Learn_Numpy.py 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts.components import Image
  3. from pyecharts import options as opts
  4. from random import randint
  5. from pyecharts.charts import *
  6. from pyecharts.options.series_options import JsCode
  7. from scipy.cluster.hierarchy import dendrogram, ward
  8. import matplotlib.pyplot as plt
  9. from pandas import DataFrame,read_csv
  10. import numpy as np
  11. import re
  12. from sklearn.model_selection import train_test_split
  13. from sklearn.linear_model import *
  14. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  15. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  16. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  17. GradientBoostingRegressor)
  18. from sklearn.metrics import accuracy_score
  19. from sklearn.feature_selection import *
  20. from sklearn.preprocessing import *
  21. from sklearn.impute import SimpleImputer
  22. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  23. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  24. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  25. from sklearn.neural_network import MLPClassifier,MLPRegressor
  26. from sklearn.manifold import TSNE
  27. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  28. from pyecharts.charts import *
  29. # import sklearn as sk
  30. #设置
  31. np.set_printoptions(threshold=np.inf)
  32. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  33. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  34. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  35. class Table(Table_Fisrt):
  36. def add(self, headers, rows, attributes = None):
  37. if len(rows) == 1:
  38. new_headers = ['数据类型','数据']
  39. new_rows = list(zip(headers,rows[0]))
  40. return super().add(new_headers,new_rows,attributes)
  41. else:
  42. return super().add(headers, rows, attributes)
  43. def make_list(first,end,num=35):
  44. n = num / (end - first)
  45. if n == 0: n = 1
  46. re = []
  47. n_first = first * n
  48. n_end = end * n
  49. while n_first <= n_end:
  50. cul = n_first / n
  51. re.append(round(cul,2))
  52. n_first += 1
  53. return re
  54. def list_filter(list_,num=70):
  55. #假设列表已经不重复
  56. if len(list_) <= num:return list_
  57. n = int(num / len(list_))
  58. re = list_[::n]
  59. return re
  60. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  61. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  62. # a-特征x,b-特征x-1,c-其他特征
  63. o_cList = []
  64. if len(x_means) == 1:
  65. n_ra = x_range[0]
  66. if Type[0] == 1:
  67. ra = make_list(n_ra[0], n_ra[1], 70)
  68. else:
  69. ra = n_ra
  70. a = np.array([i for i in ra]).reshape(-1,1)
  71. y_data = Predict_Func(a)[0].tolist()
  72. value = [[0 , float(a[i]), y_data[i]] for i in range(len(a))]
  73. c = (HeatMap()
  74. .add_xaxis(['None'])
  75. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  76. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  77. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  78. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  79. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1,
  80. min_=int(min(y_data)),
  81. pos_right='3%')) # 显示
  82. )
  83. o_cList.append(c)
  84. return o_cList
  85. for i in range(len(x_means)):
  86. if i == 0:
  87. continue
  88. n_ra = x_range[i - 1]
  89. Type_ra = Type[i - 1]
  90. n_rb = x_range[i]
  91. Type_rb = Type[i]
  92. if Type_ra == 1:
  93. ra = make_list(n_ra[0],n_ra[1],70)
  94. else:
  95. ra = list_filter(n_ra)#可以接受最大为70
  96. if Type_rb == 1:
  97. rb = make_list(n_rb[0],n_rb[1],35)
  98. else:
  99. rb = list_filter(n_rb)#可以接受最大为70
  100. a = np.array([i for i in ra for _ in rb]).T
  101. b = np.array([i for _ in ra for i in rb]).T
  102. data = np.array([x_means for _ in ra for i in rb])
  103. data[:, i - 1] = a
  104. data[:, i] = b
  105. y_data = Predict_Func(data)[0].tolist()
  106. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  107. c = (HeatMap()
  108. .add_xaxis(np.unique(a))
  109. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  110. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  111. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  112. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  113. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  114. pos_right='3%'))#显示
  115. )
  116. o_cList.append(c)
  117. return o_cList
  118. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  119. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  120. # a-特征x,b-特征x-1,c-其他特征
  121. #规定,i-1是x轴,a是x轴,x_1是x轴
  122. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  123. if not nono:
  124. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  125. else:v_dict = []
  126. for i in class_dict:
  127. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  128. o_cList = []
  129. if len(x_means) == 1:
  130. n_ra = x_range[0]
  131. if Type[0] == 1:
  132. ra = make_list(n_ra[0], n_ra[1], 70)
  133. else:
  134. ra = n_ra
  135. a = np.array([i for i in ra]).reshape(-1,1)
  136. y_data = Predict_Func(a)[0].tolist()
  137. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  138. c = (HeatMap()
  139. .add_xaxis(['None'])
  140. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  141. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  142. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  143. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  144. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  145. min_=-1,
  146. is_piecewise=True, pieces=v_dict,
  147. orient='horizontal', pos_bottom='3%'))
  148. )
  149. o_cList.append(c)
  150. return o_cList
  151. #如果x_means长度不等于1则执行下面
  152. for i in range(len(x_means)):
  153. if i == 0:
  154. continue
  155. n_ra = x_range[i-1]
  156. Type_ra = Type[i-1]
  157. n_rb = x_range[i]
  158. Type_rb = Type[i]
  159. if Type_ra == 1:
  160. ra = make_list(n_ra[0],n_ra[1],70)
  161. else:
  162. ra = n_ra
  163. if Type_rb == 1:
  164. rb = make_list(n_rb[0],n_rb[1],35)
  165. else:
  166. rb = n_rb
  167. a = np.array([i for i in ra for _ in rb]).T
  168. b = np.array([i for _ in ra for i in rb]).T
  169. data = np.array([x_means for _ in ra for i in rb])
  170. data[:, i - 1] = a
  171. data[:, i] = b
  172. y_data = Predict_Func(data)[0].tolist()
  173. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  174. c = (HeatMap()
  175. .add_xaxis(np.unique(a))
  176. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  177. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  178. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  179. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  180. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  181. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  182. )
  183. o_cList.append(c)
  184. return o_cList
  185. def SeeTree(Dic):
  186. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  187. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  188. node_Dict = {}
  189. link_list = []
  190. with open(Dic, 'r') as f: # 貌似必须分开w和r
  191. for i in f:
  192. try:
  193. get = re.findall(node_re, i)[0]
  194. if get[0] != '':
  195. try:
  196. v = float(get[0])
  197. except:
  198. v = 0
  199. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  200. continue
  201. except:
  202. pass
  203. try:
  204. get = re.findall(link_re, i)[0]
  205. if get[0] != '' and get[1] != '':
  206. link_list.append((get[0], get[1]))
  207. except:
  208. pass
  209. father_list = [] # 已经有父亲的list
  210. for i in link_list:
  211. father = i[0] # 父节点
  212. son = i[1] # 子节点
  213. try:
  214. node_Dict[father]['children'].append(node_Dict[son])
  215. father_list.append(son)
  216. if int(son) == 0: print('F')
  217. except:
  218. pass
  219. father = list(set(node_Dict.keys()) - set(father_list))
  220. c = (
  221. Tree()
  222. .add("", [node_Dict[father[0]]], is_roam=True)
  223. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  224. toolbox_opts=opts.ToolboxOpts(is_show=True))
  225. )
  226. return c
  227. def make_Tab(heard,row):
  228. return Table().add(headers=heard, rows=row)
  229. def scatter(w_heard,w):
  230. c = (
  231. Scatter()
  232. .add_xaxis(w_heard)
  233. .add_yaxis('', w, **Label_Set)
  234. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  235. )
  236. return c
  237. def bar(w_heard,w):
  238. c = (
  239. Bar()
  240. .add_xaxis(w_heard)
  241. .add_yaxis('', abs(w).tolist(), **Label_Set)
  242. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  243. )
  244. return c
  245. # def line(w_sum,w,b):
  246. # x = np.arange(-5, 5, 1)
  247. # c = (
  248. # Line()
  249. # .add_xaxis(x.tolist())
  250. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  251. # )
  252. # for i in range(len(w)):
  253. # y = x * w[i] + b
  254. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  255. # return c
  256. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  257. y = y_trainData.tolist()
  258. x_data = x_trainData.T
  259. re = []
  260. for i in range(len(x_data)):
  261. x = x_data[i]
  262. p = int(x.max() - x.min()) / 5
  263. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  264. y_num = x_num * w[i] + (w[i] / w_sum) * b
  265. c = (
  266. Line()
  267. .add_xaxis(x_num.tolist())
  268. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  269. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  270. )
  271. t = (
  272. Scatter()
  273. .add_xaxis(x.tolist())
  274. .add_yaxis(f'{i}特征', y, **Label_Set)
  275. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  276. )
  277. t.overlap(c)
  278. re.append(t)
  279. return re
  280. def get_Color():
  281. # 随机颜色,雷达图默认非随机颜色
  282. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  283. color = '#'
  284. for a in rgb:
  285. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  286. return color
  287. def is_continuous(data:np.array,f:float=0.1):
  288. data = data.tolist()
  289. l = np.unique(data).tolist()
  290. try:
  291. re = len(l)/len(data)>=f or len(data) <= 3
  292. return re
  293. except:return False
  294. def make_Cat(x_data):
  295. Cat = Categorical_Data()
  296. for i in range(len(x_data)):
  297. x1 = x_data[i] # x坐标
  298. Cat(x1)
  299. return Cat
  300. def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  301. x_data = x_trainData.T
  302. if len(x_data) == 1:
  303. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  304. Cat = make_Cat(x_data)
  305. o_cList = []
  306. for i in range(len(x_data)):
  307. for a in range(len(x_data)):
  308. if a <= i: continue
  309. x1 = x_data[i] # x坐标
  310. x1_con = is_continuous(x1)
  311. x2 = x_data[a] # y坐标
  312. x2_con = is_continuous(x2)
  313. o_c = None # 旧的C
  314. for class_num in range(len(class_)):
  315. n_class = class_[class_num]
  316. x_1 = x1[y == n_class].tolist()
  317. x_2 = x2[y == n_class]
  318. x_2_new = np.unique(x_2)
  319. x_2 = x2[y == n_class].tolist()
  320. #x与散点图不同,这里是纵坐标
  321. c = (Scatter()
  322. .add_xaxis(x_2)
  323. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  324. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  325. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  326. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  327. )
  328. c.add_xaxis(x_2_new)
  329. if o_c == None:
  330. o_c = c
  331. else:
  332. o_c = o_c.overlap(c)
  333. o_cList.append(o_c)
  334. means,x_range,Type = Cat.get()
  335. return o_cList,means,x_range,Type
  336. def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  337. x_data = x_trainData.T
  338. if len(x_data) == 1:
  339. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  340. Cat = make_Cat(x_data)
  341. o_cList = []
  342. for i in range(len(x_data)):
  343. for a in range(len(x_data)):
  344. if a <= i: continue
  345. x1 = x_data[i] # x坐标
  346. x1_con = is_continuous(x1)
  347. x2 = x_data[a] # y坐标
  348. x2_con = is_continuous(x2)
  349. o_c = None # 旧的C
  350. for class_num in range(len(class_)):
  351. n_class = class_[class_num]
  352. x_1 = x1[y == n_class].tolist()
  353. x_2 = x2[y == n_class]
  354. x_2_new = np.unique(x_2)
  355. x_2 = x2[y == n_class].tolist()
  356. #x与散点图不同,这里是纵坐标
  357. c = (Scatter()
  358. .add_xaxis(x_2)
  359. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  360. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  361. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  362. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  363. )
  364. c.add_xaxis(x_2_new)
  365. #添加簇中心
  366. try:
  367. center_x_2 = [center[class_num][a]]
  368. except:
  369. center_x_2 = [0]
  370. b = (Scatter()
  371. .add_xaxis(center_x_2)
  372. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  373. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  374. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  375. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  376. )
  377. c.overlap(b)
  378. if o_c == None:
  379. o_c = c
  380. else:
  381. o_c = o_c.overlap(c)
  382. o_cList.append(o_c)
  383. means,x_range,Type = Cat.get()
  384. return o_cList,means,x_range,Type
  385. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  386. x_data = x_trainData.T
  387. if len(x_data) == 1:
  388. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  389. Cat = make_Cat(x_data)
  390. o_cList = []
  391. for i in range(len(x_data)):
  392. x1 = x_data[i] # x坐标
  393. x1_con = is_continuous(x1)
  394. if i == 0:continue
  395. x2 = x_data[i - 1] # y坐标
  396. x2_con = is_continuous(x2)
  397. o_c = None # 旧的C
  398. for n_class in class_:
  399. x_1 = x1[y == n_class].tolist()
  400. x_2 = x2[y == n_class]
  401. x_2_new = np.unique(x_2)
  402. x_2 = x2[y == n_class].tolist()
  403. #x与散点图不同,这里是纵坐标
  404. c = (Scatter()
  405. .add_xaxis(x_2)
  406. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  407. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  408. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  409. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  410. )
  411. c.add_xaxis(x_2_new)
  412. if o_c == None:
  413. o_c = c
  414. else:
  415. o_c = o_c.overlap(c)
  416. o_cList.append(o_c)
  417. means,x_range,Type = Cat.get()
  418. return o_cList,means,x_range,Type
  419. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  420. x_data = x_trainData.T
  421. if len(x_data) == 1:
  422. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  423. o_cList = []
  424. means.append(0)
  425. means = np.array(means)
  426. for i in range(len(x_data)):
  427. if i == 0:continue
  428. x1_con = is_continuous(x_data[i])
  429. x2 = x_data[i - 1] # y坐标
  430. x2_con = is_continuous(x2)
  431. o_c = None # 旧的C
  432. for class_num in range(len(class_)):
  433. n_class = class_[class_num]
  434. x2_new = np.unique(x2[y == n_class])
  435. #x与散点图不同,这里是纵坐标
  436. #加入这个判断是为了解决sklearn历史遗留问题
  437. if len(class_) == 2:#二分类问题
  438. if class_num == 0:continue
  439. w = w_list[0]
  440. b = b_list[0]
  441. else:#多分类问题
  442. w = w_list[class_num]
  443. b = b_list[class_num]
  444. if x2_con:
  445. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  446. w = np.append(w, 0)
  447. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  448. c = (
  449. Line()
  450. .add_xaxis(x2_new)
  451. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  452. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  453. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  454. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  455. )
  456. if o_c == None:
  457. o_c = c
  458. else:
  459. o_c = o_c.overlap(c)
  460. #下面不要接任何代码,因为上面会continue
  461. o_cList.append(o_c)
  462. return o_cList
  463. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  464. x_data = x_trainData.T
  465. if len(x_data) == 1:
  466. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  467. o_cList = []
  468. means.append(0)#确保mean[i+1]不会超出index
  469. means = np.array(means)
  470. w = np.append(w,0)
  471. for i in range(len(x_data)):
  472. x1 = x_data[i]
  473. x1_con = is_continuous(x1)
  474. if x1_con:
  475. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  476. x1_new = np.unique(x1)
  477. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  478. y_con = is_continuous(y_data)
  479. c = (
  480. Line()
  481. .add_xaxis(x1_new)
  482. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  483. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  484. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  485. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  486. )
  487. o_cList.append(c)
  488. return o_cList
  489. def regress_visualization(x_trainData,y):#y-x数据图
  490. x_data = x_trainData.T
  491. y_con = is_continuous(y)
  492. Cat = make_Cat(x_data)
  493. o_cList = []
  494. for i in range(len(x_data)):
  495. x1 = x_data[i] # x坐标
  496. x1_con = is_continuous(x1)
  497. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  498. c = (
  499. Scatter()
  500. .add_xaxis(x1)#研究表明,这个是横轴
  501. .add_yaxis('数据',y,**Label_Set)
  502. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  503. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  504. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True),
  505. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(y.max())+1, min_=int(y.min()),
  506. pos_right='3%'))
  507. )
  508. o_cList.append(c)
  509. means,x_range,Type = Cat.get()
  510. return o_cList,means,x_range,Type
  511. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  512. seeting = global_Set if data_name else global_Leg
  513. x_data = x_trainData.T
  514. only = False
  515. if len(x_data) == 1:
  516. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  517. only = True
  518. o_cList = []
  519. for i in range(len(x_data)):
  520. for a in range(len(x_data)):
  521. if a <= i: continue#重复内容,跳过
  522. x1 = x_data[i] # x坐标
  523. x1_con = is_continuous(x1)
  524. x2 = x_data[a] # y坐标
  525. x2_con = is_continuous(x2)
  526. x2_new = np.unique(x2)
  527. if only:x2_con = False
  528. #x与散点图不同,这里是纵坐标
  529. c = (Scatter()
  530. .add_xaxis(x2)
  531. .add_yaxis(data_name, x1, **Label_Set)
  532. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  533. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  534. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  535. )
  536. c.add_xaxis(x2_new)
  537. o_cList.append(c)
  538. return o_cList
  539. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  540. seeting = global_Set if data_name else global_Leg
  541. x_data = x_trainData.T
  542. only = False
  543. if len(x_data) == 1:
  544. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  545. only = True
  546. o_cList = []
  547. for i in range(len(x_data)):
  548. for a in range(len(x_data)):
  549. if a <= i: continue#重复内容,跳过(a读取的是i后面的)
  550. x1 = x_data[i] # x坐标
  551. x1_con = is_continuous(x1)
  552. x2 = x_data[a] # y坐标
  553. x2_con = is_continuous(x2)
  554. x2_new = np.unique(x2)
  555. x1_list = x1.astype(np.str).tolist()
  556. for i in range(len(x1_list)):
  557. x1_list[i] = [x1_list[i],f'特征{i}']
  558. if only:x2_con = False
  559. #x与散点图不同,这里是纵坐标
  560. c = (Scatter()
  561. .add_xaxis(x2)
  562. .add_yaxis(data_name, x1_list, **Label_Set)
  563. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  564. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  565. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  566. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
  567. )
  568. c.add_xaxis(x2_new)
  569. o_cList.append(c)
  570. return o_cList
  571. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  572. seeting = global_Set if data_name else global_Leg
  573. x_data = x_trainData.T
  574. if len(x_data) == 1:
  575. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  576. o_cList = []
  577. for i in range(len(x_data)):
  578. for a in range(len(x_data)):
  579. if a <= i: continue#重复内容,跳过
  580. x1 = x_data[i] # x坐标
  581. x2 = x_data[a] # y坐标
  582. x2_new = np.unique(x2)
  583. #x与散点图不同,这里是纵坐标
  584. c = (Scatter()
  585. .add_xaxis(x2)
  586. .add_yaxis(data_name, x1, **Label_Set)
  587. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  588. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  589. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  590. )
  591. c.add_xaxis(x2_new)
  592. o_cList.append(c)
  593. return o_cList
  594. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  595. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  596. get_x = Feature_visualization(x_data,'原数据')#原来
  597. get_y = Feature_visualization(y_data,'转换数据')#转换
  598. for i in range(len(get_x)):
  599. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  600. return tab
  601. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  602. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  603. get_x = Feature_visualization(x_data,'原数据')#原来
  604. get_y = Feature_visualization(y_data,'转换数据')#转换
  605. for i in range(len(get_x)):
  606. try:
  607. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  608. except IndexError:pass
  609. try:
  610. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  611. except IndexError:pass
  612. return tab
  613. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  614. if type(y_data) is np.ndarray:
  615. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  616. for i in range(len(get_y)):
  617. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  618. return tab
  619. def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
  620. if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
  621. get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
  622. get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
  623. print(h_data)
  624. print(w_data)
  625. print(h_data.T)
  626. for i in range(len(get_x)):
  627. try:
  628. tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
  629. except IndexError:pass
  630. try:
  631. tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
  632. except IndexError:pass
  633. return tab
  634. def make_bar(name, value,tab):#绘制柱状图
  635. c = (
  636. Bar()
  637. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  638. .add_yaxis(name, value, **Label_Set)
  639. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  640. )
  641. tab.add(c, name)
  642. def judging_Digits(num:(int,float)):#查看小数位数
  643. a = str(abs(num)).split('.')[0]
  644. if a == '':raise ValueError
  645. return len(a)
  646. class Learner:
  647. def __init__(self,*args,**kwargs):
  648. self.numpy_Dic = {}#name:numpy
  649. def Add_Form(self,data:np.array,name):
  650. name = f'{name}[{len(self.numpy_Dic)}]'
  651. self.numpy_Dic[name] = data
  652. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  653. type_ = np.str if str_must else np.float
  654. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  655. try:
  656. data = pf_data.to_numpy(dtype=type_)
  657. except ValueError:
  658. data = pf_data.to_numpy(dtype=np.str)
  659. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  660. self.Add_Form(data,name)
  661. return data
  662. def Add_Python(self, Text, sheet_name):
  663. name = {}
  664. name.update(globals().copy())
  665. name.update(locals().copy())
  666. exec(Text, name)
  667. exec('get = Creat()', name)
  668. if isinstance(name['get'], np.array): # 已经是DataFram
  669. get = name['get']
  670. else:
  671. try:
  672. get = np.array(name['get'])
  673. except:
  674. get = np.array([name['get']])
  675. self.Add_Form(get, sheet_name)
  676. return get
  677. def get_Form(self) -> dict:
  678. return self.numpy_Dic.copy()
  679. def get_Sheet(self,name) -> np.array:
  680. return self.numpy_Dic[name].copy()
  681. def to_CSV(self,Dic:str,name,sep) -> str:
  682. get = self.get_Sheet(name)
  683. np.savetxt(Dic, get, delimiter=sep)
  684. return Dic
  685. def to_Html_One(self,name,Dic=''):
  686. if Dic == '': Dic = f'{name}.html'
  687. get = self.get_Sheet(name)
  688. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  689. get = get.tolist()
  690. for i in range(len(get)):
  691. get[i] = [i+1] + get[i]
  692. headers = [i for i in range(len(get[0]))]
  693. table = Table()
  694. table.add(headers, get).set_global_opts(
  695. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  696. table.render(Dic)
  697. return Dic
  698. def to_Html(self, name, Dic='', type_=0):
  699. if Dic == '': Dic = f'{name}.html'
  700. # 把要画的sheet放到第一个
  701. Sheet_Dic = self.get_Form()
  702. del Sheet_Dic[name]
  703. Sheet_list = [name] + list(Sheet_Dic.keys())
  704. class TAB_F:
  705. def __init__(self, q):
  706. self.tab = q # 一个Tab
  707. def render(self, Dic):
  708. return self.tab.render(Dic)
  709. # 生成一个显示页面
  710. if type_ == 0:
  711. class TAB(TAB_F):
  712. def add(self, table, k, *f):
  713. self.tab.add(table, k)
  714. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  715. elif type_ == 1:
  716. class TAB(TAB_F):
  717. def add(self, table, *k):
  718. self.tab.add(table)
  719. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  720. else:
  721. class TAB(TAB_F):
  722. def add(self, table, *k):
  723. self.tab.add(table)
  724. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  725. # 迭代添加内容
  726. for name in Sheet_list:
  727. get = self.get_Sheet(name)
  728. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  729. get = get.tolist()
  730. for i in range(len(get)):
  731. get[i] = [i+1] + get[i]
  732. headers = [i for i in range(len(get[0]))]
  733. table = Table()
  734. table.add(headers, get).set_global_opts(
  735. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  736. tab.add(table, f'表格:{name}')
  737. tab.render(Dic)
  738. return Dic
  739. class Study_MachineBase:
  740. def __init__(self,*args,**kwargs):
  741. self.Model = None
  742. self.have_Fit = False
  743. self.x_trainData = None
  744. self.y_trainData = None
  745. #有监督学习专有的testData
  746. self.x_testData = None
  747. self.y_testData = None
  748. #记录这两个是为了克隆
  749. def Accuracy(self,y_Predict,y_Really):
  750. return accuracy_score(y_Predict, y_Really)
  751. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  752. self.have_Fit = True
  753. y_data = y_data.ravel()
  754. self.x_trainData = x_data
  755. self.y_trainData = y_data
  756. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  757. self.Model.fit(x_data,y_data)
  758. train_score = self.Model.score(x_train,y_train)
  759. test_score = self.Model.score(x_test,y_test)
  760. return train_score,test_score
  761. def Score(self,x_data,y_data):
  762. Score = self.Model.score(x_data,y_data)
  763. return Score
  764. def Predict(self,x_data,*args,**kwargs):
  765. self.x_testData = x_data.copy()
  766. y_Predict = self.Model.predict(x_data)
  767. self.y_testData = y_Predict.copy()
  768. return y_Predict,'预测'
  769. def Des(self,*args,**kwargs):
  770. return ()
  771. class prep_Base(Study_MachineBase):
  772. def __init__(self,*args,**kwargs):
  773. super(prep_Base, self).__init__(*args,**kwargs)
  774. self.Model = None
  775. def Fit(self, x_data,y_data, *args, **kwargs):
  776. if not self.have_Fit: # 不允许第二次训练
  777. self.x_trainData = x_data
  778. self.y_trainData = y_data
  779. self.Model.fit(x_data,y_data)
  780. return 'None', 'None'
  781. def Predict(self, x_data, *args, **kwargs):
  782. self.x_trainData = x_data
  783. x_Predict = self.Model.transform(x_data)
  784. self.y_trainData = x_Predict
  785. return x_Predict,'特征工程'
  786. def Score(self, x_data, y_data):
  787. return 'None' # 没有score
  788. class Unsupervised(prep_Base):
  789. def Fit(self, x_data, *args, **kwargs):
  790. if not self.have_Fit: # 不允许第二次训练
  791. self.x_trainData = x_data
  792. self.y_trainData = None
  793. self.Model.fit(x_data)
  794. return 'None', 'None'
  795. class UnsupervisedModel(prep_Base):
  796. def Fit(self, x_data, *args, **kwargs):
  797. self.x_trainData = x_data
  798. self.y_trainData = None
  799. self.Model.fit(x_data)
  800. return 'None', 'None'
  801. class Predictive_HeatMap(prep_Base):#绘制预测型热力图
  802. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  803. super(Predictive_HeatMap, self).__init__(*args, **kwargs)
  804. self.Model = Learner.Model
  805. self.Select_Model = None
  806. self.have_Fit = Learner.have_Fit
  807. self.Model_Name = 'Select_Model'
  808. self.x_trainData = self.x_trainData
  809. self.y_trainData = self.y_trainData
  810. def Des(self,Dic,*args,**kwargs):
  811. tab = Tab()
  812. y = self.y_trainData
  813. x_data = self.x_trainData
  814. try:#如果没有class
  815. class_ = self.Model.classes_.tolist()
  816. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  817. #获取数据
  818. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  819. get = Decision_boundary(x_range,x_means,self.Model.Predict,class_,Type)
  820. for i in range(len(get)):
  821. tab.add(get[i], f'{i}预测热力图')
  822. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  823. data = class_ + [f'{i}' for i in x_means]
  824. c = Table().add(headers=heard, rows=[data])
  825. tab.add(c, '数据表')
  826. except:
  827. get, x_means, x_range,Type = regress_visualization(x_data, y)
  828. get = Prediction_boundary(x_range, x_means, self.Model.Predict, Type)
  829. for i in range(len(get)):
  830. tab.add(get[i], f'{i}预测热力图')
  831. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  832. data = [f'{i}' for i in x_means]
  833. c = Table().add(headers=heard, rows=[data])
  834. tab.add(c, '数据表')
  835. save = Dic + r'/render.HTML'
  836. tab.render(save) # 生成HTML
  837. return save,
  838. class Near_feature_scatter_class_More(Unsupervised):
  839. def __init__(self, args_use, model, *args, **kwargs):
  840. super(Near_feature_scatter_class_More, self).__init__(*args, **kwargs)
  841. self.Model = None
  842. self.k = {}
  843. #记录这两个是为了克隆
  844. self.Model_Name = model
  845. def Des(self, Dic, *args, **kwargs):
  846. tab = Tab()
  847. y = self.y_trainData
  848. x_data = self.x_trainData
  849. class_ = np.unique(self.y_trainData).tolist()
  850. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  851. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  852. for i in range(len(get)):
  853. tab.add(get[i], f'{i}训练数据散点图')
  854. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  855. data = class_ + [f'{i}' for i in x_means]
  856. c = Table().add(headers=heard, rows=[data])
  857. tab.add(c, '数据表')
  858. save = Dic + r'/render.HTML'
  859. tab.render(save) # 生成HTML
  860. return save,
  861. class Near_feature_scatter_More(Unsupervised):
  862. def __init__(self, args_use, model, *args, **kwargs):
  863. super(Near_feature_scatter_More, self).__init__(*args, **kwargs)
  864. self.Model = None
  865. self.k = {}
  866. #记录这两个是为了克隆
  867. self.Model_Name = model
  868. def Des(self,Dic,*args,**kwargs):
  869. tab = Tab()
  870. y_data = self.y_trainData
  871. get_y = Feature_visualization(y_data, '转换数据') # 转换
  872. for i in range(len(get_y)):
  873. tab.add(get_y[i], f'[{i}]变维数据x-x散点图')
  874. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  875. data = [f'{i}' for i in x_means]
  876. c = Table().add(headers=heard, rows=[data])
  877. tab.add(c, '数据表')
  878. save = Dic + r'/render.HTML'
  879. tab.render(save) # 生成HTML
  880. return save,
  881. class Near_feature_scatter_class(Study_MachineBase):#临近特征散点图:分类数据
  882. def __init__(self,args_use,model,*args,**kwargs):
  883. super(Near_feature_scatter_class, self).__init__(*args,**kwargs)
  884. self.Model = None
  885. self.k = {}
  886. #记录这两个是为了克隆
  887. self.Model_Name = model
  888. def Des(self,Dic='render.html',*args,**kwargs):
  889. #获取数据
  890. class_ = np.unique(self.y_trainData).tolist()
  891. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  892. tab = Tab()
  893. y = self.y_trainData
  894. x_data = self.x_trainData
  895. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  896. for i in range(len(get)):
  897. tab.add(get[i], f'{i}临近特征散点图')
  898. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  899. data = class_ + [f'{i}' for i in x_means]
  900. c = Table().add(headers=heard, rows=[data])
  901. tab.add(c, '数据表')
  902. save = Dic + r'/render.HTML'
  903. tab.render(save) # 生成HTML
  904. return save,
  905. class Near_feature_scatter(Study_MachineBase):#临近特征散点图:连续数据
  906. def __init__(self,args_use,model,*args,**kwargs):
  907. super(Near_feature_scatter, self).__init__(*args,**kwargs)
  908. self.Model = None
  909. self.k = {}
  910. #记录这两个是为了克隆
  911. self.Model_Name = model
  912. def Des(self,Dic,*args,**kwargs):
  913. tab = Tab()
  914. x_data = self.x_trainData
  915. y = self.y_trainData
  916. get, x_means, x_range,Type = regress_visualization(x_data, y)
  917. for i in range(len(get)):
  918. tab.add(get[i], f'{i}临近特征散点图')
  919. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  920. data = [f'{i}' for i in x_means]
  921. tab.add(make_Tab(columns,[data]), '数据表')
  922. save = Dic + r'/render.HTML'
  923. tab.render(save) # 生成HTML
  924. return save,
  925. class Line_Model(Study_MachineBase):
  926. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  927. super(Line_Model, self).__init__(*args,**kwargs)
  928. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  929. model]
  930. if model == 'Line':
  931. self.Model = Model()
  932. self.k = {}
  933. else:
  934. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  935. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  936. #记录这两个是为了克隆
  937. self.Alpha = args_use['alpha']
  938. self.max_iter = args_use['max_iter']
  939. self.Model_Name = model
  940. def Des(self,Dic,*args,**kwargs):
  941. tab = Tab()
  942. x_data = self.x_trainData
  943. y = self.y_trainData
  944. w_list = self.Model.coef_.tolist()
  945. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  946. b = self.Model.intercept_.tolist()
  947. get, x_means, x_range,Type = regress_visualization(x_data, y)
  948. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  949. for i in range(len(get)):
  950. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  951. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  952. for i in range(len(get)):
  953. tab.add(get[i], f'{i}预测热力图')
  954. tab.add(scatter(w_heard,w_list),'系数w散点图')
  955. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  956. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  957. data = [f'{i}' for i in x_means] + w_list + [b]
  958. if self.Model_Name != 'Line':
  959. columns += ['阿尔法','最大迭代次数']
  960. data += [self.Model.alpha,self.Model.max_iter]
  961. tab.add(make_Tab(columns,[data]), '数据表')
  962. save = Dic + r'/render.HTML'
  963. tab.render(save) # 生成HTML
  964. return save,
  965. class LogisticRegression_Model(Study_MachineBase):
  966. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  967. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  968. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  969. #记录这两个是为了克隆
  970. self.C = args_use['C']
  971. self.max_iter = args_use['max_iter']
  972. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  973. self.Model_Name = model
  974. def Des(self,Dic='render.html',*args,**kwargs):
  975. #获取数据
  976. w_array = self.Model.coef_
  977. w_list = w_array.tolist() # 变为表格
  978. b = self.Model.intercept_
  979. c = self.Model.C
  980. max_iter = self.Model.max_iter
  981. class_ = self.Model.classes_.tolist()
  982. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  983. tab = Tab()
  984. y = self.y_trainData
  985. x_data = self.x_trainData
  986. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  987. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  988. for i in range(len(get)):
  989. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  990. for i in range(len(w_list)):
  991. w = w_list[i]
  992. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  993. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  994. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  995. columns = class_heard + ['截距b','C','最大迭代数']
  996. data = class_ + [b,c,max_iter]
  997. c = Table().add(headers=columns, rows=[data])
  998. tab.add(c, '数据表')
  999. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  1000. tab.add(c, '系数数据表')
  1001. save = Dic + r'/render.HTML'
  1002. tab.render(save) # 生成HTML
  1003. return save,
  1004. class Categorical_Data:#数据统计助手
  1005. def __init__(self):
  1006. self.x_means = []
  1007. self.x_range = []
  1008. self.Type = []
  1009. def __call__(self,x1, *args, **kwargs):
  1010. get = self.is_continuous(x1)
  1011. return get
  1012. def is_continuous(self,x1:np.array):
  1013. try:
  1014. x1_con = is_continuous(x1)
  1015. if x1_con:
  1016. self.x_means.append(np.mean(x1))
  1017. self.add_Range(x1)
  1018. else:
  1019. raise Exception
  1020. return x1_con
  1021. except:#找出出现次数最多的元素
  1022. new = np.unique(x1)#去除相同的元素
  1023. count_list = []
  1024. for i in new:
  1025. count_list.append(np.sum(x1 == i))
  1026. index = count_list.index(max(count_list))#找出最大值的索引
  1027. self.x_means.append(x1[index])
  1028. self.add_Range(x1,False)
  1029. return False
  1030. def add_Range(self,x1:np.array,range_=True):
  1031. try:
  1032. if not range_ : raise Exception
  1033. min_ = int(x1.min()) - 1
  1034. max_ = int(x1.max()) + 1
  1035. #不需要复制列表
  1036. self.x_range.append([min_,max_])
  1037. self.Type.append(1)
  1038. except:
  1039. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  1040. self.Type.append(2)
  1041. def get(self):
  1042. return self.x_means,self.x_range,self.Type
  1043. class Knn_Model(Study_MachineBase):
  1044. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1045. super(Knn_Model, self).__init__(*args,**kwargs)
  1046. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  1047. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  1048. #记录这两个是为了克隆
  1049. self.n_neighbors = args_use['n_neighbors']
  1050. self.p = args_use['p']
  1051. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  1052. self.Model_Name = model
  1053. def Des(self,Dic,*args,**kwargs):
  1054. tab = Tab()
  1055. y = self.y_trainData
  1056. x_data = self.x_trainData
  1057. y_test = self.y_testData
  1058. x_test = self.x_testData
  1059. if self.Model_Name == 'Knn_class':
  1060. class_ = self.Model.classes_.tolist()
  1061. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1062. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1063. for i in range(len(get)):
  1064. tab.add(get[i],f'{i}训练数据散点图')
  1065. get = Training_visualization(x_test,class_,y_test)[0]
  1066. for i in range(len(get)):
  1067. tab.add(get[i],f'{i}测试数据散点图')
  1068. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1069. for i in range(len(get)):
  1070. tab.add(get[i], f'{i}预测热力图')
  1071. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1072. data = class_ + [f'{i}' for i in x_means]
  1073. c = Table().add(headers=heard, rows=[data])
  1074. tab.add(c, '数据表')
  1075. else:
  1076. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1077. for i in range(len(get)):
  1078. tab.add(get[i], f'{i}训练数据散点图')
  1079. get = regress_visualization(x_test, y_test)[0]
  1080. for i in range(len(get)):
  1081. tab.add(get[i], f'{i}测试数据类型图')
  1082. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1083. for i in range(len(get)):
  1084. tab.add(get[i], f'{i}预测热力图')
  1085. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1086. data = [f'{i}' for i in x_means]
  1087. c = Table().add(headers=heard, rows=[data])
  1088. tab.add(c, '数据表')
  1089. save = Dic + r'/render.HTML'
  1090. tab.render(save) # 生成HTML
  1091. return save,
  1092. class Tree_Model(Study_MachineBase):
  1093. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1094. super(Tree_Model, self).__init__(*args,**kwargs)
  1095. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  1096. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  1097. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1098. #记录这两个是为了克隆
  1099. self.criterion = args_use['criterion']
  1100. self.splitter = args_use['splitter']
  1101. self.max_features = args_use['max_features']
  1102. self.max_depth = args_use['max_depth']
  1103. self.min_samples_split = args_use['min_samples_split']
  1104. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1105. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1106. self.Model_Name = model
  1107. def Des(self, Dic, *args, **kwargs):
  1108. tab = Tab()
  1109. importance = self.Model.feature_importances_.tolist()
  1110. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  1111. export_graphviz(self.Model, out_file=f)
  1112. make_bar('特征重要性',importance,tab)
  1113. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  1114. y = self.y_trainData
  1115. x_data = self.x_trainData
  1116. y_test = self.y_testData
  1117. x_test = self.x_testData
  1118. if self.Model_Name == 'Tree_class':
  1119. class_ = self.Model.classes_.tolist()
  1120. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1121. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1122. for i in range(len(get)):
  1123. tab.add(get[i],f'{i}训练数据散点图')
  1124. get = Training_visualization(x_test, class_, y_test)[0]
  1125. for i in range(len(get)):
  1126. tab.add(get[i], f'{i}测试数据散点图')
  1127. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1128. for i in range(len(get)):
  1129. tab.add(get[i], f'{i}预测热力图')
  1130. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1131. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  1132. else:
  1133. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1134. for i in range(len(get)):
  1135. tab.add(get[i], f'{i}训练数据散点图')
  1136. get = regress_visualization(x_test, y_test)[0]
  1137. for i in range(len(get)):
  1138. tab.add(get[i], f'{i}测试数据类型图')
  1139. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1140. for i in range(len(get)):
  1141. tab.add(get[i], f'{i}预测热力图')
  1142. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1143. [[f'{i}' for i in x_means] + importance]), '数据表')
  1144. save = Dic + r'/render.HTML'
  1145. tab.render(save) # 生成HTML
  1146. return save,
  1147. class Forest_Model(Study_MachineBase):
  1148. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1149. super(Forest_Model, self).__init__(*args,**kwargs)
  1150. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  1151. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  1152. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1153. #记录这两个是为了克隆
  1154. self.n_estimators = args_use['n_Tree']
  1155. self.criterion = args_use['criterion']
  1156. self.max_features = args_use['max_features']
  1157. self.max_depth = args_use['max_depth']
  1158. self.min_samples_split = args_use['min_samples_split']
  1159. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  1160. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1161. self.Model_Name = model
  1162. def Des(self, Dic, *args, **kwargs):
  1163. tab = Tab()
  1164. #多个决策树可视化
  1165. for i in range(len(self.Model.estimators_)):
  1166. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  1167. export_graphviz(self.Model.estimators_[i], out_file=f)
  1168. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  1169. y = self.y_trainData
  1170. x_data = self.x_trainData
  1171. if self.Model_Name == 'Forest_class':
  1172. class_ = self.Model.classes_.tolist()
  1173. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1174. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1175. for i in range(len(get)):
  1176. tab.add(get[i],f'{i}训练数据散点图')
  1177. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1178. for i in range(len(get)):
  1179. tab.add(get[i], f'{i}预测热力图')
  1180. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1181. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1182. else:
  1183. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1184. for i in range(len(get)):
  1185. tab.add(get[i], f'{i}预测类型图')
  1186. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1187. for i in range(len(get)):
  1188. tab.add(get[i], f'{i}预测热力图')
  1189. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1190. save = Dic + r'/render.HTML'
  1191. tab.render(save) # 生成HTML
  1192. return save,
  1193. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  1194. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1195. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  1196. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  1197. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  1198. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1199. #记录这两个是为了克隆
  1200. self.criterion = args_use['criterion']
  1201. self.splitter = args_use['splitter']
  1202. self.max_features = args_use['max_features']
  1203. self.max_depth = args_use['max_depth']
  1204. self.min_samples_split = args_use['min_samples_split']
  1205. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1206. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1207. self.Model_Name = model
  1208. def Des(self, Dic, *args, **kwargs):
  1209. tab = Tab()
  1210. #多个决策树可视化
  1211. for a in range(len(self.Model.estimators_)):
  1212. for i in range(len(self.Model.estimators_[a])):
  1213. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  1214. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  1215. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  1216. y = self.y_trainData
  1217. x_data = self.x_trainData
  1218. if self.Model_Name == 'Tree_class':
  1219. class_ = self.Model.classes_.tolist()
  1220. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1221. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1222. for i in range(len(get)):
  1223. tab.add(get[i],f'{i}训练数据散点图')
  1224. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1225. for i in range(len(get)):
  1226. tab.add(get[i], f'{i}预测热力图')
  1227. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1228. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1229. else:
  1230. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1231. for i in range(len(get)):
  1232. tab.add(get[i], f'{i}预测类型图')
  1233. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1234. for i in range(len(get)):
  1235. tab.add(get[i], f'{i}预测热力图')
  1236. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1237. save = Dic + r'/render.HTML'
  1238. tab.render(save) # 生成HTML
  1239. return save,
  1240. class SVC_Model(Study_MachineBase):
  1241. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1242. super(SVC_Model, self).__init__(*args,**kwargs)
  1243. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1244. #记录这两个是为了克隆
  1245. self.C = args_use['C']
  1246. self.gamma = args_use['gamma']
  1247. self.kernel = args_use['kernel']
  1248. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1249. self.Model_Name = model
  1250. def Des(self, Dic, *args, **kwargs):
  1251. tab = Tab()
  1252. w_list = self.Model.coef_.tolist()
  1253. b = self.Model.intercept_.tolist()
  1254. class_ = self.Model.classes_.tolist()
  1255. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1256. y = self.y_trainData
  1257. x_data = self.x_trainData
  1258. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1259. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1260. for i in range(len(get)):
  1261. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1262. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  1263. for i in range(len(get)):
  1264. tab.add(get[i], f'{i}预测热力图')
  1265. dic = {2:'离散',1:'连续'}
  1266. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  1267. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1268. save = Dic + r'/render.HTML'
  1269. tab.render(save) # 生成HTML
  1270. return save,
  1271. class SVR_Model(Study_MachineBase):
  1272. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1273. super(SVR_Model, self).__init__(*args,**kwargs)
  1274. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1275. #记录这两个是为了克隆
  1276. self.C = args_use['C']
  1277. self.gamma = args_use['gamma']
  1278. self.kernel = args_use['kernel']
  1279. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1280. self.Model_Name = model
  1281. def Des(self,Dic,*args,**kwargs):
  1282. tab = Tab()
  1283. x_data = self.x_trainData
  1284. y = self.y_trainData
  1285. try:
  1286. w_list = self.Model.coef_.tolist()#未必有这个属性
  1287. b = self.Model.intercept_.tolist()
  1288. U = True
  1289. except:
  1290. U = False
  1291. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1292. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1293. for i in range(len(get)):
  1294. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1295. else:tab.add(get[i], f'{i}预测类型图')
  1296. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1297. for i in range(len(get)):
  1298. tab.add(get[i], f'{i}预测热力图')
  1299. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1300. save = Dic + r'/render.HTML'
  1301. tab.render(save) # 生成HTML
  1302. return save,
  1303. class Variance_Model(Unsupervised):#无监督
  1304. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1305. super(Variance_Model, self).__init__(*args,**kwargs)
  1306. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  1307. #记录这两个是为了克隆
  1308. self.threshold = args_use['P']
  1309. self.k = {'threshold':args_use['P']}
  1310. self.Model_Name = model
  1311. def Des(self,Dic,*args,**kwargs):
  1312. tab = Tab()
  1313. var = self.Model.variances_#标准差
  1314. y_data = self.y_trainData
  1315. if type(y_data) is np.ndarray:
  1316. get = Feature_visualization(self.y_trainData)
  1317. for i in range(len(get)):
  1318. tab.add(get[i],f'[{i}]数据x-x散点图')
  1319. c = (
  1320. Bar()
  1321. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  1322. .add_yaxis('标准差', var.tolist(), **Label_Set)
  1323. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1324. )
  1325. tab.add(c,'数据标准差')
  1326. save = Dic + r'/render.HTML'
  1327. tab.render(save) # 生成HTML
  1328. return save,
  1329. class SelectKBest_Model(prep_Base):#无监督
  1330. def __init__(self, args_use, model, *args, **kwargs):
  1331. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  1332. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  1333. # 记录这两个是为了克隆
  1334. self.k_ = args_use['k']
  1335. self.score_func=args_use['score_func']
  1336. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  1337. self.Model_Name = model
  1338. def Des(self,Dic,*args,**kwargs):
  1339. tab = Tab()
  1340. score = self.Model.scores_.tolist()
  1341. support = self.Model.get_support()
  1342. y_data = self.y_trainData
  1343. x_data = self.x_trainData
  1344. if type(x_data) is np.ndarray:
  1345. get = Feature_visualization(x_data)
  1346. for i in range(len(get)):
  1347. tab.add(get[i],f'[{i}]数据x-x散点图')
  1348. if type(y_data) is np.ndarray:
  1349. get = Feature_visualization(y_data)
  1350. for i in range(len(get)):
  1351. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1352. Choose = []
  1353. UnChoose = []
  1354. for i in range(len(score)):
  1355. if support[i]:
  1356. Choose.append(score[i])
  1357. UnChoose.append(0)#占位
  1358. else:
  1359. UnChoose.append(score[i])
  1360. Choose.append(0)
  1361. c = (
  1362. Bar()
  1363. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1364. .add_yaxis('选中特征', Choose, **Label_Set)
  1365. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1366. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1367. )
  1368. tab.add(c,'单变量重要程度')
  1369. save = Dic + r'/render.HTML'
  1370. tab.render(save) # 生成HTML
  1371. return save,
  1372. class SelectFrom_Model(prep_Base):#无监督
  1373. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1374. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  1375. self.Model = Learner.Model
  1376. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  1377. self.max_features = args_use['k']
  1378. self.estimator=Learner.Model
  1379. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  1380. self.have_Fit = Learner.have_Fit
  1381. self.Model_Name = 'SelectFrom_Model'
  1382. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  1383. if not self.have_Fit: # 不允许第二次训练
  1384. self.Select_Model.fit(x_data, y_data)
  1385. return 'None', 'None'
  1386. return 'NONE','NONE'
  1387. def Predict(self, x_data, *args, **kwargs):
  1388. try:
  1389. self.x_trainData = x_data
  1390. x_Predict = self.Select_Model.transform(x_data)
  1391. self.y_trainData = x_Predict
  1392. print(self.y_trainData)
  1393. print(self.x_trainData)
  1394. return x_Predict,'模型特征工程'
  1395. except:
  1396. return np.array([]),'无结果工程'
  1397. def Des(self,Dic,*args,**kwargs):
  1398. tab = Tab()
  1399. support = self.Select_Model.get_support()
  1400. y_data = self.y_trainData
  1401. x_data = self.x_trainData
  1402. if type(x_data) is np.ndarray:
  1403. get = Feature_visualization(x_data)
  1404. for i in range(len(get)):
  1405. tab.add(get[i],f'[{i}]数据x-x散点图')
  1406. if type(y_data) is np.ndarray:
  1407. get = Feature_visualization(y_data)
  1408. for i in range(len(get)):
  1409. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1410. def make_Bar(score):
  1411. Choose = []
  1412. UnChoose = []
  1413. for i in range(len(score)):
  1414. if support[i]:
  1415. Choose.append(abs(score[i]))
  1416. UnChoose.append(0) # 占位
  1417. else:
  1418. UnChoose.append(abs(score[i]))
  1419. Choose.append(0)
  1420. c = (
  1421. Bar()
  1422. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1423. .add_yaxis('选中特征', Choose, **Label_Set)
  1424. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1425. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1426. )
  1427. tab.add(c,'单变量重要程度')
  1428. try:
  1429. make_Bar(self.Model.coef_)
  1430. except:
  1431. try:
  1432. make_Bar(self.Model.feature_importances_)
  1433. except:pass
  1434. save = Dic + r'/render.HTML'
  1435. tab.render(save) # 生成HTML
  1436. return save,
  1437. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  1438. def __init__(self, args_use, model, *args, **kwargs):
  1439. super(Standardization_Model, self).__init__(*args, **kwargs)
  1440. self.Model = StandardScaler()
  1441. self.k = {}
  1442. self.Model_Name = 'StandardScaler'
  1443. def Des(self,Dic,*args,**kwargs):
  1444. tab = Tab()
  1445. y_data = self.y_trainData
  1446. x_data = self.x_trainData
  1447. var = self.Model.var_.tolist()
  1448. means = self.Model.mean_.tolist()
  1449. scale = self.Model.scale_.tolist()
  1450. Conversion_control(y_data,x_data,tab)
  1451. make_bar('标准差',var,tab)
  1452. make_bar('方差',means,tab)
  1453. make_bar('Scale',scale,tab)
  1454. save = Dic + r'/render.HTML'
  1455. tab.render(save) # 生成HTML
  1456. return save,
  1457. class MinMaxScaler_Model(Unsupervised):#离差标准化
  1458. def __init__(self, args_use, model, *args, **kwargs):
  1459. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  1460. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  1461. self.k = {}
  1462. self.Model_Name = 'MinMaxScaler'
  1463. def Des(self,Dic,*args,**kwargs):
  1464. tab = Tab()
  1465. y_data = self.y_trainData
  1466. x_data = self.x_trainData
  1467. scale = self.Model.scale_.tolist()
  1468. max_ = self.Model.data_max_.tolist()
  1469. min_ = self.Model.data_min_.tolist()
  1470. Conversion_control(y_data,x_data,tab)
  1471. make_bar('Scale',scale,tab)
  1472. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  1473. row=[max_ + min_]), '数据表格')
  1474. save = Dic + r'/render.HTML'
  1475. tab.render(save) # 生成HTML
  1476. return save,
  1477. class LogScaler_Model(prep_Base):#对数标准化
  1478. def __init__(self, args_use, model, *args, **kwargs):
  1479. super(LogScaler_Model, self).__init__(*args, **kwargs)
  1480. self.Model = None
  1481. self.k = {}
  1482. self.Model_Name = 'LogScaler'
  1483. def Fit(self, x_data, *args, **kwargs):
  1484. if not self.have_Fit: # 不允许第二次训练
  1485. self.max_logx = np.log(x_data.max())
  1486. return 'None', 'None'
  1487. def Predict(self, x_data, *args, **kwargs):
  1488. try:
  1489. max_logx = self.max_logx
  1490. except:
  1491. self.have_Fit = False
  1492. self.Fit(x_data)
  1493. max_logx = self.max_logx
  1494. self.x_trainData = x_data.copy()
  1495. x_Predict = (np.log(x_data)/max_logx)
  1496. self.y_trainData = x_Predict.copy()
  1497. return x_Predict,'对数变换'
  1498. def Des(self,Dic,*args,**kwargs):
  1499. tab = Tab()
  1500. y_data = self.y_trainData
  1501. x_data = self.x_trainData
  1502. Conversion_control(y_data,x_data,tab)
  1503. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  1504. save = Dic + r'/render.HTML'
  1505. tab.render(save) # 生成HTML
  1506. return save,
  1507. class atanScaler_Model(prep_Base):#atan标准化
  1508. def __init__(self, args_use, model, *args, **kwargs):
  1509. super(atanScaler_Model, self).__init__(*args, **kwargs)
  1510. self.Model = None
  1511. self.k = {}
  1512. self.Model_Name = 'atanScaler'
  1513. def Fit(self, x_data, *args, **kwargs):
  1514. return 'None', 'None'
  1515. def Predict(self, x_data, *args, **kwargs):
  1516. self.x_trainData = x_data.copy()
  1517. x_Predict = (np.arctan(x_data)*(2/np.pi))
  1518. self.y_trainData = x_Predict.copy()
  1519. return x_Predict,'atan变换'
  1520. def Des(self,Dic,*args,**kwargs):
  1521. tab = Tab()
  1522. y_data = self.y_trainData
  1523. x_data = self.x_trainData
  1524. Conversion_control(y_data,x_data,tab)
  1525. save = Dic + r'/render.HTML'
  1526. tab.render(save) # 生成HTML
  1527. return save,
  1528. class decimalScaler_Model(prep_Base):#小数定标准化
  1529. def __init__(self, args_use, model, *args, **kwargs):
  1530. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  1531. self.Model = None
  1532. self.k = {}
  1533. self.Model_Name = 'Decimal_normalization'
  1534. def Fit(self, x_data, *args, **kwargs):
  1535. if not self.have_Fit: # 不允许第二次训练
  1536. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  1537. return 'None', 'None'
  1538. def Predict(self, x_data, *args, **kwargs):
  1539. self.x_trainData = x_data.copy()
  1540. try:
  1541. j = self.j
  1542. except:
  1543. self.have_Fit = False
  1544. self.Fit(x_data)
  1545. j = self.j
  1546. x_Predict = (x_data/(10**j))
  1547. self.y_trainData = x_Predict.copy()
  1548. return x_Predict,'小数定标标准化'
  1549. def Des(self,Dic,*args,**kwargs):
  1550. tab = Tab()
  1551. y_data = self.y_trainData
  1552. x_data = self.x_trainData
  1553. j = self.j
  1554. Conversion_control(y_data,x_data,tab)
  1555. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  1556. save = Dic + r'/render.HTML'
  1557. tab.render(save) # 生成HTML
  1558. return save,
  1559. class Mapzoom_Model(prep_Base):#映射标准化
  1560. def __init__(self, args_use, model, *args, **kwargs):
  1561. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  1562. self.Model = None
  1563. self.feature_range = args_use['feature_range']
  1564. self.k = {}
  1565. self.Model_Name = 'Decimal_normalization'
  1566. def Fit(self, x_data, *args, **kwargs):
  1567. if not self.have_Fit: # 不允许第二次训练
  1568. self.max = x_data.max()
  1569. self.min = x_data.min()
  1570. return 'None', 'None'
  1571. def Predict(self, x_data, *args, **kwargs):
  1572. self.x_trainData = x_data.copy()
  1573. try:
  1574. max = self.max
  1575. min = self.min
  1576. except:
  1577. self.have_Fit = False
  1578. self.Fit(x_data)
  1579. max = self.max
  1580. min = self.min
  1581. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  1582. self.y_trainData = x_Predict.copy()
  1583. return x_Predict,'映射标准化'
  1584. def Des(self,Dic,*args,**kwargs):
  1585. tab = Tab()
  1586. y_data = self.y_trainData
  1587. x_data = self.x_trainData
  1588. max = self.max
  1589. min = self.min
  1590. Conversion_control(y_data,x_data,tab)
  1591. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1592. save = Dic + r'/render.HTML'
  1593. tab.render(save) # 生成HTML
  1594. return save,
  1595. class sigmodScaler_Model(prep_Base):#sigmod变换
  1596. def __init__(self, args_use, model, *args, **kwargs):
  1597. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  1598. self.Model = None
  1599. self.k = {}
  1600. self.Model_Name = 'sigmodScaler_Model'
  1601. def Fit(self, x_data, *args, **kwargs):
  1602. return 'None', 'None'
  1603. def Predict(self, x_data:np.array):
  1604. self.x_trainData = x_data.copy()
  1605. x_Predict = (1/(1+np.exp(-x_data)))
  1606. self.y_trainData = x_Predict.copy()
  1607. return x_Predict,'Sigmod变换'
  1608. def Des(self,Dic,*args,**kwargs):
  1609. tab = Tab()
  1610. y_data = self.y_trainData
  1611. x_data = self.x_trainData
  1612. Conversion_control(y_data,x_data,tab)
  1613. save = Dic + r'/render.HTML'
  1614. tab.render(save) # 生成HTML
  1615. return save,
  1616. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  1617. def __init__(self, args_use, model, *args, **kwargs):
  1618. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  1619. self.Model = None
  1620. self.feature_range = args_use['feature_range']
  1621. self.k = {}
  1622. self.Model_Name = 'Fuzzy_quantization'
  1623. def Fit(self, x_data, *args, **kwargs):
  1624. if not self.have_Fit: # 不允许第二次训练
  1625. self.max = x_data.max()
  1626. self.min = x_data.min()
  1627. return 'None', 'None'
  1628. def Predict(self, x_data,*args,**kwargs):
  1629. self.y_trainData = x_data.copy()
  1630. try:
  1631. max = self.max
  1632. min = self.min
  1633. except:
  1634. self.have_Fit = False
  1635. self.Fit(x_data)
  1636. max = self.max
  1637. min = self.min
  1638. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  1639. self.y_trainData = x_Predict.copy()
  1640. return x_Predict,'映射标准化'
  1641. def Des(self,Dic,*args,**kwargs):
  1642. tab = Tab()
  1643. y_data = self.y_trainData
  1644. x_data = self.x_trainData
  1645. max = self.max
  1646. min = self.min
  1647. Conversion_control(y_data,x_data,tab)
  1648. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1649. save = Dic + r'/render.HTML'
  1650. tab.render(save) # 生成HTML
  1651. return save,
  1652. class Regularization_Model(Unsupervised):#正则化
  1653. def __init__(self, args_use, model, *args, **kwargs):
  1654. super(Regularization_Model, self).__init__(*args, **kwargs)
  1655. self.Model = Normalizer(norm=args_use['norm'])
  1656. self.k = {'norm':args_use['norm']}
  1657. self.Model_Name = 'Regularization'
  1658. def Des(self,Dic,*args,**kwargs):
  1659. tab = Tab()
  1660. y_data = self.y_trainData
  1661. x_data = self.x_trainData
  1662. Conversion_control(y_data,x_data,tab)
  1663. save = Dic + r'/render.HTML'
  1664. tab.render(save) # 生成HTML
  1665. return save,
  1666. #离散数据
  1667. class Binarizer_Model(Unsupervised):#二值化
  1668. def __init__(self, args_use, model, *args, **kwargs):
  1669. super(Binarizer_Model, self).__init__(*args, **kwargs)
  1670. self.Model = Binarizer(threshold=args_use['threshold'])
  1671. self.k = {}
  1672. self.Model_Name = 'Binarizer'
  1673. def Des(self,Dic,*args,**kwargs):
  1674. tab = Tab()
  1675. y_data = self.y_trainData
  1676. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  1677. for i in range(len(get_y)):
  1678. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  1679. save = Dic + r'/render.HTML'
  1680. tab.render(save) # 生成HTML
  1681. return save,
  1682. class Discretization_Model(prep_Base):#n值离散
  1683. def __init__(self, args_use, model, *args, **kwargs):
  1684. super(Discretization_Model, self).__init__(*args, **kwargs)
  1685. self.Model = None
  1686. range_ = args_use['split_range']
  1687. if range_ == []:raise Exception
  1688. elif len(range_) == 1:range_.append(range_[0])
  1689. self.range = range_
  1690. self.k = {}
  1691. self.Model_Name = 'Discretization'
  1692. def Fit(self,*args,**kwargs):
  1693. return 'None','None'
  1694. def Predict(self,x_data):
  1695. self.x_trainData = x_data.copy()
  1696. x_Predict = x_data.copy()#复制
  1697. range_ = self.range
  1698. bool_list = []
  1699. max_ = len(range_) - 1
  1700. o_t = None
  1701. for i in range(len(range_)):
  1702. try:
  1703. t = float(range_[i])
  1704. except:continue
  1705. if o_t == None:#第一个参数
  1706. bool_list.append(x_Predict <= t)
  1707. else:
  1708. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  1709. if i == max_:
  1710. bool_list.append(t <= x_Predict)
  1711. o_t = t
  1712. for i in range(len(bool_list)):
  1713. x_Predict[bool_list[i]] = i
  1714. self.y_trainData = x_Predict.copy()
  1715. return x_Predict,f'{len(bool_list)}值离散化'
  1716. def Des(self, Dic, *args, **kwargs):
  1717. tab = Tab()
  1718. y_data = self.y_trainData
  1719. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1720. for i in range(len(get_y)):
  1721. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1722. save = Dic + r'/render.HTML'
  1723. tab.render(save) # 生成HTML
  1724. return save,
  1725. class Label_Model(prep_Base):#数字编码
  1726. def __init__(self, args_use, model, *args, **kwargs):
  1727. super(Label_Model, self).__init__(*args, **kwargs)
  1728. self.Model = []
  1729. self.k = {}
  1730. self.Model_Name = 'LabelEncoder'
  1731. def Fit(self,x_data,*args, **kwargs):
  1732. if not self.have_Fit: # 不允许第二次训练
  1733. if x_data.ndim == 1:x_data = np.array([x_data])
  1734. for i in range(x_data.shape[1]):
  1735. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  1736. return 'None', 'None'
  1737. def Predict(self, x_data, *args, **kwargs):
  1738. x_Predict = x_data.copy()
  1739. if x_data.ndim == 1: x_data = np.array([x_data])
  1740. for i in range(x_data.shape[1]):
  1741. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  1742. self.y_trainData = x_Predict.copy()
  1743. return x_Predict,'数字编码'
  1744. def Des(self, Dic, *args, **kwargs):
  1745. tab = Tab()
  1746. y_data = self.y_trainData
  1747. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1748. for i in range(len(get_y)):
  1749. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1750. save = Dic + r'/render.HTML'
  1751. tab.render(save) # 生成HTML
  1752. return save,
  1753. class OneHotEncoder_Model(prep_Base):#独热编码
  1754. def __init__(self, args_use, model, *args, **kwargs):
  1755. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  1756. self.Model = []
  1757. self.ndim_up = args_use['ndim_up']
  1758. self.k = {}
  1759. self.Model_Name = 'OneHotEncoder'
  1760. def Fit(self,x_data,*args, **kwargs):
  1761. if not self.have_Fit: # 不允许第二次训练
  1762. if x_data.ndim == 1:x_data = [x_data]
  1763. for i in range(x_data.shape[1]):
  1764. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  1765. self.Model.append(OneHotEncoder().fit(data))#训练机器
  1766. return 'None', 'None'
  1767. def Predict(self, x_data, *args, **kwargs):
  1768. self.x_trainData = x_data.copy()
  1769. x_new = []
  1770. for i in range(x_data.shape[1]):
  1771. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  1772. oneHot = self.Model[i].transform(data).toarray().tolist()
  1773. x_new.append(oneHot)#添加到列表中
  1774. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  1775. x_Predict = []
  1776. for i in range(x_new.shape[1]):
  1777. x_Predict.append(x_new[:,i])
  1778. x_Predict = np.array(x_Predict)#转换回array
  1779. if not self.ndim_up:#压缩操作
  1780. new_xPredict = []
  1781. for i in x_Predict:
  1782. new_list = []
  1783. list_ = i.tolist()
  1784. for a in list_:
  1785. new_list += a
  1786. new = np.array(new_list)
  1787. new_xPredict.append(new)
  1788. self.y_trainData = x_Predict.copy()
  1789. return np.array(new_xPredict),'独热编码'
  1790. #不保存y_trainData
  1791. return x_Predict,'独热编码'#不需要降维
  1792. def Des(self, Dic, *args, **kwargs):
  1793. tab = Tab()
  1794. y_data = self.y_trainData
  1795. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1796. for i in range(len(get_y)):
  1797. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1798. save = Dic + r'/render.HTML'
  1799. tab.render(save) # 生成HTML
  1800. return save,
  1801. class Missed_Model(Unsupervised):#缺失数据补充
  1802. def __init__(self, args_use, model, *args, **kwargs):
  1803. super(Missed_Model, self).__init__(*args, **kwargs)
  1804. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  1805. fill_value=args_use['fill_value'])
  1806. self.k = {}
  1807. self.Model_Name = 'Missed'
  1808. def Predict(self, x_data, *args, **kwargs):
  1809. self.x_trainData = x_data.copy()
  1810. x_Predict = self.Model.transform(x_data)
  1811. self.y_trainData = x_Predict.copy()
  1812. return x_Predict,'填充缺失'
  1813. def Des(self,Dic,*args,**kwargs):
  1814. tab = Tab()
  1815. y_data = self.y_trainData
  1816. x_data = self.x_trainData
  1817. Conversion_control(y_data,x_data,tab)
  1818. save = Dic + r'/render.HTML'
  1819. tab.render(save) # 生成HTML
  1820. return save,
  1821. class PCA_Model(Unsupervised):
  1822. def __init__(self, args_use, model, *args, **kwargs):
  1823. super(PCA_Model, self).__init__(*args, **kwargs)
  1824. self.Model = PCA(n_components=args_use['n_components'])
  1825. self.n_components = args_use['n_components']
  1826. self.k = {'n_components':args_use['n_components']}
  1827. self.Model_Name = 'PCA'
  1828. def Predict(self, x_data, *args, **kwargs):
  1829. self.x_trainData = x_data.copy()
  1830. x_Predict = self.Model.transform(x_data)
  1831. self.y_trainData = x_Predict.copy()
  1832. return x_Predict,'PCA'
  1833. def Des(self,Dic,*args,**kwargs):
  1834. tab = Tab()
  1835. y_data = self.y_trainData
  1836. importance = self.Model.components_.tolist()
  1837. var = self.Model.explained_variance_.tolist()#方量差
  1838. Conversion_Separate_Format(y_data,tab)
  1839. x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
  1840. y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
  1841. value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
  1842. c = (HeatMap()
  1843. .add_xaxis(x_data)
  1844. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  1845. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  1846. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  1847. xaxis_opts=opts.AxisOpts(is_scale=True),
  1848. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  1849. min_=int(self.Model.components_.min()),
  1850. pos_right='3%')) # 显示
  1851. )
  1852. tab.add(c,'成分热力图')
  1853. c = (
  1854. Bar()
  1855. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  1856. .add_yaxis('放量差', var, **Label_Set)
  1857. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  1858. )
  1859. tab.add(c, '方量差柱状图')
  1860. save = Dic + r'/render.HTML'
  1861. tab.render(save) # 生成HTML
  1862. return save,
  1863. class RPCA_Model(Unsupervised):
  1864. def __init__(self, args_use, model, *args, **kwargs):
  1865. super(RPCA_Model, self).__init__(*args, **kwargs)
  1866. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  1867. self.n_components = args_use['n_components']
  1868. self.k = {'n_components': args_use['n_components']}
  1869. self.Model_Name = 'RPCA'
  1870. def Predict(self, x_data, *args, **kwargs):
  1871. self.x_trainData = x_data.copy()
  1872. x_Predict = self.Model.transform(x_data)
  1873. self.y_trainData = x_Predict.copy()
  1874. return x_Predict,'RPCA'
  1875. def Des(self, Dic, *args, **kwargs):
  1876. tab = Tab()
  1877. y_data = self.y_trainData
  1878. importance = self.Model.components_.tolist()
  1879. var = self.Model.explained_variance_.tolist() # 方量差
  1880. Conversion_Separate_Format(y_data, tab)
  1881. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  1882. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  1883. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
  1884. range(len(importance[i]))]
  1885. c = (HeatMap()
  1886. .add_xaxis(x_data)
  1887. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  1888. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  1889. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  1890. xaxis_opts=opts.AxisOpts(is_scale=True),
  1891. visualmap_opts=opts.VisualMapOpts(is_show=True,
  1892. max_=int(self.Model.components_.max()) + 1,
  1893. min_=int(self.Model.components_.min()),
  1894. pos_right='3%')) # 显示
  1895. )
  1896. tab.add(c, '成分热力图')
  1897. c = (
  1898. Bar()
  1899. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  1900. .add_yaxis('放量差', var, **Label_Set)
  1901. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  1902. )
  1903. tab.add(c, '方量差柱状图')
  1904. save = Dic + r'/render.HTML'
  1905. tab.render(save) # 生成HTML
  1906. return save,
  1907. class KPCA_Model(Unsupervised):
  1908. def __init__(self, args_use, model, *args, **kwargs):
  1909. super(KPCA_Model, self).__init__(*args, **kwargs)
  1910. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  1911. self.n_components = args_use['n_components']
  1912. self.kernel = args_use['kernel']
  1913. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  1914. self.Model_Name = 'KPCA'
  1915. def Predict(self, x_data, *args, **kwargs):
  1916. self.x_trainData = x_data.copy()
  1917. x_Predict = self.Model.transform(x_data)
  1918. self.y_trainData = x_Predict.copy()
  1919. return x_Predict,'KPCA'
  1920. def Des(self, Dic, *args, **kwargs):
  1921. tab = Tab()
  1922. y_data = self.y_trainData
  1923. Conversion_Separate_Format(y_data, tab)
  1924. save = Dic + r'/render.HTML'
  1925. tab.render(save) # 生成HTML
  1926. return save,
  1927. class LDA_Model(prep_Base):#有监督学习
  1928. def __init__(self, args_use, model, *args, **kwargs):
  1929. super(LDA_Model, self).__init__(*args, **kwargs)
  1930. self.Model = LDA(n_components=args_use['n_components'])
  1931. self.n_components = args_use['n_components']
  1932. self.k = {'n_components': args_use['n_components']}
  1933. self.Model_Name = 'LDA'
  1934. def Predict(self, x_data, *args, **kwargs):
  1935. self.x_trainData = x_data.copy()
  1936. x_Predict = self.Model.transform(x_data)
  1937. self.y_trainData = x_Predict.copy()
  1938. return x_Predict,'LDA'
  1939. def Des(self,Dic,*args,**kwargs):
  1940. tab = Tab()
  1941. y_data = self.y_trainData
  1942. x_data = self.x_trainData
  1943. Conversion_Separate_Format(y_data,tab)
  1944. save = Dic + r'/render.HTML'
  1945. tab.render(save) # 生成HTML
  1946. return save,
  1947. class NMF_Model(Unsupervised):
  1948. def __init__(self, args_use, model, *args, **kwargs):
  1949. super(NMF_Model, self).__init__(*args, **kwargs)
  1950. self.Model = NMF(n_components=args_use['n_components'])
  1951. self.n_components = args_use['n_components']
  1952. self.k = {'n_components':args_use['n_components']}
  1953. self.Model_Name = 'NFM'
  1954. self.h_trainData = None
  1955. #x_trainData保存的是W,h_trainData和y_trainData是后来数据
  1956. def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
  1957. self.x_trainData = x_data.copy()
  1958. x_Predict = self.Model.transform(x_data)
  1959. self.y_trainData = x_Predict.copy()
  1960. self.h_trainData = self.Model.components_
  1961. if Add_Func != None and x_name != '':
  1962. Add_Func(self.h_trainData, f'{x_name}:V->NMF[H]')
  1963. return x_Predict,'V->NMF[W]'
  1964. def Des(self,Dic,*args,**kwargs):
  1965. tab = Tab()
  1966. y_data = self.y_trainData
  1967. x_data = self.x_trainData
  1968. h_data = self.h_trainData
  1969. Conversion_SeparateWH(y_data,h_data,tab)
  1970. wh_data = np.matmul(y_data, h_data)
  1971. difference_data = x_data - wh_data
  1972. def make_HeatMap(data,name,max_,min_):
  1973. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  1974. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  1975. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1976. c = (HeatMap()
  1977. .add_xaxis(x)
  1978. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1979. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  1980. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1981. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1982. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  1983. min_=min_,
  1984. pos_right='3%'))#显示
  1985. )
  1986. tab.add(c,name)
  1987. max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
  1988. min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
  1989. make_HeatMap(x_data,'原始数据热力图',max_,min_)
  1990. make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
  1991. make_HeatMap(difference_data,'数据差热力图',max_,min_)
  1992. save = Dic + r'/render.HTML'
  1993. tab.render(save) # 生成HTML
  1994. return save,
  1995. class TSNE_Model(Unsupervised):
  1996. def __init__(self, args_use, model, *args, **kwargs):
  1997. super(TSNE_Model, self).__init__(*args, **kwargs)
  1998. self.Model = TSNE(n_components=args_use['n_components'])
  1999. self.n_components = args_use['n_components']
  2000. self.k = {'n_components':args_use['n_components']}
  2001. self.Model_Name = 't-SNE'
  2002. def Fit(self,*args, **kwargs):
  2003. return 'None', 'None'
  2004. def Predict(self, x_data, *args, **kwargs):
  2005. self.x_trainData = x_data.copy()
  2006. x_Predict = self.Model.fit_transform(x_data)
  2007. self.y_trainData = x_Predict.copy()
  2008. return x_Predict,'SNE'
  2009. def Des(self,Dic,*args,**kwargs):
  2010. tab = Tab()
  2011. y_data = self.y_trainData
  2012. Conversion_Separate_Format(y_data,tab)
  2013. save = Dic + r'/render.HTML'
  2014. tab.render(save) # 生成HTML
  2015. return save,
  2016. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  2017. def __init__(self,args_use,model,*args,**kwargs):
  2018. super(MLP_Model, self).__init__(*args,**kwargs)
  2019. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  2020. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  2021. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  2022. #记录这两个是为了克隆
  2023. self.hidden_layer_sizes = args_use['hidden_size']
  2024. self.activation = args_use['activation']
  2025. self.max_iter = args_use['max_iter']
  2026. self.solver = args_use['solver']
  2027. self.alpha = args_use['alpha']
  2028. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  2029. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  2030. self.Model_Name = model
  2031. def Des(self,Dic,*args,**kwargs):
  2032. tab = Tab()
  2033. coefs = self.Model.coefs_
  2034. def make_HeatMap(data,name):
  2035. x = [f'特征(节点)[{i}]' for i in range(len(data))] # 主成分
  2036. y = [f'节点[{i}]' for i in range(len(data[0]))] # 主成分
  2037. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2038. c = (HeatMap()
  2039. .add_xaxis(x)
  2040. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2041. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  2042. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2043. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2044. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  2045. min_=float(data.min()),
  2046. pos_right='3%'))#显示
  2047. )
  2048. tab.add(c,name)
  2049. tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
  2050. heard = ['神经网络层数']
  2051. data = [self.Model.n_layers_]
  2052. for i in range(len(coefs)):
  2053. make_HeatMap(coefs[i],f'{i}层权重矩阵')
  2054. heard.append(f'第{i}层节点数')
  2055. data.append(len(coefs[i][0]))
  2056. if self.Model_Name == 'MLP_class':
  2057. heard += [f'[{i}]类型' for i in range(len(self.Model.classes_))]
  2058. data += self.Model.classes_.tolist()
  2059. tab.add(make_Tab(heard,[data]),'数据表')
  2060. save = Dic + r'/render.HTML'
  2061. tab.render(save) # 生成HTML
  2062. return save,
  2063. class kmeans_Model(UnsupervisedModel):
  2064. def __init__(self, args_use, model, *args, **kwargs):
  2065. super(kmeans_Model, self).__init__(*args, **kwargs)
  2066. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  2067. self.class_ = []
  2068. self.n_clusters = args_use['n_clusters']
  2069. self.k = {'n_clusters':args_use['n_clusters']}
  2070. self.Model_Name = 'k-means'
  2071. def Fit(self, x_data, *args, **kwargs):
  2072. re = super().Fit(x_data,*args,**kwargs)
  2073. self.class_ = list(set(self.Model.labels_.tolist()))
  2074. return re
  2075. def Predict(self, x_data, *args, **kwargs):
  2076. self.x_trainData = x_data
  2077. y_Predict = self.Model.predict(x_data)
  2078. self.y_trainData = y_Predict
  2079. return y_Predict,'k-means'
  2080. def Des(self,Dic,*args,**kwargs):
  2081. tab = Tab()
  2082. y = self.y_trainData
  2083. x_data = self.x_trainData
  2084. class_ = self.class_
  2085. center = self.Model.cluster_centers_
  2086. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2087. get,x_means,x_range,Type = Training_visualization_More(x_data,class_,y,center)
  2088. for i in range(len(get)):
  2089. tab.add(get[i],f'{i}训练数据散点图')
  2090. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2091. data = class_ + [f'{i}' for i in x_means]
  2092. c = Table().add(headers=heard, rows=[data])
  2093. tab.add(c, '数据表')
  2094. save = Dic + r'/render.HTML'
  2095. tab.render(save) # 生成HTML
  2096. return save,
  2097. class Agglomerative_Model(UnsupervisedModel):
  2098. def __init__(self, args_use, model, *args, **kwargs):
  2099. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  2100. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  2101. self.class_ = []
  2102. self.n_clusters = args_use['n_clusters']
  2103. self.k = {'n_clusters':args_use['n_clusters']}
  2104. self.Model_Name = 'Agglomerative'
  2105. def Fit(self, x_data, *args, **kwargs):
  2106. re = super().Fit(x_data,*args,**kwargs)
  2107. self.class_ = list(set(self.Model.labels_.tolist()))
  2108. return re
  2109. def Predict(self, x_data, *args, **kwargs):
  2110. y_Predict = self.Model.fit_predict(x_data)
  2111. self.y_trainData = y_Predict
  2112. return y_Predict,'Agglomerative'
  2113. def Des(self, Dic, *args, **kwargs):
  2114. tab = Tab()
  2115. y = self.y_trainData
  2116. x_data = self.x_trainData
  2117. class_ = self.class_
  2118. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2119. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2120. for i in range(len(get)):
  2121. tab.add(get[i], f'{i}训练数据散点图')
  2122. linkage_array = ward(self.x_trainData)#self.y_trainData是结果
  2123. dendrogram(linkage_array)
  2124. plt.savefig(Dic + r'/Cluster_graph.png')
  2125. image = Image()
  2126. image.add(
  2127. src=Dic + r'/Cluster_graph.png',
  2128. ).set_global_opts(
  2129. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  2130. )
  2131. tab.add(image,'聚类树状图')
  2132. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2133. data = class_ + [f'{i}' for i in x_means]
  2134. c = Table().add(headers=heard, rows=[data])
  2135. tab.add(c, '数据表')
  2136. save = Dic + r'/render.HTML'
  2137. tab.render(save) # 生成HTML
  2138. return save,
  2139. class DBSCAN_Model(UnsupervisedModel):
  2140. def __init__(self, args_use, model, *args, **kwargs):
  2141. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  2142. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  2143. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  2144. # min_samples
  2145. self.eps = args_use['eps']
  2146. self.min_samples = args_use['min_samples']
  2147. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  2148. self.class_ = []
  2149. self.Model_Name = 'DBSCAN'
  2150. def Fit(self, x_data, *args, **kwargs):
  2151. re = super().Fit(x_data,*args,**kwargs)
  2152. self.class_ = list(set(self.Model.labels_.tolist()))
  2153. return re
  2154. def Predict(self, x_data, *args, **kwargs):
  2155. y_Predict = self.Model.fit_predict(x_data)
  2156. self.y_trainData = y_Predict
  2157. return y_Predict,'DBSCAN'
  2158. def Des(self, Dic, *args, **kwargs):
  2159. tab = Tab()
  2160. y = self.y_trainData
  2161. x_data = self.x_trainData
  2162. class_ = self.class_
  2163. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2164. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2165. for i in range(len(get)):
  2166. tab.add(get[i], f'{i}训练数据散点图')
  2167. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2168. data = class_ + [f'{i}' for i in x_means]
  2169. c = Table().add(headers=heard, rows=[data])
  2170. tab.add(c, '数据表')
  2171. save = Dic + r'/render.HTML'
  2172. tab.render(save) # 生成HTML
  2173. return save,
  2174. class Machine_Learner(Learner):#数据处理者
  2175. def __init__(self,*args, **kwargs):
  2176. super().__init__(*args, **kwargs)
  2177. self.Learner = {}#记录机器
  2178. self.Learn_Dic = {'Line':Line_Model,
  2179. 'Ridge':Line_Model,
  2180. 'Lasso':Line_Model,
  2181. 'LogisticRegression':LogisticRegression_Model,
  2182. 'Knn_class':Knn_Model,
  2183. 'Knn': Knn_Model,
  2184. 'Tree_class': Tree_Model,
  2185. 'Tree': Tree_Model,
  2186. 'Forest':Forest_Model,
  2187. 'Forest_class': Forest_Model,
  2188. 'GradientTree_class':GradientTree_Model,
  2189. 'GradientTree': GradientTree_Model,
  2190. 'Variance':Variance_Model,
  2191. 'SelectKBest':SelectKBest_Model,
  2192. 'Z-Score':Standardization_Model,
  2193. 'MinMaxScaler':MinMaxScaler_Model,
  2194. 'LogScaler':LogScaler_Model,
  2195. 'atanScaler':atanScaler_Model,
  2196. 'decimalScaler':decimalScaler_Model,
  2197. 'sigmodScaler':sigmodScaler_Model,
  2198. 'Mapzoom':Mapzoom_Model,
  2199. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  2200. 'Regularization':Regularization_Model,
  2201. 'Binarizer':Binarizer_Model,
  2202. 'Discretization':Discretization_Model,
  2203. 'Label':Label_Model,
  2204. 'OneHotEncoder':OneHotEncoder_Model,
  2205. 'Missed':Missed_Model,
  2206. 'PCA':PCA_Model,
  2207. 'RPCA':RPCA_Model,
  2208. 'KPCA':KPCA_Model,
  2209. 'LDA':LDA_Model,
  2210. 'SVC':SVC_Model,
  2211. 'SVR':SVR_Model,
  2212. 'MLP':MLP_Model,
  2213. 'MLP_class': MLP_Model,
  2214. 'NMF':NMF_Model,
  2215. 't-SNE':TSNE_Model,
  2216. 'k-means':kmeans_Model,
  2217. 'Agglomerative':Agglomerative_Model,
  2218. 'DBSCAN':DBSCAN_Model,
  2219. }
  2220. self.Learner_Type = {}#记录机器的类型
  2221. def p_Args(self,Text,Type):#解析参数
  2222. args = {}
  2223. args_use = {}
  2224. #输入数据
  2225. exec(Text,args)
  2226. #处理数据
  2227. if Type in ('MLP','MLP_class'):
  2228. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  2229. else:
  2230. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  2231. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  2232. if Type in ('MLP','MLP_class'):
  2233. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  2234. else:
  2235. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  2236. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  2237. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  2238. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  2239. if Type in ('Tree','Forest','GradientTree'):
  2240. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  2241. else:
  2242. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  2243. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  2244. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  2245. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  2246. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  2247. args_use['P'] = float(args.get('min_samples_split', 0.8))
  2248. args_use['k'] = args.get('k',1)
  2249. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  2250. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  2251. get(args.get('score_func','f_classif'),f_classif))
  2252. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  2253. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  2254. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  2255. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  2256. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  2257. args_use['miss_value'] = args.get('miss_value',np.nan)
  2258. args_use['fill_method'] = args.get('fill_method','mean')
  2259. args_use['fill_value'] = args.get('fill_value',None)
  2260. args_use['n_components'] = args.get('n_components',1)
  2261. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  2262. args_use['n_Tree'] = args.get('n_Tree',100)
  2263. args_use['gamma'] = args.get('gamma',1)
  2264. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  2265. args_use['activation'] = str(args.get('activation','relu'))
  2266. args_use['solver'] = str(args.get('solver','adam'))
  2267. if Type in ('k-means',):
  2268. args_use['n_clusters'] = int(args.get('n_clusters',8))
  2269. else:
  2270. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  2271. args_use['eps'] = float(args.get('n_clusters', 0.5))
  2272. args_use['min_samples'] = int(args.get('n_clusters', 5))
  2273. return args_use
  2274. def Add_Learner(self,Learner,Text=''):
  2275. get = self.Learn_Dic[Learner]
  2276. name = f'Le[{len(self.Learner)}]{Learner}'
  2277. #参数调节
  2278. args_use = self.p_Args(Text,Learner)
  2279. #生成学习器
  2280. self.Learner[name] = get(model=Learner,args_use=args_use)
  2281. self.Learner_Type[name] = Learner
  2282. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  2283. model = self.get_Learner(Learner)
  2284. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  2285. #参数调节
  2286. args_use = self.p_Args(Text,'SelectFrom_Model')
  2287. #生成学习器
  2288. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  2289. self.Learner_Type[name] = 'SelectFrom_Model'
  2290. def Return_Learner(self):
  2291. return self.Learner.copy()
  2292. def get_Learner(self,name):
  2293. return self.Learner[name]
  2294. def get_Learner_Type(self,name):
  2295. return self.Learner_Type[name]
  2296. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  2297. x_data = self.get_Sheet(x_name)
  2298. y_data = self.get_Sheet(y_name)
  2299. model = self.get_Learner(Learner)
  2300. return model.Fit(x_data,y_data,split)
  2301. def Predict(self,x_name,Learner,Text='',**kwargs):
  2302. x_data = self.get_Sheet(x_name)
  2303. model = self.get_Learner(Learner)
  2304. y_data,name = model.Predict(x_data,x_name = x_name,Add_Func=self.Add_Form)
  2305. self.Add_Form(y_data,f'{x_name}:{name}')
  2306. return y_data
  2307. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  2308. model = self.get_Learner(Learner)
  2309. x = self.get_Sheet(name_x)
  2310. y = self.get_Sheet(name_y)
  2311. return model.Score(x,y)
  2312. def Show_Args(self,Learner,Dic):#显示参数
  2313. model = self.get_Learner(Learner)
  2314. return model.Des(Dic)
  2315. def Del_Leaner(self,Leaner):
  2316. del self.Learner[Leaner]
  2317. del self.Learner_Type[Leaner]