from pyecharts.components import Table as Table_Fisrt#绘制表格 from pyecharts import options as opts from random import randint from pyecharts.charts import * from pandas import DataFrame,read_csv import numpy as np import re from sklearn.model_selection import train_test_split from sklearn.linear_model import * from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier, GradientBoostingRegressor) from sklearn.metrics import accuracy_score from sklearn.feature_selection import * from sklearn.preprocessing import * from sklearn.impute import SimpleImputer from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归 from sklearn.neural_network import MLPClassifier,MLPRegressor from sklearn.manifold import TSNE from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN from pyecharts.charts import * # import sklearn as sk #设置 np.set_printoptions(threshold=np.inf) global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll')) global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False)) Label_Set = dict(label_opts=opts.LabelOpts(is_show=False)) class Table(Table_Fisrt): def add(self, headers, rows, attributes = None): if len(rows) == 1: new_headers = ['数据类型','数据'] new_rows = list(zip(headers,rows[0])) return super().add(new_headers,new_rows,attributes) else: return super().add(headers, rows, attributes) def make_list(first,end,num=35): n = num / (end - first) if n == 0: n = 1 re = [] n_first = first * n n_end = end * n while n_first <= n_end: cul = n_first / n re.append(round(cul,2)) n_first += 1 return re def list_filter(list_,num=70): #假设列表已经不重复 if len(list_) <= num:return list_ n = int(num / len(list_)) re = list_[::n] return re def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图 #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调 # a-特征x,b-特征x-1,c-其他特征 o_cList = [] for i in range(len(x_means)): if i == 0: continue n_ra = x_range[i - 1] Type_ra = Type[i - 1] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0],n_ra[1],70) else: ra = list_filter(n_ra)#可以接受最大为70 if Type_rb == 1: rb = make_list(n_rb[0],n_rb[1],35) else: rb = list_filter(n_rb)#可以接受最大为70 a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, i - 1] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)), pos_right='3%'))#显示 ) o_cList.append(c) return o_cList def Decision_boundary(x_range,x_means,Predict_Func,class_,Type):#绘制分类型预测图x-x热力图 #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图 # a-特征x,b-特征x-1,c-其他特征 #规定,i-1是x轴,a是x轴,x_1是x轴 class_dict = dict(zip(class_,[i for i in range(len(class_))])) v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示 for i in class_dict: v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':i}) o_cList = [] for i in range(len(x_means)): if i == 0: continue n_ra = x_range[i-1] Type_ra = Type[i-1] n_rb = x_range[i] Type_rb = Type[i] print(f'{n_ra},{n_rb}') if Type_ra == 1: ra = make_list(n_ra[0],n_ra[1],70) else: ra = n_ra if Type_rb == 1: rb = make_list(n_rb[0],n_rb[1],35) else: rb = n_rb a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, i - 1] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category' xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1, is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%')) ) o_cList.append(c) return o_cList def SeeTree(Dic): node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式 link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式 node_Dict = {} link_list = [] with open(Dic, 'r') as f: # 貌似必须分开w和r for i in f: try: get = re.findall(node_re, i)[0] if get[0] != '': try: v = float(get[0]) except: v = 0 node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []} continue except: pass try: get = re.findall(link_re, i)[0] if get[0] != '' and get[1] != '': link_list.append((get[0], get[1])) except: pass father_list = [] # 已经有父亲的list for i in link_list: father = i[0] # 父节点 son = i[1] # 子节点 try: node_Dict[father]['children'].append(node_Dict[son]) father_list.append(son) if int(son) == 0: print('F') except: pass father = list(set(node_Dict.keys()) - set(father_list)) c = ( Tree() .add("", [node_Dict[father[0]]], is_roam=True) .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"), toolbox_opts=opts.ToolboxOpts(is_show=True)) ) return c def make_Tab(heard,row): return Table().add(headers=heard, rows=row) def scatter(w_heard,w): c = ( Scatter() .add_xaxis(w_heard) .add_yaxis('', w, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set) ) return c def bar(w_heard,w): c = ( Bar() .add_xaxis(w_heard) .add_yaxis('', abs(w).tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) return c def line(w_sum,w,b): x = np.arange(-5, 5, 1) c = ( Line() .add_xaxis(x.tolist()) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set) ) for i in range(len(w)): y = x * w[i] + b c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set) return c def see_Line(x_trainData,y_trainData,w,w_sum,b): y = y_trainData.tolist() x_data = x_trainData.T re = [] for i in range(len(x_data)): x = x_data[i] p = int(x.max() - x.min()) / 5 x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点 y_num = x_num * w[i] + (w[i] / w_sum) * b c = ( Line() .add_xaxis(x_num.tolist()) .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set) ) t = ( Scatter() .add_xaxis(x.tolist()) .add_yaxis(f'{i}特征', y, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set) ) t.overlap(c) re.append(t) return re def get_Color(): # 随机颜色,雷达图默认非随机颜色 rgb = [randint(0, 255), randint(0, 255), randint(0, 255)] color = '#' for a in rgb: color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化) return color def is_continuous(data:np.array,f:float=0.1): data = data.tolist() l = np.unique(data).tolist() re = len(l)/len(data)>=f or len(data) <= 3 return re def Training_visualization(x_trainData,class_,y): x_data = x_trainData.T Cat = Categorical_Data() o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = Cat(x1) if i == 0:continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for n_class in class_: x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x_2) .add_yaxis(f'{n_class}', x_1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True)) ) c.add_xaxis(x_2_new) if o_c == None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界 x_data = x_trainData.T o_cList = [] means.append(0) means = np.array(means) for i in range(len(x_data)): if i == 0:continue x1_con = is_continuous(x_data[i]) x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x2_new = np.unique(x2[y == n_class]) #x与散点图不同,这里是纵坐标 #加入这个判断是为了解决sklearn历史遗留问题 if len(class_) == 2:#二分类问题 if class_num == 0:continue w = w_list[0] b = b_list[0] else:#多分类问题 w = w_list[class_num] b = b_list[class_num] if x2_con: x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5)) w = np.append(w, 0) y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值 c = ( Line() .add_xaxis(x2_new) .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True)) ) if o_c == None: o_c = c else: o_c = o_c.overlap(c) #下面不要接任何代码,因为上面会continue o_cList.append(o_c) return o_cList def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图) x_data = x_trainData.T o_cList = [] means.append(0)#确保mean[i+1]不会超出index means = np.array(means) w = np.append(w,0) for i in range(len(x_data)): x1 = x_data[i] x1_con = is_continuous(x1) if x1_con: x1 = np.array(make_list(x1.min(), x1.max(), 5)) x1_new = np.unique(x1) y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值 y_con = is_continuous(y_data) c = ( Line() .add_xaxis(x1_new) .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True)) ) o_cList.append(c) return o_cList def regress_visualization(x_trainData,y):#y-x数据图 x_data = x_trainData.T y_con = is_continuous(y) Cat = Categorical_Data() o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = Cat(x1) #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复) c = ( Scatter() .add_xaxis(x1)#研究表明,这个是横轴 .add_yaxis('数据',y,**Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set, yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(y.max())+1, min_=int(y.min()), pos_right='3%')) ) o_cList.append(c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Feature_visualization(x_trainData,data_name=''):#x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.T o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue#重复内容,跳过 x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x2) .add_yaxis(data_name, x1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True)) ) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.T o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue#重复内容,跳过 x1 = x_data[i] # x坐标 x2 = x_data[a] # y坐标 x2_new = np.unique(x2) #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x2) .add_yaxis(data_name, x1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts(type_='category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='category',is_scale=True)) ) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Conversion_control(y_data,x_data,tab):#合并两x-x图 if type(x_data) is np.ndarray and type(y_data) is np.ndarray: get_x = Feature_visualization(x_data,'原数据')#原来 get_y = Feature_visualization(y_data,'转换数据')#转换 for i in range(len(get_x)): tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图') return tab def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图 if type(x_data) is np.ndarray and type(y_data) is np.ndarray: get_x = Feature_visualization(x_data,'原数据')#原来 get_y = Feature_visualization(y_data,'转换数据')#转换 for i in range(len(get_x)): try: tab.add(get_x[i],f'[{i}]数据x-x散点图') except IndexError:pass try: tab.add(get_y[i],f'[{i}]变维数据x-x散点图') except IndexError:pass return tab def make_bar(name, value,tab):#绘制柱状图 c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(value))]) .add_yaxis(name, value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c, name) def judging_Digits(num:(int,float)):#查看小数位数 a = str(abs(num)).split('.')[0] if a == '':raise ValueError return len(a) class Learner: def __init__(self,*args,**kwargs): self.numpy_Dic = {}#name:numpy def Add_Form(self,data:np.array,name): name = f'{name}[{len(self.numpy_Dic)}]' self.numpy_Dic[name] = data def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','): type_ = np.str if str_must else np.float pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None) try: data = pf_data.to_numpy(dtype=type_) except ValueError: data = pf_data.to_numpy(dtype=np.str) if data.ndim == 1: data = np.expand_dims(data, axis=1) self.Add_Form(data,name) return data def Add_Python(self, Text, sheet_name): name = {} name.update(globals().copy()) name.update(locals().copy()) exec(Text, name) exec('get = Creat()', name) if isinstance(name['get'], np.array): # 已经是DataFram get = name['get'] else: try: get = np.array(name['get']) except: get = np.array([name['get']]) self.Add_Form(get, sheet_name) return get def get_Form(self) -> dict: return self.numpy_Dic.copy() def get_Sheet(self,name) -> np.array: return self.numpy_Dic[name].copy() def to_CSV(self,Dic:str,name,sep) -> str: get = self.get_Sheet(name) np.savetxt(Dic, get, delimiter=sep) return Dic def to_Html_One(self,name,Dic=''): if Dic == '': Dic = f'{name}.html' get = self.get_Sheet(name) if get.ndim == 1: get = np.expand_dims(get, axis=1) get = get.tolist() for i in range(len(get)): get[i] = [i+1] + get[i] headers = [i for i in range(len(get[0]))] table = Table() table.add(headers, get).set_global_opts( title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据")) table.render(Dic) return Dic def to_Html(self, name, Dic='', type_=0): if Dic == '': Dic = f'{name}.html' # 把要画的sheet放到第一个 Sheet_Dic = self.get_Form() del Sheet_Dic[name] Sheet_list = [name] + list(Sheet_Dic.keys()) class TAB_F: def __init__(self, q): self.tab = q # 一个Tab def render(self, Dic): return self.tab.render(Dic) # 生成一个显示页面 if type_ == 0: class TAB(TAB_F): def add(self, table, k, *f): self.tab.add(table, k) tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab elif type_ == 1: class TAB(TAB_F): def add(self, table, *k): self.tab.add(table) tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout)) else: class TAB(TAB_F): def add(self, table, *k): self.tab.add(table) tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout)) # 迭代添加内容 for name in Sheet_list: get = self.get_Sheet(name) if get.ndim == 1: get = np.expand_dims(get, axis=1) get = get.tolist() for i in range(len(get)): get[i] = [i+1] + get[i] headers = [i for i in range(len(get[0]))] table = Table() table.add(headers, get).set_global_opts( title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据")) tab.add(table, f'表格:{name}') tab.render(Dic) return Dic class Study_MachineBase: def __init__(self,*args,**kwargs): self.Model = None self.have_Fit = False self.x_trainData = None self.y_trainData = None #记录这两个是为了克隆 def Accuracy(self,y_Predict,y_Really): return accuracy_score(y_Predict, y_Really) def Fit(self,x_data,y_data,split=0.3,**kwargs): self.have_Fit = True y_data = y_data.ravel() self.x_trainData = x_data self.y_trainData = y_data x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split) self.Model.fit(x_data,y_data) train_score = self.Model.score(x_train,y_train) test_score = self.Model.score(x_test,y_test) return train_score,test_score def Score(self,x_data,y_data): Score = self.Model.score(x_data,y_data) return Score def Predict(self,x_data): y_Predict = self.Model.predict(x_data) return y_Predict,'预测' def Des(self,*args,**kwargs): return () class prep_Base(Study_MachineBase): def __init__(self,*args,**kwargs): super(prep_Base, self).__init__(*args,**kwargs) self.Model = None def Fit(self, x_data,y_data, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.x_trainData = x_data self.y_trainData = y_data self.Model.fit(x_data,y_data) return 'None', 'None' def Predict(self, x_data): self.x_trainData = x_data x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict return x_Predict,'特征工程' def Score(self, x_data, y_data): return 'None' # 没有score class Unsupervised(prep_Base): def Fit(self, x_data, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.x_trainData = x_data self.y_trainData = None self.Model.fit(x_data) return 'None', 'None' class UnsupervisedModel(prep_Base): def Fit(self, x_data, *args, **kwargs): self.x_trainData = x_data self.y_trainData = None self.Model.fit(x_data) return 'None', 'None' class Line_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Line_Model, self).__init__(*args,**kwargs) Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[ model] if model == 'Line': self.Model = Model() self.k = {} else: self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter']) self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']} #记录这两个是为了克隆 self.Alpha = args_use['alpha'] self.max_iter = args_use['max_iter'] self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData w_list = self.Model.coef_.tolist() w_heard = [f'系数w[{i}]' for i in range(len(w_list))] b = self.Model.intercept_.tolist() get, x_means, x_range,Type = regress_visualization(x_data, y) get_Line = Regress_W(x_data, y, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(scatter(w_heard,w_list),'系数w散点图') tab.add(bar(w_heard,self.Model.coef_),'系数柱状图') columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b'] data = [f'{i}' for i in x_means] + w_list + [b] if self.Model_Name != 'Line': columns += ['阿尔法','最大迭代次数'] data += [self.Model.alpha,self.Model.max_iter] tab.add(make_Tab(columns,[data]), '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class LogisticRegression_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(LogisticRegression_Model, self).__init__(*args,**kwargs) self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter']) #记录这两个是为了克隆 self.C = args_use['C'] self.max_iter = args_use['max_iter'] self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']} self.Model_Name = model def Des(self,Dic='render.html',*args,**kwargs): #获取数据 w_array = self.Model.coef_ w_list = w_array.tolist() # 变为表格 b = self.Model.intercept_ c = self.Model.C max_iter = self.Model.max_iter class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] tab = Tab() y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}决策边界') for i in range(len(w_list)): w = w_list[i] w_heard = [f'系数w[{i},{j}]' for j in range(len(w))] tab.add(scatter(w_heard, w), '系数w散点图') tab.add(bar(w_heard, w_array[i]), '系数柱状图') columns = class_heard + ['截距b','C','最大迭代数'] data = class_ + [b,c,max_iter] c = Table().add(headers=columns, rows=[data]) tab.add(c, '数据表') c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list) tab.add(c, '系数数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Categorical_Data:#数据统计助手 def __init__(self): self.x_means = [] self.x_range = [] self.Type = [] def __call__(self,x1, *args, **kwargs): get = self.is_continuous(x1) return get def is_continuous(self,x1:np.array): try: x1_con = is_continuous(x1) if x1_con: self.x_means.append(np.mean(x1)) self.add_Range(x1) else: raise Exception return x1_con except:#找出出现次数最多的元素 new = np.unique(x1)#去除相同的元素 count_list = [] for i in new: count_list.append(np.sum(x1 == i)) index = count_list.index(max(count_list))#找出最大值的索引 self.x_means.append(x1[index]) self.add_Range(x1,False) return False def add_Range(self,x1:np.array,range_=True): try: if not range_ : raise Exception min_ = int(x1.min()) - 1 max_ = int(x1.max()) + 1 #不需要复制列表 self.x_range.append([min_,max_]) self.Type.append(1) except: self.x_range.append(list(set(x1.tolist())))#去除多余元素 self.Type.append(2) def get(self): return self.x_means,self.x_range,self.Type class Knn_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Knn_Model, self).__init__(*args,**kwargs) Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model] self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors']) #记录这两个是为了克隆 self.n_neighbors = args_use['n_neighbors'] self.p = args_use['p'] self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Knn_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Tree_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Tree_Model, self).__init__(*args,**kwargs) Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model] self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features'] ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split']) #记录这两个是为了克隆 self.criterion = args_use['criterion'] self.splitter = args_use['splitter'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'], 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() importance = self.Model.feature_importances_.tolist() with open(Dic + r"\Tree_Gra.dot", 'w') as f: export_graphviz(self.Model, out_file=f) make_bar('特征重要性',importance,tab) tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))], [class_ + [f'{i}' for i in x_means] + importance]), '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))], [[f'{i}' for i in x_means] + importance]), '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Forest_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Forest_Model, self).__init__(*args,**kwargs) Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model] self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features'] ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split']) #记录这两个是为了克隆 self.n_estimators = args_use['n_Tree'] self.criterion = args_use['criterion'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'], 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() #多个决策树可视化 for i in range(len(self.Model.estimators_)): with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f: export_graphviz(self.Model.estimators_[i], out_file=f) tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化 Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model] self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features'] ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split']) #记录这两个是为了克隆 self.criterion = args_use['criterion'] self.splitter = args_use['splitter'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'], 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() #多个决策树可视化 for a in range(len(self.Model.estimators_)): for i in range(len(self.Model.estimators_[a])): with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f: export_graphviz(self.Model.estimators_[a][i], out_file=f) tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class SVC_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(SVC_Model, self).__init__(*args,**kwargs) self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel']) #记录这两个是为了克隆 self.C = args_use['C'] self.gamma = args_use['gamma'] self.kernel = args_use['kernel'] self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() w_list = self.Model.coef_.tolist() b = self.Model.intercept_.tolist() class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get_Line[i]), f'{i}数据散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') dic = {2:'离散',1:'连续'} tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class SVR_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(SVR_Model, self).__init__(*args,**kwargs) self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel']) #记录这两个是为了克隆 self.C = args_use['C'] self.gamma = args_use['gamma'] self.kernel = args_use['kernel'] self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData try: w_list = self.Model.coef_.tolist()#未必有这个属性 b = self.Model.intercept_.tolist() U = True except: U = False get, x_means, x_range,Type = regress_visualization(x_data, y) if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy()) for i in range(len(get)): if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图') else:tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Variance_Model(Unsupervised):#无监督 def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Variance_Model, self).__init__(*args,**kwargs) self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P']))) #记录这两个是为了克隆 self.threshold = args_use['P'] self.k = {'threshold':args_use['P']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() var = self.Model.variances_#标准差 y_data = self.y_trainData if type(y_data) is np.ndarray: get = Feature_visualization(self.y_trainData) for i in range(len(get)): tab.add(get[i],f'[{i}]数据x-x散点图') c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(var))]) .add_yaxis('标准差', var.tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c,'数据标准差') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class SelectKBest_Model(prep_Base):#无监督 def __init__(self, args_use, model, *args, **kwargs): super(SelectKBest_Model, self).__init__(*args, **kwargs) self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func']) # 记录这两个是为了克隆 self.k_ = args_use['k'] self.score_func=args_use['score_func'] self.k = {'k':args_use['k'],'score_func':args_use['score_func']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() score = self.Model.scores_.tolist() support = self.Model.get_support() y_data = self.y_trainData x_data = self.x_trainData if type(x_data) is np.ndarray: get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i],f'[{i}]数据x-x散点图') if type(y_data) is np.ndarray: get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i],f'[{i}]保留数据x-x散点图') Choose = [] UnChoose = [] for i in range(len(score)): if support[i]: Choose.append(score[i]) UnChoose.append(0)#占位 else: UnChoose.append(score[i]) Choose.append(0) c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(score))]) .add_yaxis('选中特征', Choose, **Label_Set) .add_yaxis('抛弃特征', UnChoose, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c,'单变量重要程度') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class SelectFrom_Model(prep_Base):#无监督 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(SelectFrom_Model, self).__init__(*args, **kwargs) self.Model = Learner.Model self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit) self.max_features = args_use['k'] self.estimator=Learner.Model self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit} self.have_Fit = Learner.have_Fit self.Model_Name = 'SelectFrom_Model' def Fit(self, x_data,y_data,split=0.3, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.Select_Model.fit(x_data, y_data) return 'None', 'None' return 'NONE','NONE' def Predict(self, x_data): try: self.x_trainData = x_data x_Predict = self.Select_Model.transform(x_data) self.y_trainData = x_Predict print(self.y_trainData) print(self.x_trainData) return x_Predict,'模型特征工程' except: return np.array([]),'无结果工程' def Des(self,Dic,*args,**kwargs): tab = Tab() support = self.Select_Model.get_support() y_data = self.y_trainData x_data = self.x_trainData if type(x_data) is np.ndarray: get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i],f'[{i}]数据x-x散点图') if type(y_data) is np.ndarray: get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i],f'[{i}]保留数据x-x散点图') def make_Bar(score): Choose = [] UnChoose = [] for i in range(len(score)): if support[i]: Choose.append(abs(score[i])) UnChoose.append(0) # 占位 else: UnChoose.append(abs(score[i])) Choose.append(0) c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(score))]) .add_yaxis('选中特征', Choose, **Label_Set) .add_yaxis('抛弃特征', UnChoose, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c,'单变量重要程度') try: make_Bar(self.Model.coef_) except: try: make_Bar(self.Model.feature_importances_) except:pass save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Standardization_Model(Unsupervised):#z-score标准化 无监督 def __init__(self, args_use, model, *args, **kwargs): super(Standardization_Model, self).__init__(*args, **kwargs) self.Model = StandardScaler() self.k = {} self.Model_Name = 'StandardScaler' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData var = self.Model.var_.tolist() means = self.Model.mean_.tolist() scale = self.Model.scale_.tolist() Conversion_control(y_data,x_data,tab) make_bar('标准差',var,tab) make_bar('方差',means,tab) make_bar('Scale',scale,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class MinMaxScaler_Model(Unsupervised):#离差标准化 def __init__(self, args_use, model, *args, **kwargs): super(MinMaxScaler_Model, self).__init__(*args, **kwargs) self.Model = MinMaxScaler(feature_range=args_use['feature_range']) self.k = {} self.Model_Name = 'MinMaxScaler' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData scale = self.Model.scale_.tolist() max_ = self.Model.data_max_.tolist() min_ = self.Model.data_min_.tolist() Conversion_control(y_data,x_data,tab) make_bar('Scale',scale,tab) tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))], row=[max_ + min_]), '数据表格') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class LogScaler_Model(prep_Base):#对数标准化 def __init__(self, args_use, model, *args, **kwargs): super(LogScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'LogScaler' def Fit(self, x_data, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.max_logx = np.log(x_data.max()) return 'None', 'None' def Predict(self, x_data): try: max_logx = self.max_logx except: self.have_Fit = False self.Fit(x_data) max_logx = self.max_logx self.x_trainData = x_data.copy() x_Predict = (np.log(x_data)/max_logx) self.y_trainData = x_Predict.copy() return x_Predict,'对数变换' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class atanScaler_Model(prep_Base):#atan标准化 def __init__(self, args_use, model, *args, **kwargs): super(atanScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'atanScaler' def Fit(self, x_data, *args, **kwargs): return 'None', 'None' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = (np.arctan(x_data)*(2/np.pi)) self.y_trainData = x_Predict.copy() return x_Predict,'atan变换' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_control(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class decimalScaler_Model(prep_Base):#小数定标准化 def __init__(self, args_use, model, *args, **kwargs): super(decimalScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'Decimal_normalization' def Fit(self, x_data, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())]) return 'None', 'None' def Predict(self, x_data): self.x_trainData = x_data.copy() try: j = self.j except: self.have_Fit = False self.Fit(x_data) j = self.j x_Predict = (x_data/(10**j)) self.y_trainData = x_Predict.copy() return x_Predict,'小数定标标准化' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData j = self.j Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Mapzoom_Model(prep_Base):#映射标准化 def __init__(self, args_use, model, *args, **kwargs): super(Mapzoom_Model, self).__init__(*args, **kwargs) self.Model = None self.feature_range = args_use['feature_range'] self.k = {} self.Model_Name = 'Decimal_normalization' def Fit(self, x_data, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.max = x_data.max() self.min = x_data.min() return 'None', 'None' def Predict(self, x_data): self.x_trainData = x_data.copy() try: max = self.max min = self.min except: self.have_Fit = False self.Fit(x_data) max = self.max min = self.min x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min) self.y_trainData = x_Predict.copy() return x_Predict,'映射标准化' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData max = self.max min = self.min Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class sigmodScaler_Model(prep_Base):#sigmod变换 def __init__(self, args_use, model, *args, **kwargs): super(sigmodScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'sigmodScaler_Model' def Fit(self, x_data, *args, **kwargs): return 'None', 'None' def Predict(self, x_data:np.array): self.x_trainData = x_data.copy() x_Predict = (1/(1+np.exp(-x_data))) self.y_trainData = x_Predict.copy() return x_Predict,'Sigmod变换' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_control(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化 def __init__(self, args_use, model, *args, **kwargs): super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs) self.Model = None self.feature_range = args_use['feature_range'] self.k = {} self.Model_Name = 'Fuzzy_quantization' def Fit(self, x_data, *args, **kwargs): if not self.have_Fit: # 不允许第二次训练 self.max = x_data.max() self.min = x_data.min() return 'None', 'None' def Predict(self, x_data,*args,**kwargs): self.y_trainData = x_data.copy() try: max = self.max min = self.min except: self.have_Fit = False self.Fit(x_data) max = self.max min = self.min x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2)) self.y_trainData = x_Predict.copy() return x_Predict,'映射标准化' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData max = self.max min = self.min Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Regularization_Model(Unsupervised):#正则化 def __init__(self, args_use, model, *args, **kwargs): super(Regularization_Model, self).__init__(*args, **kwargs) self.Model = Normalizer(norm=args_use['norm']) self.k = {'norm':args_use['norm']} self.Model_Name = 'Regularization' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_control(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, #离散数据 class Binarizer_Model(Unsupervised):#二值化 def __init__(self, args_use, model, *args, **kwargs): super(Binarizer_Model, self).__init__(*args, **kwargs) self.Model = Binarizer(threshold=args_use['threshold']) self.k = {} self.Model_Name = 'Binarizer' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换 for i in range(len(get_y)): tab.add(get_y[i],f'[{i}]数据x-x离散散点图') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Discretization_Model(prep_Base):#n值离散 def __init__(self, args_use, model, *args, **kwargs): super(Discretization_Model, self).__init__(*args, **kwargs) self.Model = None range_ = args_use['split_range'] if range_ == []:raise Exception elif len(range_) == 1:range_.append(range_[0]) self.range = range_ self.k = {} self.Model_Name = 'Discretization' def Fit(self,*args,**kwargs): return 'None','None' def Predict(self,x_data): self.x_trainData = x_data.copy() x_Predict = x_data.copy()#复制 range_ = self.range bool_list = [] max_ = len(range_) - 1 o_t = None for i in range(len(range_)): try: t = float(range_[i]) except:continue if o_t == None:#第一个参数 bool_list.append(x_Predict <= t) else: bool_list.append((o_t <= x_Predict) == (x_Predict < t)) if i == max_: bool_list.append(t <= x_Predict) o_t = t for i in range(len(bool_list)): x_Predict[bool_list[i]] = i self.y_trainData = x_Predict.copy() return x_Predict,f'{len(bool_list)}值离散化' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_trainData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Label_Model(prep_Base):#数字编码 def __init__(self, args_use, model, *args, **kwargs): super(Label_Model, self).__init__(*args, **kwargs) self.Model = [] self.k = {} self.Model_Name = 'LabelEncoder' def Fit(self,x_data,*args, **kwargs): if not self.have_Fit: # 不允许第二次训练 if x_data.ndim == 1:x_data = np.array([x_data]) for i in range(x_data.shape[1]): self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器 return 'None', 'None' def Predict(self, x_data): x_Predict = x_data.copy() if x_data.ndim == 1: x_data = np.array([x_data]) for i in range(x_data.shape[1]): x_Predict[:,i] = self.Model[i].transform(x_data[:,i]) self.y_trainData = x_Predict.copy() return x_Predict,'数字编码' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_trainData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class OneHotEncoder_Model(prep_Base):#独热编码 def __init__(self, args_use, model, *args, **kwargs): super(OneHotEncoder_Model, self).__init__(*args, **kwargs) self.Model = [] self.ndim_up = args_use['ndim_up'] self.k = {} self.Model_Name = 'OneHotEncoder' def Fit(self,x_data,*args, **kwargs): if not self.have_Fit: # 不允许第二次训练 if x_data.ndim == 1:x_data = [x_data] for i in range(x_data.shape[1]): data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维 self.Model.append(OneHotEncoder().fit(data))#训练机器 return 'None', 'None' def Predict(self, x_data): self.x_trainData = x_data.copy() x_new = [] for i in range(x_data.shape[1]): data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维 oneHot = self.Model[i].transform(data).toarray().tolist() x_new.append(oneHot)#添加到列表中 x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法) x_Predict = [] for i in range(x_new.shape[1]): x_Predict.append(x_new[:,i]) x_Predict = np.array(x_Predict)#转换回array if not self.ndim_up:#压缩操作 new_xPredict = [] for i in x_Predict: new_list = [] list_ = i.tolist() for a in list_: new_list += a new = np.array(new_list) new_xPredict.append(new) self.y_trainData = x_Predict.copy() return np.array(new_xPredict),'独热编码' #不保存y_trainData return x_Predict,'独热编码'#不需要降维 def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_trainData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class Missed_Model(Unsupervised):#缺失数据补充 def __init__(self, args_use, model, *args, **kwargs): super(Missed_Model, self).__init__(*args, **kwargs) self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'], fill_value=args_use['fill_value']) self.k = {} self.Model_Name = 'Missed' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'填充缺失' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_control(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class PCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(PCA_Model, self).__init__(*args, **kwargs) self.Model = PCA(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components':args_use['n_components']} self.Model_Name = 'PCA' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'PCA' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_Separate(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class RPCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(RPCA_Model, self).__init__(*args, **kwargs) self.Model = IncrementalPCA(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components': args_use['n_components']} self.Model_Name = 'RPCA' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'RPCA' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_Separate(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class KPCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(KPCA_Model, self).__init__(*args, **kwargs) self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel']) self.n_components = args_use['n_components'] self.kernel = args_use['kernel'] self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']} self.Model_Name = 'KPCA' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'KPCA' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_Separate(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class LDA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(LDA_Model, self).__init__(*args, **kwargs) self.Model = LDA(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components': args_use['n_components']} self.Model_Name = 'LDA' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'LDA' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_Separate(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class NMF_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(NMF_Model, self).__init__(*args, **kwargs) self.Model = NMF(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components':args_use['n_components']} self.Model_Name = 'NFM' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'NMF' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_Separate(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class TSNE_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(TSNE_Model, self).__init__(*args, **kwargs) self.Model = TSNE(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components':args_use['n_components']} self.Model_Name = 't-SNE' def Fit(self,*args, **kwargs): return 'None', 'None' def Predict(self, x_data): self.x_trainData = x_data.copy() x_Predict = self.Model.fit_transform(x_data) self.y_trainData = x_Predict.copy() return x_Predict,'SNE' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData Conversion_Separate(y_data,x_data,tab) save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习 def __init__(self,args_use,model,*args,**kwargs): super(MLP_Model, self).__init__(*args,**kwargs) Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model] self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'], solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter']) #记录这两个是为了克隆 self.hidden_layer_sizes = args_use['hidden_size'] self.activation = args_use['activation'] self.max_iter = args_use['max_iter'] self.solver = args_use['solver'] self.alpha = args_use['alpha'] self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'], 'solver':args_use['solver'],'alpha':args_use['alpha']} self.Model_Name = model class kmeans_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(kmeans_Model, self).__init__(*args, **kwargs) self.Model = KMeans(n_clusters=args_use['n_clusters']) self.n_clusters = args_use['n_clusters'] self.k = {'n_clusters':args_use['n_clusters']} self.Model_Name = 'k-means' def Predict(self, x_data): y_Predict = self.Model.predict(x_data) return y_Predict,'k-means' class Agglomerative_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(Agglomerative_Model, self).__init__(*args, **kwargs) self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means self.n_clusters = args_use['n_clusters'] self.k = {'n_clusters':args_use['n_clusters']} self.Model_Name = 'Agglomerative' def Predict(self, x_data): y_Predict = self.Model.fit_predict(x_data) return y_Predict,'Agglomerative' class DBSCAN_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(DBSCAN_Model, self).__init__(*args, **kwargs) self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples']) #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数) # min_samples self.eps = args_use['eps'] self.min_samples = args_use['min_samples'] self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']} self.Model_Name = 'DBSCAN' def Predict(self, x_data): y_Predict = self.Model.fit_predict(x_data) return y_Predict,'DBSCAN' class Machine_Learner(Learner):#数据处理者 def __init__(self,*args, **kwargs): super().__init__(*args, **kwargs) self.Learner = {}#记录机器 self.Learn_Dic = {'Line':Line_Model, 'Ridge':Line_Model, 'Lasso':Line_Model, 'LogisticRegression':LogisticRegression_Model, 'Knn_class':Knn_Model, 'Knn': Knn_Model, 'Tree_class': Tree_Model, 'Tree': Tree_Model, 'Forest':Forest_Model, 'Forest_class': Forest_Model, 'GradientTree_class':GradientTree_Model, 'GradientTree': GradientTree_Model, 'Variance':Variance_Model, 'SelectKBest':SelectKBest_Model, 'Z-Score':Standardization_Model, 'MinMaxScaler':MinMaxScaler_Model, 'LogScaler':LogScaler_Model, 'atanScaler':atanScaler_Model, 'decimalScaler':decimalScaler_Model, 'sigmodScaler':sigmodScaler_Model, 'Mapzoom':Mapzoom_Model, 'Fuzzy_quantization':Fuzzy_quantization_Model, 'Regularization':Regularization_Model, 'Binarizer':Binarizer_Model, 'Discretization':Discretization_Model, 'Label':Label_Model, 'OneHotEncoder':OneHotEncoder_Model, 'Missed':Missed_Model, 'PCA':PCA_Model, 'RPCA':RPCA_Model, 'KPCA':KPCA_Model, 'LDA':LDA_Model, 'SVC':SVC_Model, 'SVR':SVR_Model, 'MLP':MLP_Model, 'MLP_class': MLP_Model, 'NMF':NMF_Model, 't-SNE':TSNE_Model, 'k-means':kmeans_Model, 'Agglomerative':Agglomerative_Model, 'DBSCAN':DBSCAN_Model, } self.Learner_Type = {}#记录机器的类型 def p_Args(self,Text,Type):#解析参数 args = {} args_use = {} #输入数据 exec(Text,args) #处理数据 if Type in ('MLP','MLP_class'): args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用 else: args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用 args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用 if Type in ('MLP','MLP_class'): args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用 else: args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用 args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同) args_use['p'] = int(args.get('p', 2)) # 距离计算方式 args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维 if Type in ('Tree','Forest','GradientTree'): args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度 else: args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度 args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优 args_use['max_features'] = args.get('max_features', None) # 选用最多特征数 args_use['max_depth'] = args.get('max_depth', None) # 最大深度 args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合) args_use['P'] = float(args.get('min_samples_split', 0.8)) args_use['k'] = args.get('k',1) args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif, 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}. get(args.get('score_func','f_classif'),f_classif)) args_use['feature_range'] = tuple(args.get('feature_range',(0,1))) args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2 args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征 args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征 args_use['ndim_up'] = bool(args.get('ndim_up', True)) args_use['miss_value'] = args.get('miss_value',np.nan) args_use['fill_method'] = args.get('fill_method','mean') args_use['fill_value'] = args.get('fill_value',None) args_use['n_components'] = args.get('n_components',1) args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear') args_use['n_Tree'] = args.get('n_Tree',100) args_use['gamma'] = args.get('gamma',1) args_use['hidden_size'] = tuple(args.get('hidden_size',(100,))) args_use['activation'] = str(args.get('activation','relu')) args_use['solver'] = str(args.get('solver','adam')) if Type in ('k-means',): args_use['n_clusters'] = int(args.get('n_clusters',8)) else: args_use['n_clusters'] = int(args.get('n_clusters', 2)) args_use['eps'] = float(args.get('n_clusters', 0.5)) args_use['min_samples'] = int(args.get('n_clusters', 5)) return args_use def Add_Learner(self,Learner,Text=''): get = self.Learn_Dic[Learner] name = f'Le[{len(self.Learner)}]{Learner}' #参数调节 args_use = self.p_Args(Text,Learner) #生成学习器 self.Learner[name] = get(model=Learner,args_use=args_use) self.Learner_Type[name] = Learner def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}' #参数调节 args_use = self.p_Args(Text,'SelectFrom_Model') #生成学习器 self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic) self.Learner_Type[name] = 'SelectFrom_Model' def Return_Learner(self): return self.Learner.copy() def get_Learner(self,name): return self.Learner[name] def get_Learner_Type(self,name): return self.Learner_Type[name] def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs): x_data = self.get_Sheet(x_name) y_data = self.get_Sheet(y_name) model = self.get_Learner(Learner) return model.Fit(x_data,y_data,split) def Predict(self,x_name,Learner,Text='',**kwargs): x_data = self.get_Sheet(x_name) model = self.get_Learner(Learner) y_data,name = model.Predict(x_data) self.Add_Form(y_data,f'{x_name}:{name}') return y_data def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作 model = self.get_Learner(Learner) x = self.get_Sheet(name_x) y = self.get_Sheet(name_y) return model.Score(x,y) def Show_Args(self,Learner,Dic):#显示参数 model = self.get_Learner(Learner) return model.Des(Dic) def Del_Leaner(self,Leaner): del self.Learner[Leaner] del self.Learner_Type[Leaner]