from scipy.fftpack import fft, ifft, ifftn, fftn # 快速傅里叶变换 from sklearn.svm import SVC, SVR # SVC是svm分类,SVR是svm回归 from pyecharts.components import Table as Table_Fisrt # 绘制表格 from scipy import optimize from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN from sklearn.manifold import TSNE from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA, NMF from sklearn.impute import SimpleImputer from sklearn.preprocessing import * from sklearn.feature_selection import * from sklearn.metrics import * from sklearn.ensemble import ( RandomForestClassifier, RandomForestRegressor, GradientBoostingClassifier, GradientBoostingRegressor) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.linear_model import * from sklearn.model_selection import train_test_split import re import numpy as np from pandas import DataFrame, read_csv import matplotlib.pyplot as plt from scipy.cluster.hierarchy import dendrogram, ward from pyecharts.options.series_options import JsCode from pyecharts.charts import Tab as tab_First from pyecharts.charts import * from random import randint from pyecharts import options as opts from pyecharts.components import Image from os.path import split as path_split from os.path import exists, basename, splitext from os import mkdir, getcwd import tarfile import pickle import joblib from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = f"{getcwd()}/assets/" # 设置 np.set_printoptions(threshold=np.inf) global_Set = dict( toolbox_opts=opts.ToolboxOpts( is_show=True), legend_opts=opts.LegendOpts( pos_bottom='3%', type_='scroll')) global_Leg = dict( toolbox_opts=opts.ToolboxOpts( is_show=True), legend_opts=opts.LegendOpts( is_show=False)) Label_Set = dict(label_opts=opts.LabelOpts(is_show=False)) More_Global = False # 是否使用全部特征绘图 All_Global = True # 是否导出charts CSV_Global = True # 是否导出CSV CLF_Global = True # 是否导出模型 TAR_Global = True # 是否打包tar NEW_Global = True # 是否新建目录 class Tab(tab_First): def __init__(self, *args, **kwargs): super(Tab, self).__init__(*args, **kwargs) self.element = {} # 记录tab组成元素 name:charts def add(self, chart, tab_name): self.element[tab_name] = chart return super(Tab, self).add(chart, tab_name) def render( self, path: str = "render.html", template_name: str = "simple_tab.html", *args, **kwargs, ) -> str: if All_Global: Dic = path_split(path)[0] for i in self.element: self.element[i].render(Dic + '/' + i + '.html') return super(Tab, self).render(path, template_name, *args, **kwargs) class Table(Table_Fisrt): def __init__(self, *args, **kwargs): super(Table, self).__init__(*args, **kwargs) self.HEADERS = [] self.ROWS = [[]] def add(self, headers, rows, attributes=None): if len(rows) == 1: new_headers = ['数据类型', '数据'] new_rows = list(zip(headers, rows[0])) self.HEADERS = new_headers self.ROWS = new_rows return super().add(new_headers, new_rows, attributes) else: self.HEADERS = headers self.ROWS = rows return super().add(headers, rows, attributes) def render(self, path="render.html", *args, **kwargs,) -> str: if CSV_Global: Dic, name = path_split(path) name = splitext(name)[0] try: DataFrame( self.ROWS, columns=self.HEADERS).to_csv( Dic + '/' + name + '.csv') except BaseException: pass return super().render(path, *args, **kwargs) def make_list(first, end, num=35): n = num / (end - first) if n == 0: n = 1 re = [] n_first = first * n n_end = end * n while n_first <= n_end: cul = n_first / n re.append(round(cul, 2)) n_first += 1 return re def list_filter(list_, num=70): # 假设列表已经不重复 if len(list_) <= num: return list_ n = int(num / len(list_)) re = list_[::n] return re def Prediction_boundary(x_range, x_means, Predict_Func, Type): # 绘制回归型x-x热力图 # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调 # a-特征x,b-特征x-1,c-其他特征 o_cList = [] if len(x_means) == 1: return o_cList for i in range(len(x_means)): for j in range(len(x_means)): if j <= i: continue n_ra = x_range[j] Type_ra = Type[j] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0], n_ra[1], 70) else: ra = list_filter(n_ra) # 可以接受最大为70 if Type_rb == 1: rb = make_list(n_rb[0], n_rb[1], 35) else: rb = list_filter(n_rb) # 可以接受最大为70 a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, j] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) # value的第一个数值是x .add_yaxis(f'数据', np.unique(b), value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1, min_=int(min(y_data)), pos_right='3%')) # 显示 ) o_cList.append(c) return o_cList def Prediction_boundary_More(x_range, x_means, Predict_Func, Type): # 绘制回归型x-x热力图 # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调 # a-特征x,b-特征x-1,c-其他特征 o_cList = [] if len(x_means) == 1: return o_cList for i in range(len(x_means)): if i == 0: continue n_ra = x_range[i - 1] Type_ra = Type[i - 1] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0], n_ra[1], 70) else: ra = list_filter(n_ra) # 可以接受最大为70 if Type_rb == 1: rb = make_list(n_rb[0], n_rb[1], 35) else: rb = list_filter(n_rb) # 可以接受最大为70 a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, i - 1] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) # value的第一个数值是x .add_yaxis(f'数据', np.unique(b), value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1, min_=int(min(y_data)), pos_right='3%')) # 显示 ) o_cList.append(c) return o_cList def Decision_boundary(x_range, x_means, Predict_Func, class_, Type, nono=False): # 绘制分类型预测图x-x热力图 # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图 # a-特征x,b-特征x-1,c-其他特征 # 规定,i-1是x轴,a是x轴,x_1是x轴 class_dict = dict(zip(class_, [i for i in range(len(class_))])) if not nono: v_dict = [{'min': -1.5, 'max': -0.5, 'label': '未知'}] # 分段显示 else: v_dict = [] for i in class_dict: v_dict.append( {'min': class_dict[i] - 0.5, 'max': class_dict[i] + 0.5, 'label': str(i)}) o_cList = [] if len(x_means) == 1: n_ra = x_range[0] if Type[0] == 1: ra = make_list(n_ra[0], n_ra[1], 70) else: ra = n_ra a = np.array([i for i in ra]).reshape(-1, 1) y_data = Predict_Func(a)[0].tolist() value = [[0, float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(['None']) # value的第一个数值是x .add_yaxis(f'数据', np.unique(a), value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()), min_=-1, is_piecewise=True, pieces=v_dict, orient='horizontal', pos_bottom='3%')) ) o_cList.append(c) return o_cList # 如果x_means长度不等于1则执行下面 for i in range(len(x_means)): if i == 0: continue n_ra = x_range[i - 1] Type_ra = Type[i - 1] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0], n_ra[1], 70) else: ra = n_ra if Type_rb == 1: rb = make_list(n_rb[0], n_rb[1], 35) else: rb = n_rb a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, i - 1] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) # value的第一个数值是x .add_yaxis(f'数据', np.unique(b), value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()), min_=-1, is_piecewise=True, pieces=v_dict, orient='horizontal', pos_bottom='3%')) ) o_cList.append(c) return o_cList # 绘制分类型预测图x-x热力图 def Decision_boundary_More( x_range, x_means, Predict_Func, class_, Type, nono=False): # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图 # a-特征x,b-特征x-1,c-其他特征 # 规定,i-1是x轴,a是x轴,x_1是x轴 class_dict = dict(zip(class_, [i for i in range(len(class_))])) if not nono: v_dict = [{'min': -1.5, 'max': -0.5, 'label': '未知'}] # 分段显示 else: v_dict = [] for i in class_dict: v_dict.append( {'min': class_dict[i] - 0.5, 'max': class_dict[i] + 0.5, 'label': str(i)}) o_cList = [] if len(x_means) == 1: return Decision_boundary( x_range, x_means, Predict_Func, class_, Type, nono) # 如果x_means长度不等于1则执行下面 for i in range(len(x_means)): for j in range(len(x_means)): if j <= i: continue n_ra = x_range[j] Type_ra = Type[j] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0], n_ra[1], 70) else: ra = n_ra if Type_rb == 1: rb = make_list(n_rb[0], n_rb[1], 35) else: rb = n_rb a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, j] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), class_dict.get( y_data[i], -1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) # value的第一个数值是x .add_yaxis(f'数据', np.unique(b), value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()), min_=-1, is_piecewise=True, pieces=v_dict, orient='horizontal', pos_bottom='3%')) ) o_cList.append(c) return o_cList def SeeTree(Dic): node_re = re.compile(r'^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式 link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式 node_Dict = {} link_list = [] with open(Dic, 'r') as f: # 貌似必须分开w和r for i in f: try: get = re.findall(node_re, i)[0] if get[0] != '': try: v = float(get[0]) except BaseException: v = 0 node_Dict[get[0]] = {'name': get[1].replace( '\\n', '\n'), 'value': v, 'children': []} continue except BaseException: pass try: get = re.findall(link_re, i)[0] if get[0] != '' and get[1] != '': link_list.append((get[0], get[1])) except BaseException: pass father_list = [] # 已经有父亲的list for i in link_list: father = i[0] # 父节点 son = i[1] # 子节点 try: node_Dict[father]['children'].append(node_Dict[son]) father_list.append(son) if int(son) == 0: print('F') except BaseException: pass father = list(set(node_Dict.keys()) - set(father_list)) c = ( Tree() .add("", [node_Dict[father[0]]], is_roam=True) .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"), toolbox_opts=opts.ToolboxOpts(is_show=True)) ) return c def make_Tab(heard, row): return Table().add(headers=heard, rows=row) def scatter(w_heard, w): c = (Scatter() .add_xaxis(w_heard) .add_yaxis('', w, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)) return c def bar(w_heard, w): c = (Bar() .add_xaxis(w_heard) .add_yaxis('', abs(w).tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)) return c # def line(w_sum,w,b): # x = np.arange(-5, 5, 1) # c = ( # Line() # .add_xaxis(x.tolist()) # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set) # ) # for i in range(len(w)): # y = x * w[i] + b # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set) # return c def see_Line(x_trainData, y_trainData, w, w_sum, b): y = y_trainData.tolist() x_data = x_trainData.transpose re = [] for i in range(len(x_data)): x = x_data[i] p = int(x.max() - x.min()) / 5 x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点 y_num = x_num * w[i] + (w[i] / w_sum) * b c = ( line() .add_xaxis( x_num.tolist()) .add_yaxis( f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f"系数w曲线"), **global_Set)) t = ( Scatter() .add_xaxis( x.tolist()) .add_yaxis( f'{i}特征', y, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title='类型划分图'), **global_Set)) t.overlap(c) re.append(t) return re def get_Color(): # 随机颜色,雷达图默认非随机颜色 rgb = [randint(0, 255), randint(0, 255), randint(0, 255)] color = '#' for a in rgb: color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化) return color def is_continuous(data: np.array, f: float = 0.1): data = data.tolist() l = np.unique(data).tolist() try: re = len(l) / len(data) >= f or len(data) <= 3 return re except BaseException: return False def make_Cat(x_data): Cat = Categorical_Data() for i in range(len(x_data)): x1 = x_data[i] # x坐标 Cat(x1) return Cat # 根据不同类别绘制x-x分类散点图(可以绘制更多的图) def Training_visualization_More_NoCenter(x_trainData, class_, y): x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x_2) .add_yaxis( f'{n_class}', x_1, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f'[{a}-{i}]训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.add_xaxis(x_2_new) if o_c is None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means, x_range, Type = Cat.get() return o_cList, means, x_range, Type # 根据不同类别绘制x-x分类散点图(可以绘制更多的图) def Training_visualization_More(x_trainData, class_, y, center): x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x_2) .add_yaxis( f'{n_class}', x_1, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f'[{a}-{i}]训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.add_xaxis(x_2_new) # 添加簇中心 try: center_x_2 = [center[class_num][a]] except BaseException: center_x_2 = [0] b = ( Scatter() .add_xaxis(center_x_2) .add_yaxis( f'[{n_class}]中心', [ center[class_num][i]], **Label_Set, symbol='triangle') .set_global_opts( title_opts=opts.TitleOpts( title='簇中心'), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.overlap(b) if o_c is None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means, x_range, Type = Cat.get() return o_cList, means, x_range, Type # 根据不同类别绘制x-x分类散点图(可以绘制更多的图) def Training_visualization_Center(x_trainData, class_, y, center): x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) if i == 0: continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x_2) .add_yaxis( f'{n_class}', x_1, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f'[{i-1}-{i}]训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.add_xaxis(x_2_new) # 添加簇中心 try: center_x_2 = [center[class_num][i - 1]] except BaseException: center_x_2 = [0] b = ( Scatter() .add_xaxis(center_x_2) .add_yaxis( f'[{n_class}]中心', [ center[class_num][i]], **Label_Set, symbol='triangle') .set_global_opts( title_opts=opts.TitleOpts( title='簇中心'), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.overlap(b) if o_c is None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means, x_range, Type = Cat.get() return o_cList, means, x_range, Type def Training_visualization(x_trainData, class_, y): # 根据不同类别绘制x-x分类散点图 x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) if i == 0: continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for n_class in class_: x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x_2) .add_yaxis( f'{n_class}', x_1, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title='训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.add_xaxis(x_2_new) if o_c is None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means, x_range, Type = Cat.get() return o_cList, means, x_range, Type def Training_visualization_NoClass(x_trainData): # 根据绘制x-x分类散点图(无类别) x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) if i == 0: continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x2) .add_yaxis( '', x1.tolist(), **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title='训练数据散点图'), **global_Leg, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.add_xaxis(x2_new) o_cList.append(c) means, x_range, Type = Cat.get() return o_cList, means, x_range, Type def Training_W(x_trainData, class_, y, w_list, b_list, means: list): # 针对分类问题绘制决策边界 x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) o_cList = [] means.append(0) means = np.array(means) for i in range(len(x_data)): if i == 0: continue x1_con = is_continuous(x_data[i]) x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x2_new = np.unique(x2[y == n_class]) # x与散点图不同,这里是纵坐标 # 加入这个判断是为了解决sklearn历史遗留问题 if len(class_) == 2: # 二分类问题 if class_num == 0: continue w = w_list[0] b = b_list[0] else: # 多分类问题 w = w_list[class_num] b = b_list[class_num] if x2_con: x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5)) w = np.append(w, 0) y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + ( means[i + 1:] * w[i + 1:]).sum() # 假设除了两个特征意外,其余特征均为means列表的数值 c = ( line() .add_xaxis(x2_new) .add_yaxis( f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f"系数w曲线"), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) if o_c is None: o_c = c else: o_c = o_c.overlap(c) # 下面不要接任何代码,因为上面会continue o_cList.append(o_c) return o_cList def Regress_W(x_trainData, y, w: np.array, b, means: list): # 针对回归问题(y-x图) x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) o_cList = [] means.append(0) # 确保mean[i+1]不会超出index means = np.array(means) w = np.append(w, 0) for i in range(len(x_data)): x1 = x_data[i] x1_con = is_continuous(x1) if x1_con: x1 = np.array(make_list(x1.min(), x1.max(), 5)) x1_new = np.unique(x1) # 假设除了两个特征意外,其余特征均为means列表的数值 y_data = x1_new * \ w[i] + b + (means[:i] * w[:i]).sum() + (means[i + 1:] * w[i + 1:]).sum() y_con = is_continuous(y_data) c = ( line() .add_xaxis(x1_new) .add_yaxis( f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f"系数w曲线"), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if y_con else None, is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x1_con else None, is_scale=True))) o_cList.append(c) return o_cList def regress_visualization(x_trainData, y): # y-x数据图 x_data = x_trainData.transpose y_con = is_continuous(y) Cat = make_Cat(x_data) o_cList = [] try: visualmap_opts = opts.VisualMapOpts( is_show=True, max_=int( y.max()) + 1, min_=int( y.min()), pos_right='3%') except BaseException: visualmap_opts = None y_con = False for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) # 不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复) if not y_con and x1_con: # y不是连续的但x1连续,ry和ry_con是保护y的 ry_con, x1_con = x1_con, y_con x1, ry = y, x1 else: ry_con = y_con ry = y c = ( Scatter() .add_xaxis(x1.tolist()) # 研究表明,这个是横轴 .add_yaxis('数据', ry.tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"), **global_Set, yaxis_opts=opts.AxisOpts( type_='value' if ry_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), visualmap_opts=visualmap_opts ) ) c.add_xaxis(np.unique(x1)) o_cList.append(c) means, x_range, Type = Cat.get() return o_cList, means, x_range, Type def Feature_visualization(x_trainData, data_name=''): # x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.transpose only = False if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) only = True o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue # 重复内容,跳过 x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) if only: x2_con = False # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x2) .add_yaxis( data_name, x1, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True))) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Feature_visualization_Format(x_trainData, data_name=''): # x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.transpose only = False if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) only = True o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue # 重复内容,跳过(a读取的是i后面的) x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) x1_list = x1.astype(np.str).tolist() for i in range(len(x1_list)): x1_list[i] = [x1_list[i], f'特征{i}'] if only: x2_con = False # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x2) .add_yaxis( data_name, x1_list, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts( type_='value' if x1_con else 'category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='value' if x2_con else 'category', is_scale=True), tooltip_opts=opts.TooltipOpts( is_show=True, axis_pointer_type="cross", formatter="{c}"))) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Discrete_Feature_visualization(x_trainData, data_name=''): # 必定离散x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.transpose if len(x_data) == 1: x_data = np.array([x_data[0], np.zeros(len(x_data[0]))]) o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue # 重复内容,跳过 x1 = x_data[i] # x坐标 x2 = x_data[a] # y坐标 x2_new = np.unique(x2) # x与散点图不同,这里是纵坐标 c = ( Scatter() .add_xaxis(x2) .add_yaxis( data_name, x1, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts( type_='category', is_scale=True), xaxis_opts=opts.AxisOpts( type_='category', is_scale=True))) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Conversion_control(y_data, x_data, tab): # 合并两x-x图 if isinstance(x_data, np.ndarray) and isinstance(y_data, np.ndarray): get_x = Feature_visualization(x_data, '原数据') # 原来 get_y = Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_x)): tab.add(get_x[i].overlap(get_y[i]), f'[{i}]数据x-x散点图') return tab def Conversion_Separate(y_data, x_data, tab): # 并列显示两x-x图 if isinstance(x_data, np.ndarray) and isinstance(y_data, np.ndarray): get_x = Feature_visualization(x_data, '原数据') # 原来 get_y = Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_x)): try: tab.add(get_x[i], f'[{i}]数据x-x散点图') except IndexError: pass try: tab.add(get_y[i], f'[{i}]变维数据x-x散点图') except IndexError: pass return tab def Conversion_Separate_Format(y_data, tab): # 并列显示两x-x图 if isinstance(y_data, np.ndarray): get_y = Feature_visualization_Format(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]变维数据x-x散点图') return tab def Conversion_SeparateWH(w_data, h_data, tab): # 并列显示两x-x图 if isinstance(w_data, np.ndarray) and isinstance(w_data, np.ndarray): get_x = Feature_visualization_Format(w_data, 'W矩阵数据') # 原来 get_y = Feature_visualization( h_data.transpose, 'H矩阵数据') # 转换(先转T,再转T变回原样,W*H是横对列) print(h_data) print(w_data) print(h_data.transpose) for i in range(len(get_x)): try: tab.add(get_x[i], f'[{i}]W矩阵x-x散点图') except IndexError: pass try: tab.add(get_y[i], f'[{i}]H.T矩阵x-x散点图') except IndexError: pass return tab def make_bar(name, value, tab): # 绘制柱状图 c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(value))]) .add_yaxis(name, value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c, name) def judging_Digits(num: (int, float)): # 查看小数位数 a = str(abs(num)).split('.')[0] if a == '': raise ValueError return len(a) class Learner: def __init__(self, *args, **kwargs): self.numpy_Dic = {} # name:numpy self.Fucn_Add() # 制作Func_Dic def Add_Form(self, data: np.array, name): name = f'{name}[{len(self.numpy_Dic)}]' self.numpy_Dic[name] = data def read_csv(self, Dic, name, encoding='utf-8', str_must=False, sep=','): type_ = np.str if str_must else np.float pf_data = read_csv(Dic, encoding=encoding, delimiter=sep, header=None) try: data = pf_data.to_numpy(dtype=type_) except ValueError: data = pf_data.to_numpy(dtype=np.str) if data.ndim == 1: data = np.expand_dims(data, axis=1) self.Add_Form(data, name) return data def Add_Python(self, Text, sheet_name): name = {} name.update(globals().copy()) name.update(locals().copy()) exec(Text, name) exec('get = Creat()', name) if isinstance(name['get'], np.array): # 已经是DataFram get = name['get'] else: try: get = np.array(name['get']) except BaseException: get = np.array([name['get']]) self.Add_Form(get, sheet_name) return get def get_Form(self) -> dict: return self.numpy_Dic.copy() def get_Sheet(self, name) -> np.array: return self.numpy_Dic[name].copy() def to_CSV(self, Dic: str, name, sep) -> str: get = self.get_Sheet(name) np.savetxt(Dic, get, delimiter=sep) return Dic def to_Html_One(self, name, Dic=''): if Dic == '': Dic = f'{name}.html' get = self.get_Sheet(name) if get.ndim == 1: get = np.expand_dims(get, axis=1) get = get.tolist() for i in range(len(get)): get[i] = [i + 1] + get[i] headers = [i for i in range(len(get[0]))] table = Table_Fisrt() table.add( headers, get).set_global_opts( title_opts=opts.ComponentTitleOpts( title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据")) table.render(Dic) return Dic def to_Html(self, name, Dic='', type_=0): if Dic == '': Dic = f'{name}.html' # 把要画的sheet放到第一个 Sheet_Dic = self.get_Form() del Sheet_Dic[name] Sheet_list = [name] + list(Sheet_Dic.keys()) class TAB_F: def __init__(self, q): self.tab = q # 一个Tab def render(self, Dic): return self.tab.render(Dic) # 生成一个显示页面 if type_ == 0: class TAB(TAB_F): def add(self, table, k, *f): self.tab.add(table, k) tab = TAB(tab_First(page_title='CoTan:查看表格')) # 一个Tab elif type_ == 1: class TAB(TAB_F): def add(self, table, *k): self.tab.add(table) tab = TAB( Page( page_title='CoTan:查看表格', layout=Page.DraggablePageLayout)) else: class TAB(TAB_F): def add(self, table, *k): self.tab.add(table) tab = TAB( Page( page_title='CoTan:查看表格', layout=Page.SimplePageLayout)) # 迭代添加内容 for name in Sheet_list: get = self.get_Sheet(name) if get.ndim == 1: get = np.expand_dims(get, axis=1) get = get.tolist() for i in range(len(get)): get[i] = [i + 1] + get[i] headers = [i for i in range(len(get[0]))] table = Table_Fisrt() table.add( headers, get).set_global_opts( title_opts=opts.ComponentTitleOpts( title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据")) tab.add(table, f'表格:{name}') tab.render(Dic) return Dic def Merge(self, name, axis=0): # aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并 sheet_list = [] for i in name: sheet_list.append(self.get_Sheet(i)) get = {0: np.hstack, 1: np.vstack, 2: np.dstack}[axis](sheet_list) self.Add_Form(np.array(get), f'{name[0]}合成') def Split(self, name, split=2, axis=0): # aiis:0-横向分割(hsplit),1-纵向分割(vsplit) sheet = self.get_Sheet(name) get = {0: np.hsplit, 1: np.vsplit, 2: np.dsplit}[axis](sheet, split) for i in get: self.Add_Form(i, f'{name[0]}分割') def Two_Split(self, name, split, axis): # 二分切割(0-横向,1-纵向) sheet = self.get_Sheet(name) try: split = float(eval(split)) if split < 1: split = int(split * len(sheet) if axis == 1 else len(sheet[0])) else: raise Exception except BaseException: split = int(split) if axis == 0: self.Add_Form(sheet[:, split:], f'{name[0]}分割') self.Add_Form(sheet[:, :split], f'{name[0]}分割') def Deep(self, sheet: np.ndarray): return sheet.ravel() def Down_Ndim(self, sheet: np.ndarray): # 横向 down_list = [] for i in sheet: down_list.append(i.ravel()) return np.array(down_list) def LongitudinalDown_Ndim(self, sheet: np.ndarray): # 纵向 down_list = [] for i in range(len(sheet[0])): down_list.append(sheet[:, i].ravel()) return np.array(down_list).T def Reval(self, name, axis): # axis:0-横向,1-纵向(带.T),2-深度 sheet = self.get_Sheet(name) self.Add_Form({0: self.Down_Ndim, 1: self.LongitudinalDown_Ndim, 2: self.Deep}[ axis](sheet).copy(), f'{name}伸展') def Del_Ndim(self, name): # 删除无用维度 sheet = self.get_Sheet(name) self.Add_Form(np.squeeze(sheet), f'{name}降维') def T(self, name, Func: list): sheet = self.get_Sheet(name) if sheet.ndim <= 2: self.Add_Form(sheet.transpose.copy(), f'{name}.T') else: self.Add_Form(np.transpose(sheet, Func).copy(), f'{name}.T') def reShape(self, name, shape: list): sheet = self.get_Sheet(name) self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r') def Fucn_Add(self): self.Func_Dic = { 'abs': lambda x, y: np.abs(x), 'sqrt': lambda x, y: np.sqrt(x), 'pow': lambda x, y: x**y, 'loge': lambda x, y: np.log(x), 'log10': lambda x, y: np.log10(x), 'ceil': lambda x, y: np.ceil(x), 'floor': lambda x, y: np.floor(x), 'rint': lambda x, y: np.rint(x), 'sin': lambda x, y: np.sin(x), 'cos': lambda x, y: np.cos(x), 'tan': lambda x, y: np.tan(x), 'tanh': lambda x, y: np.tanh(x), 'sinh': lambda x, y: np.sinh(x), 'cosh': lambda x, y: np.cosh(x), 'asin': lambda x, y: np.arcsin(x), 'acos': lambda x, y: np.arccos(x), 'atan': lambda x, y: np.arctan(x), 'atanh': lambda x, y: np.arctanh(x), 'asinh': lambda x, y: np.arcsinh(x), 'acosh': lambda x, y: np.arccosh(x), 'add': lambda x, y: x + y, # 矩阵或元素 'sub': lambda x, y: x - y, # 矩阵或元素 'mul': lambda x, y: np.multiply(x, y), # 元素级别 'matmul': lambda x, y: np.matmul(x, y), # 矩阵 'dot': lambda x, y: np.dot(x, y), # 矩阵 'div': lambda x, y: x / y, 'div_floor': lambda x, y: np.floor_divide(x, y), 'power': lambda x, y: np.power(x, y), # 元素级 } def Cul_Numpy(self, data, data_type, Func): if 1 not in data_type: raise Exception func = self.Func_Dic.get(Func, lambda x, y: x) args_data = [] for i in range(len(data)): if data_type[i] == 0: args_data.append(data[i]) else: args_data.append(self.get_Sheet(data[i])) get = func(*args_data) self.Add_Form(get, f'{Func}({data[0]},{data[1]})') return get class Study_MachineBase: def __init__(self, *args, **kwargs): self.Model = None self.have_Fit = False self.have_Predict = False self.x_trainData = None self.y_trainData = None # 有监督学习专有的testData self.x_testData = None self.y_testData = None # 记录这两个是为了克隆 def Fit(self, x_data, y_data, split=0.3, Increment=True, **kwargs): y_data = y_data.ravel() try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) self.y_trainData = np.vstack(y_data, self.y_trainData) except BaseException: self.x_trainData = x_data.copy() self.y_trainData = y_data.copy() x_train, x_test, y_train, y_test = train_test_split( x_data, y_data, test_size=split) try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data, y_data) except BaseException: self.Model.fit(self.x_trainData, self.y_trainData) train_score = self.Model.score(x_train, y_train) test_score = self.Model.score(x_test, y_test) self.have_Fit = True return train_score, test_score def Score(self, x_data, y_data): Score = self.Model.score(x_data, y_data) return Score def Class_Score(self, Dic, x_data: np.ndarray, y_Really: np.ndarray): y_Really = y_Really.ravel() y_Predict = self.Predict(x_data)[0] Accuracy = self._Accuracy(y_Predict, y_Really) Recall, class_ = self._Macro(y_Predict, y_Really) Precision, class_ = self._Macro(y_Predict, y_Really, 1) F1, class_ = self._Macro(y_Predict, y_Really, 2) Confusion_matrix, class_ = self._Confusion_matrix(y_Predict, y_Really) kappa = self._Kappa_score(y_Predict, y_Really) tab = Tab() def gauge_base(name: str, value: float) -> Gauge: c = ( Gauge() .add("", [(name, round(value * 100, 2))], min_=0, max_=100) .set_global_opts(title_opts=opts.TitleOpts(title=name)) ) return c tab.add(gauge_base('准确率', Accuracy), '准确率') tab.add(gauge_base('kappa', kappa), 'kappa') def Bar_base(name, value) -> Bar: c = ( Bar() .add_xaxis(class_) .add_yaxis( name, value, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=name), **global_Set)) return c tab.add(Bar_base('精确率', Precision.tolist()), '精确率') tab.add(Bar_base('召回率', Recall.tolist()), '召回率') tab.add(Bar_base('F1', F1.tolist()), 'F1') def heatmap_base(name, value, max_, min_, show) -> HeatMap: c = ( HeatMap() .add_xaxis(class_) .add_yaxis( name, class_, value, label_opts=opts.LabelOpts( is_show=show, position='inside')) .set_global_opts( title_opts=opts.TitleOpts( title=name), **global_Set, visualmap_opts=opts.VisualMapOpts( max_=max_, min_=min_, pos_right='3%'))) return c value = [[class_[i], class_[j], float(Confusion_matrix[i, j])] for i in range( len(class_)) for j in range(len(class_))] tab.add( heatmap_base( '混淆矩阵', value, float( Confusion_matrix.max()), float( Confusion_matrix.min()), len(class_) < 7), '混淆矩阵') desTo_CSV(Dic, '混淆矩阵', Confusion_matrix, class_, class_) desTo_CSV( Dic, '评分', [ Precision, Recall, F1], class_, [ '精确率', '召回率', 'F1']) save = Dic + r'/分类模型评估.HTML' tab.render(save) return save, def _Accuracy(self, y_Predict, y_Really): # 准确率 return accuracy_score(y_Really, y_Predict) def _Macro(self, y_Predict, y_Really, func=0): Func = [recall_score, precision_score, f1_score] # 召回率,精确率和f1 class_ = np.unique(y_Really).tolist() result = (Func[func](y_Really, y_Predict, class_, average=None)) return result, class_ def _Confusion_matrix(self, y_Predict, y_Really): # 混淆矩阵 class_ = np.unique(y_Really).tolist() return confusion_matrix(y_Really, y_Predict), class_ def _Kappa_score(self, y_Predict, y_Really): return cohen_kappa_score(y_Really, y_Predict) def Regression_Score(self, Dic, x_data: np.ndarray, y_Really: np.ndarray): y_Really = y_Really.ravel() y_Predict = self.Predict(x_data)[0] tab = Tab() MSE = self._MSE(y_Predict, y_Really) MAE = self._MAE(y_Predict, y_Really) r2_Score = self._R2_Score(y_Predict, y_Really) RMSE = self._RMSE(y_Predict, y_Really) tab.add(make_Tab(['MSE', 'MAE', 'RMSE', 'r2_Score'], [[MSE, MAE, RMSE, r2_Score]]), '评估数据') save = Dic + r'/回归模型评估.HTML' tab.render(save) return save, def Clusters_Score(self, Dic, x_data: np.ndarray, *args): y_Predict = self.Predict(x_data)[0] tab = Tab() Coefficient, Coefficient_array = self._Coefficient_clustering( x_data, y_Predict) def gauge_base(name: str, value: float) -> Gauge: c = (Gauge() .add("", [(name, round(value * 100, 2))], min_=0, max_=10**( judging_Digits(value * 100))) .set_global_opts(title_opts=opts.TitleOpts(title=name))) return c def Bar_base(name, value, xaxis) -> Bar: c = ( Bar() .add_xaxis(xaxis) .add_yaxis( name, value, **Label_Set) .set_global_opts( title_opts=opts.TitleOpts( title=name), **global_Set)) return c tab.add(gauge_base('平均轮廓系数', Coefficient), '平均轮廓系数') def Bar_(Coefficient_array, name='数据轮廓系数'): xaxis = [f'数据{i}' for i in range(len(Coefficient_array))] value = Coefficient_array.tolist() tab.add(Bar_base(name, value, xaxis), name) n = 20 if len(Coefficient_array) <= n: Bar_(Coefficient_array) elif len(Coefficient_array) <= n**2: a = 0 while a <= len(Coefficient_array): b = a + n if b >= len(Coefficient_array): b = len(Coefficient_array) + 1 Cofe_array = Coefficient_array[a:b] Bar_(Cofe_array, f'{a}-{b}数据轮廓系数') a += n else: split = np.hsplit(Coefficient_array, n) a = 0 for Cofe_array in split: Bar_(Cofe_array, f'{a}%-{a + n}%数据轮廓系数') a += n save = Dic + r'/聚类模型评估.HTML' tab.render(save) return save, def _MSE(self, y_Predict, y_Really): # 均方误差 return mean_squared_error(y_Really, y_Predict) def _MAE(self, y_Predict, y_Really): # 中值绝对误差 return median_absolute_error(y_Really, y_Predict) def _R2_Score(self, y_Predict, y_Really): # 中值绝对误差 return r2_score(y_Really, y_Predict) def _RMSE(self, y_Predict, y_Really): # 中值绝对误差 return self._MSE(y_Predict, y_Really) ** 0.5 def _Coefficient_clustering(self, x_data, y_Predict): means_score = silhouette_score(x_data, y_Predict) outline_score = silhouette_samples(x_data, y_Predict) return means_score, outline_score def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.predict(x_data) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict, '预测' def Des(self, Dic, *args, **kwargs): return (Dic,) class prep_Base(Study_MachineBase): # 不允许第二次训练 def __init__(self, *args, **kwargs): super(prep_Base, self).__init__(*args, **kwargs) self.Model = None def Fit(self, x_data, y_data, Increment=True, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 y_data = y_data.ravel() try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) self.y_trainData = np.vstack(y_data, self.y_trainData) except BaseException: self.x_trainData = x_data.copy() self.y_trainData = y_data.copy() try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data, y_data) except BaseException: self.Model.fit(self.x_trainData, self.y_trainData) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '特征工程' def Score(self, x_data, y_data): return 'None' # 没有score class Unsupervised(prep_Base): # 无监督,不允许第二次训练 def Fit(self, x_data, Increment=True, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.y_trainData = None try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) except BaseException: self.x_trainData = x_data.copy() try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data) except BaseException: self.Model.fit(self.x_trainData, self.y_trainData) self.have_Fit = True return 'None', 'None' class UnsupervisedModel(prep_Base): # 无监督 def Fit(self, x_data, Increment=True, *args, **kwargs): self.y_trainData = None try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) except BaseException: self.x_trainData = x_data.copy() try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data) except BaseException: self.Model.fit(self.x_trainData, self.y_trainData) self.have_Fit = True return 'None', 'None' class To_PyeBase(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): super(To_PyeBase, self).__init__(*args, **kwargs) self.Model = None # 记录这两个是为了克隆 self.k = {} self.Model_Name = model def Fit(self, x_data, y_data, *args, **kwargs): self.x_trainData = x_data.copy() self.y_trainData = y_data.ravel().copy() self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.have_Predict = True return np.array([]), '请使用训练' def Score(self, x_data, y_data): return 'None' # 没有score def num_str(num, f): num = str(round(float(num), f)) if len(num.replace('.', '')) == f: return num n = num.split('.') if len(n) == 0: # 无小数 return num + '.' + '0' * (f - len(num)) else: return num + '0' * (f - len(num) + 1) # len(num)多算了一位小数点 def desTo_CSV(Dic, name, data, columns=None, row=None): Dic = Dic + '/' + name + '.csv' DataFrame( data, columns=columns, index=row).to_csv( Dic, header=False if columns is None else True, index=False if row is None else True) return data class Des(To_PyeBase): # 数据分析 def Des(self, Dic, *args, **kwargs): tab = Tab() data = self.x_trainData def Cumulative_calculation(data, func, name, tab): sum_list = [] for i in range(len(data)): # 按行迭代数据 sum_list.append([]) for a in range(len(data[i])): s = num_str(func(data[:i + 1, a]), 8) sum_list[-1].append(s) desTo_CSV(Dic, f'{name}', sum_list) tab.add(make_Tab([f'[{i}]' for i in range( len(sum_list[0]))], sum_list), f'{name}') def Geometric_mean(x): return np.power(np.prod(x), 1 / len(x)) # 几何平均数 def Square_mean(x): return np.sqrt( np.sum(np.power(x, 2)) / len(x)) # 平方平均数 def Harmonic_mean(x): return len(x) / np.sum(np.power(x, -1)) # 调和平均数 Cumulative_calculation(data, np.sum, '累计求和', tab) Cumulative_calculation(data, np.var, '累计方差', tab) Cumulative_calculation(data, np.std, '累计标准差', tab) Cumulative_calculation(data, np.mean, '累计算术平均值', tab) Cumulative_calculation(data, Geometric_mean, '累计几何平均值', tab) Cumulative_calculation(data, Square_mean, '累计平方平均值', tab) Cumulative_calculation(data, Harmonic_mean, '累计调和平均值', tab) Cumulative_calculation(data, np.median, '累计中位数', tab) Cumulative_calculation(data, np.max, '累计最大值', tab) Cumulative_calculation(data, np.min, '累计最小值', tab) save = Dic + r'/数据分析.HTML' tab.render(save) # 生成HTML return save, class CORR(To_PyeBase): # 相关性和协方差 def Des(self, Dic, *args, **kwargs): tab = Tab() data = DataFrame(self.x_trainData) corr = data.corr().to_numpy() # 相关性 cov = data.cov().to_numpy() # 协方差 def HeatMAP(data, name: str, max_, min_): x = [f'特征[{i}]' for i in range(len(data))] y = [f'特征[{i}]' for i in range(len(data[0]))] value = [(f'特征[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) # 如果特征太多则不显示标签 .add_yaxis(f'数据', y, value, label_opts=opts.LabelOpts(is_show=True if len(x) <= 10 else False, position='inside')) .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_, min_=min_, pos_right='3%')) # 显示 ) tab.add(c, name) HeatMAP(corr, '相关性热力图', 1, -1) HeatMAP(cov, '协方差热力图', float(cov.max()), float(cov.min())) desTo_CSV(Dic, f'相关性矩阵', corr) desTo_CSV(Dic, f'协方差矩阵', cov) save = Dic + r'/数据相关性.HTML' tab.render(save) # 生成HTML return save, class View_data(To_PyeBase): # 绘制预测型热力图 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(View_data, self).__init__(args_use, Learner, *args, **kwargs) self.Model = Learner.Model self.Select_Model = None self.have_Fit = Learner.have_Fit self.Model_Name = 'Select_Model' self.Learner = Learner self.Learner_name = Learner.Model_Name def Fit(self, *args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data, Add_Func=None, *args, **kwargs): x_trainData = self.Learner.x_trainData y_trainData = self.Learner.y_trainData x_name = self.Learner_name if x_trainData is not None: Add_Func(x_trainData, f'{x_name}:x训练数据') try: x_testData = self.x_testData if x_testData is not None: Add_Func(x_testData, f'{x_name}:x测试数据') except BaseException: pass try: y_testData = self.y_testData.copy() if y_testData is not None: Add_Func(y_testData, f'{x_name}:y测试数据') except BaseException: pass self.have_Fit = True if y_trainData is None: return np.array([]), 'y训练数据' return y_trainData, 'y训练数据' def Des(self, Dic, *args, **kwargs): return Dic, class MatrixScatter(To_PyeBase): # 矩阵散点图 def Des(self, Dic, *args, **kwargs): tab = Tab() data = self.x_trainData if data.ndim <= 2: # 维度为2 c = (Scatter() .add_xaxis([f'{i}' for i in range(data.shape[1])]) .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg) ) if data.ndim == 2: for num in range(len(data)): i = data[num] c.add_yaxis(f'{num}', [[f'{num}', x] for x in i], color='#FFFFFF') else: c.add_yaxis(f'0', [[0, x]for x in data], color='#FFFFFF') c.set_series_opts( label_opts=opts.LabelOpts( is_show=True, color='#000000', position='inside', formatter=JsCode("function(params){return params.data[2];}"), )) elif data.ndim == 3: c = ( Scatter3D() .set_global_opts( title_opts=opts.TitleOpts( title=f'矩阵散点图'), **global_Leg)) for num in range(len(data)): i = data[num] for s_num in range(len(i)): s = i[s_num] y_data = [[num, s_num, x, float(s[x])] for x in range(len(s))] c.add( f'{num}', y_data, zaxis3d_opts=opts.Axis3DOpts( type_="category")) c.set_series_opts( label_opts=opts.LabelOpts( is_show=True, color='#000000', position='inside', formatter=JsCode("function(params){return params.data[3];}"))) else: c = Scatter() tab.add(c, '矩阵散点图') save = Dic + r'/矩阵散点图.HTML' tab.render(save) # 生成HTML return save, class Cluster_Tree(To_PyeBase): # 聚类树状图 def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData linkage_array = ward(x_data) # self.y_trainData是结果 dendrogram(linkage_array) plt.savefig(Dic + r'/Cluster_graph.png') image = Image() image.add( src=Dic + r'/Cluster_graph.png', ).set_global_opts( title_opts=opts.ComponentTitleOpts( title="聚类树状图")) tab.add(image, '聚类树状图') save = Dic + r'/聚类树状图.HTML' tab.render(save) # 生成HTML return save, class Class_To_Bar(To_PyeBase): # 类型柱状图 def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData.transpose y_data = self.y_trainData class_ = np.unique(y_data).tolist() # 类型 class_list = [] for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维) class_list.append(y_data == n_class) for num_i in range(len(x_data)): # 迭代每一个特征 i = x_data[num_i] i_con = is_continuous(i) if i_con and len(i) >= 11: # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data c_list = [[0] * 10 for _ in class_list] start = i.min() end = i.max() n = (end - start) / 10 # 生成10条柱子 x_axis = [] # x轴 num_startEND = 0 # 迭代到第n个 while num_startEND <= 9: # 把每个特征分为10类进行迭代 # x_axis添加数据 x_axis.append( f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]') try: if num_startEND == 9: raise Exception # 执行到第10次时,直接获取剩下的所有 s = (start <= i) == (i < end) # 布尔索引 except BaseException: # 因为start + n有超出end的风险 s = (start <= i) == (i <= end) # 布尔索引 # n_data = i[s] # 取得现在的特征数据 for num in range(len(class_list)): # 根据类别进行迭代 # 取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片 now_class = class_list[num] # 切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵) bool_class = now_class[s].ravel() # 用len计数 c_list = [[class1的数据],[class2的数据],[]] c_list[num][num_startEND] = (int(np.sum(bool_class))) num_startEND += 1 start += n else: iter_np = np.unique(i) # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data c_list = [[0] * len(iter_np) for _ in class_list] x_axis = [] # 添加x轴数据 for i_num in range(len(iter_np)): # 迭代每一个i(不重复) i_data = iter_np[i_num] # n_data= i[i == i_data]#取得现在特征数据 x_axis.append(f'[{i_data}]') for num in range(len(class_list)): # 根据类别进行迭代 now_class = class_list[num] # 取得class_list的布尔数组 # 切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵) bool_class = now_class[i == i_data] # 用len计数 c_list = [[class1的数据],[class2的数据],[]] c_list[num][i_num] = (int(np.sum(bool_class).tolist())) c = ( Bar() .add_xaxis(x_axis) .set_global_opts( title_opts=opts.TitleOpts( title='类型-特征统计柱状图'), **global_Set, xaxis_opts=opts.AxisOpts( type_='category'), yaxis_opts=opts.AxisOpts( type_='value'))) y_axis = [] for i in range(len(c_list)): y_axis.append(f'{class_[i]}') c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set) desTo_CSV(Dic, f'类型-[{num_i}]特征统计柱状图', c_list, x_axis, y_axis) tab.add(c, f'类型-[{num_i}]特征统计柱状图') # 未完成 save = Dic + r'/特征统计.HTML' tab.render(save) # 生成HTML return save, class Numpy_To_HeatMap(To_PyeBase): # Numpy矩阵绘制热力图 def Des(self, Dic, *args, **kwargs): tab = Tab() data = self.x_trainData x = [f'横[{i}]' for i in range(len(data))] y = [f'纵[{i}]' for i in range(len(data[0]))] value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()), min_=float(data.min()), pos_right='3%')) # 显示 ) tab.add(c, '矩阵热力图') tab.add(make_Tab(x, data.transpose.tolist()), f'矩阵热力图:表格') save = Dic + r'/矩阵热力图.HTML' tab.render(save) # 生成HTML return save, class Predictive_HeatMap_Base(To_PyeBase): # 绘制预测型热力图 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super( Predictive_HeatMap_Base, self).__init__( args_use, Learner, * args, **kwargs) self.Model = Learner.Model self.Select_Model = None self.have_Fit = Learner.have_Fit self.Model_Name = 'Select_Model' self.Learner = Learner self.x_trainData = Learner.x_trainData.copy() self.y_trainData = Learner.y_trainData.copy() self.means = [] def Fit(self, x_data, *args, **kwargs): try: self.means = x_data.ravel() except BaseException: pass self.have_Fit = True return 'None', 'None' def Des( self, Dic, Decision_boundary, Prediction_boundary, *args, **kwargs): tab = Tab() y = self.y_trainData x_data = self.x_trainData try: # 如果没有class class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] # 获取数据 get, x_means, x_range, Type = Training_visualization( x_data, class_, y) # 可使用自带的means,并且nan表示跳过 for i in range(min([len(x_means), len(self.means)])): try: g = self.means[i] if g == np.nan: raise Exception x_means[i] = g except BaseException: pass get = Decision_boundary( x_range, x_means, self.Learner.predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') except BaseException: get, x_means, x_range, Type = regress_visualization(x_data, y) get = Prediction_boundary( x_range, x_means, self.Learner.predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/预测热力图.HTML' tab.render(save) # 生成HTML return save, class Predictive_HeatMap(Predictive_HeatMap_Base): # 绘制预测型热力图 def Des(self, Dic, *args, **kwargs): return super().Des(Dic, Decision_boundary, Prediction_boundary) class Predictive_HeatMap_More(Predictive_HeatMap_Base): # 绘制预测型热力图_More def Des(self, Dic, *args, **kwargs): return super().Des(Dic, Decision_boundary_More, Prediction_boundary_More) class Near_feature_scatter_class_More(To_PyeBase): def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData class_ = np.unique(y).ravel().tolist() class_heard = [f'簇[{i}]' for i in range(len(class_))] get, x_means, x_range, Type = Training_visualization_More_NoCenter( x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/数据特征散点图(分类).HTML' tab.render(save) # 生成HTML return save, class Near_feature_scatter_More(To_PyeBase): def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData x_means = make_Cat(x_data).get()[0] get_y = Feature_visualization(x_data, '数据散点图') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x散点图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/数据特征散点图.HTML' tab.render(save) # 生成HTML return save, class Near_feature_scatter_class(To_PyeBase): # 临近特征散点图:分类数据 def Des(self, Dic, *args, **kwargs): # 获取数据 class_ = np.unique(self.y_trainData).ravel().tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] tab = Tab() y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}临近特征散点图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/临近数据特征散点图(分类).HTML' tab.render(save) # 生成HTML return save, class Near_feature_scatter(To_PyeBase): # 临近特征散点图:连续数据 def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData.transpose y = self.y_trainData get, x_means, x_range, Type = Training_visualization_NoClass(x_data) for i in range(len(get)): tab.add(get[i], f'{i}临近特征散点图') columns = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] tab.add(make_Tab(columns, [data]), '数据表') save = Dic + r'/临近数据特征散点图.HTML' tab.render(save) # 生成HTML return save, class Feature_scatter_YX(To_PyeBase): # y-x图 def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData get, x_means, x_range, Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}特征x-y散点图') columns = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] tab.add(make_Tab(columns, [data]), '数据表') save = Dic + r'/特征y-x图像.HTML' tab.render(save) # 生成HTML return save, class Line_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(Line_Model, self).__init__(*args, **kwargs) Model = {'Line': LinearRegression, 'Ridge': Ridge, 'Lasso': Lasso}[ model] if model == 'Line': self.Model = Model() self.k = {} else: self.Model = Model( alpha=args_use['alpha'], max_iter=args_use['max_iter']) self.k = { 'alpha': args_use['alpha'], 'max_iter': args_use['max_iter']} # 记录这两个是为了克隆 self.Alpha = args_use['alpha'] self.max_iter = args_use['max_iter'] self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData w_list = self.Model.coef_.tolist() w_heard = [f'系数w[{i}]' for i in range(len(w_list))] b = self.Model.intercept_.tolist() get, x_means, x_range, Type = regress_visualization(x_data, y) get_Line = Regress_W(x_data, y, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(scatter(w_heard, w_list), '系数w散点图') tab.add(bar(w_heard, self.Model.coef_), '系数柱状图') columns = [ f'普适预测第{i}特征' for i in range( len(x_means))] + w_heard + ['截距b'] data = [f'{i}' for i in x_means] + w_list + [b] if self.Model_Name != 'Line': columns += ['阿尔法', '最大迭代次数'] data += [self.Model.alpha, self.Model.max_iter] tab.add(make_Tab(columns, [data]), '数据表') desTo_CSV(Dic, '系数表', [w_list] + [b], [f'系数W[{i}]' for i in range(len(w_list))] + ['截距']) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/线性回归模型.HTML' tab.render(save) # 生成HTML return save, class LogisticRegression_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(LogisticRegression_Model, self).__init__(*args, **kwargs) self.Model = LogisticRegression( C=args_use['C'], max_iter=args_use['max_iter']) # 记录这两个是为了克隆 self.C = args_use['C'] self.max_iter = args_use['max_iter'] self.k = {'C': args_use['C'], 'max_iter': args_use['max_iter']} self.Model_Name = model def Des(self, Dic='render.html', *args, **kwargs): # 获取数据 w_array = self.Model.coef_ w_list = w_array.tolist() # 变为表格 b = self.Model.intercept_ c = self.Model.C max_iter = self.Model.max_iter class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] tab = Tab() y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图') for i in range(len(w_list)): w = w_list[i] w_heard = [f'系数w[{i},{j}]' for j in range(len(w))] tab.add(scatter(w_heard, w), f'系数w[{i}]散点图') tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图') columns = class_heard + \ [f'截距{i}' for i in range(len(b))] + ['C', '最大迭代数'] data = class_ + b.tolist() + [c, max_iter] c = Table().add(headers=columns, rows=[data]) tab.add(c, '数据表') c = Table().add( headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list) tab.add(c, '系数数据表') c = Table().add(headers=[f'普适预测第{i}特征' for i in range( len(x_means))], rows=[[f'{i}' for i in x_means]]) tab.add(c, '普适预测数据表') desTo_CSV(Dic, '系数表', w_list, [ f'系数W[{i}]' for i in range(len(w_list[0]))]) desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))]) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/逻辑回归.HTML' tab.render(save) # 生成HTML return save, class Categorical_Data: # 数据统计助手 def __init__(self): self.x_means = [] self.x_range = [] self.Type = [] def __call__(self, x1, *args, **kwargs): get = self.is_continuous(x1) return get def is_continuous(self, x1: np.array): try: x1_con = is_continuous(x1) if x1_con: self.x_means.append(np.mean(x1)) self.add_Range(x1) else: raise Exception return x1_con except BaseException: # 找出出现次数最多的元素 new = np.unique(x1) # 去除相同的元素 count_list = [] for i in new: count_list.append(np.sum(x1 == i)) index = count_list.index(max(count_list)) # 找出最大值的索引 self.x_means.append(x1[index]) self.add_Range(x1, False) return False def add_Range(self, x1: np.array, range_=True): try: if not range_: raise Exception min_ = int(x1.min()) - 1 max_ = int(x1.max()) + 1 # 不需要复制列表 self.x_range.append([min_, max_]) self.Type.append(1) except BaseException: self.x_range.append(list(set(x1.tolist()))) # 去除多余元素 self.Type.append(2) def get(self): return self.x_means, self.x_range, self.Type class Knn_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(Knn_Model, self).__init__(*args, **kwargs) Model = { 'Knn_class': KNeighborsClassifier, 'Knn': KNeighborsRegressor}[model] self.Model = Model( p=args_use['p'], n_neighbors=args_use['n_neighbors']) # 记录这两个是为了克隆 self.n_neighbors = args_use['n_neighbors'] self.p = args_use['p'] self.k = {'n_neighbors': args_use['n_neighbors'], 'p': args_use['p']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() y = self.y_trainData x_data = self.x_trainData y_test = self.y_testData x_test = self.x_testData if self.Model_Name == 'Knn_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get, x_means, x_range, Type = Training_visualization( x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') if y_test is not None: get = Training_visualization(x_test, class_, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据散点图') get = Decision_boundary( x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') else: get, x_means, x_range, Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = regress_visualization(x_test, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/K.HTML' tab.render(save) # 生成HTML return save, class Tree_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(Tree_Model, self).__init__(*args, **kwargs) Model = { 'Tree_class': DecisionTreeClassifier, 'Tree': DecisionTreeRegressor}[model] self.Model = Model( criterion=args_use['criterion'], splitter=args_use['splitter'], max_features=args_use['max_features'], max_depth=args_use['max_depth'], min_samples_split=args_use['min_samples_split']) # 记录这两个是为了克隆 self.criterion = args_use['criterion'] self.splitter = args_use['splitter'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = { 'criterion': args_use['criterion'], 'splitter': args_use['splitter'], 'max_features': args_use['max_features'], 'max_depth': args_use['max_depth'], 'min_samples_split': args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() importance = self.Model.feature_importances_.tolist() with open(Dic + r"\Tree_Gra.dot", 'w') as f: export_graphviz(self.Model, out_file=f) make_bar('特征重要性', importance, tab) desTo_CSV( Dic, '特征重要性', [importance], [ f'[{i}]特征' for i in range( len(importance))]) tab.add(SeeTree(Dic + r"\Tree_Gra.dot"), '决策树可视化') y = self.y_trainData x_data = self.x_trainData y_test = self.y_testData x_test = self.x_testData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get, x_means, x_range, Type = Training_visualization( x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Training_visualization(x_test, class_, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据散点图') get = Decision_boundary( x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))], [class_ + [f'{i}' for i in x_means] + importance]), '数据表') else: get, x_means, x_range, Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = regress_visualization(x_test, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range( len(importance))], [[f'{i}' for i in x_means] + importance]), '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/决策树.HTML' tab.render(save) # 生成HTML return save, class Forest_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(Forest_Model, self).__init__(*args, **kwargs) Model = {'Forest_class': RandomForestClassifier, 'Forest': RandomForestRegressor}[model] self.Model = Model( n_estimators=args_use['n_Tree'], criterion=args_use['criterion'], max_features=args_use['max_features'], max_depth=args_use['max_depth'], min_samples_split=args_use['min_samples_split']) # 记录这两个是为了克隆 self.n_estimators = args_use['n_Tree'] self.criterion = args_use['criterion'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = { 'n_estimators': args_use['n_Tree'], 'criterion': args_use['criterion'], 'max_features': args_use['max_features'], 'max_depth': args_use['max_depth'], 'min_samples_split': args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() # 多个决策树可视化 for i in range(len(self.Model.estimators_)): with open(Dic + rf"\Tree_Gra[{i}].dot", 'w') as f: export_graphviz(self.Model.estimators_[i], out_file=f) tab.add(SeeTree(Dic + rf"\Tree_Gra[{i}].dot"), f'[{i}]决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Forest_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get, x_means, x_range, Type = Training_visualization( x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Decision_boundary( x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') else: get, x_means, x_range, Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [ [f'{i}' for i in x_means]]), '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/随机森林.HTML' tab.render(save) # 生成HTML return save, class GradientTree_Model(Study_MachineBase): # 继承Tree_Model主要是继承Des def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(GradientTree_Model, self).__init__( *args, **kwargs) # 不需要执行Tree_Model的初始化 Model = {'GradientTree_class': GradientBoostingClassifier, 'GradientTree': GradientBoostingRegressor}[model] self.Model = Model( n_estimators=args_use['n_Tree'], max_features=args_use['max_features'], max_depth=args_use['max_depth'], min_samples_split=args_use['min_samples_split']) # 记录这两个是为了克隆 self.criterion = args_use['criterion'] self.splitter = args_use['splitter'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = { 'criterion': args_use['criterion'], 'splitter': args_use['splitter'], 'max_features': args_use['max_features'], 'max_depth': args_use['max_depth'], 'min_samples_split': args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() # 多个决策树可视化 for a in range(len(self.Model.estimators_)): for i in range(len(self.Model.estimators_[a])): with open(Dic + rf"\Tree_Gra[{a},{i}].dot", 'w') as f: export_graphviz(self.Model.estimators_[a][i], out_file=f) tab.add( SeeTree( Dic + rf"\Tree_Gra[{a},{i}].dot"), f'[{a},{i}]决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get, x_means, x_range, Type = Training_visualization( x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Decision_boundary( x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') else: get, x_means, x_range, Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [ [f'{i}' for i in x_means]]), '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/梯度提升回归树.HTML' tab.render(save) # 生成HTML return save, class SVC_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(SVC_Model, self).__init__(*args, **kwargs) self.Model = SVC( C=args_use['C'], gamma=args_use['gamma'], kernel=args_use['kernel']) # 记录这两个是为了克隆 self.C = args_use['C'] self.gamma = args_use['gamma'] self.kernel = args_use['kernel'] self.k = { 'C': args_use['C'], 'gamma': args_use['gamma'], 'kernel': args_use['kernel']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() try: w_list = self.Model.coef_.tolist() # 未必有这个属性 b = self.Model.intercept_.tolist() U = True except BaseException: U = False class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) if U: get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy()) for i in range(len(get)): if U: tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图') else: tab.add(get[i], f'{i}决策边界散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') dic = {2: '离散', 1: '连续'} tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') if U: desTo_CSV(Dic, '系数表', w_list, [ f'系数W[{i}]' for i in range(len(w_list[0]))]) if U: desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))]) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/支持向量机分类.HTML' tab.render(save) # 生成HTML return save, class SVR_Model(Study_MachineBase): def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(SVR_Model, self).__init__(*args, **kwargs) self.Model = SVR( C=args_use['C'], gamma=args_use['gamma'], kernel=args_use['kernel']) # 记录这两个是为了克隆 self.C = args_use['C'] self.gamma = args_use['gamma'] self.kernel = args_use['kernel'] self.k = { 'C': args_use['C'], 'gamma': args_use['gamma'], 'kernel': args_use['kernel']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData try: w_list = self.Model.coef_.tolist() # 未必有这个属性 b = self.Model.intercept_.tolist() U = True except BaseException: U = False get, x_means, x_range, Type = regress_visualization(x_data, y) if U: get_Line = Regress_W(x_data, y, w_list, b, x_means.copy()) for i in range(len(get)): if U: tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图') else: tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') if U: desTo_CSV(Dic, '系数表', w_list, [ f'系数W[{i}]' for i in range(len(w_list[0]))]) if U: desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))]) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [ [f'{i}' for i in x_means]]), '数据表') save = Dic + r'/支持向量机回归.HTML' tab.render(save) # 生成HTML return save, class Variance_Model(Unsupervised): # 无监督 def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(Variance_Model, self).__init__(*args, **kwargs) self.Model = VarianceThreshold( threshold=(args_use['P'] * (1 - args_use['P']))) # 记录这两个是为了克隆 self.threshold = args_use['P'] self.k = {'threshold': args_use['P']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() var = self.Model.variances_ # 标准差 y_data = self.y_testData if isinstance(y_data, np.ndarray): get = Feature_visualization(self.y_testData) for i in range(len(get)): tab.add(get[i], f'[{i}]数据x-x散点图') c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(var))]) .add_yaxis('标准差', var.tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c, '数据标准差') save = Dic + r'/方差特征选择.HTML' tab.render(save) # 生成HTML return save, class SelectKBest_Model(prep_Base): # 有监督 def __init__(self, args_use, model, *args, **kwargs): super(SelectKBest_Model, self).__init__(*args, **kwargs) self.Model = SelectKBest( k=args_use['k'], score_func=args_use['score_func']) # 记录这两个是为了克隆 self.k_ = args_use['k'] self.score_func = args_use['score_func'] self.k = {'k': args_use['k'], 'score_func': args_use['score_func']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() score = self.Model.scores_.tolist() support = self.Model.get_support() y_data = self.y_trainData x_data = self.x_trainData if isinstance(x_data, np.ndarray): get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i], f'[{i}]训练数据x-x散点图') if isinstance(y_data, np.ndarray): get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i], f'[{i}]保留训练数据x-x散点图') y_data = self.y_testData x_data = self.x_testData if isinstance(x_data, np.ndarray): get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i], f'[{i}]数据x-x散点图') if isinstance(y_data, np.ndarray): get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i], f'[{i}]保留数据x-x散点图') Choose = [] UnChoose = [] for i in range(len(score)): if support[i]: Choose.append(score[i]) UnChoose.append(0) # 占位 else: UnChoose.append(score[i]) Choose.append(0) c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(score))]) .add_yaxis('选中特征', Choose, **Label_Set) .add_yaxis('抛弃特征', UnChoose, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c, '单变量重要程度') save = Dic + r'/单一变量特征选择.HTML' tab.render(save) # 生成HTML return save, class SelectFrom_Model(prep_Base): # 有监督 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(SelectFrom_Model, self).__init__(*args, **kwargs) self.Model = Learner.Model self.Select_Model = SelectFromModel( estimator=Learner.Model, max_features=args_use['k'], prefit=Learner.have_Fit) self.max_features = args_use['k'] self.estimator = Learner.Model self.k = { 'max_features': args_use['k'], 'estimator': Learner.Model, 'have_Fit': Learner.have_Fit} self.have_Fit = Learner.have_Fit self.Model_Name = 'SelectFrom_Model' self.Learner = Learner def Fit(self, x_data, y_data, split=0.3, *args, **kwargs): y_data = y_data.ravel() if not self.have_Fit: # 不允许第二次训练 self.Select_Model.fit(x_data, y_data) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): try: self.x_testData = x_data.copy() x_Predict = self.Select_Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '模型特征工程' except BaseException: self.have_Predict = True return np.array([]), '无结果工程' def Des(self, Dic, *args, **kwargs): tab = Tab() support = self.Select_Model.get_support() y_data = self.y_testData x_data = self.x_testData if isinstance(x_data, np.ndarray): get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i], f'[{i}]数据x-x散点图') if isinstance(y_data, np.ndarray): get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i], f'[{i}]保留数据x-x散点图') def make_Bar(score): Choose = [] UnChoose = [] for i in range(len(score)): if support[i]: Choose.append(abs(score[i])) UnChoose.append(0) # 占位 else: UnChoose.append(abs(score[i])) Choose.append(0) c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(score))]) .add_yaxis('选中特征', Choose, **Label_Set) .add_yaxis('抛弃特征', UnChoose, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c, '单变量重要程度') try: make_Bar(self.Model.coef_) except BaseException: try: make_Bar(self.Model.feature_importances_) except BaseException: pass save = Dic + r'/模型特征选择.HTML' tab.render(save) # 生成HTML return save, class Standardization_Model(Unsupervised): # z-score标准化 无监督 def __init__(self, args_use, model, *args, **kwargs): super(Standardization_Model, self).__init__(*args, **kwargs) self.Model = StandardScaler() self.k = {} self.Model_Name = 'StandardScaler' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData var = self.Model.var_.tolist() means = self.Model.mean_.tolist() scale = self.Model.scale_.tolist() Conversion_control(y_data, x_data, tab) make_bar('标准差', var, tab) make_bar('方差', means, tab) make_bar('Scale', scale, tab) save = Dic + r'/z-score标准化.HTML' tab.render(save) # 生成HTML return save, class MinMaxScaler_Model(Unsupervised): # 离差标准化 def __init__(self, args_use, model, *args, **kwargs): super(MinMaxScaler_Model, self).__init__(*args, **kwargs) self.Model = MinMaxScaler(feature_range=args_use['feature_range']) self.k = {} self.Model_Name = 'MinMaxScaler' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData scale = self.Model.scale_.tolist() max_ = self.Model.data_max_.tolist() min_ = self.Model.data_min_.tolist() Conversion_control(y_data, x_data, tab) make_bar('Scale', scale, tab) tab.add( make_Tab( heard=[ f'[{i}]特征最大值' for i in range( len(max_))] + [ f'[{i}]特征最小值' for i in range( len(min_))], row=[ max_ + min_]), '数据表格') save = Dic + r'/离差标准化.HTML' tab.render(save) # 生成HTML return save, class LogScaler_Model(prep_Base): # 对数标准化 def __init__(self, args_use, model, *args, **kwargs): super(LogScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'LogScaler' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.max_logx = np.log(x_data.max()) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): try: max_logx = self.max_logx except BaseException: self.have_Fit = False self.Fit(x_data) max_logx = self.max_logx self.x_testData = x_data.copy() x_Predict = (np.log(x_data) / max_logx) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '对数变换' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData Conversion_control(y_data, x_data, tab) tab.add(make_Tab(heard=['最大对数值(自然对数)'], row=[[str(self.max_logx)]]), '数据表格') save = Dic + r'/对数标准化.HTML' tab.render(save) # 生成HTML return save, class atanScaler_Model(prep_Base): # atan标准化 def __init__(self, args_use, model, *args, **kwargs): super(atanScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'atanScaler' def Fit(self, x_data, *args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = (np.arctan(x_data) * (2 / np.pi)) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'atan变换' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData Conversion_control(y_data, x_data, tab) save = Dic + r'/反正切函数标准化.HTML' tab.render(save) # 生成HTML return save, class decimalScaler_Model(prep_Base): # 小数定标准化 def __init__(self, args_use, model, *args, **kwargs): super(decimalScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'Decimal_normalization' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.j = max([judging_Digits(x_data.max()), judging_Digits(x_data.min())]) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() try: j = self.j except BaseException: self.have_Fit = False self.Fit(x_data) j = self.j x_Predict = (x_data / (10**j)) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '小数定标标准化' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData j = self.j Conversion_control(y_data, x_data, tab) tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格') save = Dic + r'/小数定标标准化.HTML' tab.render(save) # 生成HTML return save, class Mapzoom_Model(prep_Base): # 映射标准化 def __init__(self, args_use, model, *args, **kwargs): super(Mapzoom_Model, self).__init__(*args, **kwargs) self.Model = None self.feature_range = args_use['feature_range'] self.k = {} self.Model_Name = 'Decimal_normalization' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.max = x_data.max() self.min = x_data.min() self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() try: max = self.max min = self.min except BaseException: self.have_Fit = False self.Fit(x_data) max = self.max min = self.min x_Predict = ( x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '映射标准化' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData max = self.max min = self.min Conversion_control(y_data, x_data, tab) tab.add(make_Tab(heard=['最大值', '最小值'], row=[[max, min]]), '数据表格') save = Dic + r'/映射标准化.HTML' tab.render(save) # 生成HTML return save, class sigmodScaler_Model(prep_Base): # sigmod变换 def __init__(self, args_use, model, *args, **kwargs): super(sigmodScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'sigmodScaler_Model' def Fit(self, x_data, *args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data: np.array, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = (1 / (1 + np.exp(-x_data))) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'Sigmod变换' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData Conversion_control(y_data, x_data, tab) save = Dic + r'/Sigmoid变换.HTML' tab.render(save) # 生成HTML return save, class Fuzzy_quantization_Model(prep_Base): # 模糊量化标准化 def __init__(self, args_use, model, *args, **kwargs): super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs) self.Model = None self.feature_range = args_use['feature_range'] self.k = {} self.Model_Name = 'Fuzzy_quantization' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.max = x_data.max() self.min = x_data.min() self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() try: max = self.max min = self.min except BaseException: self.have_Fit = False self.Fit(x_data) max = self.max min = self.min x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / \ (max - min) * (x_data - (max - min) / 2)) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '模糊量化标准化' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData max = self.max min = self.min Conversion_control(y_data, x_data, tab) tab.add(make_Tab(heard=['最大值', '最小值'], row=[[max, min]]), '数据表格') save = Dic + r'/模糊量化标准化.HTML' tab.render(save) # 生成HTML return save, class Regularization_Model(Unsupervised): # 正则化 def __init__(self, args_use, model, *args, **kwargs): super(Regularization_Model, self).__init__(*args, **kwargs) self.Model = Normalizer(norm=args_use['norm']) self.k = {'norm': args_use['norm']} self.Model_Name = 'Regularization' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData.copy() x_data = self.x_testData.copy() Conversion_control(y_data, x_data, tab) save = Dic + r'/正则化.HTML' tab.render(save) # 生成HTML return save, # 离散数据 class Binarizer_Model(Unsupervised): # 二值化 def __init__(self, args_use, model, *args, **kwargs): super(Binarizer_Model, self).__init__(*args, **kwargs) self.Model = Binarizer(threshold=args_use['threshold']) self.k = {} self.Model_Name = 'Binarizer' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard, x_data.tolist()), f'原数据') tab.add(make_Tab(heard, y_data.tolist()), f'编码数据') tab.add( make_Tab( heard, np.dstack( (x_data, y_data)).tolist()), f'合成[原数据,编码]数据') save = Dic + r'/二值离散化.HTML' tab.render(save) # 生成HTML return save, class Discretization_Model(prep_Base): # n值离散 def __init__(self, args_use, model, *args, **kwargs): super(Discretization_Model, self).__init__(*args, **kwargs) self.Model = None range_ = args_use['split_range'] if range_ == []: raise Exception elif len(range_) == 1: range_.append(range_[0]) self.range = range_ self.k = {} self.Model_Name = 'Discretization' def Fit(self, *args, **kwargs): # t值在模型创建时已经保存 self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = x_data.copy() # 复制 range_ = self.range bool_list = [] max_ = len(range_) - 1 o_t = None for i in range(len(range_)): try: t = float(range_[i]) except BaseException: continue if o_t is None: # 第一个参数 bool_list.append(x_Predict <= t) else: bool_list.append((o_t <= x_Predict) == (x_Predict < t)) if i == max_: bool_list.append(t <= x_Predict) o_t = t for i in range(len(bool_list)): x_Predict[bool_list[i]] = i self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, f'{len(bool_list)}值离散化' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard, x_data.tolist()), f'原数据') tab.add(make_Tab(heard, y_data.tolist()), f'编码数据') tab.add( make_Tab( heard, np.dstack( (x_data, y_data)).tolist()), f'合成[原数据,编码]数据') save = Dic + r'/多值离散化.HTML' tab.render(save) # 生成HTML return save, class Label_Model(prep_Base): # 数字编码 def __init__(self, args_use, model, *args, **kwargs): super(Label_Model, self).__init__(*args, **kwargs) self.Model = [] self.k = {} self.Model_Name = 'LabelEncoder' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.Model = [] if x_data.ndim == 1: x_data = np.array([x_data]) for i in range(x_data.shape[1]): self.Model.append(LabelEncoder().fit( np.ravel(x_data[:, i]))) # 训练机器(每个特征一个学习器) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = x_data.copy() if x_data.ndim == 1: x_data = np.array([x_data]) for i in range(x_data.shape[1]): x_Predict[:, i] = self.Model[i].transform(x_data[:, i]) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '数字编码' def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_testData y_data = self.y_testData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard, x_data.tolist()), f'原数据') tab.add(make_Tab(heard, y_data.tolist()), f'编码数据') tab.add( make_Tab( heard, np.dstack( (x_data, y_data)).tolist()), f'合成[原数据,编码]数据') save = Dic + r'/数字编码.HTML' tab.render(save) # 生成HTML return save, class OneHotEncoder_Model(prep_Base): # 独热编码 def __init__(self, args_use, model, *args, **kwargs): super(OneHotEncoder_Model, self).__init__(*args, **kwargs) self.Model = [] self.ndim_up = args_use['ndim_up'] self.k = {} self.Model_Name = 'OneHotEncoder' self.OneHot_Data = None # 三维独热编码 def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 if x_data.ndim == 1: x_data = [x_data] for i in range(x_data.shape[1]): data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维 self.Model.append(OneHotEncoder().fit(data)) # 训练机器 self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_new = [] for i in range(x_data.shape[1]): data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维 oneHot = self.Model[i].transform(data).toarray().tolist() x_new.append(oneHot) # 添加到列表中 # 新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法) x_new = np.array(x_new) x_Predict = [] for i in range(x_new.shape[1]): x_Predict.append(x_new[:, i]) x_Predict = np.array(x_Predict) # 转换回array self.OneHot_Data = x_Predict.copy() # 保存未降维数据 if not self.ndim_up: # 压缩操作 new_xPredict = [] for i in x_Predict: new_list = [] list_ = i.tolist() for a in list_: new_list += a new = np.array(new_list) new_xPredict.append(new) self.y_testData = np.array(new_xPredict) return self.y_testData.copy(), '独热编码' self.y_testData = self.OneHot_Data self.have_Predict = True return x_Predict, '独热编码' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData oh_data = self.OneHot_Data if not self.ndim_up: get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard, x_data.tolist()), f'原数据') tab.add(make_Tab(heard, oh_data.tolist()), f'编码数据') tab.add( make_Tab( heard, np.dstack( (oh_data, x_data)).tolist()), f'合成[原数据,编码]数据') tab.add(make_Tab([f'编码:{i}' for i in range( len(y_data[0]))], y_data.tolist()), f'数据') save = Dic + r'/独热编码.HTML' tab.render(save) # 生成HTML return save, class Missed_Model(Unsupervised): # 缺失数据补充 def __init__(self, args_use, model, *args, **kwargs): super(Missed_Model, self).__init__(*args, **kwargs) self.Model = SimpleImputer( missing_values=args_use['miss_value'], strategy=args_use['fill_method'], fill_value=args_use['fill_value']) self.k = {} self.Model_Name = 'Missed' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, '填充缺失' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData statistics = self.Model.statistics_.tolist() Conversion_control(y_data, x_data, tab) tab.add(make_Tab([f'特征[{i}]' for i in range( len(statistics))], [statistics]), '填充值') save = Dic + r'/缺失数据填充.HTML' tab.render(save) # 生成HTML return save, class PCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(PCA_Model, self).__init__(*args, **kwargs) self.Model = PCA( n_components=args_use['n_components'], whiten=args_use['white_PCA']) self.whiten = args_use['white_PCA'] self.n_components = args_use['n_components'] self.k = { 'n_components': args_use['n_components'], 'whiten': args_use['white_PCA']} self.Model_Name = 'PCA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'PCA' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData importance = self.Model.components_.tolist() var = self.Model.explained_variance_.tolist() # 方量差 Conversion_Separate_Format(y_data, tab) x_data = [f'第{i+1}主成分' for i in range(len(importance))] # 主成分 y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分 value = [(f'第{i+1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))] c = (HeatMap() .add_xaxis(x_data) .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1, min_=int( self.Model.components_.min()), pos_right='3%')) # 显示 ) tab.add(c, '成分热力图') c = ( Bar() .add_xaxis([f'第[{i}]主成分' for i in range(len(var))]) .add_yaxis('方量差', var, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set) ) desTo_CSV(Dic, '成分重要性', importance, [x_data], [y_data]) desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))]) tab.add(c, '方量差柱状图') save = Dic + r'/主成分分析.HTML' tab.render(save) # 生成HTML return save, class RPCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(RPCA_Model, self).__init__(*args, **kwargs) self.Model = IncrementalPCA( n_components=args_use['n_components'], whiten=args_use['white_PCA']) self.n_components = args_use['n_components'] self.whiten = args_use['white_PCA'] self.k = { 'n_components': args_use['n_components'], 'whiten': args_use['white_PCA']} self.Model_Name = 'RPCA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'RPCA' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_trainData importance = self.Model.components_.tolist() var = self.Model.explained_variance_.tolist() # 方量差 Conversion_Separate_Format(y_data, tab) x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分 y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分 value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))] c = (HeatMap() .add_xaxis(x_data) .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int( self.Model.components_.max()) + 1, min_=int( self.Model.components_.min()), pos_right='3%')) # 显示 ) tab.add(c, '成分热力图') c = ( Bar() .add_xaxis([f'第[{i}]主成分' for i in range(len(var))]) .add_yaxis('放量差', var, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set) ) tab.add(c, '方量差柱状图') desTo_CSV(Dic, '成分重要性', importance, [x_data], [y_data]) desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))]) save = Dic + r'/RPCA(主成分分析).HTML' tab.render(save) # 生成HTML return save, class KPCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(KPCA_Model, self).__init__(*args, **kwargs) self.Model = KernelPCA( n_components=args_use['n_components'], kernel=args_use['kernel']) self.n_components = args_use['n_components'] self.kernel = args_use['kernel'] self.k = { 'n_components': args_use['n_components'], 'kernel': args_use['kernel']} self.Model_Name = 'KPCA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'KPCA' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData Conversion_Separate_Format(y_data, tab) save = Dic + r'/KPCA(主成分分析).HTML' tab.render(save) # 生成HTML return save, class LDA_Model(prep_Base): # 有监督学习 def __init__(self, args_use, model, *args, **kwargs): super(LDA_Model, self).__init__(*args, **kwargs) self.Model = LDA(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components': args_use['n_components']} self.Model_Name = 'LDA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'LDA' def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_testData y_data = self.y_testData Conversion_Separate_Format(y_data, tab) w_list = self.Model.coef_.tolist() # 变为表格 b = self.Model.intercept_ tab = Tab() x_means = make_Cat(x_data).get()[0] # 回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据) get = Regress_W(x_data, None, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get[i]), f'类别:{i}LDA映射曲线') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class NMF_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(NMF_Model, self).__init__(*args, **kwargs) self.Model = NMF(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components': args_use['n_components']} self.Model_Name = 'NFM' self.h_testData = None # x_trainData保存的是W,h_trainData和y_trainData是后来数据 def Predict(self, x_data, x_name='', Add_Func=None, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.h_testData = self.Model.components_ if Add_Func is not None and x_name != '': Add_Func(self.h_testData, f'{x_name}:V->NMF[H]') self.have_Predict = True return x_Predict, 'V->NMF[W]' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData h_data = self.h_testData Conversion_SeparateWH(y_data, h_data, tab) wh_data = np.matmul(y_data, h_data) difference_data = x_data - wh_data def make_HeatMap(data, name, max_, min_): x = [f'数据[{i}]' for i in range(len(data))] # 主成分 y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分 value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_, min_=min_, pos_right='3%')) # 显示 ) tab.add(c, name) max_ = max(int(x_data.max()), int(wh_data.max()), int(difference_data.max())) + 1 min_ = min(int(x_data.min()), int(wh_data.min()), int(difference_data.min())) make_HeatMap(x_data, '原始数据热力图', max_, min_) make_HeatMap(wh_data, 'W * H数据热力图', max_, min_) make_HeatMap(difference_data, '数据差热力图', max_, min_) desTo_CSV(Dic, '权重矩阵', y_data) desTo_CSV(Dic, '系数矩阵', h_data) desTo_CSV(Dic, '系数*权重矩阵', wh_data) save = Dic + r'/非负矩阵分解.HTML' tab.render(save) # 生成HTML return save, class TSNE_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(TSNE_Model, self).__init__(*args, **kwargs) self.Model = TSNE(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components': args_use['n_components']} self.Model_Name = 't-SNE' def Fit(self, *args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.fit_transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict, 'SNE' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData Conversion_Separate_Format(y_data, tab) save = Dic + r'/T-SNE.HTML' tab.render(save) # 生成HTML return save, class MLP_Model(Study_MachineBase): # 神经网络(多层感知机),有监督学习 def __init__(self, args_use, model, *args, **kwargs): super(MLP_Model, self).__init__(*args, **kwargs) Model = {'MLP': MLPRegressor, 'MLP_class': MLPClassifier}[model] self.Model = Model( hidden_layer_sizes=args_use['hidden_size'], activation=args_use['activation'], solver=args_use['solver'], alpha=args_use['alpha'], max_iter=args_use['max_iter']) # 记录这两个是为了克隆 self.hidden_layer_sizes = args_use['hidden_size'] self.activation = args_use['activation'] self.max_iter = args_use['max_iter'] self.solver = args_use['solver'] self.alpha = args_use['alpha'] self.k = { 'hidden_layer_sizes': args_use['hidden_size'], 'activation': args_use['activation'], 'max_iter': args_use['max_iter'], 'solver': args_use['solver'], 'alpha': args_use['alpha']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_testData y_data = self.y_testData coefs = self.Model.coefs_ class_ = self.Model.classes_ n_layers_ = self.Model.n_layers_ def make_HeatMap(data, name): x = [f'特征(节点)[{i}]' for i in range(len(data))] y = [f'节点[{i}]' for i in range(len(data[0]))] value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg, yaxis_opts=opts.AxisOpts( is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()), min_=float(data.min()), pos_right='3%')) # 显示 ) tab.add(c, name) tab.add(make_Tab(x, data.transpose.tolist()), f'{name}:表格') desTo_CSV(Dic, f'{name}:表格', data.transpose.tolist(), x, y) get, x_means, x_range, Type = regress_visualization(x_data, y_data) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = ['神经网络层数'] data = [n_layers_] for i in range(len(coefs)): make_HeatMap(coefs[i], f'{i}层权重矩阵') heard.append(f'第{i}层节点数') data.append(len(coefs[i][0])) if self.Model_Name == 'MLP_class': heard += [f'[{i}]类型' for i in range(len(class_))] data += class_.tolist() tab.add(make_Tab(heard, [data]), '数据表') save = Dic + r'/多层感知机.HTML' tab.render(save) # 生成HTML return save, class kmeans_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(kmeans_Model, self).__init__(*args, **kwargs) self.Model = KMeans(n_clusters=args_use['n_clusters']) self.class_ = [] self.n_clusters = args_use['n_clusters'] self.k = {'n_clusters': args_use['n_clusters']} self.Model_Name = 'k-means' def Fit(self, x_data, *args, **kwargs): re = super().Fit(x_data, *args, **kwargs) self.class_ = list(set(self.Model.labels_.tolist())) self.have_Fit = True return re def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.predict(x_data) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict, 'k-means' def Des(self, Dic, *args, **kwargs): tab = Tab() y = self.y_testData x_data = self.x_testData class_ = self.class_ center = self.Model.cluster_centers_ class_heard = [f'簇[{i}]' for i in range(len(class_))] Func = Training_visualization_More if More_Global else Training_visualization_Center get, x_means, x_range, Type = Func(x_data, class_, y, center) for i in range(len(get)): tab.add(get[i], f'{i}数据散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/k-means聚类.HTML' tab.render(save) # 生成HTML return save, class Agglomerative_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(Agglomerative_Model, self).__init__(*args, **kwargs) self.Model = AgglomerativeClustering( n_clusters=args_use['n_clusters']) # 默认为2,不同于k-means self.class_ = [] self.n_clusters = args_use['n_clusters'] self.k = {'n_clusters': args_use['n_clusters']} self.Model_Name = 'Agglomerative' def Fit(self, x_data, *args, **kwargs): re = super().Fit(x_data, *args, **kwargs) self.class_ = list(set(self.Model.labels_.tolist())) self.have_Fit = True return re def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.fit_predict(x_data) self.y_trainData = y_Predict.copy() self.have_Predict = True return y_Predict, 'Agglomerative' def Des(self, Dic, *args, **kwargs): tab = Tab() y = self.y_testData x_data = self.x_testData class_ = self.class_ class_heard = [f'簇[{i}]' for i in range(len(class_))] Func = Training_visualization_More_NoCenter if More_Global else Training_visualization get, x_means, x_range, Type = Func(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') linkage_array = ward(self.x_trainData) # self.y_trainData是结果 dendrogram(linkage_array) plt.savefig(Dic + r'/Cluster_graph.png') image = Image() image.add( src=Dic + r'/Cluster_graph.png', ).set_global_opts( title_opts=opts.ComponentTitleOpts(title="聚类树状图") ) tab.add(image, '聚类树状图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/层次聚类.HTML' tab.render(save) # 生成HTML return save, class DBSCAN_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(DBSCAN_Model, self).__init__(*args, **kwargs) self.Model = DBSCAN( eps=args_use['eps'], min_samples=args_use['min_samples']) # eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数) # min_samples self.eps = args_use['eps'] self.min_samples = args_use['min_samples'] self.k = { 'min_samples': args_use['min_samples'], 'eps': args_use['eps']} self.class_ = [] self.Model_Name = 'DBSCAN' def Fit(self, x_data, *args, **kwargs): re = super().Fit(x_data, *args, **kwargs) self.class_ = list(set(self.Model.labels_.tolist())) self.have_Fit = True return re def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.fit_predict(x_data) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict, 'DBSCAN' def Des(self, Dic, *args, **kwargs): # DBSCAN没有预测的必要 tab = Tab() y = self.y_testData.copy() x_data = self.x_testData.copy() class_ = self.class_ class_heard = [f'簇[{i}]' for i in range(len(class_))] Func = Training_visualization_More_NoCenter if More_Global else Training_visualization get, x_means, x_range, Type = Func(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [ f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/密度聚类.HTML' tab.render(save) # 生成HTML return save, class Fast_Fourier(Study_MachineBase): # 快速傅里叶变换 def __init__(self, args_use, model, *args, **kwargs): super(Fast_Fourier, self).__init__(*args, **kwargs) self.Model = None self.Fourier = None # fft复数 self.Frequency = None # 频率range self.angular_Frequency = None # 角频率range self.Phase = None # 相位range self.Breadth = None # 震幅range self.N = None # 样本数 def Fit(self, y_data, *args, **kwargs): y_data = y_data.ravel() # 扯平为一维数组 try: if self.y_trainData is None: raise Exception self.y_trainData = np.hstack(y_data, self.x_trainData) except BaseException: self.y_trainData = y_data.copy() Fourier = fft(y_data) self.N = len(y_data) self.Frequency = np.linspace(0, 1, self.N) # 频率N_range self.angular_Frequency = self.Frequency / (np.pi * 2) # 角频率w self.Phase = np.angle(Fourier) self.Breadth = np.abs(Fourier) self.Fourier = Fourier self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): return np.array([]), '' def Des(self, Dic, *args, **kwargs): # DBSCAN没有预测的必要 tab = Tab() y = self.y_trainData.copy() N = self.N Phase = self.Phase # 相位range Breadth = self.Breadth # 震幅range normalization_Breadth = Breadth / N def line(name, value, s=slice(0, None)) -> line: c = ( line() .add_xaxis( self.Frequency[s].tolist()) .add_yaxis( '', value, **Label_Set, symbol='none' if self.N >= 500 else None) .set_global_opts( title_opts=opts.TitleOpts( title=name), **global_Leg, xaxis_opts=opts.AxisOpts( type_='value'), yaxis_opts=opts.AxisOpts( type_='value'))) return c tab.add(line('原始数据', y.tolist()), '原始数据') tab.add(line('双边振幅谱', Breadth.tolist()), '双边振幅谱') tab.add( line( '双边振幅谱(归一化)', normalization_Breadth.tolist()), '双边振幅谱(归一化)') tab.add( line('单边相位谱', Breadth[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱') tab.add(line('单边相位谱(归一化)', normalization_Breadth[:int( N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱(归一化)') tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱') tab.add( line('单边相位谱', Phase[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱') tab.add(make_Tab(self.Frequency.tolist(), [Breadth.tolist()]), '双边振幅谱') tab.add(make_Tab(self.Frequency.tolist(), [Phase.tolist()]), '双边相位谱') tab.add( make_Tab( self.Frequency.tolist(), [ self.Fourier.tolist()]), '快速傅里叶变换') save = Dic + r'/快速傅里叶.HTML' tab.render(save) # 生成HTML return save, class Reverse_Fast_Fourier(Study_MachineBase): # 快速傅里叶变换 def __init__(self, args_use, model, *args, **kwargs): super(Reverse_Fast_Fourier, self).__init__(*args, **kwargs) self.Model = None self.N = None self.y_testData_real = None self.Phase = None self.Breadth = None def Fit(self, y_data, *args, **kwargs): return 'None', 'None' def Predict(self, x_data, x_name='', Add_Func=None, *args, **kwargs): self.x_testData = x_data.ravel().astype(np.complex_) Fourier = ifft(self.x_testData) self.y_testData = Fourier.copy() self.y_testData_real = np.real(Fourier) self.N = len(self.y_testData_real) self.Phase = np.angle(self.x_testData) self.Breadth = np.abs(self.x_testData) Add_Func(self.y_testData_real.copy(), f'{x_name}:逆向快速傅里叶变换[实数]') return Fourier, '逆向快速傅里叶变换' def Des(self, Dic, *args, **kwargs): # DBSCAN没有预测的必要 tab = Tab() y = self.y_testData_real.copy() y_data = self.y_testData.copy() N = self.N range_N = np.linspace(0, 1, N).tolist() Phase = self.Phase # 相位range Breadth = self.Breadth # 震幅range def line(name, value, s=slice(0, None)) -> line: c = ( line() .add_xaxis( range_N[s]) .add_yaxis( '', value, **Label_Set, symbol='none' if N >= 500 else None) .set_global_opts( title_opts=opts.TitleOpts( title=name), **global_Leg, xaxis_opts=opts.AxisOpts( type_='value'), yaxis_opts=opts.AxisOpts( type_='value'))) return c tab.add(line('逆向傅里叶变换', y.tolist()), '逆向傅里叶变换[实数]') tab.add(make_Tab(range_N, [y_data.tolist()]), '逆向傅里叶变换数据') tab.add(make_Tab(range_N, [y.tolist()]), '逆向傅里叶变换数据[实数]') tab.add(line('双边振幅谱', Breadth.tolist()), '双边振幅谱') tab.add( line('单边相位谱', Breadth[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱') tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱') tab.add( line('单边相位谱', Phase[:int(N / 2)].tolist(), slice(0, int(N / 2))), '单边相位谱') save = Dic + r'/快速傅里叶.HTML' tab.render(save) # 生成HTML return save, class Reverse_Fast_Fourier_TwoNumpy(Reverse_Fast_Fourier): # 2快速傅里叶变换 def Fit( self, x_data, y_data=None, x_name='', Add_Func=None, *args, **kwargs): r = np.multiply(np.cos(x_data), y_data) j = np.multiply(np.sin(x_data), y_data) * 1j super( Reverse_Fast_Fourier_TwoNumpy, self).Predict( r + j, x_name=x_name, Add_Func=Add_Func, *args, **kwargs) return 'None', 'None' class Curve_fitting(Study_MachineBase): # 曲线拟合 def __init__(self, Name, str_, model, *args, **kwargs): super(Curve_fitting, self).__init__(*args, **kwargs) def ndimDown(data: np.ndarray): if data.ndim == 1: return data new_data = [] for i in data: new_data.append(np.sum(i)) return np.array(new_data) NAME = {'np': np, 'Func': model, 'ndimDown': ndimDown} DEF = f''' def FUNC({",".join(model.__code__.co_varnames)}): answer = Func({",".join(model.__code__.co_varnames)}) return ndimDown(answer) ''' exec(DEF, NAME) self.Func = NAME['FUNC'] self.Fit_data = None self.Name = Name self.Func_Str = str_ def Fit(self, x_data: np.ndarray, y_data: np.ndarray, *args, **kwargs): y_data = y_data.ravel() x_data = x_data.astype(np.float64) try: if self.x_trainData is None: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) self.y_trainData = np.vstack(y_data, self.y_trainData) except BaseException: self.x_trainData = x_data.copy() self.y_trainData = y_data.copy() self.Fit_data = optimize.curve_fit( self.Func, self.x_trainData, self.y_trainData) self.Model = self.Fit_data[0].copy() return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() Predict = self.Func(x_data, *self.Model) y_Predict = [] for i in Predict: y_Predict.append(np.sum(i)) y_Predict = np.array(y_Predict) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict, self.Name def Des(self, Dic, *args, **kwargs): # DBSCAN没有预测的必要 tab = Tab() y = self.y_testData.copy() x_data = self.x_testData.copy() get, x_means, x_range, Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [ [f'{i}' for i in x_means]]), '普适预测特征数据') tab.add(make_Tab([f'参数[{i}]' for i in range(len(self.Model))], [ [f'{i}' for i in self.Model]]), '拟合参数') save = Dic + r'/曲线拟合.HTML' tab.render(save) # 生成HTML return save, class Machine_Learner(Learner): # 数据处理者 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.Learner = {} # 记录机器 self.Learn_Dic = { 'Line': Line_Model, 'Ridge': Line_Model, 'Lasso': Line_Model, 'LogisticRegression': LogisticRegression_Model, 'Knn_class': Knn_Model, 'Knn': Knn_Model, 'Tree_class': Tree_Model, 'Tree': Tree_Model, 'Forest': Forest_Model, 'Forest_class': Forest_Model, 'GradientTree_class': GradientTree_Model, 'GradientTree': GradientTree_Model, 'Variance': Variance_Model, 'SelectKBest': SelectKBest_Model, 'Z-Score': Standardization_Model, 'MinMaxScaler': MinMaxScaler_Model, 'LogScaler': LogScaler_Model, 'atanScaler': atanScaler_Model, 'decimalScaler': decimalScaler_Model, 'sigmodScaler': sigmodScaler_Model, 'Mapzoom': Mapzoom_Model, 'Fuzzy_quantization': Fuzzy_quantization_Model, 'Regularization': Regularization_Model, 'Binarizer': Binarizer_Model, 'Discretization': Discretization_Model, 'Label': Label_Model, 'OneHotEncoder': OneHotEncoder_Model, 'Missed': Missed_Model, 'PCA': PCA_Model, 'RPCA': RPCA_Model, 'KPCA': KPCA_Model, 'LDA': LDA_Model, 'SVC': SVC_Model, 'SVR': SVR_Model, 'MLP': MLP_Model, 'MLP_class': MLP_Model, 'NMF': NMF_Model, 't-SNE': TSNE_Model, 'k-means': kmeans_Model, 'Agglomerative': Agglomerative_Model, 'DBSCAN': DBSCAN_Model, 'ClassBar': Class_To_Bar, 'FeatureScatter': Near_feature_scatter, 'FeatureScatterClass': Near_feature_scatter_class, 'FeatureScatter_all': Near_feature_scatter_More, 'FeatureScatterClass_all': Near_feature_scatter_class_More, 'HeatMap': Numpy_To_HeatMap, 'FeatureY-X': Feature_scatter_YX, 'ClusterTree': Cluster_Tree, 'MatrixScatter': MatrixScatter, 'Correlation': CORR, 'Statistics': Des, 'Fast_Fourier': Fast_Fourier, 'Reverse_Fast_Fourier': Reverse_Fast_Fourier, '[2]Reverse_Fast_Fourier': Reverse_Fast_Fourier_TwoNumpy, } self.Learner_Type = {} # 记录机器的类型 def p_Args(self, Text, Type): # 解析参数 args = {} args_use = {} # 输入数据 exec(Text, args) # 处理数据 if Type in ('MLP', 'MLP_class'): args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用 else: args_use['alpha'] = float(args.get('alpha', 1.0)) # L1和L2正则化用 args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用 if Type in ('MLP', 'MLP_class'): args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用 else: args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用 args_use['n_neighbors'] = int(args.get('K_knn', 5)) # knn邻居数 (命名不同) args_use['p'] = int(args.get('p', 2)) # 距离计算方式 args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维 if Type in ('Tree', 'Forest', 'GradientTree'): args_use['criterion'] = 'mse' if bool( args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度 else: args_use['criterion'] = 'gini' if bool( args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度 args_use['splitter'] = 'random' if bool( args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优 args_use['max_features'] = args.get('max_features', None) # 选用最多特征数 args_use['max_depth'] = args.get('max_depth', None) # 最大深度 args_use['min_samples_split'] = int( args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合) args_use['P'] = float(args.get('min_samples_split', 0.8)) args_use['k'] = args.get('k', 1) args_use['score_func'] = ( { 'chi2': chi2, 'f_classif': f_classif, 'mutual_info_classif': mutual_info_classif, 'f_regression': f_regression, 'mutual_info_regression': mutual_info_regression}. get( args.get( 'score_func', 'f_classif'), f_classif)) args_use['feature_range'] = tuple(args.get('feature_range', (0, 1))) args_use['norm'] = args.get('norm', 'l2') # 正则化的方式L1或者L2 args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征 args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征 args_use['ndim_up'] = bool(args.get('ndim_up', False)) args_use['miss_value'] = args.get('miss_value', np.nan) args_use['fill_method'] = args.get('fill_method', 'mean') args_use['fill_value'] = args.get('fill_value', None) args_use['n_components'] = args.get('n_components', 1) args_use['kernel'] = args.get( 'kernel', 'rbf' if Type in ( 'SVR', 'SVC') else 'linear') args_use['n_Tree'] = args.get('n_Tree', 100) args_use['gamma'] = args.get('gamma', 1) args_use['hidden_size'] = tuple(args.get('hidden_size', (100,))) args_use['activation'] = str(args.get('activation', 'relu')) args_use['solver'] = str(args.get('solver', 'adam')) if Type in ('k-means',): args_use['n_clusters'] = int(args.get('n_clusters', 8)) else: args_use['n_clusters'] = int(args.get('n_clusters', 2)) args_use['eps'] = float(args.get('n_clusters', 0.5)) args_use['min_samples'] = int(args.get('n_clusters', 5)) args_use['white_PCA'] = bool(args.get('white_PCA', False)) return args_use def Add_Learner(self, Learner, Text=''): get = self.Learn_Dic[Learner] name = f'Le[{len(self.Learner)}]{Learner}' # 参数调节 args_use = self.p_Args(Text, Learner) # 生成学习器 self.Learner[name] = get(model=Learner, args_use=args_use) self.Learner_Type[name] = Learner def Add_Curve_Fitting(self, Learner_text, Text=''): NAME = {} exec(Learner_text, NAME) name = f'Le[{len(self.Learner)}]{NAME.get("name","SELF")}' func = NAME.get('f', lambda x, k, b: k * x + b) self.Learner[name] = Curve_fitting(name, Learner_text, func) self.Learner_Type[name] = 'Curve_fitting' def Add_SelectFrom_Model(self, Learner, Text=''): # Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}' # 参数调节 args_use = self.p_Args(Text, 'SelectFrom_Model') # 生成学习器 self.Learner[name] = SelectFrom_Model( Learner=model, args_use=args_use, Dic=self.Learn_Dic) self.Learner_Type[name] = 'SelectFrom_Model' def Add_Predictive_HeatMap(self, Learner, Text=''): # Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}' # 生成学习器 args_use = self.p_Args(Text, 'Predictive_HeatMap') self.Learner[name] = Predictive_HeatMap( Learner=model, args_use=args_use) self.Learner_Type[name] = 'Predictive_HeatMap' def Add_Predictive_HeatMap_More(self, Learner, Text=''): # Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}' # 生成学习器 args_use = self.p_Args(Text, 'Predictive_HeatMap_More') self.Learner[name] = Predictive_HeatMap_More( Learner=model, args_use=args_use) self.Learner_Type[name] = 'Predictive_HeatMap_More' def Add_View_data(self, Learner, Text=''): # Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]View_data:{Learner}' # 生成学习器 args_use = self.p_Args(Text, 'View_data') self.Learner[name] = View_data(Learner=model, args_use=args_use) self.Learner_Type[name] = 'View_data' def Return_Learner(self): return self.Learner.copy() def get_Learner(self, name): return self.Learner[name] def get_Learner_Type(self, name): return self.Learner_Type[name] def Fit(self, x_name, y_name, Learner, split=0.3, *args, **kwargs): x_data = self.get_Sheet(x_name) y_data = self.get_Sheet(y_name) model = self.get_Learner(Learner) return model.Fit( x_data, y_data, split=split, x_name=x_name, Add_Func=self.Add_Form) def Predict(self, x_name, Learner, Text='', **kwargs): x_data = self.get_Sheet(x_name) model = self.get_Learner(Learner) y_data, name = model.predict( x_data, x_name=x_name, Add_Func=self.Add_Form) self.Add_Form(y_data, f'{x_name}:{name}') return y_data def Score(self, name_x, name_y, Learner): # Score_Only表示仅评分 Fit_Simp 是普遍类操作 model = self.get_Learner(Learner) x = self.get_Sheet(name_x) y = self.get_Sheet(name_y) return model.Score(x, y) def Show_Score(self, Learner, Dic, name_x, name_y, Func=0): # 显示参数 x = self.get_Sheet(name_x) y = self.get_Sheet(name_y) if NEW_Global: dic = Dic + f'/{Learner}分类评分[CoTan]' new_dic = dic a = 0 while exists(new_dic): # 直到他不存在 —— False new_dic = dic + f'[{a}]' a += 1 mkdir(new_dic) else: new_dic = Dic model = self.get_Learner(Learner) # 打包 func = [ model.Class_Score, model.Regression_Score, model.Clusters_Score][Func] save = func(new_dic, x, y)[0] if TAR_Global: make_targz(f'{new_dic}.tar.gz', new_dic) return save, new_dic def Show_Args(self, Learner, Dic): # 显示参数 if NEW_Global: dic = Dic + f'/{Learner}数据[CoTan]' new_dic = dic a = 0 while exists(new_dic): # 直到他不存在 —— False new_dic = dic + f'[{a}]' a += 1 mkdir(new_dic) else: new_dic = Dic model = self.get_Learner(Learner) if (not(model.Model is None) or not(model.Model is list)) and CLF_Global: joblib.dump(model.Model, new_dic + '/MODEL.model') # 保存模型 # pickle.dump(model,new_dic + f'/{Learner}.pkl')#保存学习器 # 打包 save = model.Des(new_dic)[0] if TAR_Global: make_targz(f'{new_dic}.tar.gz', new_dic) return save, new_dic def Del_Leaner(self, Leaner): del self.Learner[Leaner] del self.Learner_Type[Leaner] def make_targz(output_filename, source_dir): with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=basename(source_dir)) return output_filename def set_Global( More=More_Global, All=All_Global, CSV=CSV_Global, CLF=CLF_Global, TAR=TAR_Global, NEW=NEW_Global): global More_Global, All_Global, CSV_Global, CLF_Global, TAR_Global, NEW_Global More_Global = More # 是否使用全部特征绘图 All_Global = All # 是否导出charts CSV_Global = CSV # 是否导出CSV CLF_Global = CLF # 是否导出模型 TAR_Global = TAR # 是否打包tar NEW_Global = NEW # 是否新建目录