|
@@ -879,6 +879,112 @@ class UnsupervisedModel(prep_Base):
|
|
self.Model.fit(x_data)
|
|
self.Model.fit(x_data)
|
|
return 'None', 'None'
|
|
return 'None', 'None'
|
|
|
|
|
|
|
|
+class Near_feature_scatter_class_More(Unsupervised):
|
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
|
+ super(Near_feature_scatter_class_More, self).__init__(*args, **kwargs)
|
|
|
|
+ self.Model = None
|
|
|
|
+ self.k = {}
|
|
|
|
+ #记录这两个是为了克隆
|
|
|
|
+ self.Model_Name = model
|
|
|
|
+
|
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
|
+ tab = Tab()
|
|
|
|
+ y = self.y_trainData
|
|
|
|
+ x_data = self.x_trainData
|
|
|
|
+ class_ = np.unique(self.y_trainData).tolist()
|
|
|
|
+ class_heard = [f'簇[{i}]' for i in range(len(class_))]
|
|
|
|
+
|
|
|
|
+ get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
|
|
|
|
+ for i in range(len(get)):
|
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
|
+
|
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
|
+ tab.add(c, '数据表')
|
|
|
|
+
|
|
|
|
+ save = Dic + r'/render.HTML'
|
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
|
+ return save,
|
|
|
|
+
|
|
|
|
+class Near_feature_scatter_More(Unsupervised):
|
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
|
+ super(Near_feature_scatter_More, self).__init__(*args, **kwargs)
|
|
|
|
+ self.Model = None
|
|
|
|
+ self.k = {}
|
|
|
|
+ #记录这两个是为了克隆
|
|
|
|
+ self.Model_Name = model
|
|
|
|
+
|
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
|
+ tab = Tab()
|
|
|
|
+ y_data = self.y_trainData
|
|
|
|
+ get_y = Feature_visualization(y_data, '转换数据') # 转换
|
|
|
|
+ for i in range(len(get_y)):
|
|
|
|
+ tab.add(get_y[i], f'[{i}]变维数据x-x散点图')
|
|
|
|
+
|
|
|
|
+ heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
|
+ tab.add(c, '数据表')
|
|
|
|
+
|
|
|
|
+ save = Dic + r'/render.HTML'
|
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
|
+ return save,
|
|
|
|
+
|
|
|
|
+class Near_feature_scatter_class(Study_MachineBase):#临近特征散点图:分类数据
|
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):
|
|
|
|
+ super(Near_feature_scatter_class, self).__init__(*args,**kwargs)
|
|
|
|
+ self.Model = None
|
|
|
|
+ self.k = {}
|
|
|
|
+ #记录这两个是为了克隆
|
|
|
|
+ self.Model_Name = model
|
|
|
|
+
|
|
|
|
+ def Des(self,Dic='render.html',*args,**kwargs):
|
|
|
|
+ #获取数据
|
|
|
|
+ class_ = np.unique(self.y_trainData).tolist()
|
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
|
+ tab = Tab()
|
|
|
|
+
|
|
|
|
+ y = self.y_trainData
|
|
|
|
+ x_data = self.x_trainData
|
|
|
|
+ get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
|
|
|
|
+ for i in range(len(get)):
|
|
|
|
+ tab.add(get[i], f'{i}临近特征散点图')
|
|
|
|
+
|
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
|
+ tab.add(c, '数据表')
|
|
|
|
+
|
|
|
|
+ save = Dic + r'/render.HTML'
|
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
|
+ return save,
|
|
|
|
+
|
|
|
|
+class Near_feature_scatter(Study_MachineBase):#临近特征散点图:连续数据
|
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):
|
|
|
|
+ super(Near_feature_scatter, self).__init__(*args,**kwargs)
|
|
|
|
+ self.Model = None
|
|
|
|
+ self.k = {}
|
|
|
|
+ #记录这两个是为了克隆
|
|
|
|
+ self.Model_Name = model
|
|
|
|
+
|
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
|
+ tab = Tab()
|
|
|
|
+ x_data = self.x_trainData
|
|
|
|
+ y = self.y_trainData
|
|
|
|
+
|
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
|
+ for i in range(len(get)):
|
|
|
|
+ tab.add(get[i], f'{i}临近特征散点图')
|
|
|
|
+
|
|
|
|
+ columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
|
+ tab.add(make_Tab(columns,[data]), '数据表')
|
|
|
|
+
|
|
|
|
+ save = Dic + r'/render.HTML'
|
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
|
+ return save,
|
|
|
|
+
|
|
class Line_Model(Study_MachineBase):
|
|
class Line_Model(Study_MachineBase):
|
|
def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
super(Line_Model, self).__init__(*args,**kwargs)
|
|
super(Line_Model, self).__init__(*args,**kwargs)
|