Learn_Numpy.py 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts.components import Image
  3. from pyecharts import options as opts
  4. from random import randint
  5. from pyecharts.charts import *
  6. from pyecharts.options.series_options import JsCode
  7. from scipy.cluster.hierarchy import dendrogram, ward
  8. import matplotlib.pyplot as plt
  9. from pandas import DataFrame,read_csv
  10. import numpy as np
  11. import re
  12. from sklearn.model_selection import train_test_split
  13. from sklearn.linear_model import *
  14. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  15. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  16. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  17. GradientBoostingRegressor)
  18. from sklearn.metrics import accuracy_score
  19. from sklearn.feature_selection import *
  20. from sklearn.preprocessing import *
  21. from sklearn.impute import SimpleImputer
  22. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  23. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  24. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  25. from sklearn.neural_network import MLPClassifier,MLPRegressor
  26. from sklearn.manifold import TSNE
  27. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  28. from pyecharts.charts import *
  29. # import sklearn as sk
  30. #设置
  31. np.set_printoptions(threshold=np.inf)
  32. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  33. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  34. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  35. class Table(Table_Fisrt):
  36. def add(self, headers, rows, attributes = None):
  37. if len(rows) == 1:
  38. new_headers = ['数据类型','数据']
  39. new_rows = list(zip(headers,rows[0]))
  40. return super().add(new_headers,new_rows,attributes)
  41. else:
  42. return super().add(headers, rows, attributes)
  43. def make_list(first,end,num=35):
  44. n = num / (end - first)
  45. if n == 0: n = 1
  46. re = []
  47. n_first = first * n
  48. n_end = end * n
  49. while n_first <= n_end:
  50. cul = n_first / n
  51. re.append(round(cul,2))
  52. n_first += 1
  53. return re
  54. def list_filter(list_,num=70):
  55. #假设列表已经不重复
  56. if len(list_) <= num:return list_
  57. n = int(num / len(list_))
  58. re = list_[::n]
  59. return re
  60. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  61. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  62. # a-特征x,b-特征x-1,c-其他特征
  63. o_cList = []
  64. if len(x_means) == 1:
  65. n_ra = x_range[0]
  66. if Type[0] == 1:
  67. ra = make_list(n_ra[0], n_ra[1], 70)
  68. else:
  69. ra = n_ra
  70. a = np.array([i for i in ra]).reshape(-1,1)
  71. y_data = Predict_Func(a)[0].tolist()
  72. value = [[0 , float(a[i]), y_data[i]] for i in range(len(a))]
  73. c = (HeatMap()
  74. .add_xaxis(['None'])
  75. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  76. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  77. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  78. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  79. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1,
  80. min_=int(min(y_data)),
  81. pos_right='3%')) # 显示
  82. )
  83. o_cList.append(c)
  84. return o_cList
  85. for i in range(len(x_means)):
  86. if i == 0:
  87. continue
  88. n_ra = x_range[i - 1]
  89. Type_ra = Type[i - 1]
  90. n_rb = x_range[i]
  91. Type_rb = Type[i]
  92. if Type_ra == 1:
  93. ra = make_list(n_ra[0],n_ra[1],70)
  94. else:
  95. ra = list_filter(n_ra)#可以接受最大为70
  96. if Type_rb == 1:
  97. rb = make_list(n_rb[0],n_rb[1],35)
  98. else:
  99. rb = list_filter(n_rb)#可以接受最大为70
  100. a = np.array([i for i in ra for _ in rb]).T
  101. b = np.array([i for _ in ra for i in rb]).T
  102. data = np.array([x_means for _ in ra for i in rb])
  103. data[:, i - 1] = a
  104. data[:, i] = b
  105. y_data = Predict_Func(data)[0].tolist()
  106. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  107. c = (HeatMap()
  108. .add_xaxis(np.unique(a))
  109. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  110. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  111. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  112. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  113. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  114. pos_right='3%'))#显示
  115. )
  116. o_cList.append(c)
  117. return o_cList
  118. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  119. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  120. # a-特征x,b-特征x-1,c-其他特征
  121. #规定,i-1是x轴,a是x轴,x_1是x轴
  122. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  123. if not nono:
  124. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  125. else:v_dict = []
  126. for i in class_dict:
  127. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  128. o_cList = []
  129. if len(x_means) == 1:
  130. n_ra = x_range[0]
  131. if Type[0] == 1:
  132. ra = make_list(n_ra[0], n_ra[1], 70)
  133. else:
  134. ra = n_ra
  135. a = np.array([i for i in ra]).reshape(-1,1)
  136. y_data = Predict_Func(a)[0].tolist()
  137. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  138. c = (HeatMap()
  139. .add_xaxis(['None'])
  140. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  141. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  142. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  143. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  144. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  145. min_=-1,
  146. is_piecewise=True, pieces=v_dict,
  147. orient='horizontal', pos_bottom='3%'))
  148. )
  149. o_cList.append(c)
  150. return o_cList
  151. #如果x_means长度不等于1则执行下面
  152. for i in range(len(x_means)):
  153. if i == 0:
  154. continue
  155. n_ra = x_range[i-1]
  156. Type_ra = Type[i-1]
  157. n_rb = x_range[i]
  158. Type_rb = Type[i]
  159. if Type_ra == 1:
  160. ra = make_list(n_ra[0],n_ra[1],70)
  161. else:
  162. ra = n_ra
  163. if Type_rb == 1:
  164. rb = make_list(n_rb[0],n_rb[1],35)
  165. else:
  166. rb = n_rb
  167. a = np.array([i for i in ra for _ in rb]).T
  168. b = np.array([i for _ in ra for i in rb]).T
  169. data = np.array([x_means for _ in ra for i in rb])
  170. data[:, i - 1] = a
  171. data[:, i] = b
  172. y_data = Predict_Func(data)[0].tolist()
  173. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  174. c = (HeatMap()
  175. .add_xaxis(np.unique(a))
  176. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  177. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  178. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  179. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  180. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  181. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  182. )
  183. o_cList.append(c)
  184. return o_cList
  185. def SeeTree(Dic):
  186. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  187. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  188. node_Dict = {}
  189. link_list = []
  190. with open(Dic, 'r') as f: # 貌似必须分开w和r
  191. for i in f:
  192. try:
  193. get = re.findall(node_re, i)[0]
  194. if get[0] != '':
  195. try:
  196. v = float(get[0])
  197. except:
  198. v = 0
  199. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  200. continue
  201. except:
  202. pass
  203. try:
  204. get = re.findall(link_re, i)[0]
  205. if get[0] != '' and get[1] != '':
  206. link_list.append((get[0], get[1]))
  207. except:
  208. pass
  209. father_list = [] # 已经有父亲的list
  210. for i in link_list:
  211. father = i[0] # 父节点
  212. son = i[1] # 子节点
  213. try:
  214. node_Dict[father]['children'].append(node_Dict[son])
  215. father_list.append(son)
  216. if int(son) == 0: print('F')
  217. except:
  218. pass
  219. father = list(set(node_Dict.keys()) - set(father_list))
  220. c = (
  221. Tree()
  222. .add("", [node_Dict[father[0]]], is_roam=True)
  223. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  224. toolbox_opts=opts.ToolboxOpts(is_show=True))
  225. )
  226. return c
  227. def make_Tab(heard,row):
  228. return Table().add(headers=heard, rows=row)
  229. def scatter(w_heard,w):
  230. c = (
  231. Scatter()
  232. .add_xaxis(w_heard)
  233. .add_yaxis('', w, **Label_Set)
  234. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  235. )
  236. return c
  237. def bar(w_heard,w):
  238. c = (
  239. Bar()
  240. .add_xaxis(w_heard)
  241. .add_yaxis('', abs(w).tolist(), **Label_Set)
  242. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  243. )
  244. return c
  245. # def line(w_sum,w,b):
  246. # x = np.arange(-5, 5, 1)
  247. # c = (
  248. # Line()
  249. # .add_xaxis(x.tolist())
  250. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  251. # )
  252. # for i in range(len(w)):
  253. # y = x * w[i] + b
  254. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  255. # return c
  256. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  257. y = y_trainData.tolist()
  258. x_data = x_trainData.T
  259. re = []
  260. for i in range(len(x_data)):
  261. x = x_data[i]
  262. p = int(x.max() - x.min()) / 5
  263. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  264. y_num = x_num * w[i] + (w[i] / w_sum) * b
  265. c = (
  266. Line()
  267. .add_xaxis(x_num.tolist())
  268. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  269. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  270. )
  271. t = (
  272. Scatter()
  273. .add_xaxis(x.tolist())
  274. .add_yaxis(f'{i}特征', y, **Label_Set)
  275. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  276. )
  277. t.overlap(c)
  278. re.append(t)
  279. return re
  280. def get_Color():
  281. # 随机颜色,雷达图默认非随机颜色
  282. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  283. color = '#'
  284. for a in rgb:
  285. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  286. return color
  287. def is_continuous(data:np.array,f:float=0.1):
  288. data = data.tolist()
  289. l = np.unique(data).tolist()
  290. try:
  291. re = len(l)/len(data)>=f or len(data) <= 3
  292. return re
  293. except:return False
  294. def make_Cat(x_data):
  295. Cat = Categorical_Data()
  296. for i in range(len(x_data)):
  297. x1 = x_data[i] # x坐标
  298. Cat(x1)
  299. return Cat
  300. def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  301. x_data = x_trainData.T
  302. if len(x_data) == 1:
  303. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  304. Cat = make_Cat(x_data)
  305. o_cList = []
  306. for i in range(len(x_data)):
  307. for a in range(len(x_data)):
  308. if a <= i: continue
  309. x1 = x_data[i] # x坐标
  310. x1_con = is_continuous(x1)
  311. x2 = x_data[a] # y坐标
  312. x2_con = is_continuous(x2)
  313. o_c = None # 旧的C
  314. for class_num in range(len(class_)):
  315. n_class = class_[class_num]
  316. x_1 = x1[y == n_class].tolist()
  317. x_2 = x2[y == n_class]
  318. x_2_new = np.unique(x_2)
  319. x_2 = x2[y == n_class].tolist()
  320. #x与散点图不同,这里是纵坐标
  321. c = (Scatter()
  322. .add_xaxis(x_2)
  323. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  324. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  325. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  326. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  327. )
  328. c.add_xaxis(x_2_new)
  329. if o_c == None:
  330. o_c = c
  331. else:
  332. o_c = o_c.overlap(c)
  333. o_cList.append(o_c)
  334. means,x_range,Type = Cat.get()
  335. return o_cList,means,x_range,Type
  336. def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  337. x_data = x_trainData.T
  338. if len(x_data) == 1:
  339. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  340. Cat = make_Cat(x_data)
  341. o_cList = []
  342. for i in range(len(x_data)):
  343. for a in range(len(x_data)):
  344. if a <= i: continue
  345. x1 = x_data[i] # x坐标
  346. x1_con = is_continuous(x1)
  347. x2 = x_data[a] # y坐标
  348. x2_con = is_continuous(x2)
  349. o_c = None # 旧的C
  350. for class_num in range(len(class_)):
  351. n_class = class_[class_num]
  352. x_1 = x1[y == n_class].tolist()
  353. x_2 = x2[y == n_class]
  354. x_2_new = np.unique(x_2)
  355. x_2 = x2[y == n_class].tolist()
  356. #x与散点图不同,这里是纵坐标
  357. c = (Scatter()
  358. .add_xaxis(x_2)
  359. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  360. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  361. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  362. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  363. )
  364. c.add_xaxis(x_2_new)
  365. #添加簇中心
  366. try:
  367. center_x_2 = [center[class_num][a]]
  368. except:
  369. center_x_2 = [0]
  370. b = (Scatter()
  371. .add_xaxis(center_x_2)
  372. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  373. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  374. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  375. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  376. )
  377. c.overlap(b)
  378. if o_c == None:
  379. o_c = c
  380. else:
  381. o_c = o_c.overlap(c)
  382. o_cList.append(o_c)
  383. means,x_range,Type = Cat.get()
  384. return o_cList,means,x_range,Type
  385. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  386. x_data = x_trainData.T
  387. if len(x_data) == 1:
  388. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  389. Cat = make_Cat(x_data)
  390. o_cList = []
  391. for i in range(len(x_data)):
  392. x1 = x_data[i] # x坐标
  393. x1_con = is_continuous(x1)
  394. if i == 0:continue
  395. x2 = x_data[i - 1] # y坐标
  396. x2_con = is_continuous(x2)
  397. o_c = None # 旧的C
  398. for n_class in class_:
  399. x_1 = x1[y == n_class].tolist()
  400. x_2 = x2[y == n_class]
  401. x_2_new = np.unique(x_2)
  402. x_2 = x2[y == n_class].tolist()
  403. #x与散点图不同,这里是纵坐标
  404. c = (Scatter()
  405. .add_xaxis(x_2)
  406. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  407. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  408. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  409. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  410. )
  411. c.add_xaxis(x_2_new)
  412. if o_c == None:
  413. o_c = c
  414. else:
  415. o_c = o_c.overlap(c)
  416. o_cList.append(o_c)
  417. means,x_range,Type = Cat.get()
  418. return o_cList,means,x_range,Type
  419. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  420. x_data = x_trainData.T
  421. if len(x_data) == 1:
  422. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  423. o_cList = []
  424. means.append(0)
  425. means = np.array(means)
  426. for i in range(len(x_data)):
  427. if i == 0:continue
  428. x1_con = is_continuous(x_data[i])
  429. x2 = x_data[i - 1] # y坐标
  430. x2_con = is_continuous(x2)
  431. o_c = None # 旧的C
  432. for class_num in range(len(class_)):
  433. n_class = class_[class_num]
  434. x2_new = np.unique(x2[y == n_class])
  435. #x与散点图不同,这里是纵坐标
  436. #加入这个判断是为了解决sklearn历史遗留问题
  437. if len(class_) == 2:#二分类问题
  438. if class_num == 0:continue
  439. w = w_list[0]
  440. b = b_list[0]
  441. else:#多分类问题
  442. w = w_list[class_num]
  443. b = b_list[class_num]
  444. if x2_con:
  445. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  446. w = np.append(w, 0)
  447. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  448. c = (
  449. Line()
  450. .add_xaxis(x2_new)
  451. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  452. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  453. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  454. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  455. )
  456. if o_c == None:
  457. o_c = c
  458. else:
  459. o_c = o_c.overlap(c)
  460. #下面不要接任何代码,因为上面会continue
  461. o_cList.append(o_c)
  462. return o_cList
  463. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  464. x_data = x_trainData.T
  465. if len(x_data) == 1:
  466. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  467. o_cList = []
  468. means.append(0)#确保mean[i+1]不会超出index
  469. means = np.array(means)
  470. w = np.append(w,0)
  471. for i in range(len(x_data)):
  472. x1 = x_data[i]
  473. x1_con = is_continuous(x1)
  474. if x1_con:
  475. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  476. x1_new = np.unique(x1)
  477. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  478. y_con = is_continuous(y_data)
  479. c = (
  480. Line()
  481. .add_xaxis(x1_new)
  482. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  483. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  484. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  485. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  486. )
  487. o_cList.append(c)
  488. return o_cList
  489. def regress_visualization(x_trainData,y):#y-x数据图
  490. x_data = x_trainData.T
  491. y_con = is_continuous(y)
  492. Cat = make_Cat(x_data)
  493. o_cList = []
  494. for i in range(len(x_data)):
  495. x1 = x_data[i] # x坐标
  496. x1_con = is_continuous(x1)
  497. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  498. c = (
  499. Scatter()
  500. .add_xaxis(x1)#研究表明,这个是横轴
  501. .add_yaxis('数据',y,**Label_Set)
  502. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  503. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  504. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True),
  505. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(y.max())+1, min_=int(y.min()),
  506. pos_right='3%'))
  507. )
  508. o_cList.append(c)
  509. means,x_range,Type = Cat.get()
  510. return o_cList,means,x_range,Type
  511. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  512. seeting = global_Set if data_name else global_Leg
  513. x_data = x_trainData.T
  514. only = False
  515. if len(x_data) == 1:
  516. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  517. only = True
  518. o_cList = []
  519. for i in range(len(x_data)):
  520. for a in range(len(x_data)):
  521. if a <= i: continue#重复内容,跳过
  522. x1 = x_data[i] # x坐标
  523. x1_con = is_continuous(x1)
  524. x2 = x_data[a] # y坐标
  525. x2_con = is_continuous(x2)
  526. x2_new = np.unique(x2)
  527. if only:x2_con = False
  528. #x与散点图不同,这里是纵坐标
  529. c = (Scatter()
  530. .add_xaxis(x2)
  531. .add_yaxis(data_name, x1, **Label_Set)
  532. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  533. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  534. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  535. )
  536. c.add_xaxis(x2_new)
  537. o_cList.append(c)
  538. return o_cList
  539. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  540. seeting = global_Set if data_name else global_Leg
  541. x_data = x_trainData.T
  542. only = False
  543. if len(x_data) == 1:
  544. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  545. only = True
  546. o_cList = []
  547. for i in range(len(x_data)):
  548. for a in range(len(x_data)):
  549. if a <= i: continue#重复内容,跳过(a读取的是i后面的)
  550. x1 = x_data[i] # x坐标
  551. x1_con = is_continuous(x1)
  552. x2 = x_data[a] # y坐标
  553. x2_con = is_continuous(x2)
  554. x2_new = np.unique(x2)
  555. x1_list = x1.astype(np.str).tolist()
  556. for i in range(len(x1_list)):
  557. x1_list[i] = [x1_list[i],f'特征{i}']
  558. if only:x2_con = False
  559. #x与散点图不同,这里是纵坐标
  560. c = (Scatter()
  561. .add_xaxis(x2)
  562. .add_yaxis(data_name, x1_list, **Label_Set)
  563. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  564. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  565. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  566. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
  567. )
  568. c.add_xaxis(x2_new)
  569. o_cList.append(c)
  570. return o_cList
  571. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  572. seeting = global_Set if data_name else global_Leg
  573. x_data = x_trainData.T
  574. if len(x_data) == 1:
  575. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  576. o_cList = []
  577. for i in range(len(x_data)):
  578. for a in range(len(x_data)):
  579. if a <= i: continue#重复内容,跳过
  580. x1 = x_data[i] # x坐标
  581. x2 = x_data[a] # y坐标
  582. x2_new = np.unique(x2)
  583. #x与散点图不同,这里是纵坐标
  584. c = (Scatter()
  585. .add_xaxis(x2)
  586. .add_yaxis(data_name, x1, **Label_Set)
  587. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  588. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  589. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  590. )
  591. c.add_xaxis(x2_new)
  592. o_cList.append(c)
  593. return o_cList
  594. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  595. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  596. get_x = Feature_visualization(x_data,'原数据')#原来
  597. get_y = Feature_visualization(y_data,'转换数据')#转换
  598. for i in range(len(get_x)):
  599. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  600. return tab
  601. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  602. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  603. get_x = Feature_visualization(x_data,'原数据')#原来
  604. get_y = Feature_visualization(y_data,'转换数据')#转换
  605. for i in range(len(get_x)):
  606. try:
  607. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  608. except IndexError:pass
  609. try:
  610. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  611. except IndexError:pass
  612. return tab
  613. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  614. if type(y_data) is np.ndarray:
  615. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  616. for i in range(len(get_y)):
  617. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  618. return tab
  619. def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
  620. if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
  621. get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
  622. get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
  623. print(h_data)
  624. print(w_data)
  625. print(h_data.T)
  626. for i in range(len(get_x)):
  627. try:
  628. tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
  629. except IndexError:pass
  630. try:
  631. tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
  632. except IndexError:pass
  633. return tab
  634. def make_bar(name, value,tab):#绘制柱状图
  635. c = (
  636. Bar()
  637. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  638. .add_yaxis(name, value, **Label_Set)
  639. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  640. )
  641. tab.add(c, name)
  642. def judging_Digits(num:(int,float)):#查看小数位数
  643. a = str(abs(num)).split('.')[0]
  644. if a == '':raise ValueError
  645. return len(a)
  646. class Learner:
  647. def __init__(self,*args,**kwargs):
  648. self.numpy_Dic = {}#name:numpy
  649. def Add_Form(self,data:np.array,name):
  650. name = f'{name}[{len(self.numpy_Dic)}]'
  651. self.numpy_Dic[name] = data
  652. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  653. type_ = np.str if str_must else np.float
  654. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  655. try:
  656. data = pf_data.to_numpy(dtype=type_)
  657. except ValueError:
  658. data = pf_data.to_numpy(dtype=np.str)
  659. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  660. self.Add_Form(data,name)
  661. return data
  662. def Add_Python(self, Text, sheet_name):
  663. name = {}
  664. name.update(globals().copy())
  665. name.update(locals().copy())
  666. exec(Text, name)
  667. exec('get = Creat()', name)
  668. if isinstance(name['get'], np.array): # 已经是DataFram
  669. get = name['get']
  670. else:
  671. try:
  672. get = np.array(name['get'])
  673. except:
  674. get = np.array([name['get']])
  675. self.Add_Form(get, sheet_name)
  676. return get
  677. def get_Form(self) -> dict:
  678. return self.numpy_Dic.copy()
  679. def get_Sheet(self,name) -> np.array:
  680. return self.numpy_Dic[name].copy()
  681. def to_CSV(self,Dic:str,name,sep) -> str:
  682. get = self.get_Sheet(name)
  683. np.savetxt(Dic, get, delimiter=sep)
  684. return Dic
  685. def to_Html_One(self,name,Dic=''):
  686. if Dic == '': Dic = f'{name}.html'
  687. get = self.get_Sheet(name)
  688. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  689. get = get.tolist()
  690. for i in range(len(get)):
  691. get[i] = [i+1] + get[i]
  692. headers = [i for i in range(len(get[0]))]
  693. table = Table()
  694. table.add(headers, get).set_global_opts(
  695. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  696. table.render(Dic)
  697. return Dic
  698. def to_Html(self, name, Dic='', type_=0):
  699. if Dic == '': Dic = f'{name}.html'
  700. # 把要画的sheet放到第一个
  701. Sheet_Dic = self.get_Form()
  702. del Sheet_Dic[name]
  703. Sheet_list = [name] + list(Sheet_Dic.keys())
  704. class TAB_F:
  705. def __init__(self, q):
  706. self.tab = q # 一个Tab
  707. def render(self, Dic):
  708. return self.tab.render(Dic)
  709. # 生成一个显示页面
  710. if type_ == 0:
  711. class TAB(TAB_F):
  712. def add(self, table, k, *f):
  713. self.tab.add(table, k)
  714. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  715. elif type_ == 1:
  716. class TAB(TAB_F):
  717. def add(self, table, *k):
  718. self.tab.add(table)
  719. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  720. else:
  721. class TAB(TAB_F):
  722. def add(self, table, *k):
  723. self.tab.add(table)
  724. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  725. # 迭代添加内容
  726. for name in Sheet_list:
  727. get = self.get_Sheet(name)
  728. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  729. get = get.tolist()
  730. for i in range(len(get)):
  731. get[i] = [i+1] + get[i]
  732. headers = [i for i in range(len(get[0]))]
  733. table = Table()
  734. table.add(headers, get).set_global_opts(
  735. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  736. tab.add(table, f'表格:{name}')
  737. tab.render(Dic)
  738. return Dic
  739. class Study_MachineBase:
  740. def __init__(self,*args,**kwargs):
  741. self.Model = None
  742. self.have_Fit = False
  743. self.x_trainData = None
  744. self.y_trainData = None
  745. #有监督学习专有的testData
  746. self.x_testData = None
  747. self.y_testData = None
  748. #记录这两个是为了克隆
  749. def Accuracy(self,y_Predict,y_Really):
  750. return accuracy_score(y_Predict, y_Really)
  751. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  752. self.have_Fit = True
  753. y_data = y_data.ravel()
  754. self.x_trainData = x_data
  755. self.y_trainData = y_data
  756. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  757. self.Model.fit(x_data,y_data)
  758. train_score = self.Model.score(x_train,y_train)
  759. test_score = self.Model.score(x_test,y_test)
  760. return train_score,test_score
  761. def Score(self,x_data,y_data):
  762. Score = self.Model.score(x_data,y_data)
  763. return Score
  764. def Predict(self,x_data,*args,**kwargs):
  765. self.x_testData = x_data.copy()
  766. y_Predict = self.Model.predict(x_data)
  767. self.y_testData = y_Predict.copy()
  768. return y_Predict,'预测'
  769. def Des(self,*args,**kwargs):
  770. return ()
  771. class prep_Base(Study_MachineBase):
  772. def __init__(self,*args,**kwargs):
  773. super(prep_Base, self).__init__(*args,**kwargs)
  774. self.Model = None
  775. def Fit(self, x_data,y_data, *args, **kwargs):
  776. if not self.have_Fit: # 不允许第二次训练
  777. self.x_trainData = x_data
  778. self.y_trainData = y_data
  779. self.Model.fit(x_data,y_data)
  780. return 'None', 'None'
  781. def Predict(self, x_data, *args, **kwargs):
  782. self.x_trainData = x_data
  783. x_Predict = self.Model.transform(x_data)
  784. self.y_trainData = x_Predict
  785. return x_Predict,'特征工程'
  786. def Score(self, x_data, y_data):
  787. return 'None' # 没有score
  788. class Unsupervised(prep_Base):
  789. def Fit(self, x_data, *args, **kwargs):
  790. if not self.have_Fit: # 不允许第二次训练
  791. self.x_trainData = x_data
  792. self.y_trainData = None
  793. self.Model.fit(x_data)
  794. return 'None', 'None'
  795. class UnsupervisedModel(prep_Base):
  796. def Fit(self, x_data, *args, **kwargs):
  797. self.x_trainData = x_data
  798. self.y_trainData = None
  799. self.Model.fit(x_data)
  800. return 'None', 'None'
  801. class Near_feature_scatter_class_More(Unsupervised):
  802. def __init__(self, args_use, model, *args, **kwargs):
  803. super(Near_feature_scatter_class_More, self).__init__(*args, **kwargs)
  804. self.Model = None
  805. self.k = {}
  806. #记录这两个是为了克隆
  807. self.Model_Name = model
  808. def Des(self, Dic, *args, **kwargs):
  809. tab = Tab()
  810. y = self.y_trainData
  811. x_data = self.x_trainData
  812. class_ = np.unique(self.y_trainData).tolist()
  813. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  814. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  815. for i in range(len(get)):
  816. tab.add(get[i], f'{i}训练数据散点图')
  817. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  818. data = class_ + [f'{i}' for i in x_means]
  819. c = Table().add(headers=heard, rows=[data])
  820. tab.add(c, '数据表')
  821. save = Dic + r'/render.HTML'
  822. tab.render(save) # 生成HTML
  823. return save,
  824. class Near_feature_scatter_More(Unsupervised):
  825. def __init__(self, args_use, model, *args, **kwargs):
  826. super(Near_feature_scatter_More, self).__init__(*args, **kwargs)
  827. self.Model = None
  828. self.k = {}
  829. #记录这两个是为了克隆
  830. self.Model_Name = model
  831. def Des(self,Dic,*args,**kwargs):
  832. tab = Tab()
  833. y_data = self.y_trainData
  834. get_y = Feature_visualization(y_data, '转换数据') # 转换
  835. for i in range(len(get_y)):
  836. tab.add(get_y[i], f'[{i}]变维数据x-x散点图')
  837. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  838. data = [f'{i}' for i in x_means]
  839. c = Table().add(headers=heard, rows=[data])
  840. tab.add(c, '数据表')
  841. save = Dic + r'/render.HTML'
  842. tab.render(save) # 生成HTML
  843. return save,
  844. class Near_feature_scatter_class(Study_MachineBase):#临近特征散点图:分类数据
  845. def __init__(self,args_use,model,*args,**kwargs):
  846. super(Near_feature_scatter_class, self).__init__(*args,**kwargs)
  847. self.Model = None
  848. self.k = {}
  849. #记录这两个是为了克隆
  850. self.Model_Name = model
  851. def Des(self,Dic='render.html',*args,**kwargs):
  852. #获取数据
  853. class_ = np.unique(self.y_trainData).tolist()
  854. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  855. tab = Tab()
  856. y = self.y_trainData
  857. x_data = self.x_trainData
  858. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  859. for i in range(len(get)):
  860. tab.add(get[i], f'{i}临近特征散点图')
  861. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  862. data = class_ + [f'{i}' for i in x_means]
  863. c = Table().add(headers=heard, rows=[data])
  864. tab.add(c, '数据表')
  865. save = Dic + r'/render.HTML'
  866. tab.render(save) # 生成HTML
  867. return save,
  868. class Near_feature_scatter(Study_MachineBase):#临近特征散点图:连续数据
  869. def __init__(self,args_use,model,*args,**kwargs):
  870. super(Near_feature_scatter, self).__init__(*args,**kwargs)
  871. self.Model = None
  872. self.k = {}
  873. #记录这两个是为了克隆
  874. self.Model_Name = model
  875. def Des(self,Dic,*args,**kwargs):
  876. tab = Tab()
  877. x_data = self.x_trainData
  878. y = self.y_trainData
  879. get, x_means, x_range,Type = regress_visualization(x_data, y)
  880. for i in range(len(get)):
  881. tab.add(get[i], f'{i}临近特征散点图')
  882. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  883. data = [f'{i}' for i in x_means]
  884. tab.add(make_Tab(columns,[data]), '数据表')
  885. save = Dic + r'/render.HTML'
  886. tab.render(save) # 生成HTML
  887. return save,
  888. class Line_Model(Study_MachineBase):
  889. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  890. super(Line_Model, self).__init__(*args,**kwargs)
  891. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  892. model]
  893. if model == 'Line':
  894. self.Model = Model()
  895. self.k = {}
  896. else:
  897. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  898. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  899. #记录这两个是为了克隆
  900. self.Alpha = args_use['alpha']
  901. self.max_iter = args_use['max_iter']
  902. self.Model_Name = model
  903. def Des(self,Dic,*args,**kwargs):
  904. tab = Tab()
  905. x_data = self.x_trainData
  906. y = self.y_trainData
  907. w_list = self.Model.coef_.tolist()
  908. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  909. b = self.Model.intercept_.tolist()
  910. get, x_means, x_range,Type = regress_visualization(x_data, y)
  911. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  912. for i in range(len(get)):
  913. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  914. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  915. for i in range(len(get)):
  916. tab.add(get[i], f'{i}预测热力图')
  917. tab.add(scatter(w_heard,w_list),'系数w散点图')
  918. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  919. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  920. data = [f'{i}' for i in x_means] + w_list + [b]
  921. if self.Model_Name != 'Line':
  922. columns += ['阿尔法','最大迭代次数']
  923. data += [self.Model.alpha,self.Model.max_iter]
  924. tab.add(make_Tab(columns,[data]), '数据表')
  925. save = Dic + r'/render.HTML'
  926. tab.render(save) # 生成HTML
  927. return save,
  928. class LogisticRegression_Model(Study_MachineBase):
  929. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  930. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  931. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  932. #记录这两个是为了克隆
  933. self.C = args_use['C']
  934. self.max_iter = args_use['max_iter']
  935. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  936. self.Model_Name = model
  937. def Des(self,Dic='render.html',*args,**kwargs):
  938. #获取数据
  939. w_array = self.Model.coef_
  940. w_list = w_array.tolist() # 变为表格
  941. b = self.Model.intercept_
  942. c = self.Model.C
  943. max_iter = self.Model.max_iter
  944. class_ = self.Model.classes_.tolist()
  945. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  946. tab = Tab()
  947. y = self.y_trainData
  948. x_data = self.x_trainData
  949. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  950. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  951. for i in range(len(get)):
  952. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  953. for i in range(len(w_list)):
  954. w = w_list[i]
  955. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  956. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  957. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  958. columns = class_heard + ['截距b','C','最大迭代数']
  959. data = class_ + [b,c,max_iter]
  960. c = Table().add(headers=columns, rows=[data])
  961. tab.add(c, '数据表')
  962. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  963. tab.add(c, '系数数据表')
  964. save = Dic + r'/render.HTML'
  965. tab.render(save) # 生成HTML
  966. return save,
  967. class Categorical_Data:#数据统计助手
  968. def __init__(self):
  969. self.x_means = []
  970. self.x_range = []
  971. self.Type = []
  972. def __call__(self,x1, *args, **kwargs):
  973. get = self.is_continuous(x1)
  974. return get
  975. def is_continuous(self,x1:np.array):
  976. try:
  977. x1_con = is_continuous(x1)
  978. if x1_con:
  979. self.x_means.append(np.mean(x1))
  980. self.add_Range(x1)
  981. else:
  982. raise Exception
  983. return x1_con
  984. except:#找出出现次数最多的元素
  985. new = np.unique(x1)#去除相同的元素
  986. count_list = []
  987. for i in new:
  988. count_list.append(np.sum(x1 == i))
  989. index = count_list.index(max(count_list))#找出最大值的索引
  990. self.x_means.append(x1[index])
  991. self.add_Range(x1,False)
  992. return False
  993. def add_Range(self,x1:np.array,range_=True):
  994. try:
  995. if not range_ : raise Exception
  996. min_ = int(x1.min()) - 1
  997. max_ = int(x1.max()) + 1
  998. #不需要复制列表
  999. self.x_range.append([min_,max_])
  1000. self.Type.append(1)
  1001. except:
  1002. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  1003. self.Type.append(2)
  1004. def get(self):
  1005. return self.x_means,self.x_range,self.Type
  1006. class Knn_Model(Study_MachineBase):
  1007. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1008. super(Knn_Model, self).__init__(*args,**kwargs)
  1009. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  1010. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  1011. #记录这两个是为了克隆
  1012. self.n_neighbors = args_use['n_neighbors']
  1013. self.p = args_use['p']
  1014. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  1015. self.Model_Name = model
  1016. def Des(self,Dic,*args,**kwargs):
  1017. tab = Tab()
  1018. y = self.y_trainData
  1019. x_data = self.x_trainData
  1020. y_test = self.y_testData
  1021. x_test = self.x_testData
  1022. if self.Model_Name == 'Knn_class':
  1023. class_ = self.Model.classes_.tolist()
  1024. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1025. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1026. for i in range(len(get)):
  1027. tab.add(get[i],f'{i}训练数据散点图')
  1028. get = Training_visualization(x_test,class_,y_test)[0]
  1029. for i in range(len(get)):
  1030. tab.add(get[i],f'{i}测试数据散点图')
  1031. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1032. for i in range(len(get)):
  1033. tab.add(get[i], f'{i}预测热力图')
  1034. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1035. data = class_ + [f'{i}' for i in x_means]
  1036. c = Table().add(headers=heard, rows=[data])
  1037. tab.add(c, '数据表')
  1038. else:
  1039. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1040. for i in range(len(get)):
  1041. tab.add(get[i], f'{i}训练数据散点图')
  1042. get = regress_visualization(x_test, y_test)[0]
  1043. for i in range(len(get)):
  1044. tab.add(get[i], f'{i}测试数据类型图')
  1045. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1046. for i in range(len(get)):
  1047. tab.add(get[i], f'{i}预测热力图')
  1048. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1049. data = [f'{i}' for i in x_means]
  1050. c = Table().add(headers=heard, rows=[data])
  1051. tab.add(c, '数据表')
  1052. save = Dic + r'/render.HTML'
  1053. tab.render(save) # 生成HTML
  1054. return save,
  1055. class Tree_Model(Study_MachineBase):
  1056. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1057. super(Tree_Model, self).__init__(*args,**kwargs)
  1058. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  1059. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  1060. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1061. #记录这两个是为了克隆
  1062. self.criterion = args_use['criterion']
  1063. self.splitter = args_use['splitter']
  1064. self.max_features = args_use['max_features']
  1065. self.max_depth = args_use['max_depth']
  1066. self.min_samples_split = args_use['min_samples_split']
  1067. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1068. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1069. self.Model_Name = model
  1070. def Des(self, Dic, *args, **kwargs):
  1071. tab = Tab()
  1072. importance = self.Model.feature_importances_.tolist()
  1073. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  1074. export_graphviz(self.Model, out_file=f)
  1075. make_bar('特征重要性',importance,tab)
  1076. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  1077. y = self.y_trainData
  1078. x_data = self.x_trainData
  1079. y_test = self.y_testData
  1080. x_test = self.x_testData
  1081. if self.Model_Name == 'Tree_class':
  1082. class_ = self.Model.classes_.tolist()
  1083. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1084. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1085. for i in range(len(get)):
  1086. tab.add(get[i],f'{i}训练数据散点图')
  1087. get = Training_visualization(x_test, class_, y_test)[0]
  1088. for i in range(len(get)):
  1089. tab.add(get[i], f'{i}测试数据散点图')
  1090. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1091. for i in range(len(get)):
  1092. tab.add(get[i], f'{i}预测热力图')
  1093. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1094. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  1095. else:
  1096. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1097. for i in range(len(get)):
  1098. tab.add(get[i], f'{i}训练数据散点图')
  1099. get = regress_visualization(x_test, y_test)[0]
  1100. for i in range(len(get)):
  1101. tab.add(get[i], f'{i}测试数据类型图')
  1102. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1103. for i in range(len(get)):
  1104. tab.add(get[i], f'{i}预测热力图')
  1105. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1106. [[f'{i}' for i in x_means] + importance]), '数据表')
  1107. save = Dic + r'/render.HTML'
  1108. tab.render(save) # 生成HTML
  1109. return save,
  1110. class Forest_Model(Study_MachineBase):
  1111. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1112. super(Forest_Model, self).__init__(*args,**kwargs)
  1113. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  1114. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  1115. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1116. #记录这两个是为了克隆
  1117. self.n_estimators = args_use['n_Tree']
  1118. self.criterion = args_use['criterion']
  1119. self.max_features = args_use['max_features']
  1120. self.max_depth = args_use['max_depth']
  1121. self.min_samples_split = args_use['min_samples_split']
  1122. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  1123. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1124. self.Model_Name = model
  1125. def Des(self, Dic, *args, **kwargs):
  1126. tab = Tab()
  1127. #多个决策树可视化
  1128. for i in range(len(self.Model.estimators_)):
  1129. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  1130. export_graphviz(self.Model.estimators_[i], out_file=f)
  1131. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  1132. y = self.y_trainData
  1133. x_data = self.x_trainData
  1134. if self.Model_Name == 'Forest_class':
  1135. class_ = self.Model.classes_.tolist()
  1136. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1137. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1138. for i in range(len(get)):
  1139. tab.add(get[i],f'{i}训练数据散点图')
  1140. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1141. for i in range(len(get)):
  1142. tab.add(get[i], f'{i}预测热力图')
  1143. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1144. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1145. else:
  1146. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1147. for i in range(len(get)):
  1148. tab.add(get[i], f'{i}预测类型图')
  1149. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1150. for i in range(len(get)):
  1151. tab.add(get[i], f'{i}预测热力图')
  1152. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1153. save = Dic + r'/render.HTML'
  1154. tab.render(save) # 生成HTML
  1155. return save,
  1156. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  1157. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1158. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  1159. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  1160. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  1161. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1162. #记录这两个是为了克隆
  1163. self.criterion = args_use['criterion']
  1164. self.splitter = args_use['splitter']
  1165. self.max_features = args_use['max_features']
  1166. self.max_depth = args_use['max_depth']
  1167. self.min_samples_split = args_use['min_samples_split']
  1168. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1169. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1170. self.Model_Name = model
  1171. def Des(self, Dic, *args, **kwargs):
  1172. tab = Tab()
  1173. #多个决策树可视化
  1174. for a in range(len(self.Model.estimators_)):
  1175. for i in range(len(self.Model.estimators_[a])):
  1176. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  1177. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  1178. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  1179. y = self.y_trainData
  1180. x_data = self.x_trainData
  1181. if self.Model_Name == 'Tree_class':
  1182. class_ = self.Model.classes_.tolist()
  1183. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1184. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1185. for i in range(len(get)):
  1186. tab.add(get[i],f'{i}训练数据散点图')
  1187. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1188. for i in range(len(get)):
  1189. tab.add(get[i], f'{i}预测热力图')
  1190. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1191. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1192. else:
  1193. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1194. for i in range(len(get)):
  1195. tab.add(get[i], f'{i}预测类型图')
  1196. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1197. for i in range(len(get)):
  1198. tab.add(get[i], f'{i}预测热力图')
  1199. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1200. save = Dic + r'/render.HTML'
  1201. tab.render(save) # 生成HTML
  1202. return save,
  1203. class SVC_Model(Study_MachineBase):
  1204. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1205. super(SVC_Model, self).__init__(*args,**kwargs)
  1206. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1207. #记录这两个是为了克隆
  1208. self.C = args_use['C']
  1209. self.gamma = args_use['gamma']
  1210. self.kernel = args_use['kernel']
  1211. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1212. self.Model_Name = model
  1213. def Des(self, Dic, *args, **kwargs):
  1214. tab = Tab()
  1215. w_list = self.Model.coef_.tolist()
  1216. b = self.Model.intercept_.tolist()
  1217. class_ = self.Model.classes_.tolist()
  1218. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1219. y = self.y_trainData
  1220. x_data = self.x_trainData
  1221. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1222. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1223. for i in range(len(get)):
  1224. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1225. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  1226. for i in range(len(get)):
  1227. tab.add(get[i], f'{i}预测热力图')
  1228. dic = {2:'离散',1:'连续'}
  1229. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  1230. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1231. save = Dic + r'/render.HTML'
  1232. tab.render(save) # 生成HTML
  1233. return save,
  1234. class SVR_Model(Study_MachineBase):
  1235. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1236. super(SVR_Model, self).__init__(*args,**kwargs)
  1237. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1238. #记录这两个是为了克隆
  1239. self.C = args_use['C']
  1240. self.gamma = args_use['gamma']
  1241. self.kernel = args_use['kernel']
  1242. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1243. self.Model_Name = model
  1244. def Des(self,Dic,*args,**kwargs):
  1245. tab = Tab()
  1246. x_data = self.x_trainData
  1247. y = self.y_trainData
  1248. try:
  1249. w_list = self.Model.coef_.tolist()#未必有这个属性
  1250. b = self.Model.intercept_.tolist()
  1251. U = True
  1252. except:
  1253. U = False
  1254. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1255. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1256. for i in range(len(get)):
  1257. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1258. else:tab.add(get[i], f'{i}预测类型图')
  1259. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1260. for i in range(len(get)):
  1261. tab.add(get[i], f'{i}预测热力图')
  1262. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1263. save = Dic + r'/render.HTML'
  1264. tab.render(save) # 生成HTML
  1265. return save,
  1266. class Variance_Model(Unsupervised):#无监督
  1267. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1268. super(Variance_Model, self).__init__(*args,**kwargs)
  1269. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  1270. #记录这两个是为了克隆
  1271. self.threshold = args_use['P']
  1272. self.k = {'threshold':args_use['P']}
  1273. self.Model_Name = model
  1274. def Des(self,Dic,*args,**kwargs):
  1275. tab = Tab()
  1276. var = self.Model.variances_#标准差
  1277. y_data = self.y_trainData
  1278. if type(y_data) is np.ndarray:
  1279. get = Feature_visualization(self.y_trainData)
  1280. for i in range(len(get)):
  1281. tab.add(get[i],f'[{i}]数据x-x散点图')
  1282. c = (
  1283. Bar()
  1284. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  1285. .add_yaxis('标准差', var.tolist(), **Label_Set)
  1286. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1287. )
  1288. tab.add(c,'数据标准差')
  1289. save = Dic + r'/render.HTML'
  1290. tab.render(save) # 生成HTML
  1291. return save,
  1292. class SelectKBest_Model(prep_Base):#无监督
  1293. def __init__(self, args_use, model, *args, **kwargs):
  1294. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  1295. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  1296. # 记录这两个是为了克隆
  1297. self.k_ = args_use['k']
  1298. self.score_func=args_use['score_func']
  1299. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  1300. self.Model_Name = model
  1301. def Des(self,Dic,*args,**kwargs):
  1302. tab = Tab()
  1303. score = self.Model.scores_.tolist()
  1304. support = self.Model.get_support()
  1305. y_data = self.y_trainData
  1306. x_data = self.x_trainData
  1307. if type(x_data) is np.ndarray:
  1308. get = Feature_visualization(x_data)
  1309. for i in range(len(get)):
  1310. tab.add(get[i],f'[{i}]数据x-x散点图')
  1311. if type(y_data) is np.ndarray:
  1312. get = Feature_visualization(y_data)
  1313. for i in range(len(get)):
  1314. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1315. Choose = []
  1316. UnChoose = []
  1317. for i in range(len(score)):
  1318. if support[i]:
  1319. Choose.append(score[i])
  1320. UnChoose.append(0)#占位
  1321. else:
  1322. UnChoose.append(score[i])
  1323. Choose.append(0)
  1324. c = (
  1325. Bar()
  1326. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1327. .add_yaxis('选中特征', Choose, **Label_Set)
  1328. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1329. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1330. )
  1331. tab.add(c,'单变量重要程度')
  1332. save = Dic + r'/render.HTML'
  1333. tab.render(save) # 生成HTML
  1334. return save,
  1335. class SelectFrom_Model(prep_Base):#无监督
  1336. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1337. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  1338. self.Model = Learner.Model
  1339. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  1340. self.max_features = args_use['k']
  1341. self.estimator=Learner.Model
  1342. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  1343. self.have_Fit = Learner.have_Fit
  1344. self.Model_Name = 'SelectFrom_Model'
  1345. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  1346. if not self.have_Fit: # 不允许第二次训练
  1347. self.Select_Model.fit(x_data, y_data)
  1348. return 'None', 'None'
  1349. return 'NONE','NONE'
  1350. def Predict(self, x_data, *args, **kwargs):
  1351. try:
  1352. self.x_trainData = x_data
  1353. x_Predict = self.Select_Model.transform(x_data)
  1354. self.y_trainData = x_Predict
  1355. print(self.y_trainData)
  1356. print(self.x_trainData)
  1357. return x_Predict,'模型特征工程'
  1358. except:
  1359. return np.array([]),'无结果工程'
  1360. def Des(self,Dic,*args,**kwargs):
  1361. tab = Tab()
  1362. support = self.Select_Model.get_support()
  1363. y_data = self.y_trainData
  1364. x_data = self.x_trainData
  1365. if type(x_data) is np.ndarray:
  1366. get = Feature_visualization(x_data)
  1367. for i in range(len(get)):
  1368. tab.add(get[i],f'[{i}]数据x-x散点图')
  1369. if type(y_data) is np.ndarray:
  1370. get = Feature_visualization(y_data)
  1371. for i in range(len(get)):
  1372. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1373. def make_Bar(score):
  1374. Choose = []
  1375. UnChoose = []
  1376. for i in range(len(score)):
  1377. if support[i]:
  1378. Choose.append(abs(score[i]))
  1379. UnChoose.append(0) # 占位
  1380. else:
  1381. UnChoose.append(abs(score[i]))
  1382. Choose.append(0)
  1383. c = (
  1384. Bar()
  1385. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1386. .add_yaxis('选中特征', Choose, **Label_Set)
  1387. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1388. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1389. )
  1390. tab.add(c,'单变量重要程度')
  1391. try:
  1392. make_Bar(self.Model.coef_)
  1393. except:
  1394. try:
  1395. make_Bar(self.Model.feature_importances_)
  1396. except:pass
  1397. save = Dic + r'/render.HTML'
  1398. tab.render(save) # 生成HTML
  1399. return save,
  1400. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  1401. def __init__(self, args_use, model, *args, **kwargs):
  1402. super(Standardization_Model, self).__init__(*args, **kwargs)
  1403. self.Model = StandardScaler()
  1404. self.k = {}
  1405. self.Model_Name = 'StandardScaler'
  1406. def Des(self,Dic,*args,**kwargs):
  1407. tab = Tab()
  1408. y_data = self.y_trainData
  1409. x_data = self.x_trainData
  1410. var = self.Model.var_.tolist()
  1411. means = self.Model.mean_.tolist()
  1412. scale = self.Model.scale_.tolist()
  1413. Conversion_control(y_data,x_data,tab)
  1414. make_bar('标准差',var,tab)
  1415. make_bar('方差',means,tab)
  1416. make_bar('Scale',scale,tab)
  1417. save = Dic + r'/render.HTML'
  1418. tab.render(save) # 生成HTML
  1419. return save,
  1420. class MinMaxScaler_Model(Unsupervised):#离差标准化
  1421. def __init__(self, args_use, model, *args, **kwargs):
  1422. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  1423. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  1424. self.k = {}
  1425. self.Model_Name = 'MinMaxScaler'
  1426. def Des(self,Dic,*args,**kwargs):
  1427. tab = Tab()
  1428. y_data = self.y_trainData
  1429. x_data = self.x_trainData
  1430. scale = self.Model.scale_.tolist()
  1431. max_ = self.Model.data_max_.tolist()
  1432. min_ = self.Model.data_min_.tolist()
  1433. Conversion_control(y_data,x_data,tab)
  1434. make_bar('Scale',scale,tab)
  1435. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  1436. row=[max_ + min_]), '数据表格')
  1437. save = Dic + r'/render.HTML'
  1438. tab.render(save) # 生成HTML
  1439. return save,
  1440. class LogScaler_Model(prep_Base):#对数标准化
  1441. def __init__(self, args_use, model, *args, **kwargs):
  1442. super(LogScaler_Model, self).__init__(*args, **kwargs)
  1443. self.Model = None
  1444. self.k = {}
  1445. self.Model_Name = 'LogScaler'
  1446. def Fit(self, x_data, *args, **kwargs):
  1447. if not self.have_Fit: # 不允许第二次训练
  1448. self.max_logx = np.log(x_data.max())
  1449. return 'None', 'None'
  1450. def Predict(self, x_data, *args, **kwargs):
  1451. try:
  1452. max_logx = self.max_logx
  1453. except:
  1454. self.have_Fit = False
  1455. self.Fit(x_data)
  1456. max_logx = self.max_logx
  1457. self.x_trainData = x_data.copy()
  1458. x_Predict = (np.log(x_data)/max_logx)
  1459. self.y_trainData = x_Predict.copy()
  1460. return x_Predict,'对数变换'
  1461. def Des(self,Dic,*args,**kwargs):
  1462. tab = Tab()
  1463. y_data = self.y_trainData
  1464. x_data = self.x_trainData
  1465. Conversion_control(y_data,x_data,tab)
  1466. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  1467. save = Dic + r'/render.HTML'
  1468. tab.render(save) # 生成HTML
  1469. return save,
  1470. class atanScaler_Model(prep_Base):#atan标准化
  1471. def __init__(self, args_use, model, *args, **kwargs):
  1472. super(atanScaler_Model, self).__init__(*args, **kwargs)
  1473. self.Model = None
  1474. self.k = {}
  1475. self.Model_Name = 'atanScaler'
  1476. def Fit(self, x_data, *args, **kwargs):
  1477. return 'None', 'None'
  1478. def Predict(self, x_data, *args, **kwargs):
  1479. self.x_trainData = x_data.copy()
  1480. x_Predict = (np.arctan(x_data)*(2/np.pi))
  1481. self.y_trainData = x_Predict.copy()
  1482. return x_Predict,'atan变换'
  1483. def Des(self,Dic,*args,**kwargs):
  1484. tab = Tab()
  1485. y_data = self.y_trainData
  1486. x_data = self.x_trainData
  1487. Conversion_control(y_data,x_data,tab)
  1488. save = Dic + r'/render.HTML'
  1489. tab.render(save) # 生成HTML
  1490. return save,
  1491. class decimalScaler_Model(prep_Base):#小数定标准化
  1492. def __init__(self, args_use, model, *args, **kwargs):
  1493. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  1494. self.Model = None
  1495. self.k = {}
  1496. self.Model_Name = 'Decimal_normalization'
  1497. def Fit(self, x_data, *args, **kwargs):
  1498. if not self.have_Fit: # 不允许第二次训练
  1499. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  1500. return 'None', 'None'
  1501. def Predict(self, x_data, *args, **kwargs):
  1502. self.x_trainData = x_data.copy()
  1503. try:
  1504. j = self.j
  1505. except:
  1506. self.have_Fit = False
  1507. self.Fit(x_data)
  1508. j = self.j
  1509. x_Predict = (x_data/(10**j))
  1510. self.y_trainData = x_Predict.copy()
  1511. return x_Predict,'小数定标标准化'
  1512. def Des(self,Dic,*args,**kwargs):
  1513. tab = Tab()
  1514. y_data = self.y_trainData
  1515. x_data = self.x_trainData
  1516. j = self.j
  1517. Conversion_control(y_data,x_data,tab)
  1518. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  1519. save = Dic + r'/render.HTML'
  1520. tab.render(save) # 生成HTML
  1521. return save,
  1522. class Mapzoom_Model(prep_Base):#映射标准化
  1523. def __init__(self, args_use, model, *args, **kwargs):
  1524. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  1525. self.Model = None
  1526. self.feature_range = args_use['feature_range']
  1527. self.k = {}
  1528. self.Model_Name = 'Decimal_normalization'
  1529. def Fit(self, x_data, *args, **kwargs):
  1530. if not self.have_Fit: # 不允许第二次训练
  1531. self.max = x_data.max()
  1532. self.min = x_data.min()
  1533. return 'None', 'None'
  1534. def Predict(self, x_data, *args, **kwargs):
  1535. self.x_trainData = x_data.copy()
  1536. try:
  1537. max = self.max
  1538. min = self.min
  1539. except:
  1540. self.have_Fit = False
  1541. self.Fit(x_data)
  1542. max = self.max
  1543. min = self.min
  1544. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  1545. self.y_trainData = x_Predict.copy()
  1546. return x_Predict,'映射标准化'
  1547. def Des(self,Dic,*args,**kwargs):
  1548. tab = Tab()
  1549. y_data = self.y_trainData
  1550. x_data = self.x_trainData
  1551. max = self.max
  1552. min = self.min
  1553. Conversion_control(y_data,x_data,tab)
  1554. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1555. save = Dic + r'/render.HTML'
  1556. tab.render(save) # 生成HTML
  1557. return save,
  1558. class sigmodScaler_Model(prep_Base):#sigmod变换
  1559. def __init__(self, args_use, model, *args, **kwargs):
  1560. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  1561. self.Model = None
  1562. self.k = {}
  1563. self.Model_Name = 'sigmodScaler_Model'
  1564. def Fit(self, x_data, *args, **kwargs):
  1565. return 'None', 'None'
  1566. def Predict(self, x_data:np.array):
  1567. self.x_trainData = x_data.copy()
  1568. x_Predict = (1/(1+np.exp(-x_data)))
  1569. self.y_trainData = x_Predict.copy()
  1570. return x_Predict,'Sigmod变换'
  1571. def Des(self,Dic,*args,**kwargs):
  1572. tab = Tab()
  1573. y_data = self.y_trainData
  1574. x_data = self.x_trainData
  1575. Conversion_control(y_data,x_data,tab)
  1576. save = Dic + r'/render.HTML'
  1577. tab.render(save) # 生成HTML
  1578. return save,
  1579. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  1580. def __init__(self, args_use, model, *args, **kwargs):
  1581. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  1582. self.Model = None
  1583. self.feature_range = args_use['feature_range']
  1584. self.k = {}
  1585. self.Model_Name = 'Fuzzy_quantization'
  1586. def Fit(self, x_data, *args, **kwargs):
  1587. if not self.have_Fit: # 不允许第二次训练
  1588. self.max = x_data.max()
  1589. self.min = x_data.min()
  1590. return 'None', 'None'
  1591. def Predict(self, x_data,*args,**kwargs):
  1592. self.y_trainData = x_data.copy()
  1593. try:
  1594. max = self.max
  1595. min = self.min
  1596. except:
  1597. self.have_Fit = False
  1598. self.Fit(x_data)
  1599. max = self.max
  1600. min = self.min
  1601. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  1602. self.y_trainData = x_Predict.copy()
  1603. return x_Predict,'映射标准化'
  1604. def Des(self,Dic,*args,**kwargs):
  1605. tab = Tab()
  1606. y_data = self.y_trainData
  1607. x_data = self.x_trainData
  1608. max = self.max
  1609. min = self.min
  1610. Conversion_control(y_data,x_data,tab)
  1611. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1612. save = Dic + r'/render.HTML'
  1613. tab.render(save) # 生成HTML
  1614. return save,
  1615. class Regularization_Model(Unsupervised):#正则化
  1616. def __init__(self, args_use, model, *args, **kwargs):
  1617. super(Regularization_Model, self).__init__(*args, **kwargs)
  1618. self.Model = Normalizer(norm=args_use['norm'])
  1619. self.k = {'norm':args_use['norm']}
  1620. self.Model_Name = 'Regularization'
  1621. def Des(self,Dic,*args,**kwargs):
  1622. tab = Tab()
  1623. y_data = self.y_trainData
  1624. x_data = self.x_trainData
  1625. Conversion_control(y_data,x_data,tab)
  1626. save = Dic + r'/render.HTML'
  1627. tab.render(save) # 生成HTML
  1628. return save,
  1629. #离散数据
  1630. class Binarizer_Model(Unsupervised):#二值化
  1631. def __init__(self, args_use, model, *args, **kwargs):
  1632. super(Binarizer_Model, self).__init__(*args, **kwargs)
  1633. self.Model = Binarizer(threshold=args_use['threshold'])
  1634. self.k = {}
  1635. self.Model_Name = 'Binarizer'
  1636. def Des(self,Dic,*args,**kwargs):
  1637. tab = Tab()
  1638. y_data = self.y_trainData
  1639. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  1640. for i in range(len(get_y)):
  1641. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  1642. save = Dic + r'/render.HTML'
  1643. tab.render(save) # 生成HTML
  1644. return save,
  1645. class Discretization_Model(prep_Base):#n值离散
  1646. def __init__(self, args_use, model, *args, **kwargs):
  1647. super(Discretization_Model, self).__init__(*args, **kwargs)
  1648. self.Model = None
  1649. range_ = args_use['split_range']
  1650. if range_ == []:raise Exception
  1651. elif len(range_) == 1:range_.append(range_[0])
  1652. self.range = range_
  1653. self.k = {}
  1654. self.Model_Name = 'Discretization'
  1655. def Fit(self,*args,**kwargs):
  1656. return 'None','None'
  1657. def Predict(self,x_data):
  1658. self.x_trainData = x_data.copy()
  1659. x_Predict = x_data.copy()#复制
  1660. range_ = self.range
  1661. bool_list = []
  1662. max_ = len(range_) - 1
  1663. o_t = None
  1664. for i in range(len(range_)):
  1665. try:
  1666. t = float(range_[i])
  1667. except:continue
  1668. if o_t == None:#第一个参数
  1669. bool_list.append(x_Predict <= t)
  1670. else:
  1671. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  1672. if i == max_:
  1673. bool_list.append(t <= x_Predict)
  1674. o_t = t
  1675. for i in range(len(bool_list)):
  1676. x_Predict[bool_list[i]] = i
  1677. self.y_trainData = x_Predict.copy()
  1678. return x_Predict,f'{len(bool_list)}值离散化'
  1679. def Des(self, Dic, *args, **kwargs):
  1680. tab = Tab()
  1681. y_data = self.y_trainData
  1682. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1683. for i in range(len(get_y)):
  1684. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1685. save = Dic + r'/render.HTML'
  1686. tab.render(save) # 生成HTML
  1687. return save,
  1688. class Label_Model(prep_Base):#数字编码
  1689. def __init__(self, args_use, model, *args, **kwargs):
  1690. super(Label_Model, self).__init__(*args, **kwargs)
  1691. self.Model = []
  1692. self.k = {}
  1693. self.Model_Name = 'LabelEncoder'
  1694. def Fit(self,x_data,*args, **kwargs):
  1695. if not self.have_Fit: # 不允许第二次训练
  1696. if x_data.ndim == 1:x_data = np.array([x_data])
  1697. for i in range(x_data.shape[1]):
  1698. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  1699. return 'None', 'None'
  1700. def Predict(self, x_data, *args, **kwargs):
  1701. x_Predict = x_data.copy()
  1702. if x_data.ndim == 1: x_data = np.array([x_data])
  1703. for i in range(x_data.shape[1]):
  1704. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  1705. self.y_trainData = x_Predict.copy()
  1706. return x_Predict,'数字编码'
  1707. def Des(self, Dic, *args, **kwargs):
  1708. tab = Tab()
  1709. y_data = self.y_trainData
  1710. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1711. for i in range(len(get_y)):
  1712. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1713. save = Dic + r'/render.HTML'
  1714. tab.render(save) # 生成HTML
  1715. return save,
  1716. class OneHotEncoder_Model(prep_Base):#独热编码
  1717. def __init__(self, args_use, model, *args, **kwargs):
  1718. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  1719. self.Model = []
  1720. self.ndim_up = args_use['ndim_up']
  1721. self.k = {}
  1722. self.Model_Name = 'OneHotEncoder'
  1723. def Fit(self,x_data,*args, **kwargs):
  1724. if not self.have_Fit: # 不允许第二次训练
  1725. if x_data.ndim == 1:x_data = [x_data]
  1726. for i in range(x_data.shape[1]):
  1727. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  1728. self.Model.append(OneHotEncoder().fit(data))#训练机器
  1729. return 'None', 'None'
  1730. def Predict(self, x_data, *args, **kwargs):
  1731. self.x_trainData = x_data.copy()
  1732. x_new = []
  1733. for i in range(x_data.shape[1]):
  1734. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  1735. oneHot = self.Model[i].transform(data).toarray().tolist()
  1736. x_new.append(oneHot)#添加到列表中
  1737. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  1738. x_Predict = []
  1739. for i in range(x_new.shape[1]):
  1740. x_Predict.append(x_new[:,i])
  1741. x_Predict = np.array(x_Predict)#转换回array
  1742. if not self.ndim_up:#压缩操作
  1743. new_xPredict = []
  1744. for i in x_Predict:
  1745. new_list = []
  1746. list_ = i.tolist()
  1747. for a in list_:
  1748. new_list += a
  1749. new = np.array(new_list)
  1750. new_xPredict.append(new)
  1751. self.y_trainData = x_Predict.copy()
  1752. return np.array(new_xPredict),'独热编码'
  1753. #不保存y_trainData
  1754. return x_Predict,'独热编码'#不需要降维
  1755. def Des(self, Dic, *args, **kwargs):
  1756. tab = Tab()
  1757. y_data = self.y_trainData
  1758. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1759. for i in range(len(get_y)):
  1760. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1761. save = Dic + r'/render.HTML'
  1762. tab.render(save) # 生成HTML
  1763. return save,
  1764. class Missed_Model(Unsupervised):#缺失数据补充
  1765. def __init__(self, args_use, model, *args, **kwargs):
  1766. super(Missed_Model, self).__init__(*args, **kwargs)
  1767. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  1768. fill_value=args_use['fill_value'])
  1769. self.k = {}
  1770. self.Model_Name = 'Missed'
  1771. def Predict(self, x_data, *args, **kwargs):
  1772. self.x_trainData = x_data.copy()
  1773. x_Predict = self.Model.transform(x_data)
  1774. self.y_trainData = x_Predict.copy()
  1775. return x_Predict,'填充缺失'
  1776. def Des(self,Dic,*args,**kwargs):
  1777. tab = Tab()
  1778. y_data = self.y_trainData
  1779. x_data = self.x_trainData
  1780. Conversion_control(y_data,x_data,tab)
  1781. save = Dic + r'/render.HTML'
  1782. tab.render(save) # 生成HTML
  1783. return save,
  1784. class PCA_Model(Unsupervised):
  1785. def __init__(self, args_use, model, *args, **kwargs):
  1786. super(PCA_Model, self).__init__(*args, **kwargs)
  1787. self.Model = PCA(n_components=args_use['n_components'])
  1788. self.n_components = args_use['n_components']
  1789. self.k = {'n_components':args_use['n_components']}
  1790. self.Model_Name = 'PCA'
  1791. def Predict(self, x_data, *args, **kwargs):
  1792. self.x_trainData = x_data.copy()
  1793. x_Predict = self.Model.transform(x_data)
  1794. self.y_trainData = x_Predict.copy()
  1795. return x_Predict,'PCA'
  1796. def Des(self,Dic,*args,**kwargs):
  1797. tab = Tab()
  1798. y_data = self.y_trainData
  1799. importance = self.Model.components_.tolist()
  1800. var = self.Model.explained_variance_.tolist()#方量差
  1801. Conversion_Separate_Format(y_data,tab)
  1802. x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
  1803. y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
  1804. value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
  1805. c = (HeatMap()
  1806. .add_xaxis(x_data)
  1807. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  1808. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  1809. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  1810. xaxis_opts=opts.AxisOpts(is_scale=True),
  1811. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  1812. min_=int(self.Model.components_.min()),
  1813. pos_right='3%')) # 显示
  1814. )
  1815. tab.add(c,'成分热力图')
  1816. c = (
  1817. Bar()
  1818. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  1819. .add_yaxis('放量差', var, **Label_Set)
  1820. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  1821. )
  1822. tab.add(c, '方量差柱状图')
  1823. save = Dic + r'/render.HTML'
  1824. tab.render(save) # 生成HTML
  1825. return save,
  1826. class RPCA_Model(Unsupervised):
  1827. def __init__(self, args_use, model, *args, **kwargs):
  1828. super(RPCA_Model, self).__init__(*args, **kwargs)
  1829. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  1830. self.n_components = args_use['n_components']
  1831. self.k = {'n_components': args_use['n_components']}
  1832. self.Model_Name = 'RPCA'
  1833. def Predict(self, x_data, *args, **kwargs):
  1834. self.x_trainData = x_data.copy()
  1835. x_Predict = self.Model.transform(x_data)
  1836. self.y_trainData = x_Predict.copy()
  1837. return x_Predict,'RPCA'
  1838. def Des(self, Dic, *args, **kwargs):
  1839. tab = Tab()
  1840. y_data = self.y_trainData
  1841. importance = self.Model.components_.tolist()
  1842. var = self.Model.explained_variance_.tolist() # 方量差
  1843. Conversion_Separate_Format(y_data, tab)
  1844. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  1845. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  1846. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
  1847. range(len(importance[i]))]
  1848. c = (HeatMap()
  1849. .add_xaxis(x_data)
  1850. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  1851. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  1852. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  1853. xaxis_opts=opts.AxisOpts(is_scale=True),
  1854. visualmap_opts=opts.VisualMapOpts(is_show=True,
  1855. max_=int(self.Model.components_.max()) + 1,
  1856. min_=int(self.Model.components_.min()),
  1857. pos_right='3%')) # 显示
  1858. )
  1859. tab.add(c, '成分热力图')
  1860. c = (
  1861. Bar()
  1862. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  1863. .add_yaxis('放量差', var, **Label_Set)
  1864. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  1865. )
  1866. tab.add(c, '方量差柱状图')
  1867. save = Dic + r'/render.HTML'
  1868. tab.render(save) # 生成HTML
  1869. return save,
  1870. class KPCA_Model(Unsupervised):
  1871. def __init__(self, args_use, model, *args, **kwargs):
  1872. super(KPCA_Model, self).__init__(*args, **kwargs)
  1873. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  1874. self.n_components = args_use['n_components']
  1875. self.kernel = args_use['kernel']
  1876. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  1877. self.Model_Name = 'KPCA'
  1878. def Predict(self, x_data, *args, **kwargs):
  1879. self.x_trainData = x_data.copy()
  1880. x_Predict = self.Model.transform(x_data)
  1881. self.y_trainData = x_Predict.copy()
  1882. return x_Predict,'KPCA'
  1883. def Des(self, Dic, *args, **kwargs):
  1884. tab = Tab()
  1885. y_data = self.y_trainData
  1886. Conversion_Separate_Format(y_data, tab)
  1887. save = Dic + r'/render.HTML'
  1888. tab.render(save) # 生成HTML
  1889. return save,
  1890. class LDA_Model(prep_Base):#有监督学习
  1891. def __init__(self, args_use, model, *args, **kwargs):
  1892. super(LDA_Model, self).__init__(*args, **kwargs)
  1893. self.Model = LDA(n_components=args_use['n_components'])
  1894. self.n_components = args_use['n_components']
  1895. self.k = {'n_components': args_use['n_components']}
  1896. self.Model_Name = 'LDA'
  1897. def Predict(self, x_data, *args, **kwargs):
  1898. self.x_trainData = x_data.copy()
  1899. x_Predict = self.Model.transform(x_data)
  1900. self.y_trainData = x_Predict.copy()
  1901. return x_Predict,'LDA'
  1902. def Des(self,Dic,*args,**kwargs):
  1903. tab = Tab()
  1904. y_data = self.y_trainData
  1905. x_data = self.x_trainData
  1906. Conversion_Separate_Format(y_data,tab)
  1907. save = Dic + r'/render.HTML'
  1908. tab.render(save) # 生成HTML
  1909. return save,
  1910. class NMF_Model(Unsupervised):
  1911. def __init__(self, args_use, model, *args, **kwargs):
  1912. super(NMF_Model, self).__init__(*args, **kwargs)
  1913. self.Model = NMF(n_components=args_use['n_components'])
  1914. self.n_components = args_use['n_components']
  1915. self.k = {'n_components':args_use['n_components']}
  1916. self.Model_Name = 'NFM'
  1917. self.h_trainData = None
  1918. #x_trainData保存的是W,h_trainData和y_trainData是后来数据
  1919. def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
  1920. self.x_trainData = x_data.copy()
  1921. x_Predict = self.Model.transform(x_data)
  1922. self.y_trainData = x_Predict.copy()
  1923. self.h_trainData = self.Model.components_
  1924. if Add_Func != None and x_name != '':
  1925. Add_Func(self.h_trainData, f'{x_name}:V->NMF[H]')
  1926. return x_Predict,'V->NMF[W]'
  1927. def Des(self,Dic,*args,**kwargs):
  1928. tab = Tab()
  1929. y_data = self.y_trainData
  1930. x_data = self.x_trainData
  1931. h_data = self.h_trainData
  1932. Conversion_SeparateWH(y_data,h_data,tab)
  1933. wh_data = np.matmul(y_data, h_data)
  1934. difference_data = x_data - wh_data
  1935. def make_HeatMap(data,name,max_,min_):
  1936. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  1937. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  1938. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1939. c = (HeatMap()
  1940. .add_xaxis(x)
  1941. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1942. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  1943. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1944. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1945. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  1946. min_=min_,
  1947. pos_right='3%'))#显示
  1948. )
  1949. tab.add(c,name)
  1950. max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
  1951. min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
  1952. make_HeatMap(x_data,'原始数据热力图',max_,min_)
  1953. make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
  1954. make_HeatMap(difference_data,'数据差热力图',max_,min_)
  1955. save = Dic + r'/render.HTML'
  1956. tab.render(save) # 生成HTML
  1957. return save,
  1958. class TSNE_Model(Unsupervised):
  1959. def __init__(self, args_use, model, *args, **kwargs):
  1960. super(TSNE_Model, self).__init__(*args, **kwargs)
  1961. self.Model = TSNE(n_components=args_use['n_components'])
  1962. self.n_components = args_use['n_components']
  1963. self.k = {'n_components':args_use['n_components']}
  1964. self.Model_Name = 't-SNE'
  1965. def Fit(self,*args, **kwargs):
  1966. return 'None', 'None'
  1967. def Predict(self, x_data, *args, **kwargs):
  1968. self.x_trainData = x_data.copy()
  1969. x_Predict = self.Model.fit_transform(x_data)
  1970. self.y_trainData = x_Predict.copy()
  1971. return x_Predict,'SNE'
  1972. def Des(self,Dic,*args,**kwargs):
  1973. tab = Tab()
  1974. y_data = self.y_trainData
  1975. Conversion_Separate_Format(y_data,tab)
  1976. save = Dic + r'/render.HTML'
  1977. tab.render(save) # 生成HTML
  1978. return save,
  1979. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  1980. def __init__(self,args_use,model,*args,**kwargs):
  1981. super(MLP_Model, self).__init__(*args,**kwargs)
  1982. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  1983. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  1984. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1985. #记录这两个是为了克隆
  1986. self.hidden_layer_sizes = args_use['hidden_size']
  1987. self.activation = args_use['activation']
  1988. self.max_iter = args_use['max_iter']
  1989. self.solver = args_use['solver']
  1990. self.alpha = args_use['alpha']
  1991. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  1992. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  1993. self.Model_Name = model
  1994. def Des(self,Dic,*args,**kwargs):
  1995. tab = Tab()
  1996. coefs = self.Model.coefs_
  1997. def make_HeatMap(data,name):
  1998. x = [f'特征(节点)[{i}]' for i in range(len(data))] # 主成分
  1999. y = [f'节点[{i}]' for i in range(len(data[0]))] # 主成分
  2000. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2001. c = (HeatMap()
  2002. .add_xaxis(x)
  2003. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2004. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  2005. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2006. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2007. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  2008. min_=float(data.min()),
  2009. pos_right='3%'))#显示
  2010. )
  2011. tab.add(c,name)
  2012. tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
  2013. heard = ['神经网络层数']
  2014. data = [self.Model.n_layers_]
  2015. for i in range(len(coefs)):
  2016. make_HeatMap(coefs[i],f'{i}层权重矩阵')
  2017. heard.append(f'第{i}层节点数')
  2018. data.append(len(coefs[i][0]))
  2019. if self.Model_Name == 'MLP_class':
  2020. heard += [f'[{i}]类型' for i in range(len(self.Model.classes_))]
  2021. data += self.Model.classes_.tolist()
  2022. tab.add(make_Tab(heard,[data]),'数据表')
  2023. save = Dic + r'/render.HTML'
  2024. tab.render(save) # 生成HTML
  2025. return save,
  2026. class kmeans_Model(UnsupervisedModel):
  2027. def __init__(self, args_use, model, *args, **kwargs):
  2028. super(kmeans_Model, self).__init__(*args, **kwargs)
  2029. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  2030. self.class_ = []
  2031. self.n_clusters = args_use['n_clusters']
  2032. self.k = {'n_clusters':args_use['n_clusters']}
  2033. self.Model_Name = 'k-means'
  2034. def Fit(self, x_data, *args, **kwargs):
  2035. re = super().Fit(x_data,*args,**kwargs)
  2036. self.class_ = list(set(self.Model.labels_.tolist()))
  2037. return re
  2038. def Predict(self, x_data, *args, **kwargs):
  2039. self.x_trainData = x_data
  2040. y_Predict = self.Model.predict(x_data)
  2041. self.y_trainData = y_Predict
  2042. return y_Predict,'k-means'
  2043. def Des(self,Dic,*args,**kwargs):
  2044. tab = Tab()
  2045. y = self.y_trainData
  2046. x_data = self.x_trainData
  2047. class_ = self.class_
  2048. center = self.Model.cluster_centers_
  2049. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2050. get,x_means,x_range,Type = Training_visualization_More(x_data,class_,y,center)
  2051. for i in range(len(get)):
  2052. tab.add(get[i],f'{i}训练数据散点图')
  2053. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2054. data = class_ + [f'{i}' for i in x_means]
  2055. c = Table().add(headers=heard, rows=[data])
  2056. tab.add(c, '数据表')
  2057. save = Dic + r'/render.HTML'
  2058. tab.render(save) # 生成HTML
  2059. return save,
  2060. class Agglomerative_Model(UnsupervisedModel):
  2061. def __init__(self, args_use, model, *args, **kwargs):
  2062. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  2063. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  2064. self.class_ = []
  2065. self.n_clusters = args_use['n_clusters']
  2066. self.k = {'n_clusters':args_use['n_clusters']}
  2067. self.Model_Name = 'Agglomerative'
  2068. def Fit(self, x_data, *args, **kwargs):
  2069. re = super().Fit(x_data,*args,**kwargs)
  2070. self.class_ = list(set(self.Model.labels_.tolist()))
  2071. return re
  2072. def Predict(self, x_data, *args, **kwargs):
  2073. y_Predict = self.Model.fit_predict(x_data)
  2074. self.y_trainData = y_Predict
  2075. return y_Predict,'Agglomerative'
  2076. def Des(self, Dic, *args, **kwargs):
  2077. tab = Tab()
  2078. y = self.y_trainData
  2079. x_data = self.x_trainData
  2080. class_ = self.class_
  2081. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2082. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2083. for i in range(len(get)):
  2084. tab.add(get[i], f'{i}训练数据散点图')
  2085. linkage_array = ward(self.x_trainData)#self.y_trainData是结果
  2086. dendrogram(linkage_array)
  2087. plt.savefig(Dic + r'/Cluster_graph.png')
  2088. image = Image()
  2089. image.add(
  2090. src=Dic + r'/Cluster_graph.png',
  2091. ).set_global_opts(
  2092. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  2093. )
  2094. tab.add(image,'聚类树状图')
  2095. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2096. data = class_ + [f'{i}' for i in x_means]
  2097. c = Table().add(headers=heard, rows=[data])
  2098. tab.add(c, '数据表')
  2099. save = Dic + r'/render.HTML'
  2100. tab.render(save) # 生成HTML
  2101. return save,
  2102. class DBSCAN_Model(UnsupervisedModel):
  2103. def __init__(self, args_use, model, *args, **kwargs):
  2104. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  2105. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  2106. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  2107. # min_samples
  2108. self.eps = args_use['eps']
  2109. self.min_samples = args_use['min_samples']
  2110. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  2111. self.class_ = []
  2112. self.Model_Name = 'DBSCAN'
  2113. def Fit(self, x_data, *args, **kwargs):
  2114. re = super().Fit(x_data,*args,**kwargs)
  2115. self.class_ = list(set(self.Model.labels_.tolist()))
  2116. return re
  2117. def Predict(self, x_data, *args, **kwargs):
  2118. y_Predict = self.Model.fit_predict(x_data)
  2119. self.y_trainData = y_Predict
  2120. return y_Predict,'DBSCAN'
  2121. def Des(self, Dic, *args, **kwargs):
  2122. tab = Tab()
  2123. y = self.y_trainData
  2124. x_data = self.x_trainData
  2125. class_ = self.class_
  2126. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2127. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2128. for i in range(len(get)):
  2129. tab.add(get[i], f'{i}训练数据散点图')
  2130. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2131. data = class_ + [f'{i}' for i in x_means]
  2132. c = Table().add(headers=heard, rows=[data])
  2133. tab.add(c, '数据表')
  2134. save = Dic + r'/render.HTML'
  2135. tab.render(save) # 生成HTML
  2136. return save,
  2137. class Machine_Learner(Learner):#数据处理者
  2138. def __init__(self,*args, **kwargs):
  2139. super().__init__(*args, **kwargs)
  2140. self.Learner = {}#记录机器
  2141. self.Learn_Dic = {'Line':Line_Model,
  2142. 'Ridge':Line_Model,
  2143. 'Lasso':Line_Model,
  2144. 'LogisticRegression':LogisticRegression_Model,
  2145. 'Knn_class':Knn_Model,
  2146. 'Knn': Knn_Model,
  2147. 'Tree_class': Tree_Model,
  2148. 'Tree': Tree_Model,
  2149. 'Forest':Forest_Model,
  2150. 'Forest_class': Forest_Model,
  2151. 'GradientTree_class':GradientTree_Model,
  2152. 'GradientTree': GradientTree_Model,
  2153. 'Variance':Variance_Model,
  2154. 'SelectKBest':SelectKBest_Model,
  2155. 'Z-Score':Standardization_Model,
  2156. 'MinMaxScaler':MinMaxScaler_Model,
  2157. 'LogScaler':LogScaler_Model,
  2158. 'atanScaler':atanScaler_Model,
  2159. 'decimalScaler':decimalScaler_Model,
  2160. 'sigmodScaler':sigmodScaler_Model,
  2161. 'Mapzoom':Mapzoom_Model,
  2162. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  2163. 'Regularization':Regularization_Model,
  2164. 'Binarizer':Binarizer_Model,
  2165. 'Discretization':Discretization_Model,
  2166. 'Label':Label_Model,
  2167. 'OneHotEncoder':OneHotEncoder_Model,
  2168. 'Missed':Missed_Model,
  2169. 'PCA':PCA_Model,
  2170. 'RPCA':RPCA_Model,
  2171. 'KPCA':KPCA_Model,
  2172. 'LDA':LDA_Model,
  2173. 'SVC':SVC_Model,
  2174. 'SVR':SVR_Model,
  2175. 'MLP':MLP_Model,
  2176. 'MLP_class': MLP_Model,
  2177. 'NMF':NMF_Model,
  2178. 't-SNE':TSNE_Model,
  2179. 'k-means':kmeans_Model,
  2180. 'Agglomerative':Agglomerative_Model,
  2181. 'DBSCAN':DBSCAN_Model,
  2182. }
  2183. self.Learner_Type = {}#记录机器的类型
  2184. def p_Args(self,Text,Type):#解析参数
  2185. args = {}
  2186. args_use = {}
  2187. #输入数据
  2188. exec(Text,args)
  2189. #处理数据
  2190. if Type in ('MLP','MLP_class'):
  2191. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  2192. else:
  2193. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  2194. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  2195. if Type in ('MLP','MLP_class'):
  2196. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  2197. else:
  2198. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  2199. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  2200. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  2201. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  2202. if Type in ('Tree','Forest','GradientTree'):
  2203. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  2204. else:
  2205. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  2206. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  2207. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  2208. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  2209. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  2210. args_use['P'] = float(args.get('min_samples_split', 0.8))
  2211. args_use['k'] = args.get('k',1)
  2212. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  2213. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  2214. get(args.get('score_func','f_classif'),f_classif))
  2215. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  2216. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  2217. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  2218. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  2219. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  2220. args_use['miss_value'] = args.get('miss_value',np.nan)
  2221. args_use['fill_method'] = args.get('fill_method','mean')
  2222. args_use['fill_value'] = args.get('fill_value',None)
  2223. args_use['n_components'] = args.get('n_components',1)
  2224. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  2225. args_use['n_Tree'] = args.get('n_Tree',100)
  2226. args_use['gamma'] = args.get('gamma',1)
  2227. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  2228. args_use['activation'] = str(args.get('activation','relu'))
  2229. args_use['solver'] = str(args.get('solver','adam'))
  2230. if Type in ('k-means',):
  2231. args_use['n_clusters'] = int(args.get('n_clusters',8))
  2232. else:
  2233. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  2234. args_use['eps'] = float(args.get('n_clusters', 0.5))
  2235. args_use['min_samples'] = int(args.get('n_clusters', 5))
  2236. return args_use
  2237. def Add_Learner(self,Learner,Text=''):
  2238. get = self.Learn_Dic[Learner]
  2239. name = f'Le[{len(self.Learner)}]{Learner}'
  2240. #参数调节
  2241. args_use = self.p_Args(Text,Learner)
  2242. #生成学习器
  2243. self.Learner[name] = get(model=Learner,args_use=args_use)
  2244. self.Learner_Type[name] = Learner
  2245. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  2246. model = self.get_Learner(Learner)
  2247. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  2248. #参数调节
  2249. args_use = self.p_Args(Text,'SelectFrom_Model')
  2250. #生成学习器
  2251. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  2252. self.Learner_Type[name] = 'SelectFrom_Model'
  2253. def Return_Learner(self):
  2254. return self.Learner.copy()
  2255. def get_Learner(self,name):
  2256. return self.Learner[name]
  2257. def get_Learner_Type(self,name):
  2258. return self.Learner_Type[name]
  2259. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  2260. x_data = self.get_Sheet(x_name)
  2261. y_data = self.get_Sheet(y_name)
  2262. model = self.get_Learner(Learner)
  2263. return model.Fit(x_data,y_data,split)
  2264. def Predict(self,x_name,Learner,Text='',**kwargs):
  2265. x_data = self.get_Sheet(x_name)
  2266. model = self.get_Learner(Learner)
  2267. y_data,name = model.Predict(x_data,x_name = x_name,Add_Func=self.Add_Form)
  2268. self.Add_Form(y_data,f'{x_name}:{name}')
  2269. return y_data
  2270. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  2271. model = self.get_Learner(Learner)
  2272. x = self.get_Sheet(name_x)
  2273. y = self.get_Sheet(name_y)
  2274. return model.Score(x,y)
  2275. def Show_Args(self,Learner,Dic):#显示参数
  2276. model = self.get_Learner(Learner)
  2277. return model.Des(Dic)
  2278. def Del_Leaner(self,Leaner):
  2279. del self.Learner[Leaner]
  2280. del self.Learner_Type[Leaner]