features'],
  2224. max_depth=args_use['max_depth'],
  2225. min_samples_split=args_use['min_samples_split'])
  2226. # 记录这两个是为了克隆
  2227. self.n_estimators = args_use['n_Tree']
  2228. self.criterion = args_use['criterion']
  2229. self.max_features = args_use['max_features']
  2230. self.max_depth = args_use['max_depth']
  2231. self.min_samples_split = args_use['min_samples_split']
  2232. self.k = {
  2233. 'n_estimators': args_use['n_Tree'],
  2234. 'criterion': args_use['criterion'],
  2235. 'max_features': args_use['max_features'],
  2236. 'max_depth': args_use['max_depth'],
  2237. 'min_samples_split': args_use['min_samples_split']}
  2238. self.Model_Name = model
  2239. def Des(self, Dic, *args, **kwargs):
  2240. tab = Tab()
  2241. # 多个决策树可视化
  2242. for i in range(len(self.Model.estimators_)):
  2243. with open(Dic + rf"\Tree_Gra[{i}].dot", 'w') as f:
  2244. export_graphviz(self.Model.estimators_[i], out_file=f)
  2245. tab.add(SeeTree(Dic + rf"\Tree_Gra[{i}].dot"), f'[{i}]决策树可视化')
  2246. y = self.y_trainData
  2247. x_data = self.x_trainData
  2248. if self.Model_Name == 'Forest_class':
  2249. class_ = self.Model.classes_.tolist()
  2250. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  2251. get, x_means, x_range, Type = Training_visualization(
  2252. x_data, class_, y)
  2253. for i in range(len(get)):
  2254. tab.add(get[i], f'{i}训练数据散点图')
  2255. get = Decision_boundary(
  2256. x_range, x_means, self.Predict, class_, Type)
  2257. for i in range(len(get)):
  2258. tab.add(get[i], f'{i}预测热力图')
  2259. tab.add(make_Tab(class_heard +
  2260. [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ +
  2261. [f'{i}' for i in x_means]]), '数据表')
  2262. else:
  2263. get, x_means, x_range, Type = regress_visualization(x_data, y)
  2264. for i in range(len(get)):
  2265. tab.add(get[i], f'{i}预测类型图')
  2266. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2267. for i in range(len(get)):
  2268. tab.add(get[i], f'{i}预测热力图')
  2269. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [
  2270. [f'{i}' for i in x_means]]), '数据表')
  2271. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2272. f'普适预测第{i}特征' for i in range(len(x_means))])
  2273. save = Dic + r'/随机森林.HTML'
  2274. tab.render(save) # 生成HTML
  2275. return save,
  2276. class GradientTree_Model(Study_MachineBase): # 继承Tree_Model主要是继承Des
  2277. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2278. super(GradientTree_Model, self).__init__(
  2279. *args, **kwargs) # 不需要执行Tree_Model的初始化
  2280. Model = {'GradientTree_class': GradientBoostingClassifier,
  2281. 'GradientTree': GradientBoostingRegressor}[model]
  2282. self.Model = Model(
  2283. n_estimators=args_use['n_Tree'],
  2284. max_features=args_use['max_features'],
  2285. max_depth=args_use['max_depth'],
  2286. min_samples_split=args_use['min_samples_split'])
  2287. # 记录这两个是为了克隆
  2288. self.criterion = args_use['criterion']
  2289. self.splitter = args_use['splitter']
  2290. self.max_features = args_use['max_features']
  2291. self.max_depth = args_use['max_depth']
  2292. self.min_samples_split = args_use['min_samples_split']
  2293. self.k = {
  2294. 'criterion': args_use['criterion'],
  2295. 'splitter': args_use['splitter'],
  2296. 'max_features': args_use['max_features'],
  2297. 'max_depth': args_use['max_depth'],
  2298. 'min_samples_split': args_use['min_samples_split']}
  2299. self.Model_Name = model
  2300. def Des(self, Dic, *args, **kwargs):
  2301. tab = Tab()
  2302. # 多个决策树可视化
  2303. for a in range(len(self.Model.estimators_)):
  2304. for i in range(len(self.Model.estimators_[a])):
  2305. with open(Dic + rf"\Tree_Gra[{a},{i}].dot", 'w') as f:
  2306. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  2307. tab.add(
  2308. SeeTree(
  2309. Dic +
  2310. rf"\Tree_Gra[{a},{i}].dot"),
  2311. f'[{a},{i}]决策树可视化')
  2312. y = self.y_trainData
  2313. x_data = self.x_trainData
  2314. if self.Model_Name == 'Tree_class':
  2315. class_ = self.Model.classes_.tolist()
  2316. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  2317. get, x_means, x_range, Type = Training_visualization(
  2318. x_data, class_, y)
  2319. for i in range(len(get)):
  2320. tab.add(get[i], f'{i}训练数据散点图')
  2321. get = Decision_boundary(
  2322. x_range, x_means, self.Predict, class_, Type)
  2323. for i in range(len(get)):
  2324. tab.add(get[i], f'{i}预测热力图')
  2325. tab.add(make_Tab(class_heard +
  2326. [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ +
  2327. [f'{i}' for i in x_means]]), '数据表')
  2328. else:
  2329. get, x_means, x_range, Type = regress_visualization(x_data, y)
  2330. for i in range(len(get)):
  2331. tab.add(get[i], f'{i}预测类型图')
  2332. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2333. for i in range(len(get)):
  2334. tab.add(get[i], f'{i}预测热力图')
  2335. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [
  2336. [f'{i}' for i in x_means]]), '数据表')
  2337. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2338. f'普适预测第{i}特征' for i in range(len(x_means))])
  2339. save = Dic + r'/梯度提升回归树.HTML'
  2340. tab.render(save) # 生成HTML
  2341. return save,
  2342. class SVC_Model(Study_MachineBase):
  2343. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2344. super(SVC_Model, self).__init__(*args, **kwargs)
  2345. self.Model = SVC(
  2346. C=args_use['C'],
  2347. gamma=args_use['gamma'],
  2348. kernel=args_use['kernel'])
  2349. # 记录这两个是为了克隆
  2350. self.C = args_use['C']
  2351. self.gamma = args_use['gamma']
  2352. self.kernel = args_use['kernel']
  2353. self.k = {
  2354. 'C': args_use['C'],
  2355. 'gamma': args_use['gamma'],
  2356. 'kernel': args_use['kernel']}
  2357. self.Model_Name = model
  2358. def Des(self, Dic, *args, **kwargs):
  2359. tab = Tab()
  2360. try:
  2361. w_list = self.Model.coef_.tolist() # 未必有这个属性
  2362. b = self.Model.intercept_.tolist()
  2363. U = True
  2364. except BaseException:
  2365. U = False
  2366. class_ = self.Model.classes_.tolist()
  2367. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  2368. y = self.y_trainData
  2369. x_data = self.x_trainData
  2370. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  2371. if U:
  2372. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  2373. for i in range(len(get)):
  2374. if U:
  2375. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  2376. else:
  2377. tab.add(get[i], f'{i}决策边界散点图')
  2378. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2379. for i in range(len(get)):
  2380. tab.add(get[i], f'{i}预测热力图')
  2381. dic = {2: '离散', 1: '连续'}
  2382. tab.add(make_Tab(class_heard +
  2383. [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))], [class_ +
  2384. [f'{i}' for i in x_means]]), '数据表')
  2385. if U:
  2386. desTo_CSV(Dic, '系数表', w_list, [
  2387. f'系数W[{i}]' for i in range(len(w_list[0]))])
  2388. if U:
  2389. desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2390. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2391. f'普适预测第{i}特征' for i in range(len(x_means))])
  2392. save = Dic + r'/支持向量机分类.HTML'
  2393. tab.render(save) # 生成HTML
  2394. return save,
  2395. class SVR_Model(Study_MachineBase):
  2396. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2397. super(SVR_Model, self).__init__(*args, **kwargs)
  2398. self.Model = SVR(
  2399. C=args_use['C'],
  2400. gamma=args_use['gamma'],
  2401. kernel=args_use['kernel'])
  2402. # 记录这两个是为了克隆
  2403. self.C = args_use['C']
  2404. self.gamma = args_use['gamma']
  2405. self.kernel = args_use['kernel']
  2406. self.k = {
  2407. 'C': args_use['C'],
  2408. 'gamma': args_use['gamma'],
  2409. 'kernel': args_use['kernel']}
  2410. self.Model_Name = model
  2411. def Des(self, Dic, *args, **kwargs):
  2412. tab = Tab()
  2413. x_data = self.x_trainData
  2414. y = self.y_trainData
  2415. try:
  2416. w_list = self.Model.coef_.tolist() # 未必有这个属性
  2417. b = self.Model.intercept_.tolist()
  2418. U = True
  2419. except BaseException:
  2420. U = False
  2421. get, x_means, x_range, Type = regress_visualization(x_data, y)
  2422. if U:
  2423. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  2424. for i in range(len(get)):
  2425. if U:
  2426. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  2427. else:
  2428. tab.add(get[i], f'{i}预测类型图')
  2429. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2430. for i in range(len(get)):
  2431. tab.add(get[i], f'{i}预测热力图')
  2432. if U:
  2433. desTo_CSV(Dic, '系数表', w_list, [
  2434. f'系数W[{i}]' for i in range(len(w_list[0]))])
  2435. if U:
  2436. desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2437. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  2438. f'普适预测第{i}特征' for i in range(len(x_means))])
  2439. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [
  2440. [f'{i}' for i in x_means]]), '数据表')
  2441. save = Dic + r'/支持向量机回归.HTML'
  2442. tab.render(save) # 生成HTML
  2443. return save,
  2444. class Variance_Model(Unsupervised): # 无监督
  2445. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2446. super(Variance_Model, self).__init__(*args, **kwargs)
  2447. self.Model = VarianceThreshold(
  2448. threshold=(args_use['P'] * (1 - args_use['P'])))
  2449. # 记录这两个是为了克隆
  2450. self.threshold = args_use['P']
  2451. self.k = {'threshold': args_use['P']}
  2452. self.Model_Name = model
  2453. def Des(self, Dic, *args, **kwargs):
  2454. tab = Tab()
  2455. var = self.Model.variances_ # 标准差
  2456. y_data = self.y_testData
  2457. if isinstance(y_data, np.ndarray):
  2458. get = Feature_visualization(self.y_testData)
  2459. for i in range(len(get)):
  2460. tab.add(get[i], f'[{i}]数据x-x散点图')
  2461. c = (
  2462. Bar()
  2463. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  2464. .add_yaxis('标准差', var.tolist(), **Label_Set)
  2465. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2466. )
  2467. tab.add(c, '数据标准差')
  2468. save = Dic + r'/方差特征选择.HTML'
  2469. tab.render(save) # 生成HTML
  2470. return save,
  2471. class SelectKBest_Model(prep_Base): # 有监督
  2472. def __init__(self, args_use, model, *args, **kwargs):
  2473. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  2474. self.Model = SelectKBest(
  2475. k=args_use['k'],
  2476. score_func=args_use['score_func'])
  2477. # 记录这两个是为了克隆
  2478. self.k_ = args_use['k']
  2479. self.score_func = args_use['score_func']
  2480. self.k = {'k': args_use['k'], 'score_func': args_use['score_func']}
  2481. self.Model_Name = model
  2482. def Des(self, Dic, *args, **kwargs):
  2483. tab = Tab()
  2484. score = self.Model.scores_.tolist()
  2485. support = self.Model.get_support()
  2486. y_data = self.y_trainData
  2487. x_data = self.x_trainData
  2488. if isinstance(x_data, np.ndarray):
  2489. get = Feature_visualization(x_data)
  2490. for i in range(len(get)):
  2491. tab.add(get[i], f'[{i}]训练数据x-x散点图')
  2492. if isinstance(y_data, np.ndarray):
  2493. get = Feature_visualization(y_data)
  2494. for i in range(len(get)):
  2495. tab.add(get[i], f'[{i}]保留训练数据x-x散点图')
  2496. y_data = self.y_testData
  2497. x_data = self.x_testData
  2498. if isinstance(x_data, np.ndarray):
  2499. get = Feature_visualization(x_data)
  2500. for i in range(len(get)):
  2501. tab.add(get[i], f'[{i}]数据x-x散点图')
  2502. if isinstance(y_data, np.ndarray):
  2503. get = Feature_visualization(y_data)
  2504. for i in range(len(get)):
  2505. tab.add(get[i], f'[{i}]保留数据x-x散点图')
  2506. Choose = []
  2507. UnChoose = []
  2508. for i in range(len(score)):
  2509. if support[i]:
  2510. Choose.append(score[i])
  2511. UnChoose.append(0) # 占位
  2512. else:
  2513. UnChoose.append(score[i])
  2514. Choose.append(0)
  2515. c = (
  2516. Bar()
  2517. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  2518. .add_yaxis('选中特征', Choose, **Label_Set)
  2519. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  2520. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2521. )
  2522. tab.add(c, '单变量重要程度')
  2523. save = Dic + r'/单一变量特征选择.HTML'
  2524. tab.render(save) # 生成HTML
  2525. return save,
  2526. class SelectFrom_Model(prep_Base): # 有监督
  2527. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2528. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  2529. self.Model = Learner.Model
  2530. self.Select_Model = SelectFromModel(
  2531. estimator=Learner.Model,
  2532. max_features=args_use['k'],
  2533. prefit=Learner.have_Fit)
  2534. self.max_features = args_use['k']
  2535. self.estimator = Learner.Model
  2536. self.k = {
  2537. 'max_features': args_use['k'],
  2538. 'estimator': Learner.Model,
  2539. 'have_Fit': Learner.have_Fit}
  2540. self.have_Fit = Learner.have_Fit
  2541. self.Model_Name = 'SelectFrom_Model'
  2542. self.Learner = Learner
  2543. def Fit(self, x_data, y_data, split=0.3, *args, **kwargs):
  2544. y_data = y_data.ravel()
  2545. if not self.have_Fit: # 不允许第二次训练
  2546. self.Select_Model.fit(x_data, y_data)
  2547. self.have_Fit = True
  2548. return 'None', 'None'
  2549. def Predict(self, x_data, *args, **kwargs):
  2550. try:
  2551. self.x_testData = x_data.copy()
  2552. x_Predict = self.Select_Model.transform(x_data)
  2553. self.y_testData = x_Predict.copy()
  2554. self.have_Predict = True
  2555. return x_Predict, '模型特征工程'
  2556. except BaseException:
  2557. self.have_Predict = True
  2558. return np.array([]), '无结果工程'
  2559. def Des(self, Dic, *args, **kwargs):
  2560. tab = Tab()
  2561. support = self.Select_Model.get_support()
  2562. y_data = self.y_testData
  2563. x_data = self.x_testData
  2564. if isinstance(x_data, np.ndarray):
  2565. get = Feature_visualization(x_data)
  2566. for i in range(len(get)):
  2567. tab.add(get[i], f'[{i}]数据x-x散点图')
  2568. if isinstance(y_data, np.ndarray):
  2569. get = Feature_visualization(y_data)
  2570. for i in range(len(get)):
  2571. tab.add(get[i], f'[{i}]保留数据x-x散点图')
  2572. def make_Bar(score):
  2573. Choose = []
  2574. UnChoose = []
  2575. for i in range(len(score)):
  2576. if support[i]:
  2577. Choose.append(abs(score[i]))
  2578. UnChoose.append(0) # 占位
  2579. else:
  2580. UnChoose.append(abs(score[i]))
  2581. Choose.append(0)
  2582. c = (
  2583. Bar()
  2584. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  2585. .add_yaxis('选中特征', Choose, **Label_Set)
  2586. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  2587. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2588. )
  2589. tab.add(c, '单变量重要程度')
  2590. try:
  2591. make_Bar(self.Model.coef_)
  2592. except BaseException:
  2593. try:
  2594. make_Bar(self.Model.feature_importances_)
  2595. except BaseException:
  2596. pass
  2597. save = Dic + r'/模型特征选择.HTML'
  2598. tab.render(save) # 生成HTML
  2599. return save,
  2600. class Standardization_Model(Unsupervised): # z-score标准化 无监督
  2601. def __init__(self, args_use, model, *args, **kwargs):
  2602. super(Standardization_Model, self).__init__(*args, **kwargs)
  2603. self.Model = StandardScaler()
  2604. self.k = {}
  2605. self.Model_Name = 'StandardScaler'
  2606. def Des(self, Dic, *args, **kwargs):
  2607. tab = Tab()
  2608. y_data = self.y_testData
  2609. x_data = self.x_testData
  2610. var = self.Model.var_.tolist()
  2611. means = self.Model.mean_.tolist()
  2612. scale = self.Model.scale_.tolist()
  2613. Conversion_control(y_data, x_data, tab)
  2614. make_bar('标准差', var, tab)
  2615. make_bar('方差', means, tab)
  2616. make_bar('Scale', scale, tab)
  2617. save = Dic + r'/z-score标准化.HTML'
  2618. tab.render(save) # 生成HTML
  2619. return save,
  2620. class MinMaxScaler_Model(Unsupervised): # 离差标准化
  2621. def __init__(self, args_use, model, *args, **kwargs):
  2622. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  2623. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  2624. self.k = {}
  2625. self.Model_Name = 'MinMaxScaler'
  2626. def Des(self, Dic, *args, **kwargs):
  2627. tab = Tab()
  2628. y_data = self.y_testData
  2629. x_data = self.x_testData
  2630. scale = self.Model.scale_.tolist()
  2631. max_ = self.Model.data_max_.tolist()
  2632. min_ = self.Model.data_min_.tolist()
  2633. Conversion_control(y_data, x_data, tab)
  2634. make_bar('Scale', scale, tab)
  2635. tab.add(
  2636. make_Tab(
  2637. heard=[
  2638. f'[{i}]特征最大值' for i in range(
  2639. len(max_))] + [
  2640. f'[{i}]特征最小值' for i in range(
  2641. len(min_))], row=[
  2642. max_ + min_]), '数据表格')
  2643. save = Dic + r'/离差标准化.HTML'
  2644. tab.render(save) # 生成HTML
  2645. return save,
  2646. class LogScaler_Model(prep_Base): # 对数标准化
  2647. def __init__(self, args_use, model, *args, **kwargs):
  2648. super(LogScaler_Model, self).__init__(*args, **kwargs)
  2649. self.Model = None
  2650. self.k = {}
  2651. self.Model_Name = 'LogScaler'
  2652. def Fit(self, x_data, *args, **kwargs):
  2653. if not self.have_Predict: # 不允许第二次训练
  2654. self.max_logx = np.log(x_data.max())
  2655. self.have_Fit = True
  2656. return 'None', 'None'
  2657. def Predict(self, x_data, *args, **kwargs):
  2658. try:
  2659. max_logx = self.max_logx
  2660. except BaseException:
  2661. self.have_Fit = False
  2662. self.Fit(x_data)
  2663. max_logx = self.max_logx
  2664. self.x_testData = x_data.copy()
  2665. x_Predict = (np.log(x_data) / max_logx)
  2666. self.y_testData = x_Predict.copy()
  2667. self.have_Predict = True
  2668. return x_Predict, '对数变换'
  2669. def Des(self, Dic, *args, **kwargs):
  2670. tab = Tab()
  2671. y_data = self.y_testData
  2672. x_data = self.x_testData
  2673. Conversion_control(y_data, x_data, tab)
  2674. tab.add(make_Tab(heard=['最大对数值(自然对数)'],
  2675. row=[[str(self.max_logx)]]), '数据表格')
  2676. save = Dic + r'/对数标准化.HTML'
  2677. tab.render(save) # 生成HTML
  2678. return save,
  2679. class atanScaler_Model(prep_Base): # atan标准化
  2680. def __init__(self, args_use, model, *args, **kwargs):
  2681. super(atanScaler_Model, self).__init__(*args, **kwargs)
  2682. self.Model = None
  2683. self.k = {}
  2684. self.Model_Name = 'atanScaler'
  2685. def Fit(self, x_data, *args, **kwargs):
  2686. self.have_Fit = True
  2687. return 'None', 'None'
  2688. def Predict(self, x_data, *args, **kwargs):
  2689. self.x_testData = x_data.copy()
  2690. x_Predict = (np.arctan(x_data) * (2 / np.pi))
  2691. self.y_testData = x_Predict.copy()
  2692. self.have_Predict = True
  2693. return x_Predict, 'atan变换'
  2694. def Des(self, Dic, *args, **kwargs):
  2695. tab = Tab()
  2696. y_data = self.y_testData
  2697. x_data = self.x_testData
  2698. Conversion_control(y_data, x_data, tab)
  2699. save = Dic + r'/反正切函数标准化.HTML'
  2700. tab.render(save) # 生成HTML
  2701. return save,
  2702. class decimalScaler_Model(prep_Base): # 小数定标准化
  2703. def __init__(self, args_use, model, *args, **kwargs):
  2704. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  2705. self.Model = None
  2706. self.k = {}
  2707. self.Model_Name = 'Decimal_normalization'
  2708. def Fit(self, x_data, *args, **kwargs):
  2709. if not self.have_Predict: # 不允许第二次训练
  2710. self.j = max([judging_Digits(x_data.max()),
  2711. judging_Digits(x_data.min())])
  2712. self.have_Fit = True
  2713. return 'None', 'None'
  2714. def Predict(self, x_data, *args, **kwargs):
  2715. self.x_testData = x_data.copy()
  2716. try:
  2717. j = self.j
  2718. except BaseException:
  2719. self.have_Fit = False
  2720. self.Fit(x_data)
  2721. j = self.j
  2722. x_Predict = (x_data / (10**j))
  2723. self.y_testData = x_Predict.copy()
  2724. self.have_Predict = True
  2725. return x_Predict, '小数定标标准化'
  2726. def Des(self, Dic, *args, **kwargs):
  2727. tab = Tab()
  2728. y_data = self.y_testData
  2729. x_data = self.x_testData
  2730. j = self.j
  2731. Conversion_control(y_data, x_data, tab)
  2732. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  2733. save = Dic + r'/小数定标标准化.HTML'
  2734. tab.render(save) # 生成HTML
  2735. return save,
  2736. class Mapzoom_Model(prep_Base): # 映射标准化
  2737. def __init__(self, args_use, model, *args, **kwargs):
  2738. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  2739. self.Model = None
  2740. self.feature_range = args_use['feature_range']
  2741. self.k = {}
  2742. self.Model_Name = 'Decimal_normalization'
  2743. def Fit(self, x_data, *args, **kwargs):
  2744. if not self.have_Predict: # 不允许第二次训练
  2745. self.max = x_data.max()
  2746. self.min = x_data.min()
  2747. self.have_Fit = True
  2748. return 'None', 'None'
  2749. def Predict(self, x_data, *args, **kwargs):
  2750. self.x_testData = x_data.copy()
  2751. try:
  2752. max = self.max
  2753. min = self.min
  2754. except BaseException:
  2755. self.have_Fit = False
  2756. self.Fit(x_data)
  2757. max = self.max
  2758. min = self.min
  2759. x_Predict = (
  2760. x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  2761. self.y_testData = x_Predict.copy()
  2762. self.have_Predict = True
  2763. return x_Predict, '映射标准化'
  2764. def Des(self, Dic, *args, **kwargs):
  2765. tab = Tab()
  2766. y_data = self.y_testData
  2767. x_data = self.x_testData
  2768. max = self.max
  2769. min = self.min
  2770. Conversion_control(y_data, x_data, tab)
  2771. tab.add(make_Tab(heard=['最大值', '最小值'], row=[[max, min]]), '数据表格')
  2772. save = Dic + r'/映射标准化.HTML'
  2773. tab.render(save) # 生成HTML
  2774. return save,
  2775. class sigmodScaler_Model(prep_Base): # sigmod变换
  2776. def __init__(self, args_use, model, *args, **kwargs):
  2777. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  2778. self.Model = None
  2779. self.k = {}
  2780. self.Model_Name = 'sigmodScaler_Model'
  2781. def Fit(self, x_data, *args, **kwargs):
  2782. self.have_Fit = True
  2783. return 'None', 'None'
  2784. def Predict(self, x_data: np.array, *args, **kwargs):
  2785. self.x_testData = x_data.copy()
  2786. x_Predict = (1 / (1 + np.exp(-x_data)))
  2787. self.y_testData = x_Predict.copy()
  2788. self.have_Predict = True
  2789. return x_Predict, 'Sigmod变换'
  2790. def Des(self, Dic, *args, **kwargs):
  2791. tab = Tab()
  2792. y_data = self.y_testData
  2793. x_data = self.x_testData
  2794. Conversion_control(y_data, x_data, tab)
  2795. save = Dic + r'/Sigmoid变换.HTML'
  2796. tab.render(save) # 生成HTML
  2797. return save,
  2798. class Fuzzy_quantization_Model(prep_Base): # 模糊量化标准化
  2799. def __init__(self, args_use, model, *args, **kwargs):
  2800. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  2801. self.Model = None
  2802. self.feature_range = args_use['feature_range']
  2803. self.k = {}
  2804. self.Model_Name = 'Fuzzy_quantization'
  2805. def Fit(self, x_data, *args, **kwargs):
  2806. if not self.have_Predict: # 不允许第二次训练
  2807. self.max = x_data.max()
  2808. self.min = x_data.min()
  2809. self.have_Fit = True
  2810. return 'None', 'None'
  2811. def Predict(self, x_data, *args, **kwargs):
  2812. self.x_testData = x_data.copy()
  2813. try:
  2814. max = self.max
  2815. min = self.min
  2816. except BaseException:
  2817. self.have_Fit = False
  2818. self.Fit(x_data)
  2819. max = self.max
  2820. min = self.min
  2821. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / \
  2822. (max - min) * (x_data - (max - min) / 2))
  2823. self.y_testData = x_Predict.copy()
  2824. self.have_Predict = True
  2825. return x_Predict, '模糊量化标准化'
  2826. def Des(self, Dic, *args, **kwargs):
  2827. tab = Tab()
  2828. y_data = self.y_trainData
  2829. x_data = self.x_trainData
  2830. max = self.max
  2831. min = self.min
  2832. Conversion_control(y_data, x_data, tab)
  2833. tab.add(make_Tab(heard=['最大值', '最小值'], row=[[max, min]]), '数据表格')
  2834. save = Dic + r'/模糊量化标准化.HTML'
  2835. tab.render(save) # 生成HTML
  2836. return save,
  2837. class Regularization_Model(Unsupervised): # 正则化
  2838. def __init__(self, args_use, model, *args, **kwargs):
  2839. super(Regularization_Model, self).__init__(*args, **kwargs)
  2840. self.Model = Normalizer(norm=args_use['norm'])
  2841. self.k = {'norm': args_use['norm']}
  2842. self.Model_Name = 'Regularization'
  2843. def Des(self, Dic, *args, **kwargs):
  2844. tab = Tab()
  2845. y_data = self.y_testData.copy()
  2846. x_data = self.x_testData.copy()
  2847. Conversion_control(y_data, x_data, tab)
  2848. save = Dic + r'/正则化.HTML'
  2849. tab.render(save) # 生成HTML
  2850. return save,
  2851. # 离散数据
  2852. class Binarizer_Model(Unsupervised): # 二值化
  2853. def __init__(self, args_use, model, *args, **kwargs):
  2854. super(Binarizer_Model, self).__init__(*args, **kwargs)
  2855. self.Model = Binarizer(threshold=args_use['threshold'])
  2856. self.k = {}
  2857. self.Model_Name = 'Binarizer'
  2858. def Des(self, Dic, *args, **kwargs):
  2859. tab = Tab()
  2860. y_data = self.y_testData
  2861. x_data = self.x_testData
  2862. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2863. for i in range(len(get_y)):
  2864. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2865. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2866. tab.add(make_Tab(heard, x_data.tolist()), f'原数据')
  2867. tab.add(make_Tab(heard, y_data.tolist()), f'编码数据')
  2868. tab.add(
  2869. make_Tab(
  2870. heard, np.dstack(
  2871. (x_data, y_data)).tolist()), f'合成[原数据,编码]数据')
  2872. save = Dic + r'/二值离散化.HTML'
  2873. tab.render(save) # 生成HTML
  2874. return save,
  2875. class Discretization_Model(prep_Base): # n值离散
  2876. def __init__(self, args_use, model, *args, **kwargs):
  2877. super(Discretization_Model, self).__init__(*args, **kwargs)
  2878. self.Model = None
  2879. range_ = args_use['split_range']
  2880. if range_ == []:
  2881. raise Exception
  2882. elif len(range_) == 1:
  2883. range_.append(range_[0])
  2884. self.range = range_
  2885. self.k = {}
  2886. self.Model_Name = 'Discretization'
  2887. def Fit(self, *args, **kwargs):
  2888. # t值在模型创建时已经保存
  2889. self.have_Fit = True
  2890. return 'None', 'None'
  2891. def Predict(self, x_data, *args, **kwargs):
  2892. self.x_testData = x_data.copy()
  2893. x_Predict = x_data.copy() # 复制
  2894. range_ = self.range
  2895. bool_list = []
  2896. max_ = len(range_) - 1
  2897. o_t = None
  2898. for i in range(len(range_)):
  2899. try:
  2900. t = float(range_[i])
  2901. except BaseException:
  2902. continue
  2903. if o_t is None: # 第一个参数
  2904. bool_list.append(x_Predict <= t)
  2905. else:
  2906. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  2907. if i == max_:
  2908. bool_list.append(t <= x_Predict)
  2909. o_t = t
  2910. for i in range(len(bool_list)):
  2911. x_Predict[bool_list[i]] = i
  2912. self.y_testData = x_Predict.copy()
  2913. self.have_Predict = True
  2914. return x_Predict, f'{len(bool_list)}值离散化'
  2915. def Des(self, Dic, *args, **kwargs):
  2916. tab = Tab()
  2917. y_data = self.y_testData
  2918. x_data = self.x_testData
  2919. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2920. for i in range(len(get_y)):
  2921. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2922. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2923. tab.add(make_Tab(heard, x_data.tolist()), f'原数据')
  2924. tab.add(make_Tab(heard, y_data.tolist()), f'编码数据')
  2925. tab.add(
  2926. make_Tab(
  2927. heard, np.dstack(
  2928. (x_data, y_data)).tolist()), f'合成[原数据,编码]数据')
  2929. save = Dic + r'/多值离散化.HTML'
  2930. tab.render(save) # 生成HTML
  2931. return save,
  2932. class Label_Model(prep_Base): # 数字编码
  2933. def __init__(self, args_use, model, *args, **kwargs):
  2934. super(Label_Model, self).__init__(*args, **kwargs)
  2935. self.Model = []
  2936. self.k = {}
  2937. self.Model_Name = 'LabelEncoder'
  2938. def Fit(self, x_data, *args, **kwargs):
  2939. if not self.have_Predict: # 不允许第二次训练
  2940. self.Model = []
  2941. if x_data.ndim == 1:
  2942. x_data = np.array([x_data])
  2943. for i in range(x_data.shape[1]):
  2944. self.Model.append(LabelEncoder().fit(
  2945. np.ravel(x_data[:, i]))) # 训练机器(每个特征一个学习器)
  2946. self.have_Fit = True
  2947. return 'None', 'None'
  2948. def Predict(self, x_data, *args, **kwargs):
  2949. self.x_testData = x_data.copy()
  2950. x_Predict = x_data.copy()
  2951. if x_data.ndim == 1:
  2952. x_data = np.array([x_data])
  2953. for i in range(x_data.shape[1]):
  2954. x_Predict[:, i] = self.Model[i].transform(x_data[:, i])
  2955. self.y_testData = x_Predict.copy()
  2956. self.have_Predict = True
  2957. return x_Predict, '数字编码'
  2958. def Des(self, Dic, *args, **kwargs):
  2959. tab = Tab()
  2960. x_data = self.x_testData
  2961. y_data = self.y_testData
  2962. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2963. for i in range(len(get_y)):
  2964. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2965. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2966. tab.add(make_Tab(heard, x_data.tolist()), f'原数据')
  2967. tab.add(make_Tab(heard, y_data.tolist()), f'编码数据')
  2968. tab.add(
  2969. make_Tab(
  2970. heard, np.dstack(
  2971. (x_data, y_data)).tolist()), f'合成[原数据,编码]数据')
  2972. save = Dic + r'/数字编码.HTML'
  2973. tab.render(save) # 生成HTML
  2974. return save,
  2975. class OneHotEncoder_Model(prep_Base): # 独热编码
  2976. def __init__(self, args_use, model, *args, **kwargs):
  2977. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  2978. self.Model = []
  2979. self.ndim_up = args_use['ndim_up']
  2980. self.k = {}
  2981. self.Model_Name = 'OneHotEncoder'
  2982. self.OneHot_Data = None # 三维独热编码
  2983. def Fit(self, x_data, *args, **kwargs):
  2984. if not self.have_Predict: # 不允许第二次训练
  2985. if x_data.ndim == 1:
  2986. x_data = [x_data]
  2987. for i in range(x_data.shape[1]):
  2988. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  2989. self.Model.append(OneHotEncoder().fit(data)) # 训练机器
  2990. self.have_Fit = True
  2991. return 'None', 'None'
  2992. def Predict(self, x_data, *args, **kwargs):
  2993. self.x_testData = x_data.copy()
  2994. x_new = []
  2995. for i in range(x_data.shape[1]):
  2996. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  2997. oneHot = self.Model[i].transform(data).toarray().tolist()
  2998. x_new.append(oneHot) # 添加到列表中
  2999. # 新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  3000. x_new = np.array(x_new)
  3001. x_Predict = []
  3002. for i in range(x_new.shape[1]):
  3003. x_Predict.append(x_new[:, i])
  3004. x_Predict = np.array(x_Predict) # 转换回array
  3005. self.OneHot_Data = x_Predict.copy() # 保存未降维数据
  3006. if not self.ndim_up: # 压缩操作
  3007. new_xPredict = []
  3008. for i in x_Predict:
  3009. new_list = []
  3010. list_ = i.tolist()
  3011. for a in list_:
  3012. new_list += a
  3013. new = np.array(new_list)
  3014. new_xPredict.append(new)
  3015. self.y_testData = np.array(new_xPredict)
  3016. return self.y_testData.copy(), '独热编码'
  3017. self.y_testData = self.OneHot_Data
  3018. self.have_Predict = True
  3019. return x_Predict, '独热编码'
  3020. def Des(self, Dic, *args, **kwargs):
  3021. tab = Tab()
  3022. y_data = self.y_testData
  3023. x_data = self.x_testData
  3024. oh_data = self.OneHot_Data
  3025. if not self.ndim_up:
  3026. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  3027. for i in range(len(get_y)):
  3028. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  3029. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  3030. tab.add(make_Tab(heard, x_data.tolist()), f'原数据')
  3031. tab.add(make_Tab(heard, oh_data.tolist()), f'编码数据')
  3032. tab.add(
  3033. make_Tab(
  3034. heard, np.dstack(
  3035. (oh_data, x_data)).tolist()), f'合成[原数据,编码]数据')
  3036. tab.add(make_Tab([f'编码:{i}' for i in range(
  3037. len(y_data[0]))], y_data.tolist()), f'数据')
  3038. save = Dic + r'/独热编码.HTML'
  3039. tab.render(save) # 生成HTML
  3040. return save,
  3041. class Missed_Model(Unsupervised): # 缺失数据补充
  3042. def __init__(self, args_use, model, *args, **kwargs):
  3043. super(Missed_Model, self).__init__(*args, **kwargs)
  3044. self.Model = SimpleImputer(
  3045. missing_values=args_use['miss_value'],
  3046. strategy=args_use['fill_method'],
  3047. fill_value=args_use['fill_value'])
  3048. self.k = {}
  3049. self.Model_Name = 'Missed'
  3050. def Predict(self, x_data, *args, **kwargs):
  3051. self.x_testData = x_data.copy()
  3052. x_Predict = self.Model.transform(x_data)
  3053. self.y_testData = x_Predict.copy()
  3054. self.have_Predict = True
  3055. return x_Predict, '填充缺失'
  3056. def Des(self, Dic, *args, **kwargs):
  3057. tab = Tab()
  3058. y_data = self.y_testData
  3059. x_data = self.x_testData
  3060. statistics = self.Model.statistics_.tolist()
  3061. Conversion_control(y_data, x_data, tab)
  3062. tab.add(make_Tab([f'特征[{i}]' for i in range(
  3063. len(statistics))], [statistics]), '填充值')
  3064. save = Dic + r'/缺失数据填充.HTML'
  3065. tab.render(save) # 生成HTML
  3066. return save,
  3067. class PCA_Model(Unsupervised):
  3068. def __init__(self, args_use, model, *args, **kwargs):
  3069. super(PCA_Model, self).__init__(*args, **kwargs)
  3070. self.Model = PCA(
  3071. n_components=args_use['n_components'],
  3072. whiten=args_use['white_PCA'])
  3073. self.whiten = args_use['white_PCA']
  3074. self.n_components = args_use['n_components']
  3075. self.k = {
  3076. 'n_components': args_use['n_components'],
  3077. 'whiten': args_use['white_PCA']}
  3078. self.Model_Name = 'PCA'
  3079. def Predict(self, x_data, *args, **kwargs):
  3080. self.x_testData = x_data.copy()
  3081. x_Predict = self.Model.transform(x_data)
  3082. self.y_testData = x_Predict.copy()
  3083. self.have_Predict = True
  3084. return x_Predict, 'PCA'
  3085. def Des(self, Dic, *args, **kwargs):
  3086. tab = Tab()
  3087. y_data = self.y_testData
  3088. importance = self.Model.components_.tolist()
  3089. var = self.Model.explained_variance_.tolist() # 方量差
  3090. Conversion_Separate_Format(y_data, tab)
  3091. x_data = [f'第{i+1}主成分' for i in range(len(importance))] # 主成分
  3092. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  3093. value = [(f'第{i+1}主成分', f'特征[{j}]', importance[i][j])
  3094. for i in range(len(importance)) for j in range(len(importance[i]))]
  3095. c = (HeatMap()
  3096. .add_xaxis(x_data)
  3097. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  3098. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  3099. yaxis_opts=opts.AxisOpts(
  3100. is_scale=True), # 'category'
  3101. xaxis_opts=opts.AxisOpts(is_scale=True),
  3102. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  3103. min_=int(
  3104. self.Model.components_.min()),
  3105. pos_right='3%')) # 显示
  3106. )
  3107. tab.add(c, '成分热力图')
  3108. c = (
  3109. Bar()
  3110. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  3111. .add_yaxis('方量差', var, **Label_Set)
  3112. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  3113. )
  3114. desTo_CSV(Dic, '成分重要性', importance, [x_data], [y_data])
  3115. desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
  3116. tab.add(c, '方量差柱状图')
  3117. save = Dic + r'/主成分分析.HTML'
  3118. tab.render(save) # 生成HTML
  3119. return save,
  3120. class RPCA_Model(Unsupervised):
  3121. def __init__(self, args_use, model, *args, **kwargs):
  3122. super(RPCA_Model, self).__init__(*args, **kwargs)
  3123. self.Model = IncrementalPCA(
  3124. n_components=args_use['n_components'],
  3125. whiten=args_use['white_PCA'])
  3126. self.n_components = args_use['n_components']
  3127. self.whiten = args_use['white_PCA']
  3128. self.k = {
  3129. 'n_components': args_use['n_components'],
  3130. 'whiten': args_use['white_PCA']}
  3131. self.Model_Name = 'RPCA'
  3132. def Predict(self, x_data, *args, **kwargs):
  3133. self.x_testData = x_data.copy()
  3134. x_Predict = self.Model.transform(x_data)
  3135. self.y_testData = x_Predict.copy()
  3136. self.have_Predict = True
  3137. return x_Predict, 'RPCA'
  3138. def Des(self, Dic, *args, **kwargs):
  3139. tab = Tab()
  3140. y_data = self.y_trainData
  3141. importance = self.Model.components_.tolist()
  3142. var = self.Model.explained_variance_.tolist() # 方量差
  3143. Conversion_Separate_Format(y_data, tab)
  3144. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  3145. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  3146. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j])
  3147. for i in range(len(importance)) for j in range(len(importance[i]))]
  3148. c = (HeatMap()
  3149. .add_xaxis(x_data)
  3150. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  3151. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  3152. yaxis_opts=opts.AxisOpts(
  3153. is_scale=True), # 'category'
  3154. xaxis_opts=opts.AxisOpts(is_scale=True),
  3155. visualmap_opts=opts.VisualMapOpts(is_show=True,
  3156. max_=int(
  3157. self.Model.components_.max()) + 1,
  3158. min_=int(
  3159. self.Model.components_.min()),
  3160. pos_right='3%')) # 显示
  3161. )
  3162. tab.add(c, '成分热力图')
  3163. c = (
  3164. Bar()
  3165. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  3166. .add_yaxis('放量差', var, **Label_Set)
  3167. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  3168. )
  3169. tab.add(c, '方量差柱状图')
  3170. desTo_CSV(Dic, '成分重要性', importance, [x_data], [y_data])
  3171. desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
  3172. save = Dic + r'/RPCA(主成分分析).HTML'
  3173. tab.render(save) # 生成HTML
  3174. return save,
  3175. class KPCA_Model(Unsupervised):
  3176. def __init__(self, args_use, model, *args, **kwargs):
  3177. super(KPCA_Model, self).__init__(*args, **kwargs)
  3178. self.Model = KernelPCA(
  3179. n_components=args_use['n_components'],
  3180. kernel=args_use['kernel'])
  3181. self.n_components = args_use['n_components']
  3182. self.kernel = args_use['kernel']
  3183. self.k = {
  3184. 'n_components': args_use['n_components'],
  3185. 'kernel': args_use['kernel']}
  3186. self.Model_Name = 'KPCA'
  3187. def Predict(self, x_data, *args, **kwargs):
  3188. self.x_testData = x_data.copy()
  3189. x_Predict = self.Model.transform(x_data)
  3190. self.y_testData = x_Predict.copy()
  3191. self.have_Predict = True
  3192. return x_Predict, 'KPCA'
  3193. def Des(self, Dic, *args, **kwargs):
  3194. tab = Tab()
  3195. y_data = self.y_testData
  3196. Conversion_Separate_Format(y_data, tab)
  3197. save = Dic + r'/KPCA(主成分分析).HTML'
  3198. tab.render(save) # 生成HTML
  3199. return save,
  3200. class LDA_Model(prep_Base): # 有监督学习
  3201. def __init__(self, args_use, model, *args, **kwargs):
  3202. super(LDA_Model, self).__init__(*args, **kwargs)
  3203. self.Model = LDA(n_components=args_use['n_components'])
  3204. self.n_components = args_use['n_components']
  3205. self.k = {'n_components': args_use['n_components']}
  3206. self.Model_Name = 'LDA'
  3207. def Predict(self, x_data, *args, **kwargs):
  3208. self.x_testData = x_data.copy()
  3209. x_Predict = self.Model.transform(x_data)
  3210. self.y_testData = x_Predict.copy()
  3211. self.have_Predict = True
  3212. return x_Predict, 'LDA'
  3213. def Des(self, Dic, *args, **kwargs):
  3214. tab = Tab()
  3215. x_data = self.x_testData
  3216. y_data = self.y_testData
  3217. Conversion_Separate_Format(y_data, tab)
  3218. w_list = self.Model.coef_.tolist() # 变为表格
  3219. b = self.Model.intercept_
  3220. tab = Tab()
  3221. x_means = make_Cat(x_data).get()[0]
  3222. # 回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据)
  3223. get = Regress_W(x_data, None, w_list, b, x_means.copy())
  3224. for i in range(len(get)):
  3225. tab.add(get[i].overlap(get[i]), f'类别:{i}LDA映射曲线')
  3226. save = Dic + r'/render.HTML'
  3227. tab.render(save) # 生成HTML
  3228. return save,
  3229. class NMF_Model(Unsupervised):
  3230. def __init__(self, args_use, model, *args, **kwargs):
  3231. super(NMF_Model, self).__init__(*args, **kwargs)
  3232. self.Model = NMF(n_components=args_use['n_components'])
  3233. self.n_components = args_use['n_components']
  3234. self.k = {'n_components': args_use['n_components']}
  3235. self.Model_Name = 'NFM'
  3236. self.h_testData = None
  3237. # x_trainData保存的是W,h_trainData和y_trainData是后来数据
  3238. def Predict(self, x_data, x_name='', Add_Func=None, *args, **kwargs):
  3239. self.x_testData = x_data.copy()
  3240. x_Predict = self.Model.transform(x_data)
  3241. self.y_testData = x_Predict.copy()
  3242. self.h_testData = self.Model.components_
  3243. if Add_Func is not None and x_name != '':
  3244. Add_Func(self.h_testData, f'{x_name}:V->NMF[H]')
  3245. self.have_Predict = True
  3246. return x_Predict, 'V->NMF[W]'
  3247. def Des(self, Dic, *args, **kwargs):
  3248. tab = Tab()
  3249. y_data = self.y_testData
  3250. x_data = self.x_testData
  3251. h_data = self.h_testData
  3252. Conversion_SeparateWH(y_data, h_data, tab)
  3253. wh_data = np.matmul(y_data, h_data)
  3254. difference_data = x_data - wh_data
  3255. def make_HeatMap(data, name, max_, min_):
  3256. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  3257. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  3258. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j]))
  3259. for i in range(len(data)) for j in range(len(data[i]))]
  3260. c = (HeatMap()
  3261. .add_xaxis(x)
  3262. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  3263. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  3264. yaxis_opts=opts.AxisOpts(
  3265. is_scale=True, type_='category'), # 'category'
  3266. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  3267. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  3268. min_=min_,
  3269. pos_right='3%')) # 显示
  3270. )
  3271. tab.add(c, name)
  3272. max_ = max(int(x_data.max()), int(wh_data.max()),
  3273. int(difference_data.max())) + 1
  3274. min_ = min(int(x_data.min()), int(wh_data.min()),
  3275. int(difference_data.min()))
  3276. make_HeatMap(x_data, '原始数据热力图', max_, min_)
  3277. make_HeatMap(wh_data, 'W * H数据热力图', max_, min_)
  3278. make_HeatMap(difference_data, '数据差热力图', max_, min_)
  3279. desTo_CSV(Dic, '权重矩阵', y_data)
  3280. desTo_CSV(Dic, '系数矩阵', h_data)
  3281. desTo_CSV(Dic, '系数*权重矩阵', wh_data)
  3282. save = Dic + r'/非负矩阵分解.HTML'
  3283. tab.render(save) # 生成HTML
  3284. return save,
  3285. class TSNE_Model(Unsupervised):
  3286. def __init__(self, args_use, model, *args, **kwargs):
  3287. super(TSNE_Model, self).__init__(*args, **kwargs)
  3288. self.Model = TSNE(n_components=args_use['n_components'])
  3289. self.n_components = args_use['n_components']
  3290. self.k = {'n_components': args_use['n_components']}
  3291. self.Model_Name = 't-SNE'
  3292. def Fit(self, *args, **kwargs):
  3293. self.have_Fit = True
  3294. return 'None', 'None'
  3295. def Predict(self, x_data, *args, **kwargs):
  3296. self.x_testData = x_data.copy()
  3297. x_Predict = self.Model.fit_transform(x_data)
  3298. self.y_testData = x_Predict.copy()
  3299. self.have_Predict = True
  3300. return x_Predict, 'SNE'
  3301. def Des(self, Dic, *args, **kwargs):
  3302. tab = Tab()
  3303. y_data = self.y_testData
  3304. Conversion_Separate_Format(y_data, tab)
  3305. save = Dic + r'/T-SNE.HTML'
  3306. tab.render(save) # 生成HTML
  3307. return save,
  3308. class MLP_Model(Study_MachineBase): # 神经网络(多层感知机),有监督学习
  3309. def __init__(self, args_use, model, *args, **kwargs):
  3310. super(MLP_Model, self).__init__(*args, **kwargs)
  3311. Model = {'MLP': MLPRegressor, 'MLP_class': MLPClassifier}[model]
  3312. self.Model = Model(
  3313. hidden_layer_sizes=args_use['hidden_size'],
  3314. activation=args_use['activation'],
  3315. solver=args_use['solver'],
  3316. alpha=args_use['alpha'],
  3317. max_iter=args_use['max_iter'])
  3318. # 记录这两个是为了克隆
  3319. self.hidden_layer_sizes = args_use['hidden_size']
  3320. self.activation = args_use['activation']
  3321. self.max_iter = args_use['max_iter']
  3322. self.solver = args_use['solver']
  3323. self.alpha = args_use['alpha']
  3324. self.k = {
  3325. 'hidden_layer_sizes': args_use['hidden_size'],
  3326. 'activation': args_use['activation'],
  3327. 'max_iter': args_use['max_iter'],
  3328. 'solver': args_use['solver'],
  3329. 'alpha': args_use['alpha']}
  3330. self.Model_Name = model
  3331. def Des(self, Dic, *args, **kwargs):
  3332. tab = Tab()
  3333. x_data = self.x_testData
  3334. y_data = self.y_testData
  3335. coefs = self.Model.coefs_
  3336. class_ = self.Model.classes_
  3337. n_layers_ = self.Model.n_layers_
  3338. def make_HeatMap(data, name):
  3339. x = [f'特征(节点)[{i}]' for i in range(len(data))]
  3340. y = [f'节点[{i}]' for i in range(len(data[0]))]
  3341. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j]))
  3342. for i in range(len(data)) for j in range(len(data[i]))]
  3343. c = (HeatMap()
  3344. .add_xaxis(x)
  3345. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  3346. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  3347. yaxis_opts=opts.AxisOpts(
  3348. is_scale=True, type_='category'), # 'category'
  3349. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  3350. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  3351. min_=float(data.min()),
  3352. pos_right='3%')) # 显示
  3353. )
  3354. tab.add(c, name)
  3355. tab.add(make_Tab(x, data.transpose.tolist()), f'{name}:表格')
  3356. desTo_CSV(Dic, f'{name}:表格', data.transpose.tolist(), x, y)
  3357. get, x_means, x_range, Type = regress_visualization(x_data, y_data)
  3358. for i in range(len(get)):
  3359. tab.add(get[i], f'{i}训练数据散点图')
  3360. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  3361. for i in range(len(get)):
  3362. tab.add(get[i], f'{i}预测热力图')
  3363. heard = ['神经网络层数']
  3364. data = [n_layers_]
  3365. for i in range(len(coefs)):
  3366. make_HeatMap(coefs[i], f'{i}层权重矩阵')
  3367. heard.append(f'第{i}层节点数')
  3368. data.append(len(coefs[i][0]))
  3369. if self.Model_Name == 'MLP_class':
  3370. heard += [f'[{i}]类型' for i in range(len(class_))]
  3371. data += class_.tolist()
  3372. tab.add(make_Tab(heard, [data]), '数据表')
  3373. save = Dic + r'/多层感知机.HTML'
  3374. tab.render(save) # 生成HTML
  3375. return save,
  3376. class kmeans_Model(UnsupervisedModel):
  3377. def __init__(self, args_use, model, *args, **kwargs):
  3378. super(kmeans_Model, self).__init__(*args, **kwargs)
  3379. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  3380. self.class_ = []
  3381. self.n_clusters = args_use['n_clusters']
  3382. self.k = {'n_clusters': args_use['n_clusters']}
  3383. self.Model_Name = 'k-means'
  3384. def Fit(self, x_data, *args, **kwargs):
  3385. re = super().Fit(x_data, *args, **kwargs)
  3386. self.class_ = list(set(self.Model.labels_.tolist()))
  3387. self.have_Fit = True
  3388. return re
  3389. def Predict(self, x_data, *args, **kwargs):
  3390. self.x_testData = x_data.copy()
  3391. y_Predict = self.Model.predict(x_data)
  3392. self.y_testData = y_Predict.copy()
  3393. self.have_Predict = True
  3394. return y_Predict, 'k-means'
  3395. def Des(self, Dic, *args, **kwargs):
  3396. tab = Tab()
  3397. y = self.y_testData
  3398. x_data = self.x_testData
  3399. class_ = self.class_
  3400. center = self.Model.cluster_centers_
  3401. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  3402. Func = Training_visualization_More if More_Global else Training_visualization_Center
  3403. get, x_means, x_range, Type = Func(x_data, class_, y, center)
  3404. for i in range(len(get)):
  3405. tab.add(get[i], f'{i}数据散点图')
  3406. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  3407. for i in range(len(get)):
  3408. tab.add(get[i], f'{i}预测热力图')
  3409. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  3410. data = class_ + [f'{i}' for i in x_means]
  3411. c = Table().add(headers=heard, rows=[data])
  3412. tab.add(c, '数据表')
  3413. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  3414. f'普适预测第{i}特征' for i in range(len(x_means))])
  3415. save = Dic + r'/k-means聚类.HTML'
  3416. tab.render(save) # 生成HTML
  3417. return save,
  3418. class Agglomerative_Model(UnsupervisedModel):
  3419. def __init__(self, args_use, model, *args, **kwargs):
  3420. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  3421. self.Model = AgglomerativeClustering(
  3422. n_clusters=args_use['n_clusters']) # 默认为2,不同于k-means
  3423. self.class_ = []
  3424. self.n_clusters = args_use['n_clusters']
  3425. self.k = {'n_clusters': args_use['n_clusters']}
  3426. self.Model_Name = 'Agglomerative'
  3427. def Fit(self, x_data, *args, **kwargs):
  3428. re = super().Fit(x_data, *args, **kwargs)
  3429. self.class_ = list(set(self.Model.labels_.tolist()))
  3430. self.have_Fit = True
  3431. return re
  3432. def Predict(self, x_data, *args, **kwargs):
  3433. self.x_testData = x_data.copy()
  3434. y_Predict = self.Model.fit_predict(x_data)
  3435. self.y_trainData = y_Predict.copy()
  3436. self.have_Predict = True
  3437. return y_Predict, 'Agglomerative'
  3438. def Des(self, Dic, *args, **kwargs):
  3439. tab = Tab()
  3440. y = self.y_testData
  3441. x_data = self.x_testData
  3442. class_ = self.class_
  3443. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  3444. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  3445. get, x_means, x_range, Type = Func(x_data, class_, y)
  3446. for i in range(len(get)):
  3447. tab.add(get[i], f'{i}训练数据散点图')
  3448. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  3449. for i in range(len(get)):
  3450. tab.add(get[i], f'{i}预测热力图')
  3451. linkage_array = ward(self.x_trainData) # self.y_trainData是结果
  3452. dendrogram(linkage_array)
  3453. plt.savefig(Dic + r'/Cluster_graph.png')
  3454. image = Image()
  3455. image.add(
  3456. src=Dic + r'/Cluster_graph.png',
  3457. ).set_global_opts(
  3458. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  3459. )
  3460. tab.add(image, '聚类树状图')
  3461. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  3462. data = class_ + [f'{i}' for i in x_means]
  3463. c = Table().add(headers=heard, rows=[data])
  3464. tab.add(c, '数据表')
  3465. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  3466. f'普适预测第{i}特征' for i in range(len(x_means))])
  3467. save = Dic + r'/层次聚类.HTML'
  3468. tab.render(save) # 生成HTML
  3469. return save,
  3470. class DBSCAN_Model(UnsupervisedModel):
  3471. def __init__(self, args_use, model, *args, **kwargs):
  3472. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  3473. self.Model = DBSCAN(
  3474. eps=args_use['eps'],
  3475. min_samples=args_use['min_samples'])
  3476. # eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  3477. # min_samples
  3478. self.eps = args_use['eps']
  3479. self.min_samples = args_use['min_samples']
  3480. self.k = {
  3481. 'min_samples': args_use['min_samples'],
  3482. 'eps': args_use['eps']}
  3483. self.class_ = []
  3484. self.Model_Name = 'DBSCAN'
  3485. def Fit(self, x_data, *args, **kwargs):
  3486. re = super().Fit(x_data, *args, **kwargs)
  3487. self.class_ = list(set(self.Model.labels_.tolist()))
  3488. self.have_Fit = True
  3489. return re
  3490. def Predict(self, x_data, *args, **kwargs):
  3491. self.x_testData = x_data.copy()
  3492. y_Predict = self.Model.fit_predict(x_data)
  3493. self.y_testData = y_Predict.copy()
  3494. self.have_Predict = True
  3495. return y_Predict, 'DBSCAN'
  3496. def Des(self, Dic, *args, **kwargs):
  3497. # DBSCAN没有预测的必要
  3498. tab = Tab()
  3499. y = self.y_testData.copy()
  3500. x_data = self.x_testData.copy()
  3501. class_ = self.class_
  3502. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  3503. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  3504. get, x_means, x_range, Type = Func(x_data, class_, y)
  3505. for i in range(len(get)):
  3506. tab.add(get[i], f'{i}训练数据散点图')
  3507. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  3508. data = class_ + [f'{i}' for i in x_means]
  3509. c = Table().add(headers=heard, rows=[data])
  3510. tab.add(c, '数据表')
  3511. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [
  3512. f'普适预测第{i}特征' for i in range(len(x_means))])
  3513. save = Dic + r'/密度聚类.HTML'
  3514. tab.render(save) # 生成HTML
  3515. return save,
  3516. class Fast_Fourier(Study_MachineBase): # 快速傅里叶变换
  3517. def __init__(self, args_use, model, *args, **kwargs):
  3518. super(Fast_Fourier, self).__init__(*args, **kwargs)
  3519. self.Model = None
  3520. self.Fourier = None # fft复数
  3521. self.Frequency = None # 频率range
  3522. self.angular_Frequency = None # 角频率range
  3523. self.Phase = None # 相位range
  3524. self.Breadth = None # 震幅range
  3525. self.N = None # 样本数
  3526. def Fit(self, y_data, *args, **kwargs):
  3527. y_data = y_data.ravel() # 扯平为一维数组
  3528. try:
  3529. if self.y_trainData is None:
  3530. raise Exception
  3531. self.y_trainData = np.hstack(y_data, self.x_trainData)
  3532. except BaseException:
  3533. self.y_trainData = y_data.copy()
  3534. Fourier = fft(y_data)
  3535. self.N = len(y_data)
  3536. self.Frequency = np.linspace(0, 1, self.N) # 频率N_range
  3537. self.angular_Frequency = self.Frequency / (np.pi * 2) # 角频率w
  3538. self.Phase = np.angle(Fourier)
  3539. self.Breadth = np.abs(Fourier)
  3540. self.Fourier = Fourier
  3541. self.have_Fit = True
  3542. return 'None', 'None'
  3543. def Predict(self, x_data, *args, **kwargs):
  3544. return np.array([]), ''
  3545. def Des(self, Dic, *args, **kwargs):
  3546. # DBSCAN没有预测的必要
  3547. tab = Tab()
  3548. y = self.y_trainData.copy()
  3549. N = self.N
  3550. Phase = self.Phase # 相位range
  3551. Breadth = self.Breadth # 震幅range
  3552. normalization_Breadth = Breadth / N
  3553. def line(name, value, s=slice(0, None)) -> line:
  3554. c = (
  3555. line() .add_xaxis(
  3556. self.Frequency[s].tolist()) .add_yaxis(
  3557. '',
  3558. value,
  3559. **Label_Set,
  3560. symbol='none' if self.N >= 500 else None) .set_global_opts(
  3561. title_opts=opts.TitleOpts(
  3562. title=name),
  3563. **global_Leg,
  3564. xaxis_opts=opts.AxisOpts(
  3565. type_='value'),
  3566. yaxis_opts=opts.AxisOpts(
  3567. type_='value')))
  3568. return c
  3569. tab.add(line('原始数据', y.tolist()), '原始数据')
  3570. tab.add(line('双边振幅谱', Breadth.tolist()), '双边振幅谱')
  3571. tab.add(
  3572. line(
  3573. '双边振幅谱(归一化)',
  3574. normalization_Breadth.tolist()),
  3575. '双边振幅谱(归一化)')
  3576. tab.add(
  3577. line('单边相位谱', Breadth[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱')
  3578. tab.add(line('单边相位谱(归一化)', normalization_Breadth[:int(
  3579. N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱(归一化)')
  3580. tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱')
  3581. tab.add(
  3582. line('单边相位谱', Phase[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱')
  3583. tab.add(make_Tab(self.Frequency.tolist(), [Breadth.tolist()]), '双边振幅谱')
  3584. tab.add(make_Tab(self.Frequency.tolist(), [Phase.tolist()]), '双边相位谱')
  3585. tab.add(
  3586. make_Tab(
  3587. self.Frequency.tolist(), [
  3588. self.Fourier.tolist()]), '快速傅里叶变换')
  3589. save = Dic + r'/快速傅里叶.HTML'
  3590. tab.render(save) # 生成HTML
  3591. return save,
  3592. class Reverse_Fast_Fourier(Study_MachineBase): # 快速傅里叶变换
  3593. def __init__(self, args_use, model, *args, **kwargs):
  3594. super(Reverse_Fast_Fourier, self).__init__(*args, **kwargs)
  3595. self.Model = None
  3596. self.N = None
  3597. self.y_testData_real = None
  3598. self.Phase = None
  3599. self.Breadth = None
  3600. def Fit(self, y_data, *args, **kwargs):
  3601. return 'None', 'None'
  3602. def Predict(self, x_data, x_name='', Add_Func=None, *args, **kwargs):
  3603. self.x_testData = x_data.ravel().astype(np.complex_)
  3604. Fourier = ifft(self.x_testData)
  3605. self.y_testData = Fourier.copy()
  3606. self.y_testData_real = np.real(Fourier)
  3607. self.N = len(self.y_testData_real)
  3608. self.Phase = np.angle(self.x_testData)
  3609. self.Breadth = np.abs(self.x_testData)
  3610. Add_Func(self.y_testData_real.copy(), f'{x_name}:逆向快速傅里叶变换[实数]')
  3611. return Fourier, '逆向快速傅里叶变换'
  3612. def Des(self, Dic, *args, **kwargs):
  3613. # DBSCAN没有预测的必要
  3614. tab = Tab()
  3615. y = self.y_testData_real.copy()
  3616. y_data = self.y_testData.copy()
  3617. N = self.N
  3618. range_N = np.linspace(0, 1, N).tolist()
  3619. Phase = self.Phase # 相位range
  3620. Breadth = self.Breadth # 震幅range
  3621. def line(name, value, s=slice(0, None)) -> line:
  3622. c = (
  3623. line() .add_xaxis(
  3624. range_N[s]) .add_yaxis(
  3625. '',
  3626. value,
  3627. **Label_Set,
  3628. symbol='none' if N >= 500 else None) .set_global_opts(
  3629. title_opts=opts.TitleOpts(
  3630. title=name),
  3631. **global_Leg,
  3632. xaxis_opts=opts.AxisOpts(
  3633. type_='value'),
  3634. yaxis_opts=opts.AxisOpts(
  3635. type_='value')))
  3636. return c
  3637. tab.add(line('逆向傅里叶变换', y.tolist()), '逆向傅里叶变换[实数]')
  3638. tab.add(make_Tab(range_N, [y_data.tolist()]), '逆向傅里叶变换数据')
  3639. tab.add(make_Tab(range_N, [y.tolist()]), '逆向傅里叶变换数据[实数]')
  3640. tab.add(line('双边振幅谱', Breadth.tolist()), '双边振幅谱')
  3641. tab.add(
  3642. line('单边相位谱', Breadth[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱')
  3643. tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱')
  3644. tab.add(
  3645. line('单边相位谱', Phase[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱')
  3646. save = Dic + r'/快速傅里叶.HTML'
  3647. tab.render(save) # 生成HTML
  3648. return save,
  3649. class Reverse_Fast_Fourier_TwoNumpy(Reverse_Fast_Fourier): # 2快速傅里叶变换
  3650. def Fit(
  3651. self,
  3652. x_data,
  3653. y_data=None,
  3654. x_name='',
  3655. Add_Func=None,
  3656. *args,
  3657. **kwargs):
  3658. r = np.multiply(np.cos(x_data), y_data)
  3659. j = np.multiply(np.sin(x_data), y_data) * 1j
  3660. super(
  3661. Reverse_Fast_Fourier_TwoNumpy,
  3662. self).Predict(
  3663. r + j,
  3664. x_name=x_name,
  3665. Add_Func=Add_Func,
  3666. *args,
  3667. **kwargs)
  3668. return 'None', 'None'
  3669. class Curve_fitting(Study_MachineBase): # 曲线拟合
  3670. def __init__(self, Name, str_, model, *args, **kwargs):
  3671. super(Curve_fitting, self).__init__(*args, **kwargs)
  3672. def ndimDown(data: np.ndarray):
  3673. if data.ndim == 1:
  3674. return data
  3675. new_data = []
  3676. for i in data:
  3677. new_data.append(np.sum(i))
  3678. return np.array(new_data)
  3679. NAME = {'np': np, 'Func': model, 'ndimDown': ndimDown}
  3680. DEF = f'''
  3681. def FUNC({",".join(model.__code__.co_varnames)}):
  3682. answer = Func({",".join(model.__code__.co_varnames)})
  3683. return ndimDown(answer)
  3684. '''
  3685. exec(DEF, NAME)
  3686. self.Func = NAME['FUNC']
  3687. self.Fit_data = None
  3688. self.Name = Name
  3689. self.Func_Str = str_
  3690. def Fit(self, x_data: np.ndarray, y_data: np.ndarray, *args, **kwargs):
  3691. y_data = y_data.ravel()
  3692. x_data = x_data.astype(np.float64)
  3693. try:
  3694. if self.x_trainData is None:
  3695. raise Exception
  3696. self.x_trainData = np.vstack(x_data, self.x_trainData)
  3697. self.y_trainData = np.vstack(y_data, self.y_trainData)
  3698. except BaseException:
  3699. self.x_trainData = x_data.copy()
  3700. self.y_trainData = y_data.copy()
  3701. self.Fit_data = optimize.curve_fit(
  3702. self.Func, self.x_trainData, self.y_trainData)
  3703. self.Model = self.Fit_data[0].copy()
  3704. return 'None', 'None'
  3705. def Predict(self, x_data, *args, **kwargs):
  3706. self.x_testData = x_data.copy()
  3707. Predict = self.Func(x_data, *self.Model)
  3708. y_Predict = []
  3709. for i in Predict:
  3710. y_Predict.append(np.sum(i))
  3711. y_Predict = np.array(y_Predict)
  3712. self.y_testData = y_Predict.copy()
  3713. self.have_Predict = True
  3714. return y_Predict, self.Name
  3715. def Des(self, Dic, *args, **kwargs):
  3716. # DBSCAN没有预测的必要
  3717. tab = Tab()
  3718. y = self.y_testData.copy()
  3719. x_data = self.x_testData.copy()
  3720. get, x_means, x_range, Type = regress_visualization(x_data, y)
  3721. for i in range(len(get)):
  3722. tab.add(get[i], f'{i}预测类型图')
  3723. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  3724. for i in range(len(get)):
  3725. tab.add(get[i], f'{i}预测热力图')
  3726. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [
  3727. [f'{i}' for i in x_means]]), '普适预测特征数据')
  3728. tab.add(make_Tab([f'参数[{i}]' for i in range(len(self.Model))], [
  3729. [f'{i}' for i in self.Model]]), '拟合参数')
  3730. save = Dic + r'/曲线拟合.HTML'
  3731. tab.render(save) # 生成HTML
  3732. return save,
  3733. class Machine_Learner(Learner): # 数据处理者
  3734. def __init__(self, *args, **kwargs):
  3735. super().__init__(*args, **kwargs)
  3736. self.Learner = {} # 记录机器
  3737. self.Learn_Dic = {
  3738. 'Line': Line_Model,
  3739. 'Ridge': Line_Model,
  3740. 'Lasso': Line_Model,
  3741. 'LogisticRegression': LogisticRegression_Model,
  3742. 'Knn_class': Knn_Model,
  3743. 'Knn': Knn_Model,
  3744. 'Tree_class': Tree_Model,
  3745. 'Tree': Tree_Model,
  3746. 'Forest': Forest_Model,
  3747. 'Forest_class': Forest_Model,
  3748. 'GradientTree_class': GradientTree_Model,
  3749. 'GradientTree': GradientTree_Model,
  3750. 'Variance': Variance_Model,
  3751. 'SelectKBest': SelectKBest_Model,
  3752. 'Z-Score': Standardization_Model,
  3753. 'MinMaxScaler': MinMaxScaler_Model,
  3754. 'LogScaler': LogScaler_Model,
  3755. 'atanScaler': atanScaler_Model,
  3756. 'decimalScaler': decimalScaler_Model,
  3757. 'sigmodScaler': sigmodScaler_Model,
  3758. 'Mapzoom': Mapzoom_Model,
  3759. 'Fuzzy_quantization': Fuzzy_quantization_Model,
  3760. 'Regularization': Regularization_Model,
  3761. 'Binarizer': Binarizer_Model,
  3762. 'Discretization': Discretization_Model,
  3763. 'Label': Label_Model,
  3764. 'OneHotEncoder': OneHotEncoder_Model,
  3765. 'Missed': Missed_Model,
  3766. 'PCA': PCA_Model,
  3767. 'RPCA': RPCA_Model,
  3768. 'KPCA': KPCA_Model,
  3769. 'LDA': LDA_Model,
  3770. 'SVC': SVC_Model,
  3771. 'SVR': SVR_Model,
  3772. 'MLP': MLP_Model,
  3773. 'MLP_class': MLP_Model,
  3774. 'NMF': NMF_Model,
  3775. 't-SNE': TSNE_Model,
  3776. 'k-means': kmeans_Model,
  3777. 'Agglomerative': Agglomerative_Model,
  3778. 'DBSCAN': DBSCAN_Model,
  3779. 'ClassBar': Class_To_Bar,
  3780. 'FeatureScatter': Near_feature_scatter,
  3781. 'FeatureScatterClass': Near_feature_scatter_class,
  3782. 'FeatureScatter_all': Near_feature_scatter_More,
  3783. 'FeatureScatterClass_all': Near_feature_scatter_class_More,
  3784. 'HeatMap': Numpy_To_HeatMap,
  3785. 'FeatureY-X': Feature_scatter_YX,
  3786. 'ClusterTree': Cluster_Tree,
  3787. 'MatrixScatter': MatrixScatter,
  3788. 'Correlation': CORR,
  3789. 'Statistics': Des,
  3790. 'Fast_Fourier': Fast_Fourier,
  3791. 'Reverse_Fast_Fourier': Reverse_Fast_Fourier,
  3792. '[2]Reverse_Fast_Fourier': Reverse_Fast_Fourier_TwoNumpy,
  3793. }
  3794. self.Learner_Type = {} # 记录机器的类型
  3795. def p_Args(self, Text, Type): # 解析参数
  3796. args = {}
  3797. args_use = {}
  3798. # 输入数据
  3799. exec(Text, args)
  3800. # 处理数据
  3801. if Type in ('MLP', 'MLP_class'):
  3802. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  3803. else:
  3804. args_use['alpha'] = float(args.get('alpha', 1.0)) # L1和L2正则化用
  3805. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  3806. if Type in ('MLP', 'MLP_class'):
  3807. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  3808. else:
  3809. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  3810. args_use['n_neighbors'] = int(args.get('K_knn', 5)) # knn邻居数 (命名不同)
  3811. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  3812. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  3813. if Type in ('Tree', 'Forest', 'GradientTree'):
  3814. args_use['criterion'] = 'mse' if bool(
  3815. args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  3816. else:
  3817. args_use['criterion'] = 'gini' if bool(
  3818. args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  3819. args_use['splitter'] = 'random' if bool(
  3820. args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  3821. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  3822. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  3823. args_use['min_samples_split'] = int(
  3824. args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  3825. args_use['P'] = float(args.get('min_samples_split', 0.8))
  3826. args_use['k'] = args.get('k', 1)
  3827. args_use['score_func'] = (
  3828. {
  3829. 'chi2': chi2,
  3830. 'f_classif': f_classif,
  3831. 'mutual_info_classif': mutual_info_classif,
  3832. 'f_regression': f_regression,
  3833. 'mutual_info_regression': mutual_info_regression}. get(
  3834. args.get(
  3835. 'score_func',
  3836. 'f_classif'),
  3837. f_classif))
  3838. args_use['feature_range'] = tuple(args.get('feature_range', (0, 1)))
  3839. args_use['norm'] = args.get('norm', 'l2') # 正则化的方式L1或者L2
  3840. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  3841. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  3842. args_use['ndim_up'] = bool(args.get('ndim_up', False))
  3843. args_use['miss_value'] = args.get('miss_value', np.nan)
  3844. args_use['fill_method'] = args.get('fill_method', 'mean')
  3845. args_use['fill_value'] = args.get('fill_value', None)
  3846. args_use['n_components'] = args.get('n_components', 1)
  3847. args_use['kernel'] = args.get(
  3848. 'kernel', 'rbf' if Type in (
  3849. 'SVR', 'SVC') else 'linear')
  3850. args_use['n_Tree'] = args.get('n_Tree', 100)
  3851. args_use['gamma'] = args.get('gamma', 1)
  3852. args_use['hidden_size'] = tuple(args.get('hidden_size', (100,)))
  3853. args_use['activation'] = str(args.get('activation', 'relu'))
  3854. args_use['solver'] = str(args.get('solver', 'adam'))
  3855. if Type in ('k-means',):
  3856. args_use['n_clusters'] = int(args.get('n_clusters', 8))
  3857. else:
  3858. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  3859. args_use['eps'] = float(args.get('n_clusters', 0.5))
  3860. args_use['min_samples'] = int(args.get('n_clusters', 5))
  3861. args_use['white_PCA'] = bool(args.get('white_PCA', False))
  3862. return args_use
  3863. def Add_Learner(self, Learner, Text=''):
  3864. get = self.Learn_Dic[Learner]
  3865. name = f'Le[{len(self.Learner)}]{Learner}'
  3866. # 参数调节
  3867. args_use = self.p_Args(Text, Learner)
  3868. # 生成学习器
  3869. self.Learner[name] = get(model=Learner, args_use=args_use)
  3870. self.Learner_Type[name] = Learner
  3871. def Add_Curve_Fitting(self, Learner_text, Text=''):
  3872. NAME = {}
  3873. exec(Learner_text, NAME)
  3874. name = f'Le[{len(self.Learner)}]{NAME.get("name","SELF")}'
  3875. func = NAME.get('f', lambda x, k, b: k * x + b)
  3876. self.Learner[name] = Curve_fitting(name, Learner_text, func)
  3877. self.Learner_Type[name] = 'Curve_fitting'
  3878. def Add_SelectFrom_Model(self, Learner, Text=''): # Learner代表选中的学习器
  3879. model = self.get_Learner(Learner)
  3880. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  3881. # 参数调节
  3882. args_use = self.p_Args(Text, 'SelectFrom_Model')
  3883. # 生成学习器
  3884. self.Learner[name] = SelectFrom_Model(
  3885. Learner=model, args_use=args_use, Dic=self.Learn_Dic)
  3886. self.Learner_Type[name] = 'SelectFrom_Model'
  3887. def Add_Predictive_HeatMap(self, Learner, Text=''): # Learner代表选中的学习器
  3888. model = self.get_Learner(Learner)
  3889. name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
  3890. # 生成学习器
  3891. args_use = self.p_Args(Text, 'Predictive_HeatMap')
  3892. self.Learner[name] = Predictive_HeatMap(
  3893. Learner=model, args_use=args_use)
  3894. self.Learner_Type[name] = 'Predictive_HeatMap'
  3895. def Add_Predictive_HeatMap_More(self, Learner, Text=''): # Learner代表选中的学习器
  3896. model = self.get_Learner(Learner)
  3897. name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
  3898. # 生成学习器
  3899. args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
  3900. self.Learner[name] = Predictive_HeatMap_More(
  3901. Learner=model, args_use=args_use)
  3902. self.Learner_Type[name] = 'Predictive_HeatMap_More'
  3903. def Add_View_data(self, Learner, Text=''): # Learner代表选中的学习器
  3904. model = self.get_Learner(Learner)
  3905. name = f'Le[{len(self.Learner)}]View_data:{Learner}'
  3906. # 生成学习器
  3907. args_use = self.p_Args(Text, 'View_data')
  3908. self.Learner[name] = View_data(Learner=model, args_use=args_use)
  3909. self.Learner_Type[name] = 'View_data'
  3910. def Return_Learner(self):
  3911. return self.Learner.copy()
  3912. def get_Learner(self, name):
  3913. return self.Learner[name]
  3914. def get_Learner_Type(self, name):
  3915. return self.Learner_Type[name]
  3916. def Fit(self, x_name, y_name, Learner, split=0.3, *args, **kwargs):
  3917. x_data = self.get_Sheet(x_name)
  3918. y_data = self.get_Sheet(y_name)
  3919. model = self.get_Learner(Learner)
  3920. return model.Fit(
  3921. x_data,
  3922. y_data,
  3923. split=split,
  3924. x_name=x_name,
  3925. Add_Func=self.Add_Form)
  3926. def Predict(self, x_name, Learner, Text='', **kwargs):
  3927. x_data = self.get_Sheet(x_name)
  3928. model = self.get_Learner(Learner)
  3929. y_data, name = model.predict(
  3930. x_data, x_name=x_name, Add_Func=self.Add_Form)
  3931. self.Add_Form(y_data, f'{x_name}:{name}')
  3932. return y_data
  3933. def Score(self, name_x, name_y, Learner): # Score_Only表示仅评分 Fit_Simp 是普遍类操作
  3934. model = self.get_Learner(Learner)
  3935. x = self.get_Sheet(name_x)
  3936. y = self.get_Sheet(name_y)
  3937. return model.Score(x, y)
  3938. def Show_Score(self, Learner, Dic, name_x, name_y, Func=0): # 显示参数
  3939. x = self.get_Sheet(name_x)
  3940. y = self.get_Sheet(name_y)
  3941. if NEW_Global:
  3942. dic = Dic + f'/{Learner}分类评分[CoTan]'
  3943. new_dic = dic
  3944. a = 0
  3945. while exists(new_dic): # 直到他不存在 —— False
  3946. new_dic = dic + f'[{a}]'
  3947. a += 1
  3948. mkdir(new_dic)
  3949. else:
  3950. new_dic = Dic
  3951. model = self.get_Learner(Learner)
  3952. # 打包
  3953. func = [
  3954. model.Class_Score,
  3955. model.Regression_Score,
  3956. model.Clusters_Score][Func]
  3957. save = func(new_dic, x, y)[0]
  3958. if TAR_Global:
  3959. make_targz(f'{new_dic}.tar.gz', new_dic)
  3960. return save, new_dic
  3961. def Show_Args(self, Learner, Dic): # 显示参数
  3962. if NEW_Global:
  3963. dic = Dic + f'/{Learner}数据[CoTan]'
  3964. new_dic = dic
  3965. a = 0
  3966. while exists(new_dic): # 直到他不存在 —— False
  3967. new_dic = dic + f'[{a}]'
  3968. a += 1
  3969. mkdir(new_dic)
  3970. else:
  3971. new_dic = Dic
  3972. model = self.get_Learner(Learner)
  3973. if (not(model.Model is None) or not(model.Model is list)) and CLF_Global:
  3974. joblib.dump(model.Model, new_dic + '/MODEL.model') # 保存模型
  3975. # pickle.dump(model,new_dic + f'/{Learner}.pkl')#保存学习器
  3976. # 打包
  3977. save = model.Des(new_dic)[0]
  3978. if TAR_Global:
  3979. make_targz(f'{new_dic}.tar.gz', new_dic)
  3980. return save, new_dic
  3981. def Del_Leaner(self, Leaner):
  3982. del self.Learner[Leaner]
  3983. del self.Learner_Type[Leaner]
  3984. def make_targz(output_filename, source_dir):
  3985. with tarfile.open(output_filename, "w:gz") as tar:
  3986. tar.add(source_dir, arcname=basename(source_dir))
  3987. return output_filename
  3988. def set_Global(
  3989. More=More_Global,
  3990. All=All_Global,
  3991. CSV=CSV_Global,
  3992. CLF=CLF_Global,
  3993. TAR=TAR_Global,
  3994. NEW=NEW_Global):
  3995. global More_Global, All_Global, CSV_Global, CLF_Global, TAR_Global, NEW_Global
  3996. More_Global = More # 是否使用全部特征绘图
  3997. All_Global = All # 是否导出charts
  3998. CSV_Global = CSV # 是否导出CSV
  3999. CLF_Global = CLF # 是否导出模型
  4000. TAR_Global = TAR # 是否打包tar
  4001. NEW_Global = NEW # 是否新建目录