Learn_Numpy.py 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts import options as opts
  3. from random import randint
  4. from pyecharts.charts import *
  5. from pandas import DataFrame,read_csv
  6. import numpy as np
  7. import re
  8. from sklearn.model_selection import train_test_split
  9. from sklearn.linear_model import *
  10. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  11. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  12. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  13. GradientBoostingRegressor)
  14. from sklearn.metrics import accuracy_score
  15. from sklearn.feature_selection import *
  16. from sklearn.preprocessing import *
  17. from sklearn.impute import SimpleImputer
  18. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  19. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  20. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  21. from sklearn.neural_network import MLPClassifier,MLPRegressor
  22. from sklearn.manifold import TSNE
  23. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  24. from pyecharts.charts import *
  25. # import sklearn as sk
  26. #设置
  27. np.set_printoptions(threshold=np.inf)
  28. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  29. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  30. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  31. class Table(Table_Fisrt):
  32. def add(self, headers, rows, attributes = None):
  33. if len(rows) == 1:
  34. new_headers = ['数据类型','数据']
  35. new_rows = list(zip(headers,rows[0]))
  36. return super().add(new_headers,new_rows,attributes)
  37. else:
  38. return super().add(headers, rows, attributes)
  39. def make_list(first,end,num=35):
  40. n = num / (end - first)
  41. if n == 0: n = 1
  42. re = []
  43. n_first = first * n
  44. n_end = end * n
  45. while n_first <= n_end:
  46. cul = n_first / n
  47. re.append(round(cul,2))
  48. n_first += 1
  49. return re
  50. def list_filter(list_,num=70):
  51. #假设列表已经不重复
  52. if len(list_) <= num:return list_
  53. n = int(num / len(list_))
  54. re = list_[::n]
  55. return re
  56. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  57. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  58. # a-特征x,b-特征x-1,c-其他特征
  59. o_cList = []
  60. for i in range(len(x_means)):
  61. if i == 0:
  62. continue
  63. n_ra = x_range[i - 1]
  64. Type_ra = Type[i - 1]
  65. n_rb = x_range[i]
  66. Type_rb = Type[i]
  67. if Type_ra == 1:
  68. ra = make_list(n_ra[0],n_ra[1],70)
  69. else:
  70. ra = list_filter(n_ra)#可以接受最大为70
  71. if Type_rb == 1:
  72. rb = make_list(n_rb[0],n_rb[1],35)
  73. else:
  74. rb = list_filter(n_rb)#可以接受最大为70
  75. a = np.array([i for i in ra for _ in rb]).T
  76. b = np.array([i for _ in ra for i in rb]).T
  77. data = np.array([x_means for _ in ra for i in rb])
  78. data[:, i - 1] = a
  79. data[:, i] = b
  80. y_data = Predict_Func(data)[0].tolist()
  81. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  82. c = (HeatMap()
  83. .add_xaxis(np.unique(a))
  84. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  85. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  86. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  87. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  88. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  89. pos_right='3%'))#显示
  90. )
  91. o_cList.append(c)
  92. return o_cList
  93. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type):#绘制分类型预测图x-x热力图
  94. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  95. # a-特征x,b-特征x-1,c-其他特征
  96. #规定,i-1是x轴,a是x轴,x_1是x轴
  97. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  98. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  99. for i in class_dict:
  100. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':i})
  101. o_cList = []
  102. for i in range(len(x_means)):
  103. if i == 0:
  104. continue
  105. n_ra = x_range[i-1]
  106. Type_ra = Type[i-1]
  107. n_rb = x_range[i]
  108. Type_rb = Type[i]
  109. print(f'{n_ra},{n_rb}')
  110. if Type_ra == 1:
  111. ra = make_list(n_ra[0],n_ra[1],70)
  112. else:
  113. ra = n_ra
  114. if Type_rb == 1:
  115. rb = make_list(n_rb[0],n_rb[1],35)
  116. else:
  117. rb = n_rb
  118. a = np.array([i for i in ra for _ in rb]).T
  119. b = np.array([i for _ in ra for i in rb]).T
  120. data = np.array([x_means for _ in ra for i in rb])
  121. data[:, i - 1] = a
  122. data[:, i] = b
  123. y_data = Predict_Func(data)[0].tolist()
  124. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  125. c = (HeatMap()
  126. .add_xaxis(np.unique(a))
  127. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  128. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  129. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  130. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  131. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  132. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  133. )
  134. o_cList.append(c)
  135. return o_cList
  136. def SeeTree(Dic):
  137. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  138. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  139. node_Dict = {}
  140. link_list = []
  141. with open(Dic, 'r') as f: # 貌似必须分开w和r
  142. for i in f:
  143. try:
  144. get = re.findall(node_re, i)[0]
  145. if get[0] != '':
  146. try:
  147. v = float(get[0])
  148. except:
  149. v = 0
  150. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  151. continue
  152. except:
  153. pass
  154. try:
  155. get = re.findall(link_re, i)[0]
  156. if get[0] != '' and get[1] != '':
  157. link_list.append((get[0], get[1]))
  158. except:
  159. pass
  160. father_list = [] # 已经有父亲的list
  161. for i in link_list:
  162. father = i[0] # 父节点
  163. son = i[1] # 子节点
  164. try:
  165. node_Dict[father]['children'].append(node_Dict[son])
  166. father_list.append(son)
  167. if int(son) == 0: print('F')
  168. except:
  169. pass
  170. father = list(set(node_Dict.keys()) - set(father_list))
  171. c = (
  172. Tree()
  173. .add("", [node_Dict[father[0]]], is_roam=True)
  174. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  175. toolbox_opts=opts.ToolboxOpts(is_show=True))
  176. )
  177. return c
  178. def make_Tab(heard,row):
  179. return Table().add(headers=heard, rows=row)
  180. def scatter(w_heard,w):
  181. c = (
  182. Scatter()
  183. .add_xaxis(w_heard)
  184. .add_yaxis('', w, **Label_Set)
  185. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  186. )
  187. return c
  188. def bar(w_heard,w):
  189. c = (
  190. Bar()
  191. .add_xaxis(w_heard)
  192. .add_yaxis('', abs(w).tolist(), **Label_Set)
  193. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  194. )
  195. return c
  196. def line(w_sum,w,b):
  197. x = np.arange(-5, 5, 1)
  198. c = (
  199. Line()
  200. .add_xaxis(x.tolist())
  201. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  202. )
  203. for i in range(len(w)):
  204. y = x * w[i] + b
  205. c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  206. return c
  207. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  208. y = y_trainData.tolist()
  209. x_data = x_trainData.T
  210. re = []
  211. for i in range(len(x_data)):
  212. x = x_data[i]
  213. p = int(x.max() - x.min()) / 5
  214. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  215. y_num = x_num * w[i] + (w[i] / w_sum) * b
  216. c = (
  217. Line()
  218. .add_xaxis(x_num.tolist())
  219. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  220. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  221. )
  222. t = (
  223. Scatter()
  224. .add_xaxis(x.tolist())
  225. .add_yaxis(f'{i}特征', y, **Label_Set)
  226. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  227. )
  228. t.overlap(c)
  229. re.append(t)
  230. return re
  231. def get_Color():
  232. # 随机颜色,雷达图默认非随机颜色
  233. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  234. color = '#'
  235. for a in rgb:
  236. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  237. return color
  238. def is_continuous(data:np.array,f:float=0.1):
  239. data = data.tolist()
  240. l = np.unique(data).tolist()
  241. re = len(l)/len(data)>=f or len(data) <= 3
  242. return re
  243. def Training_visualization(x_trainData,class_,y):
  244. x_data = x_trainData.T
  245. Cat = Categorical_Data()
  246. o_cList = []
  247. for i in range(len(x_data)):
  248. x1 = x_data[i] # x坐标
  249. x1_con = Cat(x1)
  250. if i == 0:continue
  251. x2 = x_data[i - 1] # y坐标
  252. x2_con = is_continuous(x2)
  253. o_c = None # 旧的C
  254. for n_class in class_:
  255. x_1 = x1[y == n_class].tolist()
  256. x_2 = x2[y == n_class]
  257. x_2_new = np.unique(x_2)
  258. x_2 = x2[y == n_class].tolist()
  259. #x与散点图不同,这里是纵坐标
  260. c = (Scatter()
  261. .add_xaxis(x_2)
  262. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  263. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  264. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  265. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True))
  266. )
  267. c.add_xaxis(x_2_new)
  268. if o_c == None:
  269. o_c = c
  270. else:
  271. o_c = o_c.overlap(c)
  272. o_cList.append(o_c)
  273. means,x_range,Type = Cat.get()
  274. return o_cList,means,x_range,Type
  275. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  276. x_data = x_trainData.T
  277. o_cList = []
  278. means.append(0)
  279. means = np.array(means)
  280. for i in range(len(x_data)):
  281. if i == 0:continue
  282. x1_con = is_continuous(x_data[i])
  283. x2 = x_data[i - 1] # y坐标
  284. x2_con = is_continuous(x2)
  285. o_c = None # 旧的C
  286. for class_num in range(len(class_)):
  287. n_class = class_[class_num]
  288. x2_new = np.unique(x2[y == n_class])
  289. #x与散点图不同,这里是纵坐标
  290. #加入这个判断是为了解决sklearn历史遗留问题
  291. if len(class_) == 2:#二分类问题
  292. if class_num == 0:continue
  293. w = w_list[0]
  294. b = b_list[0]
  295. else:#多分类问题
  296. w = w_list[class_num]
  297. b = b_list[class_num]
  298. if x2_con:
  299. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  300. w = np.append(w, 0)
  301. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  302. c = (
  303. Line()
  304. .add_xaxis(x2_new)
  305. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  306. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  307. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  308. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True))
  309. )
  310. if o_c == None:
  311. o_c = c
  312. else:
  313. o_c = o_c.overlap(c)
  314. #下面不要接任何代码,因为上面会continue
  315. o_cList.append(o_c)
  316. return o_cList
  317. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  318. x_data = x_trainData.T
  319. o_cList = []
  320. means.append(0)#确保mean[i+1]不会超出index
  321. means = np.array(means)
  322. w = np.append(w,0)
  323. for i in range(len(x_data)):
  324. x1 = x_data[i]
  325. x1_con = is_continuous(x1)
  326. if x1_con:
  327. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  328. x1_new = np.unique(x1)
  329. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  330. y_con = is_continuous(y_data)
  331. c = (
  332. Line()
  333. .add_xaxis(x1_new)
  334. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  335. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  336. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  337. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  338. )
  339. o_cList.append(c)
  340. return o_cList
  341. def regress_visualization(x_trainData,y):#y-x数据图
  342. x_data = x_trainData.T
  343. y_con = is_continuous(y)
  344. Cat = Categorical_Data()
  345. o_cList = []
  346. for i in range(len(x_data)):
  347. x1 = x_data[i] # x坐标
  348. x1_con = Cat(x1)
  349. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  350. c = (
  351. Scatter()
  352. .add_xaxis(x1)#研究表明,这个是横轴
  353. .add_yaxis('数据',y,**Label_Set)
  354. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  355. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  356. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True),
  357. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(y.max())+1, min_=int(y.min()),
  358. pos_right='3%'))
  359. )
  360. o_cList.append(c)
  361. means,x_range,Type = Cat.get()
  362. return o_cList,means,x_range,Type
  363. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  364. seeting = global_Set if data_name else global_Leg
  365. x_data = x_trainData.T
  366. o_cList = []
  367. for i in range(len(x_data)):
  368. for a in range(len(x_data)):
  369. if a <= i: continue#重复内容,跳过
  370. x1 = x_data[i] # x坐标
  371. x1_con = is_continuous(x1)
  372. x2 = x_data[a] # y坐标
  373. x2_con = is_continuous(x2)
  374. x2_new = np.unique(x2)
  375. #x与散点图不同,这里是纵坐标
  376. c = (Scatter()
  377. .add_xaxis(x2)
  378. .add_yaxis(data_name, x1, **Label_Set)
  379. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  380. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  381. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True))
  382. )
  383. c.add_xaxis(x2_new)
  384. o_cList.append(c)
  385. return o_cList
  386. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  387. seeting = global_Set if data_name else global_Leg
  388. x_data = x_trainData.T
  389. o_cList = []
  390. for i in range(len(x_data)):
  391. for a in range(len(x_data)):
  392. if a <= i: continue#重复内容,跳过
  393. x1 = x_data[i] # x坐标
  394. x2 = x_data[a] # y坐标
  395. x2_new = np.unique(x2)
  396. #x与散点图不同,这里是纵坐标
  397. c = (Scatter()
  398. .add_xaxis(x2)
  399. .add_yaxis(data_name, x1, **Label_Set)
  400. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  401. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  402. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  403. )
  404. c.add_xaxis(x2_new)
  405. o_cList.append(c)
  406. return o_cList
  407. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  408. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  409. get_x = Feature_visualization(x_data,'原数据')#原来
  410. get_y = Feature_visualization(y_data,'转换数据')#转换
  411. for i in range(len(get_x)):
  412. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  413. return tab
  414. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  415. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  416. get_x = Feature_visualization(x_data,'原数据')#原来
  417. get_y = Feature_visualization(y_data,'转换数据')#转换
  418. for i in range(len(get_x)):
  419. try:
  420. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  421. except IndexError:pass
  422. try:
  423. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  424. except IndexError:pass
  425. return tab
  426. def make_bar(name, value,tab):#绘制柱状图
  427. c = (
  428. Bar()
  429. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  430. .add_yaxis(name, value, **Label_Set)
  431. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  432. )
  433. tab.add(c, name)
  434. def judging_Digits(num:(int,float)):#查看小数位数
  435. a = str(abs(num)).split('.')[0]
  436. if a == '':raise ValueError
  437. return len(a)
  438. class Learner:
  439. def __init__(self,*args,**kwargs):
  440. self.numpy_Dic = {}#name:numpy
  441. def Add_Form(self,data:np.array,name):
  442. name = f'{name}[{len(self.numpy_Dic)}]'
  443. self.numpy_Dic[name] = data
  444. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  445. type_ = np.str if str_must else np.float
  446. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  447. try:
  448. data = pf_data.to_numpy(dtype=type_)
  449. except ValueError:
  450. data = pf_data.to_numpy(dtype=np.str)
  451. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  452. self.Add_Form(data,name)
  453. return data
  454. def Add_Python(self, Text, sheet_name):
  455. name = {}
  456. name.update(globals().copy())
  457. name.update(locals().copy())
  458. exec(Text, name)
  459. exec('get = Creat()', name)
  460. if isinstance(name['get'], np.array): # 已经是DataFram
  461. get = name['get']
  462. else:
  463. try:
  464. get = np.array(name['get'])
  465. except:
  466. get = np.array([name['get']])
  467. self.Add_Form(get, sheet_name)
  468. return get
  469. def get_Form(self) -> dict:
  470. return self.numpy_Dic.copy()
  471. def get_Sheet(self,name) -> np.array:
  472. return self.numpy_Dic[name].copy()
  473. def to_CSV(self,Dic:str,name,sep) -> str:
  474. get = self.get_Sheet(name)
  475. np.savetxt(Dic, get, delimiter=sep)
  476. return Dic
  477. def to_Html_One(self,name,Dic=''):
  478. if Dic == '': Dic = f'{name}.html'
  479. get = self.get_Sheet(name)
  480. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  481. get = get.tolist()
  482. for i in range(len(get)):
  483. get[i] = [i+1] + get[i]
  484. headers = [i for i in range(len(get[0]))]
  485. table = Table()
  486. table.add(headers, get).set_global_opts(
  487. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  488. table.render(Dic)
  489. return Dic
  490. def to_Html(self, name, Dic='', type_=0):
  491. if Dic == '': Dic = f'{name}.html'
  492. # 把要画的sheet放到第一个
  493. Sheet_Dic = self.get_Form()
  494. del Sheet_Dic[name]
  495. Sheet_list = [name] + list(Sheet_Dic.keys())
  496. class TAB_F:
  497. def __init__(self, q):
  498. self.tab = q # 一个Tab
  499. def render(self, Dic):
  500. return self.tab.render(Dic)
  501. # 生成一个显示页面
  502. if type_ == 0:
  503. class TAB(TAB_F):
  504. def add(self, table, k, *f):
  505. self.tab.add(table, k)
  506. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  507. elif type_ == 1:
  508. class TAB(TAB_F):
  509. def add(self, table, *k):
  510. self.tab.add(table)
  511. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  512. else:
  513. class TAB(TAB_F):
  514. def add(self, table, *k):
  515. self.tab.add(table)
  516. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  517. # 迭代添加内容
  518. for name in Sheet_list:
  519. get = self.get_Sheet(name)
  520. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  521. get = get.tolist()
  522. for i in range(len(get)):
  523. get[i] = [i+1] + get[i]
  524. headers = [i for i in range(len(get[0]))]
  525. table = Table()
  526. table.add(headers, get).set_global_opts(
  527. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  528. tab.add(table, f'表格:{name}')
  529. tab.render(Dic)
  530. return Dic
  531. class Study_MachineBase:
  532. def __init__(self,*args,**kwargs):
  533. self.Model = None
  534. self.have_Fit = False
  535. self.x_trainData = None
  536. self.y_trainData = None
  537. #记录这两个是为了克隆
  538. def Accuracy(self,y_Predict,y_Really):
  539. return accuracy_score(y_Predict, y_Really)
  540. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  541. self.have_Fit = True
  542. y_data = y_data.ravel()
  543. self.x_trainData = x_data
  544. self.y_trainData = y_data
  545. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  546. self.Model.fit(x_data,y_data)
  547. train_score = self.Model.score(x_train,y_train)
  548. test_score = self.Model.score(x_test,y_test)
  549. return train_score,test_score
  550. def Score(self,x_data,y_data):
  551. Score = self.Model.score(x_data,y_data)
  552. return Score
  553. def Predict(self,x_data):
  554. y_Predict = self.Model.predict(x_data)
  555. return y_Predict,'预测'
  556. def Des(self,*args,**kwargs):
  557. return ()
  558. class prep_Base(Study_MachineBase):
  559. def __init__(self,*args,**kwargs):
  560. super(prep_Base, self).__init__(*args,**kwargs)
  561. self.Model = None
  562. def Fit(self, x_data,y_data, *args, **kwargs):
  563. if not self.have_Fit: # 不允许第二次训练
  564. self.x_trainData = x_data
  565. self.y_trainData = y_data
  566. self.Model.fit(x_data,y_data)
  567. return 'None', 'None'
  568. def Predict(self, x_data):
  569. self.x_trainData = x_data
  570. x_Predict = self.Model.transform(x_data)
  571. self.y_trainData = x_Predict
  572. return x_Predict,'特征工程'
  573. def Score(self, x_data, y_data):
  574. return 'None' # 没有score
  575. class Unsupervised(prep_Base):
  576. def Fit(self, x_data, *args, **kwargs):
  577. if not self.have_Fit: # 不允许第二次训练
  578. self.x_trainData = x_data
  579. self.y_trainData = None
  580. self.Model.fit(x_data)
  581. return 'None', 'None'
  582. class UnsupervisedModel(prep_Base):
  583. def Fit(self, x_data, *args, **kwargs):
  584. self.x_trainData = x_data
  585. self.y_trainData = None
  586. self.Model.fit(x_data)
  587. return 'None', 'None'
  588. class Line_Model(Study_MachineBase):
  589. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  590. super(Line_Model, self).__init__(*args,**kwargs)
  591. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  592. model]
  593. if model == 'Line':
  594. self.Model = Model()
  595. self.k = {}
  596. else:
  597. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  598. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  599. #记录这两个是为了克隆
  600. self.Alpha = args_use['alpha']
  601. self.max_iter = args_use['max_iter']
  602. self.Model_Name = model
  603. def Des(self,Dic,*args,**kwargs):
  604. tab = Tab()
  605. x_data = self.x_trainData
  606. y = self.y_trainData
  607. w_list = self.Model.coef_.tolist()
  608. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  609. b = self.Model.intercept_.tolist()
  610. get, x_means, x_range,Type = regress_visualization(x_data, y)
  611. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  612. for i in range(len(get)):
  613. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  614. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  615. for i in range(len(get)):
  616. tab.add(get[i], f'{i}预测热力图')
  617. tab.add(scatter(w_heard,w_list),'系数w散点图')
  618. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  619. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  620. data = [f'{i}' for i in x_means] + w_list + [b]
  621. if self.Model_Name != 'Line':
  622. columns += ['阿尔法','最大迭代次数']
  623. data += [self.Model.alpha,self.Model.max_iter]
  624. tab.add(make_Tab(columns,[data]), '数据表')
  625. save = Dic + r'/render.HTML'
  626. tab.render(save) # 生成HTML
  627. return save,
  628. class LogisticRegression_Model(Study_MachineBase):
  629. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  630. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  631. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  632. #记录这两个是为了克隆
  633. self.C = args_use['C']
  634. self.max_iter = args_use['max_iter']
  635. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  636. self.Model_Name = model
  637. def Des(self,Dic='render.html',*args,**kwargs):
  638. #获取数据
  639. w_array = self.Model.coef_
  640. w_list = w_array.tolist() # 变为表格
  641. b = self.Model.intercept_
  642. c = self.Model.C
  643. max_iter = self.Model.max_iter
  644. class_ = self.Model.classes_.tolist()
  645. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  646. tab = Tab()
  647. y = self.y_trainData
  648. x_data = self.x_trainData
  649. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  650. for i in range(len(get)):
  651. tab.add(get[i], f'{i}决策边界')
  652. for i in range(len(w_list)):
  653. w = w_list[i]
  654. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  655. tab.add(scatter(w_heard, w), '系数w散点图')
  656. tab.add(bar(w_heard, w_array[i]), '系数柱状图')
  657. columns = class_heard + ['截距b','C','最大迭代数']
  658. data = class_ + [b,c,max_iter]
  659. c = Table().add(headers=columns, rows=[data])
  660. tab.add(c, '数据表')
  661. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  662. tab.add(c, '系数数据表')
  663. save = Dic + r'/render.HTML'
  664. tab.render(save) # 生成HTML
  665. return save,
  666. class Categorical_Data:#数据统计助手
  667. def __init__(self):
  668. self.x_means = []
  669. self.x_range = []
  670. self.Type = []
  671. def __call__(self,x1, *args, **kwargs):
  672. get = self.is_continuous(x1)
  673. return get
  674. def is_continuous(self,x1:np.array):
  675. try:
  676. x1_con = is_continuous(x1)
  677. if x1_con:
  678. self.x_means.append(np.mean(x1))
  679. self.add_Range(x1)
  680. else:
  681. raise Exception
  682. return x1_con
  683. except:#找出出现次数最多的元素
  684. new = np.unique(x1)#去除相同的元素
  685. count_list = []
  686. for i in new:
  687. count_list.append(np.sum(x1 == i))
  688. index = count_list.index(max(count_list))#找出最大值的索引
  689. self.x_means.append(x1[index])
  690. self.add_Range(x1,False)
  691. return False
  692. def add_Range(self,x1:np.array,range_=True):
  693. try:
  694. if not range_ : raise Exception
  695. min_ = int(x1.min()) - 1
  696. max_ = int(x1.max()) + 1
  697. #不需要复制列表
  698. self.x_range.append([min_,max_])
  699. self.Type.append(1)
  700. except:
  701. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  702. self.Type.append(2)
  703. def get(self):
  704. return self.x_means,self.x_range,self.Type
  705. class Knn_Model(Study_MachineBase):
  706. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  707. super(Knn_Model, self).__init__(*args,**kwargs)
  708. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  709. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  710. #记录这两个是为了克隆
  711. self.n_neighbors = args_use['n_neighbors']
  712. self.p = args_use['p']
  713. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  714. self.Model_Name = model
  715. def Des(self,Dic,*args,**kwargs):
  716. tab = Tab()
  717. y = self.y_trainData
  718. x_data = self.x_trainData
  719. if self.Model_Name == 'Knn_class':
  720. class_ = self.Model.classes_.tolist()
  721. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  722. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  723. for i in range(len(get)):
  724. tab.add(get[i],f'{i}训练数据散点图')
  725. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  726. for i in range(len(get)):
  727. tab.add(get[i], f'{i}预测热力图')
  728. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  729. data = class_ + [f'{i}' for i in x_means]
  730. c = Table().add(headers=heard, rows=[data])
  731. tab.add(c, '数据表')
  732. else:
  733. get, x_means, x_range,Type = regress_visualization(x_data, y)
  734. for i in range(len(get)):
  735. tab.add(get[i], f'{i}预测类型图')
  736. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  737. for i in range(len(get)):
  738. tab.add(get[i], f'{i}预测热力图')
  739. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  740. data = [f'{i}' for i in x_means]
  741. c = Table().add(headers=heard, rows=[data])
  742. tab.add(c, '数据表')
  743. save = Dic + r'/render.HTML'
  744. tab.render(save) # 生成HTML
  745. return save,
  746. class Tree_Model(Study_MachineBase):
  747. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  748. super(Tree_Model, self).__init__(*args,**kwargs)
  749. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  750. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  751. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  752. #记录这两个是为了克隆
  753. self.criterion = args_use['criterion']
  754. self.splitter = args_use['splitter']
  755. self.max_features = args_use['max_features']
  756. self.max_depth = args_use['max_depth']
  757. self.min_samples_split = args_use['min_samples_split']
  758. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  759. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  760. self.Model_Name = model
  761. def Des(self, Dic, *args, **kwargs):
  762. tab = Tab()
  763. importance = self.Model.feature_importances_.tolist()
  764. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  765. export_graphviz(self.Model, out_file=f)
  766. make_bar('特征重要性',importance,tab)
  767. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  768. y = self.y_trainData
  769. x_data = self.x_trainData
  770. if self.Model_Name == 'Tree_class':
  771. class_ = self.Model.classes_.tolist()
  772. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  773. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  774. for i in range(len(get)):
  775. tab.add(get[i],f'{i}训练数据散点图')
  776. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  777. for i in range(len(get)):
  778. tab.add(get[i], f'{i}预测热力图')
  779. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  780. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  781. else:
  782. get, x_means, x_range,Type = regress_visualization(x_data, y)
  783. for i in range(len(get)):
  784. tab.add(get[i], f'{i}预测类型图')
  785. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  786. for i in range(len(get)):
  787. tab.add(get[i], f'{i}预测热力图')
  788. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  789. [[f'{i}' for i in x_means] + importance]), '数据表')
  790. save = Dic + r'/render.HTML'
  791. tab.render(save) # 生成HTML
  792. return save,
  793. class Forest_Model(Study_MachineBase):
  794. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  795. super(Forest_Model, self).__init__(*args,**kwargs)
  796. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  797. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  798. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  799. #记录这两个是为了克隆
  800. self.n_estimators = args_use['n_Tree']
  801. self.criterion = args_use['criterion']
  802. self.max_features = args_use['max_features']
  803. self.max_depth = args_use['max_depth']
  804. self.min_samples_split = args_use['min_samples_split']
  805. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  806. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  807. self.Model_Name = model
  808. def Des(self, Dic, *args, **kwargs):
  809. tab = Tab()
  810. #多个决策树可视化
  811. for i in range(len(self.Model.estimators_)):
  812. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  813. export_graphviz(self.Model.estimators_[i], out_file=f)
  814. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  815. y = self.y_trainData
  816. x_data = self.x_trainData
  817. if self.Model_Name == 'Tree_class':
  818. class_ = self.Model.classes_.tolist()
  819. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  820. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  821. for i in range(len(get)):
  822. tab.add(get[i],f'{i}训练数据散点图')
  823. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  824. for i in range(len(get)):
  825. tab.add(get[i], f'{i}预测热力图')
  826. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  827. [class_ + [f'{i}' for i in x_means]]), '数据表')
  828. else:
  829. get, x_means, x_range,Type = regress_visualization(x_data, y)
  830. for i in range(len(get)):
  831. tab.add(get[i], f'{i}预测类型图')
  832. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  833. for i in range(len(get)):
  834. tab.add(get[i], f'{i}预测热力图')
  835. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  836. save = Dic + r'/render.HTML'
  837. tab.render(save) # 生成HTML
  838. return save,
  839. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  840. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  841. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  842. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  843. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  844. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  845. #记录这两个是为了克隆
  846. self.criterion = args_use['criterion']
  847. self.splitter = args_use['splitter']
  848. self.max_features = args_use['max_features']
  849. self.max_depth = args_use['max_depth']
  850. self.min_samples_split = args_use['min_samples_split']
  851. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  852. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  853. self.Model_Name = model
  854. def Des(self, Dic, *args, **kwargs):
  855. tab = Tab()
  856. #多个决策树可视化
  857. for a in range(len(self.Model.estimators_)):
  858. for i in range(len(self.Model.estimators_[a])):
  859. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  860. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  861. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  862. y = self.y_trainData
  863. x_data = self.x_trainData
  864. if self.Model_Name == 'Tree_class':
  865. class_ = self.Model.classes_.tolist()
  866. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  867. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  868. for i in range(len(get)):
  869. tab.add(get[i],f'{i}训练数据散点图')
  870. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  871. for i in range(len(get)):
  872. tab.add(get[i], f'{i}预测热力图')
  873. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  874. [class_ + [f'{i}' for i in x_means]]), '数据表')
  875. else:
  876. get, x_means, x_range,Type = regress_visualization(x_data, y)
  877. for i in range(len(get)):
  878. tab.add(get[i], f'{i}预测类型图')
  879. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  880. for i in range(len(get)):
  881. tab.add(get[i], f'{i}预测热力图')
  882. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  883. save = Dic + r'/render.HTML'
  884. tab.render(save) # 生成HTML
  885. return save,
  886. class SVC_Model(Study_MachineBase):
  887. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  888. super(SVC_Model, self).__init__(*args,**kwargs)
  889. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  890. #记录这两个是为了克隆
  891. self.C = args_use['C']
  892. self.gamma = args_use['gamma']
  893. self.kernel = args_use['kernel']
  894. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  895. self.Model_Name = model
  896. def Des(self, Dic, *args, **kwargs):
  897. tab = Tab()
  898. w_list = self.Model.coef_.tolist()
  899. b = self.Model.intercept_.tolist()
  900. class_ = self.Model.classes_.tolist()
  901. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  902. y = self.y_trainData
  903. x_data = self.x_trainData
  904. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  905. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  906. for i in range(len(get)):
  907. tab.add(get[i].overlap(get_Line[i]), f'{i}数据散点图')
  908. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  909. for i in range(len(get)):
  910. tab.add(get[i], f'{i}预测热力图')
  911. dic = {2:'离散',1:'连续'}
  912. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  913. [class_ + [f'{i}' for i in x_means]]), '数据表')
  914. save = Dic + r'/render.HTML'
  915. tab.render(save) # 生成HTML
  916. return save,
  917. class SVR_Model(Study_MachineBase):
  918. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  919. super(SVR_Model, self).__init__(*args,**kwargs)
  920. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  921. #记录这两个是为了克隆
  922. self.C = args_use['C']
  923. self.gamma = args_use['gamma']
  924. self.kernel = args_use['kernel']
  925. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  926. self.Model_Name = model
  927. def Des(self,Dic,*args,**kwargs):
  928. tab = Tab()
  929. x_data = self.x_trainData
  930. y = self.y_trainData
  931. try:
  932. w_list = self.Model.coef_.tolist()#未必有这个属性
  933. b = self.Model.intercept_.tolist()
  934. U = True
  935. except:
  936. U = False
  937. get, x_means, x_range,Type = regress_visualization(x_data, y)
  938. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  939. for i in range(len(get)):
  940. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  941. else:tab.add(get[i], f'{i}预测类型图')
  942. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  943. for i in range(len(get)):
  944. tab.add(get[i], f'{i}预测热力图')
  945. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  946. save = Dic + r'/render.HTML'
  947. tab.render(save) # 生成HTML
  948. return save,
  949. class Variance_Model(Unsupervised):#无监督
  950. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  951. super(Variance_Model, self).__init__(*args,**kwargs)
  952. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  953. #记录这两个是为了克隆
  954. self.threshold = args_use['P']
  955. self.k = {'threshold':args_use['P']}
  956. self.Model_Name = model
  957. def Des(self,Dic,*args,**kwargs):
  958. tab = Tab()
  959. var = self.Model.variances_#标准差
  960. y_data = self.y_trainData
  961. if type(y_data) is np.ndarray:
  962. get = Feature_visualization(self.y_trainData)
  963. for i in range(len(get)):
  964. tab.add(get[i],f'[{i}]数据x-x散点图')
  965. c = (
  966. Bar()
  967. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  968. .add_yaxis('标准差', var.tolist(), **Label_Set)
  969. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  970. )
  971. tab.add(c,'数据标准差')
  972. save = Dic + r'/render.HTML'
  973. tab.render(save) # 生成HTML
  974. return save,
  975. class SelectKBest_Model(prep_Base):#无监督
  976. def __init__(self, args_use, model, *args, **kwargs):
  977. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  978. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  979. # 记录这两个是为了克隆
  980. self.k_ = args_use['k']
  981. self.score_func=args_use['score_func']
  982. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  983. self.Model_Name = model
  984. def Des(self,Dic,*args,**kwargs):
  985. tab = Tab()
  986. score = self.Model.scores_.tolist()
  987. support = self.Model.get_support()
  988. y_data = self.y_trainData
  989. x_data = self.x_trainData
  990. if type(x_data) is np.ndarray:
  991. get = Feature_visualization(x_data)
  992. for i in range(len(get)):
  993. tab.add(get[i],f'[{i}]数据x-x散点图')
  994. if type(y_data) is np.ndarray:
  995. get = Feature_visualization(y_data)
  996. for i in range(len(get)):
  997. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  998. Choose = []
  999. UnChoose = []
  1000. for i in range(len(score)):
  1001. if support[i]:
  1002. Choose.append(score[i])
  1003. UnChoose.append(0)#占位
  1004. else:
  1005. UnChoose.append(score[i])
  1006. Choose.append(0)
  1007. c = (
  1008. Bar()
  1009. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1010. .add_yaxis('选中特征', Choose, **Label_Set)
  1011. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1012. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1013. )
  1014. tab.add(c,'单变量重要程度')
  1015. save = Dic + r'/render.HTML'
  1016. tab.render(save) # 生成HTML
  1017. return save,
  1018. class SelectFrom_Model(prep_Base):#无监督
  1019. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1020. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  1021. self.Model = Learner.Model
  1022. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  1023. self.max_features = args_use['k']
  1024. self.estimator=Learner.Model
  1025. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  1026. self.have_Fit = Learner.have_Fit
  1027. self.Model_Name = 'SelectFrom_Model'
  1028. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  1029. if not self.have_Fit: # 不允许第二次训练
  1030. self.Select_Model.fit(x_data, y_data)
  1031. return 'None', 'None'
  1032. return 'NONE','NONE'
  1033. def Predict(self, x_data):
  1034. try:
  1035. self.x_trainData = x_data
  1036. x_Predict = self.Select_Model.transform(x_data)
  1037. self.y_trainData = x_Predict
  1038. print(self.y_trainData)
  1039. print(self.x_trainData)
  1040. return x_Predict,'模型特征工程'
  1041. except:
  1042. return np.array([]),'无结果工程'
  1043. def Des(self,Dic,*args,**kwargs):
  1044. tab = Tab()
  1045. support = self.Select_Model.get_support()
  1046. y_data = self.y_trainData
  1047. x_data = self.x_trainData
  1048. if type(x_data) is np.ndarray:
  1049. get = Feature_visualization(x_data)
  1050. for i in range(len(get)):
  1051. tab.add(get[i],f'[{i}]数据x-x散点图')
  1052. if type(y_data) is np.ndarray:
  1053. get = Feature_visualization(y_data)
  1054. for i in range(len(get)):
  1055. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1056. def make_Bar(score):
  1057. Choose = []
  1058. UnChoose = []
  1059. for i in range(len(score)):
  1060. if support[i]:
  1061. Choose.append(abs(score[i]))
  1062. UnChoose.append(0) # 占位
  1063. else:
  1064. UnChoose.append(abs(score[i]))
  1065. Choose.append(0)
  1066. c = (
  1067. Bar()
  1068. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1069. .add_yaxis('选中特征', Choose, **Label_Set)
  1070. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1071. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1072. )
  1073. tab.add(c,'单变量重要程度')
  1074. try:
  1075. make_Bar(self.Model.coef_)
  1076. except:
  1077. try:
  1078. make_Bar(self.Model.feature_importances_)
  1079. except:pass
  1080. save = Dic + r'/render.HTML'
  1081. tab.render(save) # 生成HTML
  1082. return save,
  1083. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  1084. def __init__(self, args_use, model, *args, **kwargs):
  1085. super(Standardization_Model, self).__init__(*args, **kwargs)
  1086. self.Model = StandardScaler()
  1087. self.k = {}
  1088. self.Model_Name = 'StandardScaler'
  1089. def Des(self,Dic,*args,**kwargs):
  1090. tab = Tab()
  1091. y_data = self.y_trainData
  1092. x_data = self.x_trainData
  1093. var = self.Model.var_.tolist()
  1094. means = self.Model.mean_.tolist()
  1095. scale = self.Model.scale_.tolist()
  1096. Conversion_control(y_data,x_data,tab)
  1097. make_bar('标准差',var,tab)
  1098. make_bar('方差',means,tab)
  1099. make_bar('Scale',scale,tab)
  1100. save = Dic + r'/render.HTML'
  1101. tab.render(save) # 生成HTML
  1102. return save,
  1103. class MinMaxScaler_Model(Unsupervised):#离差标准化
  1104. def __init__(self, args_use, model, *args, **kwargs):
  1105. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  1106. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  1107. self.k = {}
  1108. self.Model_Name = 'MinMaxScaler'
  1109. def Des(self,Dic,*args,**kwargs):
  1110. tab = Tab()
  1111. y_data = self.y_trainData
  1112. x_data = self.x_trainData
  1113. scale = self.Model.scale_.tolist()
  1114. max_ = self.Model.data_max_.tolist()
  1115. min_ = self.Model.data_min_.tolist()
  1116. Conversion_control(y_data,x_data,tab)
  1117. make_bar('Scale',scale,tab)
  1118. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  1119. row=[max_ + min_]), '数据表格')
  1120. save = Dic + r'/render.HTML'
  1121. tab.render(save) # 生成HTML
  1122. return save,
  1123. class LogScaler_Model(prep_Base):#对数标准化
  1124. def __init__(self, args_use, model, *args, **kwargs):
  1125. super(LogScaler_Model, self).__init__(*args, **kwargs)
  1126. self.Model = None
  1127. self.k = {}
  1128. self.Model_Name = 'LogScaler'
  1129. def Fit(self, x_data, *args, **kwargs):
  1130. if not self.have_Fit: # 不允许第二次训练
  1131. self.max_logx = np.log(x_data.max())
  1132. return 'None', 'None'
  1133. def Predict(self, x_data):
  1134. try:
  1135. max_logx = self.max_logx
  1136. except:
  1137. self.have_Fit = False
  1138. self.Fit(x_data)
  1139. max_logx = self.max_logx
  1140. self.x_trainData = x_data.copy()
  1141. x_Predict = (np.log(x_data)/max_logx)
  1142. self.y_trainData = x_Predict.copy()
  1143. return x_Predict,'对数变换'
  1144. def Des(self,Dic,*args,**kwargs):
  1145. tab = Tab()
  1146. y_data = self.y_trainData
  1147. x_data = self.x_trainData
  1148. Conversion_control(y_data,x_data,tab)
  1149. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  1150. save = Dic + r'/render.HTML'
  1151. tab.render(save) # 生成HTML
  1152. return save,
  1153. class atanScaler_Model(prep_Base):#atan标准化
  1154. def __init__(self, args_use, model, *args, **kwargs):
  1155. super(atanScaler_Model, self).__init__(*args, **kwargs)
  1156. self.Model = None
  1157. self.k = {}
  1158. self.Model_Name = 'atanScaler'
  1159. def Fit(self, x_data, *args, **kwargs):
  1160. return 'None', 'None'
  1161. def Predict(self, x_data):
  1162. self.x_trainData = x_data.copy()
  1163. x_Predict = (np.arctan(x_data)*(2/np.pi))
  1164. self.y_trainData = x_Predict.copy()
  1165. return x_Predict,'atan变换'
  1166. def Des(self,Dic,*args,**kwargs):
  1167. tab = Tab()
  1168. y_data = self.y_trainData
  1169. x_data = self.x_trainData
  1170. Conversion_control(y_data,x_data,tab)
  1171. save = Dic + r'/render.HTML'
  1172. tab.render(save) # 生成HTML
  1173. return save,
  1174. class decimalScaler_Model(prep_Base):#小数定标准化
  1175. def __init__(self, args_use, model, *args, **kwargs):
  1176. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  1177. self.Model = None
  1178. self.k = {}
  1179. self.Model_Name = 'Decimal_normalization'
  1180. def Fit(self, x_data, *args, **kwargs):
  1181. if not self.have_Fit: # 不允许第二次训练
  1182. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  1183. return 'None', 'None'
  1184. def Predict(self, x_data):
  1185. self.x_trainData = x_data.copy()
  1186. try:
  1187. j = self.j
  1188. except:
  1189. self.have_Fit = False
  1190. self.Fit(x_data)
  1191. j = self.j
  1192. x_Predict = (x_data/(10**j))
  1193. self.y_trainData = x_Predict.copy()
  1194. return x_Predict,'小数定标标准化'
  1195. def Des(self,Dic,*args,**kwargs):
  1196. tab = Tab()
  1197. y_data = self.y_trainData
  1198. x_data = self.x_trainData
  1199. j = self.j
  1200. Conversion_control(y_data,x_data,tab)
  1201. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  1202. save = Dic + r'/render.HTML'
  1203. tab.render(save) # 生成HTML
  1204. return save,
  1205. class Mapzoom_Model(prep_Base):#映射标准化
  1206. def __init__(self, args_use, model, *args, **kwargs):
  1207. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  1208. self.Model = None
  1209. self.feature_range = args_use['feature_range']
  1210. self.k = {}
  1211. self.Model_Name = 'Decimal_normalization'
  1212. def Fit(self, x_data, *args, **kwargs):
  1213. if not self.have_Fit: # 不允许第二次训练
  1214. self.max = x_data.max()
  1215. self.min = x_data.min()
  1216. return 'None', 'None'
  1217. def Predict(self, x_data):
  1218. self.x_trainData = x_data.copy()
  1219. try:
  1220. max = self.max
  1221. min = self.min
  1222. except:
  1223. self.have_Fit = False
  1224. self.Fit(x_data)
  1225. max = self.max
  1226. min = self.min
  1227. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  1228. self.y_trainData = x_Predict.copy()
  1229. return x_Predict,'映射标准化'
  1230. def Des(self,Dic,*args,**kwargs):
  1231. tab = Tab()
  1232. y_data = self.y_trainData
  1233. x_data = self.x_trainData
  1234. max = self.max
  1235. min = self.min
  1236. Conversion_control(y_data,x_data,tab)
  1237. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1238. save = Dic + r'/render.HTML'
  1239. tab.render(save) # 生成HTML
  1240. return save,
  1241. class sigmodScaler_Model(prep_Base):#sigmod变换
  1242. def __init__(self, args_use, model, *args, **kwargs):
  1243. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  1244. self.Model = None
  1245. self.k = {}
  1246. self.Model_Name = 'sigmodScaler_Model'
  1247. def Fit(self, x_data, *args, **kwargs):
  1248. return 'None', 'None'
  1249. def Predict(self, x_data:np.array):
  1250. self.x_trainData = x_data.copy()
  1251. x_Predict = (1/(1+np.exp(-x_data)))
  1252. self.y_trainData = x_Predict.copy()
  1253. return x_Predict,'Sigmod变换'
  1254. def Des(self,Dic,*args,**kwargs):
  1255. tab = Tab()
  1256. y_data = self.y_trainData
  1257. x_data = self.x_trainData
  1258. Conversion_control(y_data,x_data,tab)
  1259. save = Dic + r'/render.HTML'
  1260. tab.render(save) # 生成HTML
  1261. return save,
  1262. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  1263. def __init__(self, args_use, model, *args, **kwargs):
  1264. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  1265. self.Model = None
  1266. self.feature_range = args_use['feature_range']
  1267. self.k = {}
  1268. self.Model_Name = 'Fuzzy_quantization'
  1269. def Fit(self, x_data, *args, **kwargs):
  1270. if not self.have_Fit: # 不允许第二次训练
  1271. self.max = x_data.max()
  1272. self.min = x_data.min()
  1273. return 'None', 'None'
  1274. def Predict(self, x_data,*args,**kwargs):
  1275. self.y_trainData = x_data.copy()
  1276. try:
  1277. max = self.max
  1278. min = self.min
  1279. except:
  1280. self.have_Fit = False
  1281. self.Fit(x_data)
  1282. max = self.max
  1283. min = self.min
  1284. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  1285. self.y_trainData = x_Predict.copy()
  1286. return x_Predict,'映射标准化'
  1287. def Des(self,Dic,*args,**kwargs):
  1288. tab = Tab()
  1289. y_data = self.y_trainData
  1290. x_data = self.x_trainData
  1291. max = self.max
  1292. min = self.min
  1293. Conversion_control(y_data,x_data,tab)
  1294. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1295. save = Dic + r'/render.HTML'
  1296. tab.render(save) # 生成HTML
  1297. return save,
  1298. class Regularization_Model(Unsupervised):#正则化
  1299. def __init__(self, args_use, model, *args, **kwargs):
  1300. super(Regularization_Model, self).__init__(*args, **kwargs)
  1301. self.Model = Normalizer(norm=args_use['norm'])
  1302. self.k = {'norm':args_use['norm']}
  1303. self.Model_Name = 'Regularization'
  1304. def Des(self,Dic,*args,**kwargs):
  1305. tab = Tab()
  1306. y_data = self.y_trainData
  1307. x_data = self.x_trainData
  1308. Conversion_control(y_data,x_data,tab)
  1309. save = Dic + r'/render.HTML'
  1310. tab.render(save) # 生成HTML
  1311. return save,
  1312. #离散数据
  1313. class Binarizer_Model(Unsupervised):#二值化
  1314. def __init__(self, args_use, model, *args, **kwargs):
  1315. super(Binarizer_Model, self).__init__(*args, **kwargs)
  1316. self.Model = Binarizer(threshold=args_use['threshold'])
  1317. self.k = {}
  1318. self.Model_Name = 'Binarizer'
  1319. def Des(self,Dic,*args,**kwargs):
  1320. tab = Tab()
  1321. y_data = self.y_trainData
  1322. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  1323. for i in range(len(get_y)):
  1324. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  1325. save = Dic + r'/render.HTML'
  1326. tab.render(save) # 生成HTML
  1327. return save,
  1328. class Discretization_Model(prep_Base):#n值离散
  1329. def __init__(self, args_use, model, *args, **kwargs):
  1330. super(Discretization_Model, self).__init__(*args, **kwargs)
  1331. self.Model = None
  1332. range_ = args_use['split_range']
  1333. if range_ == []:raise Exception
  1334. elif len(range_) == 1:range_.append(range_[0])
  1335. self.range = range_
  1336. self.k = {}
  1337. self.Model_Name = 'Discretization'
  1338. def Fit(self,*args,**kwargs):
  1339. return 'None','None'
  1340. def Predict(self,x_data):
  1341. self.x_trainData = x_data.copy()
  1342. x_Predict = x_data.copy()#复制
  1343. range_ = self.range
  1344. bool_list = []
  1345. max_ = len(range_) - 1
  1346. o_t = None
  1347. for i in range(len(range_)):
  1348. try:
  1349. t = float(range_[i])
  1350. except:continue
  1351. if o_t == None:#第一个参数
  1352. bool_list.append(x_Predict <= t)
  1353. else:
  1354. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  1355. if i == max_:
  1356. bool_list.append(t <= x_Predict)
  1357. o_t = t
  1358. for i in range(len(bool_list)):
  1359. x_Predict[bool_list[i]] = i
  1360. self.y_trainData = x_Predict.copy()
  1361. return x_Predict,f'{len(bool_list)}值离散化'
  1362. def Des(self, Dic, *args, **kwargs):
  1363. tab = Tab()
  1364. y_data = self.y_trainData
  1365. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1366. for i in range(len(get_y)):
  1367. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1368. save = Dic + r'/render.HTML'
  1369. tab.render(save) # 生成HTML
  1370. return save,
  1371. class Label_Model(prep_Base):#数字编码
  1372. def __init__(self, args_use, model, *args, **kwargs):
  1373. super(Label_Model, self).__init__(*args, **kwargs)
  1374. self.Model = []
  1375. self.k = {}
  1376. self.Model_Name = 'LabelEncoder'
  1377. def Fit(self,x_data,*args, **kwargs):
  1378. if not self.have_Fit: # 不允许第二次训练
  1379. if x_data.ndim == 1:x_data = np.array([x_data])
  1380. for i in range(x_data.shape[1]):
  1381. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  1382. return 'None', 'None'
  1383. def Predict(self, x_data):
  1384. x_Predict = x_data.copy()
  1385. if x_data.ndim == 1: x_data = np.array([x_data])
  1386. for i in range(x_data.shape[1]):
  1387. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  1388. self.y_trainData = x_Predict.copy()
  1389. return x_Predict,'数字编码'
  1390. def Des(self, Dic, *args, **kwargs):
  1391. tab = Tab()
  1392. y_data = self.y_trainData
  1393. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1394. for i in range(len(get_y)):
  1395. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1396. save = Dic + r'/render.HTML'
  1397. tab.render(save) # 生成HTML
  1398. return save,
  1399. class OneHotEncoder_Model(prep_Base):#独热编码
  1400. def __init__(self, args_use, model, *args, **kwargs):
  1401. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  1402. self.Model = []
  1403. self.ndim_up = args_use['ndim_up']
  1404. self.k = {}
  1405. self.Model_Name = 'OneHotEncoder'
  1406. def Fit(self,x_data,*args, **kwargs):
  1407. if not self.have_Fit: # 不允许第二次训练
  1408. if x_data.ndim == 1:x_data = [x_data]
  1409. for i in range(x_data.shape[1]):
  1410. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  1411. self.Model.append(OneHotEncoder().fit(data))#训练机器
  1412. return 'None', 'None'
  1413. def Predict(self, x_data):
  1414. self.x_trainData = x_data.copy()
  1415. x_new = []
  1416. for i in range(x_data.shape[1]):
  1417. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  1418. oneHot = self.Model[i].transform(data).toarray().tolist()
  1419. x_new.append(oneHot)#添加到列表中
  1420. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  1421. x_Predict = []
  1422. for i in range(x_new.shape[1]):
  1423. x_Predict.append(x_new[:,i])
  1424. x_Predict = np.array(x_Predict)#转换回array
  1425. if not self.ndim_up:#压缩操作
  1426. new_xPredict = []
  1427. for i in x_Predict:
  1428. new_list = []
  1429. list_ = i.tolist()
  1430. for a in list_:
  1431. new_list += a
  1432. new = np.array(new_list)
  1433. new_xPredict.append(new)
  1434. self.y_trainData = x_Predict.copy()
  1435. return np.array(new_xPredict),'独热编码'
  1436. #不保存y_trainData
  1437. return x_Predict,'独热编码'#不需要降维
  1438. def Des(self, Dic, *args, **kwargs):
  1439. tab = Tab()
  1440. y_data = self.y_trainData
  1441. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1442. for i in range(len(get_y)):
  1443. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1444. save = Dic + r'/render.HTML'
  1445. tab.render(save) # 生成HTML
  1446. return save,
  1447. class Missed_Model(Unsupervised):#缺失数据补充
  1448. def __init__(self, args_use, model, *args, **kwargs):
  1449. super(Missed_Model, self).__init__(*args, **kwargs)
  1450. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  1451. fill_value=args_use['fill_value'])
  1452. self.k = {}
  1453. self.Model_Name = 'Missed'
  1454. def Predict(self, x_data):
  1455. self.x_trainData = x_data.copy()
  1456. x_Predict = self.Model.transform(x_data)
  1457. self.y_trainData = x_Predict.copy()
  1458. return x_Predict,'填充缺失'
  1459. def Des(self,Dic,*args,**kwargs):
  1460. tab = Tab()
  1461. y_data = self.y_trainData
  1462. x_data = self.x_trainData
  1463. Conversion_control(y_data,x_data,tab)
  1464. save = Dic + r'/render.HTML'
  1465. tab.render(save) # 生成HTML
  1466. return save,
  1467. class PCA_Model(Unsupervised):
  1468. def __init__(self, args_use, model, *args, **kwargs):
  1469. super(PCA_Model, self).__init__(*args, **kwargs)
  1470. self.Model = PCA(n_components=args_use['n_components'])
  1471. self.n_components = args_use['n_components']
  1472. self.k = {'n_components':args_use['n_components']}
  1473. self.Model_Name = 'PCA'
  1474. def Predict(self, x_data):
  1475. self.x_trainData = x_data.copy()
  1476. x_Predict = self.Model.transform(x_data)
  1477. self.y_trainData = x_Predict.copy()
  1478. return x_Predict,'PCA'
  1479. def Des(self,Dic,*args,**kwargs):
  1480. tab = Tab()
  1481. y_data = self.y_trainData
  1482. x_data = self.x_trainData
  1483. Conversion_Separate(y_data,x_data,tab)
  1484. save = Dic + r'/render.HTML'
  1485. tab.render(save) # 生成HTML
  1486. return save,
  1487. class RPCA_Model(Unsupervised):
  1488. def __init__(self, args_use, model, *args, **kwargs):
  1489. super(RPCA_Model, self).__init__(*args, **kwargs)
  1490. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  1491. self.n_components = args_use['n_components']
  1492. self.k = {'n_components': args_use['n_components']}
  1493. self.Model_Name = 'RPCA'
  1494. def Predict(self, x_data):
  1495. self.x_trainData = x_data.copy()
  1496. x_Predict = self.Model.transform(x_data)
  1497. self.y_trainData = x_Predict.copy()
  1498. return x_Predict,'RPCA'
  1499. def Des(self,Dic,*args,**kwargs):
  1500. tab = Tab()
  1501. y_data = self.y_trainData
  1502. x_data = self.x_trainData
  1503. Conversion_Separate(y_data,x_data,tab)
  1504. save = Dic + r'/render.HTML'
  1505. tab.render(save) # 生成HTML
  1506. return save,
  1507. class KPCA_Model(Unsupervised):
  1508. def __init__(self, args_use, model, *args, **kwargs):
  1509. super(KPCA_Model, self).__init__(*args, **kwargs)
  1510. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  1511. self.n_components = args_use['n_components']
  1512. self.kernel = args_use['kernel']
  1513. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  1514. self.Model_Name = 'KPCA'
  1515. def Predict(self, x_data):
  1516. self.x_trainData = x_data.copy()
  1517. x_Predict = self.Model.transform(x_data)
  1518. self.y_trainData = x_Predict.copy()
  1519. return x_Predict,'KPCA'
  1520. def Des(self,Dic,*args,**kwargs):
  1521. tab = Tab()
  1522. y_data = self.y_trainData
  1523. x_data = self.x_trainData
  1524. Conversion_Separate(y_data,x_data,tab)
  1525. save = Dic + r'/render.HTML'
  1526. tab.render(save) # 生成HTML
  1527. return save,
  1528. class LDA_Model(Unsupervised):
  1529. def __init__(self, args_use, model, *args, **kwargs):
  1530. super(LDA_Model, self).__init__(*args, **kwargs)
  1531. self.Model = LDA(n_components=args_use['n_components'])
  1532. self.n_components = args_use['n_components']
  1533. self.k = {'n_components': args_use['n_components']}
  1534. self.Model_Name = 'LDA'
  1535. def Predict(self, x_data):
  1536. self.x_trainData = x_data.copy()
  1537. x_Predict = self.Model.transform(x_data)
  1538. self.y_trainData = x_Predict.copy()
  1539. return x_Predict,'LDA'
  1540. def Des(self,Dic,*args,**kwargs):
  1541. tab = Tab()
  1542. y_data = self.y_trainData
  1543. x_data = self.x_trainData
  1544. Conversion_Separate(y_data,x_data,tab)
  1545. save = Dic + r'/render.HTML'
  1546. tab.render(save) # 生成HTML
  1547. return save,
  1548. class NMF_Model(Unsupervised):
  1549. def __init__(self, args_use, model, *args, **kwargs):
  1550. super(NMF_Model, self).__init__(*args, **kwargs)
  1551. self.Model = NMF(n_components=args_use['n_components'])
  1552. self.n_components = args_use['n_components']
  1553. self.k = {'n_components':args_use['n_components']}
  1554. self.Model_Name = 'NFM'
  1555. def Predict(self, x_data):
  1556. self.x_trainData = x_data.copy()
  1557. x_Predict = self.Model.transform(x_data)
  1558. self.y_trainData = x_Predict.copy()
  1559. return x_Predict,'NMF'
  1560. def Des(self,Dic,*args,**kwargs):
  1561. tab = Tab()
  1562. y_data = self.y_trainData
  1563. x_data = self.x_trainData
  1564. Conversion_Separate(y_data,x_data,tab)
  1565. save = Dic + r'/render.HTML'
  1566. tab.render(save) # 生成HTML
  1567. return save,
  1568. class TSNE_Model(Unsupervised):
  1569. def __init__(self, args_use, model, *args, **kwargs):
  1570. super(TSNE_Model, self).__init__(*args, **kwargs)
  1571. self.Model = TSNE(n_components=args_use['n_components'])
  1572. self.n_components = args_use['n_components']
  1573. self.k = {'n_components':args_use['n_components']}
  1574. self.Model_Name = 't-SNE'
  1575. def Fit(self,*args, **kwargs):
  1576. return 'None', 'None'
  1577. def Predict(self, x_data):
  1578. self.x_trainData = x_data.copy()
  1579. x_Predict = self.Model.fit_transform(x_data)
  1580. self.y_trainData = x_Predict.copy()
  1581. return x_Predict,'SNE'
  1582. def Des(self,Dic,*args,**kwargs):
  1583. tab = Tab()
  1584. y_data = self.y_trainData
  1585. x_data = self.x_trainData
  1586. Conversion_Separate(y_data,x_data,tab)
  1587. save = Dic + r'/render.HTML'
  1588. tab.render(save) # 生成HTML
  1589. return save,
  1590. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  1591. def __init__(self,args_use,model,*args,**kwargs):
  1592. super(MLP_Model, self).__init__(*args,**kwargs)
  1593. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  1594. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  1595. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1596. #记录这两个是为了克隆
  1597. self.hidden_layer_sizes = args_use['hidden_size']
  1598. self.activation = args_use['activation']
  1599. self.max_iter = args_use['max_iter']
  1600. self.solver = args_use['solver']
  1601. self.alpha = args_use['alpha']
  1602. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  1603. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  1604. self.Model_Name = model
  1605. class kmeans_Model(UnsupervisedModel):
  1606. def __init__(self, args_use, model, *args, **kwargs):
  1607. super(kmeans_Model, self).__init__(*args, **kwargs)
  1608. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  1609. self.n_clusters = args_use['n_clusters']
  1610. self.k = {'n_clusters':args_use['n_clusters']}
  1611. self.Model_Name = 'k-means'
  1612. def Predict(self, x_data):
  1613. y_Predict = self.Model.predict(x_data)
  1614. return y_Predict,'k-means'
  1615. class Agglomerative_Model(UnsupervisedModel):
  1616. def __init__(self, args_use, model, *args, **kwargs):
  1617. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  1618. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  1619. self.n_clusters = args_use['n_clusters']
  1620. self.k = {'n_clusters':args_use['n_clusters']}
  1621. self.Model_Name = 'Agglomerative'
  1622. def Predict(self, x_data):
  1623. y_Predict = self.Model.fit_predict(x_data)
  1624. return y_Predict,'Agglomerative'
  1625. class DBSCAN_Model(UnsupervisedModel):
  1626. def __init__(self, args_use, model, *args, **kwargs):
  1627. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  1628. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  1629. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  1630. # min_samples
  1631. self.eps = args_use['eps']
  1632. self.min_samples = args_use['min_samples']
  1633. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  1634. self.Model_Name = 'DBSCAN'
  1635. def Predict(self, x_data):
  1636. y_Predict = self.Model.fit_predict(x_data)
  1637. return y_Predict,'DBSCAN'
  1638. class Machine_Learner(Learner):#数据处理者
  1639. def __init__(self,*args, **kwargs):
  1640. super().__init__(*args, **kwargs)
  1641. self.Learner = {}#记录机器
  1642. self.Learn_Dic = {'Line':Line_Model,
  1643. 'Ridge':Line_Model,
  1644. 'Lasso':Line_Model,
  1645. 'LogisticRegression':LogisticRegression_Model,
  1646. 'Knn_class':Knn_Model,
  1647. 'Knn': Knn_Model,
  1648. 'Tree_class': Tree_Model,
  1649. 'Tree': Tree_Model,
  1650. 'Forest':Forest_Model,
  1651. 'Forest_class': Forest_Model,
  1652. 'GradientTree_class':GradientTree_Model,
  1653. 'GradientTree': GradientTree_Model,
  1654. 'Variance':Variance_Model,
  1655. 'SelectKBest':SelectKBest_Model,
  1656. 'Z-Score':Standardization_Model,
  1657. 'MinMaxScaler':MinMaxScaler_Model,
  1658. 'LogScaler':LogScaler_Model,
  1659. 'atanScaler':atanScaler_Model,
  1660. 'decimalScaler':decimalScaler_Model,
  1661. 'sigmodScaler':sigmodScaler_Model,
  1662. 'Mapzoom':Mapzoom_Model,
  1663. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  1664. 'Regularization':Regularization_Model,
  1665. 'Binarizer':Binarizer_Model,
  1666. 'Discretization':Discretization_Model,
  1667. 'Label':Label_Model,
  1668. 'OneHotEncoder':OneHotEncoder_Model,
  1669. 'Missed':Missed_Model,
  1670. 'PCA':PCA_Model,
  1671. 'RPCA':RPCA_Model,
  1672. 'KPCA':KPCA_Model,
  1673. 'LDA':LDA_Model,
  1674. 'SVC':SVC_Model,
  1675. 'SVR':SVR_Model,
  1676. 'MLP':MLP_Model,
  1677. 'MLP_class': MLP_Model,
  1678. 'NMF':NMF_Model,
  1679. 't-SNE':TSNE_Model,
  1680. 'k-means':kmeans_Model,
  1681. 'Agglomerative':Agglomerative_Model,
  1682. 'DBSCAN':DBSCAN_Model,
  1683. }
  1684. self.Learner_Type = {}#记录机器的类型
  1685. def p_Args(self,Text,Type):#解析参数
  1686. args = {}
  1687. args_use = {}
  1688. #输入数据
  1689. exec(Text,args)
  1690. #处理数据
  1691. if Type in ('MLP','MLP_class'):
  1692. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  1693. else:
  1694. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  1695. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  1696. if Type in ('MLP','MLP_class'):
  1697. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  1698. else:
  1699. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  1700. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  1701. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  1702. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  1703. if Type in ('Tree','Forest','GradientTree'):
  1704. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  1705. else:
  1706. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  1707. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  1708. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  1709. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  1710. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  1711. args_use['P'] = float(args.get('min_samples_split', 0.8))
  1712. args_use['k'] = args.get('k',1)
  1713. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  1714. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  1715. get(args.get('score_func','f_classif'),f_classif))
  1716. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  1717. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  1718. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  1719. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  1720. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  1721. args_use['miss_value'] = args.get('miss_value',np.nan)
  1722. args_use['fill_method'] = args.get('fill_method','mean')
  1723. args_use['fill_value'] = args.get('fill_value',None)
  1724. args_use['n_components'] = args.get('n_components',1)
  1725. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  1726. args_use['n_Tree'] = args.get('n_Tree',100)
  1727. args_use['gamma'] = args.get('gamma',1)
  1728. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  1729. args_use['activation'] = str(args.get('activation','relu'))
  1730. args_use['solver'] = str(args.get('solver','adam'))
  1731. if Type in ('k-means',):
  1732. args_use['n_clusters'] = int(args.get('n_clusters',8))
  1733. else:
  1734. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  1735. args_use['eps'] = float(args.get('n_clusters', 0.5))
  1736. args_use['min_samples'] = int(args.get('n_clusters', 5))
  1737. return args_use
  1738. def Add_Learner(self,Learner,Text=''):
  1739. get = self.Learn_Dic[Learner]
  1740. name = f'Le[{len(self.Learner)}]{Learner}'
  1741. #参数调节
  1742. args_use = self.p_Args(Text,Learner)
  1743. #生成学习器
  1744. self.Learner[name] = get(model=Learner,args_use=args_use)
  1745. self.Learner_Type[name] = Learner
  1746. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  1747. model = self.get_Learner(Learner)
  1748. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  1749. #参数调节
  1750. args_use = self.p_Args(Text,'SelectFrom_Model')
  1751. #生成学习器
  1752. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  1753. self.Learner_Type[name] = 'SelectFrom_Model'
  1754. def Return_Learner(self):
  1755. return self.Learner.copy()
  1756. def get_Learner(self,name):
  1757. return self.Learner[name]
  1758. def get_Learner_Type(self,name):
  1759. return self.Learner_Type[name]
  1760. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  1761. x_data = self.get_Sheet(x_name)
  1762. y_data = self.get_Sheet(y_name)
  1763. model = self.get_Learner(Learner)
  1764. return model.Fit(x_data,y_data,split)
  1765. def Predict(self,x_name,Learner,Text='',**kwargs):
  1766. x_data = self.get_Sheet(x_name)
  1767. model = self.get_Learner(Learner)
  1768. y_data,name = model.Predict(x_data)
  1769. self.Add_Form(y_data,f'{x_name}:{name}')
  1770. return y_data
  1771. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  1772. model = self.get_Learner(Learner)
  1773. x = self.get_Sheet(name_x)
  1774. y = self.get_Sheet(name_y)
  1775. return model.Score(x,y)
  1776. def Show_Args(self,Learner,Dic):#显示参数
  1777. model = self.get_Learner(Learner)
  1778. return model.Des(Dic)
  1779. def Del_Leaner(self,Leaner):
  1780. del self.Learner[Leaner]
  1781. del self.Learner_Type[Leaner]