|
@@ -879,6 +879,53 @@ class UnsupervisedModel(prep_Base):
|
|
|
self.Model.fit(x_data)
|
|
|
return 'None', 'None'
|
|
|
|
|
|
+class Predictive_HeatMap(prep_Base):#绘制预测型热力图
|
|
|
+ def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Predictive_HeatMap, self).__init__(*args, **kwargs)
|
|
|
+
|
|
|
+ self.Model = Learner.Model
|
|
|
+ self.Select_Model = None
|
|
|
+ self.have_Fit = Learner.have_Fit
|
|
|
+ self.Model_Name = 'Select_Model'
|
|
|
+ self.x_trainData = self.x_trainData
|
|
|
+ self.y_trainData = self.y_trainData
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ try:#如果没有class
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ #获取数据
|
|
|
+ get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range,x_means,self.Model.Predict,class_,Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+ except:
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Model.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/render.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+
|
|
|
class Near_feature_scatter_class_More(Unsupervised):
|
|
|
def __init__(self, args_use, model, *args, **kwargs):
|
|
|
super(Near_feature_scatter_class_More, self).__init__(*args, **kwargs)
|