1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671 |
- from pyecharts.components import Table as Table_Fisrt#绘制表格
- from pyecharts.components import Image
- from pyecharts import options as opts
- from random import randint
- from pyecharts.charts import *
- from pyecharts.options.series_options import JsCode
- from scipy.cluster.hierarchy import dendrogram, ward
- import matplotlib.pyplot as plt
- from pandas import DataFrame,read_csv
- import numpy as np
- import re
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import *
- from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
- from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
- from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
- GradientBoostingRegressor)
- from sklearn.metrics import accuracy_score
- from sklearn.feature_selection import *
- from sklearn.preprocessing import *
- from sklearn.impute import SimpleImputer
- from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
- from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
- from sklearn.neural_network import MLPClassifier,MLPRegressor
- from sklearn.manifold import TSNE
- from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
- from pyecharts.charts import *
- # import sklearn as sk
- #设置
- np.set_printoptions(threshold=np.inf)
- global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
- global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
- Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
- class Table(Table_Fisrt):
- def add(self, headers, rows, attributes = None):
- if len(rows) == 1:
- new_headers = ['数据类型','数据']
- new_rows = list(zip(headers,rows[0]))
- return super().add(new_headers,new_rows,attributes)
- else:
- return super().add(headers, rows, attributes)
- def make_list(first,end,num=35):
- n = num / (end - first)
- if n == 0: n = 1
- re = []
- n_first = first * n
- n_end = end * n
- while n_first <= n_end:
- cul = n_first / n
- re.append(round(cul,2))
- n_first += 1
- return re
- def list_filter(list_,num=70):
- #假设列表已经不重复
- if len(list_) <= num:return list_
- n = int(num / len(list_))
- re = list_[::n]
- return re
- def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
- # a-特征x,b-特征x-1,c-其他特征
- o_cList = []
- if len(x_means) == 1:
- n_ra = x_range[0]
- if Type[0] == 1:
- ra = make_list(n_ra[0], n_ra[1], 70)
- else:
- ra = n_ra
- a = np.array([i for i in ra]).reshape(-1,1)
- y_data = Predict_Func(a)[0].tolist()
- value = [[0 , float(a[i]), y_data[i]] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(['None'])
- .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1,
- min_=int(min(y_data)),
- pos_right='3%')) # 显示
- )
- o_cList.append(c)
- return o_cList
- for i in range(len(x_means)):
- if i == 0:
- continue
- n_ra = x_range[i - 1]
- Type_ra = Type[i - 1]
- n_rb = x_range[i]
- Type_rb = Type[i]
- if Type_ra == 1:
- ra = make_list(n_ra[0],n_ra[1],70)
- else:
- ra = list_filter(n_ra)#可以接受最大为70
- if Type_rb == 1:
- rb = make_list(n_rb[0],n_rb[1],35)
- else:
- rb = list_filter(n_rb)#可以接受最大为70
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data = np.array([x_means for _ in ra for i in rb])
- data[:, i - 1] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(np.unique(a))
- .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
- pos_right='3%'))#显示
- )
- o_cList.append(c)
- return o_cList
- def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
- # a-特征x,b-特征x-1,c-其他特征
- #规定,i-1是x轴,a是x轴,x_1是x轴
- class_dict = dict(zip(class_,[i for i in range(len(class_))]))
- if not nono:
- v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
- else:v_dict = []
- for i in class_dict:
- v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
- o_cList = []
- if len(x_means) == 1:
- n_ra = x_range[0]
- if Type[0] == 1:
- ra = make_list(n_ra[0], n_ra[1], 70)
- else:
- ra = n_ra
- a = np.array([i for i in ra]).reshape(-1,1)
- y_data = Predict_Func(a)[0].tolist()
- value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(['None'])
- .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
- min_=-1,
- is_piecewise=True, pieces=v_dict,
- orient='horizontal', pos_bottom='3%'))
- )
- o_cList.append(c)
- return o_cList
- #如果x_means长度不等于1则执行下面
- for i in range(len(x_means)):
- if i == 0:
- continue
- n_ra = x_range[i-1]
- Type_ra = Type[i-1]
- n_rb = x_range[i]
- Type_rb = Type[i]
- if Type_ra == 1:
- ra = make_list(n_ra[0],n_ra[1],70)
- else:
- ra = n_ra
- if Type_rb == 1:
- rb = make_list(n_rb[0],n_rb[1],35)
- else:
- rb = n_rb
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data = np.array([x_means for _ in ra for i in rb])
- data[:, i - 1] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(np.unique(a))
- .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
- xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
- is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
- )
- o_cList.append(c)
- return o_cList
- def SeeTree(Dic):
- node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
- link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
- node_Dict = {}
- link_list = []
- with open(Dic, 'r') as f: # 貌似必须分开w和r
- for i in f:
- try:
- get = re.findall(node_re, i)[0]
- if get[0] != '':
- try:
- v = float(get[0])
- except:
- v = 0
- node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
- continue
- except:
- pass
- try:
- get = re.findall(link_re, i)[0]
- if get[0] != '' and get[1] != '':
- link_list.append((get[0], get[1]))
- except:
- pass
- father_list = [] # 已经有父亲的list
- for i in link_list:
- father = i[0] # 父节点
- son = i[1] # 子节点
- try:
- node_Dict[father]['children'].append(node_Dict[son])
- father_list.append(son)
- if int(son) == 0: print('F')
- except:
- pass
- father = list(set(node_Dict.keys()) - set(father_list))
- c = (
- Tree()
- .add("", [node_Dict[father[0]]], is_roam=True)
- .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
- toolbox_opts=opts.ToolboxOpts(is_show=True))
- )
- return c
- def make_Tab(heard,row):
- return Table().add(headers=heard, rows=row)
- def scatter(w_heard,w):
- c = (
- Scatter()
- .add_xaxis(w_heard)
- .add_yaxis('', w, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
- )
- return c
- def bar(w_heard,w):
- c = (
- Bar()
- .add_xaxis(w_heard)
- .add_yaxis('', abs(w).tolist(), **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- return c
- # def line(w_sum,w,b):
- # x = np.arange(-5, 5, 1)
- # c = (
- # Line()
- # .add_xaxis(x.tolist())
- # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
- # )
- # for i in range(len(w)):
- # y = x * w[i] + b
- # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
- # return c
- def see_Line(x_trainData,y_trainData,w,w_sum,b):
- y = y_trainData.tolist()
- x_data = x_trainData.T
- re = []
- for i in range(len(x_data)):
- x = x_data[i]
- p = int(x.max() - x.min()) / 5
- x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
- y_num = x_num * w[i] + (w[i] / w_sum) * b
- c = (
- Line()
- .add_xaxis(x_num.tolist())
- .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
- )
- t = (
- Scatter()
- .add_xaxis(x.tolist())
- .add_yaxis(f'{i}特征', y, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
- )
- t.overlap(c)
- re.append(t)
- return re
- def get_Color():
- # 随机颜色,雷达图默认非随机颜色
- rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
- color = '#'
- for a in rgb:
- color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
- return color
- def is_continuous(data:np.array,f:float=0.1):
- data = data.tolist()
- l = np.unique(data).tolist()
- try:
- re = len(l)/len(data)>=f or len(data) <= 3
- return re
- except:return False
- def make_Cat(x_data):
- Cat = Categorical_Data()
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- Cat(x1)
- return Cat
- def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_)):
- n_class = class_[class_num]
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y == n_class].tolist()
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x_2)
- .add_yaxis(f'{n_class}', x_1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x_2_new)
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_)):
- n_class = class_[class_num]
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y == n_class].tolist()
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x_2)
- .add_yaxis(f'{n_class}', x_1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x_2_new)
- #添加簇中心
- try:
- center_x_2 = [center[class_num][a]]
- except:
- center_x_2 = [0]
- b = (Scatter()
- .add_xaxis(center_x_2)
- .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
- .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.overlap(b)
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- if i == 0:continue
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for n_class in class_:
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y == n_class].tolist()
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x_2)
- .add_yaxis(f'{n_class}', x_1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x_2_new)
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- o_cList = []
- means.append(0)
- means = np.array(means)
- for i in range(len(x_data)):
- if i == 0:continue
- x1_con = is_continuous(x_data[i])
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_)):
- n_class = class_[class_num]
- x2_new = np.unique(x2[y == n_class])
- #x与散点图不同,这里是纵坐标
- #加入这个判断是为了解决sklearn历史遗留问题
- if len(class_) == 2:#二分类问题
- if class_num == 0:continue
- w = w_list[0]
- b = b_list[0]
- else:#多分类问题
- w = w_list[class_num]
- b = b_list[class_num]
- if x2_con:
- x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
- w = np.append(w, 0)
- y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
- c = (
- Line()
- .add_xaxis(x2_new)
- .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- #下面不要接任何代码,因为上面会continue
- o_cList.append(o_c)
- return o_cList
- def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- o_cList = []
- means.append(0)#确保mean[i+1]不会超出index
- means = np.array(means)
- w = np.append(w,0)
- for i in range(len(x_data)):
- x1 = x_data[i]
- x1_con = is_continuous(x1)
- if x1_con:
- x1 = np.array(make_list(x1.min(), x1.max(), 5))
- x1_new = np.unique(x1)
- y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
- y_con = is_continuous(y_data)
- c = (
- Line()
- .add_xaxis(x1_new)
- .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
- )
- o_cList.append(c)
- return o_cList
- def regress_visualization(x_trainData,y):#y-x数据图
- x_data = x_trainData.T
- y_con = is_continuous(y)
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
- c = (
- Scatter()
- .add_xaxis(x1)#研究表明,这个是横轴
- .add_yaxis('数据',y,**Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(y.max())+1, min_=int(y.min()),
- pos_right='3%'))
- )
- o_cList.append(c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Feature_visualization(x_trainData,data_name=''):#x-x数据图
- seeting = global_Set if data_name else global_Leg
- x_data = x_trainData.T
- only = False
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- only = True
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue#重复内容,跳过
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- x2_new = np.unique(x2)
- if only:x2_con = False
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis(data_name, x1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- return o_cList
- def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
- seeting = global_Set if data_name else global_Leg
- x_data = x_trainData.T
- only = False
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- only = True
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue#重复内容,跳过(a读取的是i后面的)
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- x2_new = np.unique(x2)
- x1_list = x1.astype(np.str).tolist()
- for i in range(len(x1_list)):
- x1_list[i] = [x1_list[i],f'特征{i}']
- if only:x2_con = False
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis(data_name, x1_list, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
- tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- return o_cList
- def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
- seeting = global_Set if data_name else global_Leg
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue#重复内容,跳过
- x1 = x_data[i] # x坐标
- x2 = x_data[a] # y坐标
- x2_new = np.unique(x2)
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis(data_name, x1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
- yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- return o_cList
- def Conversion_control(y_data,x_data,tab):#合并两x-x图
- if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
- get_x = Feature_visualization(x_data,'原数据')#原来
- get_y = Feature_visualization(y_data,'转换数据')#转换
- for i in range(len(get_x)):
- tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
- return tab
- def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
- if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
- get_x = Feature_visualization(x_data,'原数据')#原来
- get_y = Feature_visualization(y_data,'转换数据')#转换
- for i in range(len(get_x)):
- try:
- tab.add(get_x[i],f'[{i}]数据x-x散点图')
- except IndexError:pass
- try:
- tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
- except IndexError:pass
- return tab
- def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
- if type(y_data) is np.ndarray:
- get_y = Feature_visualization_Format(y_data,'转换数据')#转换
- for i in range(len(get_y)):
- tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
- return tab
- def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
- if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
- get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
- get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
- print(h_data)
- print(w_data)
- print(h_data.T)
- for i in range(len(get_x)):
- try:
- tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
- except IndexError:pass
- try:
- tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
- except IndexError:pass
- return tab
- def make_bar(name, value,tab):#绘制柱状图
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(value))])
- .add_yaxis(name, value, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c, name)
- def judging_Digits(num:(int,float)):#查看小数位数
- a = str(abs(num)).split('.')[0]
- if a == '':raise ValueError
- return len(a)
- class Learner:
- def __init__(self,*args,**kwargs):
- self.numpy_Dic = {}#name:numpy
- def Add_Form(self,data:np.array,name):
- name = f'{name}[{len(self.numpy_Dic)}]'
- self.numpy_Dic[name] = data
- def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
- type_ = np.str if str_must else np.float
- pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
- try:
- data = pf_data.to_numpy(dtype=type_)
- except ValueError:
- data = pf_data.to_numpy(dtype=np.str)
- if data.ndim == 1: data = np.expand_dims(data, axis=1)
- self.Add_Form(data,name)
- return data
- def Add_Python(self, Text, sheet_name):
- name = {}
- name.update(globals().copy())
- name.update(locals().copy())
- exec(Text, name)
- exec('get = Creat()', name)
- if isinstance(name['get'], np.array): # 已经是DataFram
- get = name['get']
- else:
- try:
- get = np.array(name['get'])
- except:
- get = np.array([name['get']])
- self.Add_Form(get, sheet_name)
- return get
- def get_Form(self) -> dict:
- return self.numpy_Dic.copy()
- def get_Sheet(self,name) -> np.array:
- return self.numpy_Dic[name].copy()
- def to_CSV(self,Dic:str,name,sep) -> str:
- get = self.get_Sheet(name)
- np.savetxt(Dic, get, delimiter=sep)
- return Dic
- def to_Html_One(self,name,Dic=''):
- if Dic == '': Dic = f'{name}.html'
- get = self.get_Sheet(name)
- if get.ndim == 1: get = np.expand_dims(get, axis=1)
- get = get.tolist()
- for i in range(len(get)):
- get[i] = [i+1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = Table()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
- table.render(Dic)
- return Dic
- def to_Html(self, name, Dic='', type_=0):
- if Dic == '': Dic = f'{name}.html'
- # 把要画的sheet放到第一个
- Sheet_Dic = self.get_Form()
- del Sheet_Dic[name]
- Sheet_list = [name] + list(Sheet_Dic.keys())
- class TAB_F:
- def __init__(self, q):
- self.tab = q # 一个Tab
- def render(self, Dic):
- return self.tab.render(Dic)
- # 生成一个显示页面
- if type_ == 0:
- class TAB(TAB_F):
- def add(self, table, k, *f):
- self.tab.add(table, k)
- tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
- elif type_ == 1:
- class TAB(TAB_F):
- def add(self, table, *k):
- self.tab.add(table)
- tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
- else:
- class TAB(TAB_F):
- def add(self, table, *k):
- self.tab.add(table)
- tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
- # 迭代添加内容
- for name in Sheet_list:
- get = self.get_Sheet(name)
- if get.ndim == 1: get = np.expand_dims(get, axis=1)
- get = get.tolist()
- for i in range(len(get)):
- get[i] = [i+1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = Table()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
- tab.add(table, f'表格:{name}')
- tab.render(Dic)
- return Dic
- class Study_MachineBase:
- def __init__(self,*args,**kwargs):
- self.Model = None
- self.have_Fit = False
- self.x_trainData = None
- self.y_trainData = None
- #有监督学习专有的testData
- self.x_testData = None
- self.y_testData = None
- #记录这两个是为了克隆
- def Accuracy(self,y_Predict,y_Really):
- return accuracy_score(y_Predict, y_Really)
- def Fit(self,x_data,y_data,split=0.3,**kwargs):
- self.have_Fit = True
- y_data = y_data.ravel()
- self.x_trainData = x_data
- self.y_trainData = y_data
- x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
- self.Model.fit(x_data,y_data)
- train_score = self.Model.score(x_train,y_train)
- test_score = self.Model.score(x_test,y_test)
- return train_score,test_score
- def Score(self,x_data,y_data):
- Score = self.Model.score(x_data,y_data)
- return Score
- def Predict(self,x_data,*args,**kwargs):
- self.x_testData = x_data.copy()
- y_Predict = self.Model.predict(x_data)
- self.y_testData = y_Predict.copy()
- return y_Predict,'预测'
- def Des(self,*args,**kwargs):
- return ()
- class prep_Base(Study_MachineBase):
- def __init__(self,*args,**kwargs):
- super(prep_Base, self).__init__(*args,**kwargs)
- self.Model = None
- def Fit(self, x_data,y_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.x_trainData = x_data
- self.y_trainData = y_data
- self.Model.fit(x_data,y_data)
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict
- return x_Predict,'特征工程'
- def Score(self, x_data, y_data):
- return 'None' # 没有score
- class Unsupervised(prep_Base):
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.x_trainData = x_data
- self.y_trainData = None
- self.Model.fit(x_data)
- return 'None', 'None'
- class UnsupervisedModel(prep_Base):
- def Fit(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- self.y_trainData = None
- self.Model.fit(x_data)
- return 'None', 'None'
- class Predictive_HeatMap(prep_Base):#绘制预测型热力图
- def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Predictive_HeatMap, self).__init__(*args, **kwargs)
- self.Model = Learner.Model
- self.Select_Model = None
- self.have_Fit = Learner.have_Fit
- self.Model_Name = 'Select_Model'
- self.x_trainData = self.x_trainData
- self.y_trainData = self.y_trainData
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- try:#如果没有class
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- #获取数据
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- get = Decision_boundary(x_range,x_means,self.Model.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- except:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- get = Prediction_boundary(x_range, x_means, self.Model.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter_class_More(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(Near_feature_scatter_class_More, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- #记录这两个是为了克隆
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = np.unique(self.y_trainData).tolist()
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter_More(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(Near_feature_scatter_More, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- #记录这两个是为了克隆
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]变维数据x-x散点图')
- heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter_class(Study_MachineBase):#临近特征散点图:分类数据
- def __init__(self,args_use,model,*args,**kwargs):
- super(Near_feature_scatter_class, self).__init__(*args,**kwargs)
- self.Model = None
- self.k = {}
- #记录这两个是为了克隆
- self.Model_Name = model
- def Des(self,Dic='render.html',*args,**kwargs):
- #获取数据
- class_ = np.unique(self.y_trainData).tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}临近特征散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter(Study_MachineBase):#临近特征散点图:连续数据
- def __init__(self,args_use,model,*args,**kwargs):
- super(Near_feature_scatter, self).__init__(*args,**kwargs)
- self.Model = None
- self.k = {}
- #记录这两个是为了克隆
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}临近特征散点图')
- columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- tab.add(make_Tab(columns,[data]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Line_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Line_Model, self).__init__(*args,**kwargs)
- Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
- model]
- if model == 'Line':
- self.Model = Model()
- self.k = {}
- else:
- self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
- self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
- #记录这两个是为了克隆
- self.Alpha = args_use['alpha']
- self.max_iter = args_use['max_iter']
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- w_list = self.Model.coef_.tolist()
- w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
- b = self.Model.intercept_.tolist()
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(scatter(w_heard,w_list),'系数w散点图')
- tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
- columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
- data = [f'{i}' for i in x_means] + w_list + [b]
- if self.Model_Name != 'Line':
- columns += ['阿尔法','最大迭代次数']
- data += [self.Model.alpha,self.Model.max_iter]
- tab.add(make_Tab(columns,[data]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class LogisticRegression_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(LogisticRegression_Model, self).__init__(*args,**kwargs)
- self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.max_iter = args_use['max_iter']
- self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
- self.Model_Name = model
- def Des(self,Dic='render.html',*args,**kwargs):
- #获取数据
- w_array = self.Model.coef_
- w_list = w_array.tolist() # 变为表格
- b = self.Model.intercept_
- c = self.Model.C
- max_iter = self.Model.max_iter
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
- get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
- for i in range(len(w_list)):
- w = w_list[i]
- w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
- tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
- tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
- columns = class_heard + ['截距b','C','最大迭代数']
- data = class_ + [b,c,max_iter]
- c = Table().add(headers=columns, rows=[data])
- tab.add(c, '数据表')
- c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
- tab.add(c, '系数数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Categorical_Data:#数据统计助手
- def __init__(self):
- self.x_means = []
- self.x_range = []
- self.Type = []
- def __call__(self,x1, *args, **kwargs):
- get = self.is_continuous(x1)
- return get
- def is_continuous(self,x1:np.array):
- try:
- x1_con = is_continuous(x1)
- if x1_con:
- self.x_means.append(np.mean(x1))
- self.add_Range(x1)
- else:
- raise Exception
- return x1_con
- except:#找出出现次数最多的元素
- new = np.unique(x1)#去除相同的元素
- count_list = []
- for i in new:
- count_list.append(np.sum(x1 == i))
- index = count_list.index(max(count_list))#找出最大值的索引
- self.x_means.append(x1[index])
- self.add_Range(x1,False)
- return False
- def add_Range(self,x1:np.array,range_=True):
- try:
- if not range_ : raise Exception
- min_ = int(x1.min()) - 1
- max_ = int(x1.max()) + 1
- #不需要复制列表
- self.x_range.append([min_,max_])
- self.Type.append(1)
- except:
- self.x_range.append(list(set(x1.tolist())))#去除多余元素
- self.Type.append(2)
- def get(self):
- return self.x_means,self.x_range,self.Type
- class Knn_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Knn_Model, self).__init__(*args,**kwargs)
- Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
- self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
- #记录这两个是为了克隆
- self.n_neighbors = args_use['n_neighbors']
- self.p = args_use['p']
- self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- y_test = self.y_testData
- x_test = self.x_testData
- if self.Model_Name == 'Knn_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Training_visualization(x_test,class_,y_test)[0]
- for i in range(len(get)):
- tab.add(get[i],f'{i}测试数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- get = regress_visualization(x_test, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f'{i}测试数据类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Tree_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Tree_Model, self).__init__(*args,**kwargs)
- Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
- self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.criterion = args_use['criterion']
- self.splitter = args_use['splitter']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- importance = self.Model.feature_importances_.tolist()
- with open(Dic + r"\Tree_Gra.dot", 'w') as f:
- export_graphviz(self.Model, out_file=f)
- make_bar('特征重要性',importance,tab)
- tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
- y = self.y_trainData
- x_data = self.x_trainData
- y_test = self.y_testData
- x_test = self.x_testData
- if self.Model_Name == 'Tree_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Training_visualization(x_test, class_, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f'{i}测试数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
- [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- get = regress_visualization(x_test, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f'{i}测试数据类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
- [[f'{i}' for i in x_means] + importance]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Forest_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Forest_Model, self).__init__(*args,**kwargs)
- Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
- self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.n_estimators = args_use['n_Tree']
- self.criterion = args_use['criterion']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- #多个决策树可视化
- for i in range(len(self.Model.estimators_)):
- with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
- export_graphviz(self.Model.estimators_[i], out_file=f)
- tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
- y = self.y_trainData
- x_data = self.x_trainData
- if self.Model_Name == 'Forest_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
- [class_ + [f'{i}' for i in x_means]]), '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
- Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
- self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.criterion = args_use['criterion']
- self.splitter = args_use['splitter']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- #多个决策树可视化
- for a in range(len(self.Model.estimators_)):
- for i in range(len(self.Model.estimators_[a])):
- with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
- export_graphviz(self.Model.estimators_[a][i], out_file=f)
- tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
- y = self.y_trainData
- x_data = self.x_trainData
- if self.Model_Name == 'Tree_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
- [class_ + [f'{i}' for i in x_means]]), '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SVC_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SVC_Model, self).__init__(*args,**kwargs)
- self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.gamma = args_use['gamma']
- self.kernel = args_use['kernel']
- self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- w_list = self.Model.coef_.tolist()
- b = self.Model.intercept_.tolist()
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- y = self.y_trainData
- x_data = self.x_trainData
- get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
- get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
- get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- dic = {2:'离散',1:'连续'}
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
- [class_ + [f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SVR_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SVR_Model, self).__init__(*args,**kwargs)
- self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.gamma = args_use['gamma']
- self.kernel = args_use['kernel']
- self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- try:
- w_list = self.Model.coef_.tolist()#未必有这个属性
- b = self.Model.intercept_.tolist()
- U = True
- except:
- U = False
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
- else:tab.add(get[i], f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Variance_Model(Unsupervised):#无监督
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Variance_Model, self).__init__(*args,**kwargs)
- self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
- #记录这两个是为了克隆
- self.threshold = args_use['P']
- self.k = {'threshold':args_use['P']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- var = self.Model.variances_#标准差
- y_data = self.y_trainData
- if type(y_data) is np.ndarray:
- get = Feature_visualization(self.y_trainData)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]数据x-x散点图')
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(var))])
- .add_yaxis('标准差', var.tolist(), **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c,'数据标准差')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SelectKBest_Model(prep_Base):#无监督
- def __init__(self, args_use, model, *args, **kwargs):
- super(SelectKBest_Model, self).__init__(*args, **kwargs)
- self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
- # 记录这两个是为了克隆
- self.k_ = args_use['k']
- self.score_func=args_use['score_func']
- self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- score = self.Model.scores_.tolist()
- support = self.Model.get_support()
- y_data = self.y_trainData
- x_data = self.x_trainData
- if type(x_data) is np.ndarray:
- get = Feature_visualization(x_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]数据x-x散点图')
- if type(y_data) is np.ndarray:
- get = Feature_visualization(y_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]保留数据x-x散点图')
- Choose = []
- UnChoose = []
- for i in range(len(score)):
- if support[i]:
- Choose.append(score[i])
- UnChoose.append(0)#占位
- else:
- UnChoose.append(score[i])
- Choose.append(0)
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(score))])
- .add_yaxis('选中特征', Choose, **Label_Set)
- .add_yaxis('抛弃特征', UnChoose, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c,'单变量重要程度')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SelectFrom_Model(prep_Base):#无监督
- def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SelectFrom_Model, self).__init__(*args, **kwargs)
- self.Model = Learner.Model
- self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
- self.max_features = args_use['k']
- self.estimator=Learner.Model
- self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
- self.have_Fit = Learner.have_Fit
- self.Model_Name = 'SelectFrom_Model'
- def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.Select_Model.fit(x_data, y_data)
- return 'None', 'None'
- return 'NONE','NONE'
- def Predict(self, x_data, *args, **kwargs):
- try:
- self.x_trainData = x_data
- x_Predict = self.Select_Model.transform(x_data)
- self.y_trainData = x_Predict
- print(self.y_trainData)
- print(self.x_trainData)
- return x_Predict,'模型特征工程'
- except:
- return np.array([]),'无结果工程'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- support = self.Select_Model.get_support()
- y_data = self.y_trainData
- x_data = self.x_trainData
- if type(x_data) is np.ndarray:
- get = Feature_visualization(x_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]数据x-x散点图')
- if type(y_data) is np.ndarray:
- get = Feature_visualization(y_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]保留数据x-x散点图')
- def make_Bar(score):
- Choose = []
- UnChoose = []
- for i in range(len(score)):
- if support[i]:
- Choose.append(abs(score[i]))
- UnChoose.append(0) # 占位
- else:
- UnChoose.append(abs(score[i]))
- Choose.append(0)
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(score))])
- .add_yaxis('选中特征', Choose, **Label_Set)
- .add_yaxis('抛弃特征', UnChoose, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c,'单变量重要程度')
- try:
- make_Bar(self.Model.coef_)
- except:
- try:
- make_Bar(self.Model.feature_importances_)
- except:pass
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Standardization_Model(Unsupervised):#z-score标准化 无监督
- def __init__(self, args_use, model, *args, **kwargs):
- super(Standardization_Model, self).__init__(*args, **kwargs)
- self.Model = StandardScaler()
- self.k = {}
- self.Model_Name = 'StandardScaler'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- var = self.Model.var_.tolist()
- means = self.Model.mean_.tolist()
- scale = self.Model.scale_.tolist()
- Conversion_control(y_data,x_data,tab)
- make_bar('标准差',var,tab)
- make_bar('方差',means,tab)
- make_bar('Scale',scale,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class MinMaxScaler_Model(Unsupervised):#离差标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
- self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
- self.k = {}
- self.Model_Name = 'MinMaxScaler'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- scale = self.Model.scale_.tolist()
- max_ = self.Model.data_max_.tolist()
- min_ = self.Model.data_min_.tolist()
- Conversion_control(y_data,x_data,tab)
- make_bar('Scale',scale,tab)
- tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
- row=[max_ + min_]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class LogScaler_Model(prep_Base):#对数标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(LogScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'LogScaler'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max_logx = np.log(x_data.max())
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- try:
- max_logx = self.max_logx
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max_logx = self.max_logx
- self.x_trainData = x_data.copy()
- x_Predict = (np.log(x_data)/max_logx)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'对数变换'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class atanScaler_Model(prep_Base):#atan标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(atanScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'atanScaler'
- def Fit(self, x_data, *args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = (np.arctan(x_data)*(2/np.pi))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'atan变换'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class decimalScaler_Model(prep_Base):#小数定标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(decimalScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'Decimal_normalization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- try:
- j = self.j
- except:
- self.have_Fit = False
- self.Fit(x_data)
- j = self.j
- x_Predict = (x_data/(10**j))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'小数定标标准化'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- j = self.j
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Mapzoom_Model(prep_Base):#映射标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Mapzoom_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.feature_range = args_use['feature_range']
- self.k = {}
- self.Model_Name = 'Decimal_normalization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max = x_data.max()
- self.min = x_data.min()
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- try:
- max = self.max
- min = self.min
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max = self.max
- min = self.min
- x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'映射标准化'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- max = self.max
- min = self.min
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class sigmodScaler_Model(prep_Base):#sigmod变换
- def __init__(self, args_use, model, *args, **kwargs):
- super(sigmodScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'sigmodScaler_Model'
- def Fit(self, x_data, *args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data:np.array):
- self.x_trainData = x_data.copy()
- x_Predict = (1/(1+np.exp(-x_data)))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'Sigmod变换'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.feature_range = args_use['feature_range']
- self.k = {}
- self.Model_Name = 'Fuzzy_quantization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max = x_data.max()
- self.min = x_data.min()
- return 'None', 'None'
- def Predict(self, x_data,*args,**kwargs):
- self.y_trainData = x_data.copy()
- try:
- max = self.max
- min = self.min
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max = self.max
- min = self.min
- x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'映射标准化'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- max = self.max
- min = self.min
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Regularization_Model(Unsupervised):#正则化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Regularization_Model, self).__init__(*args, **kwargs)
- self.Model = Normalizer(norm=args_use['norm'])
- self.k = {'norm':args_use['norm']}
- self.Model_Name = 'Regularization'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- #离散数据
- class Binarizer_Model(Unsupervised):#二值化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Binarizer_Model, self).__init__(*args, **kwargs)
- self.Model = Binarizer(threshold=args_use['threshold'])
- self.k = {}
- self.Model_Name = 'Binarizer'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
- for i in range(len(get_y)):
- tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Discretization_Model(prep_Base):#n值离散
- def __init__(self, args_use, model, *args, **kwargs):
- super(Discretization_Model, self).__init__(*args, **kwargs)
- self.Model = None
- range_ = args_use['split_range']
- if range_ == []:raise Exception
- elif len(range_) == 1:range_.append(range_[0])
- self.range = range_
- self.k = {}
- self.Model_Name = 'Discretization'
- def Fit(self,*args,**kwargs):
- return 'None','None'
- def Predict(self,x_data):
- self.x_trainData = x_data.copy()
- x_Predict = x_data.copy()#复制
- range_ = self.range
- bool_list = []
- max_ = len(range_) - 1
- o_t = None
- for i in range(len(range_)):
- try:
- t = float(range_[i])
- except:continue
- if o_t == None:#第一个参数
- bool_list.append(x_Predict <= t)
- else:
- bool_list.append((o_t <= x_Predict) == (x_Predict < t))
- if i == max_:
- bool_list.append(t <= x_Predict)
- o_t = t
- for i in range(len(bool_list)):
- x_Predict[bool_list[i]] = i
- self.y_trainData = x_Predict.copy()
- return x_Predict,f'{len(bool_list)}值离散化'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Label_Model(prep_Base):#数字编码
- def __init__(self, args_use, model, *args, **kwargs):
- super(Label_Model, self).__init__(*args, **kwargs)
- self.Model = []
- self.k = {}
- self.Model_Name = 'LabelEncoder'
- def Fit(self,x_data,*args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- if x_data.ndim == 1:x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- x_Predict = x_data.copy()
- if x_data.ndim == 1: x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
- self.y_trainData = x_Predict.copy()
- return x_Predict,'数字编码'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class OneHotEncoder_Model(prep_Base):#独热编码
- def __init__(self, args_use, model, *args, **kwargs):
- super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
- self.Model = []
- self.ndim_up = args_use['ndim_up']
- self.k = {}
- self.Model_Name = 'OneHotEncoder'
- def Fit(self,x_data,*args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- if x_data.ndim == 1:x_data = [x_data]
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
- self.Model.append(OneHotEncoder().fit(data))#训练机器
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_new = []
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
- oneHot = self.Model[i].transform(data).toarray().tolist()
- x_new.append(oneHot)#添加到列表中
- x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
- x_Predict = []
- for i in range(x_new.shape[1]):
- x_Predict.append(x_new[:,i])
- x_Predict = np.array(x_Predict)#转换回array
- if not self.ndim_up:#压缩操作
- new_xPredict = []
- for i in x_Predict:
- new_list = []
- list_ = i.tolist()
- for a in list_:
- new_list += a
- new = np.array(new_list)
- new_xPredict.append(new)
- self.y_trainData = x_Predict.copy()
- return np.array(new_xPredict),'独热编码'
- #不保存y_trainData
- return x_Predict,'独热编码'#不需要降维
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Missed_Model(Unsupervised):#缺失数据补充
- def __init__(self, args_use, model, *args, **kwargs):
- super(Missed_Model, self).__init__(*args, **kwargs)
- self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
- fill_value=args_use['fill_value'])
- self.k = {}
- self.Model_Name = 'Missed'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'填充缺失'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class PCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(PCA_Model, self).__init__(*args, **kwargs)
- self.Model = PCA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 'PCA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'PCA'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- importance = self.Model.components_.tolist()
- var = self.Model.explained_variance_.tolist()#方量差
- Conversion_Separate_Format(y_data,tab)
- x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
- y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
- value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
- c = (HeatMap()
- .add_xaxis(x_data)
- .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
- min_=int(self.Model.components_.min()),
- pos_right='3%')) # 显示
- )
- tab.add(c,'成分热力图')
- c = (
- Bar()
- .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
- .add_yaxis('放量差', var, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
- )
- tab.add(c, '方量差柱状图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class RPCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(RPCA_Model, self).__init__(*args, **kwargs)
- self.Model = IncrementalPCA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components': args_use['n_components']}
- self.Model_Name = 'RPCA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'RPCA'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- importance = self.Model.components_.tolist()
- var = self.Model.explained_variance_.tolist() # 方量差
- Conversion_Separate_Format(y_data, tab)
- x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
- y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
- value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
- range(len(importance[i]))]
- c = (HeatMap()
- .add_xaxis(x_data)
- .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True),
- visualmap_opts=opts.VisualMapOpts(is_show=True,
- max_=int(self.Model.components_.max()) + 1,
- min_=int(self.Model.components_.min()),
- pos_right='3%')) # 显示
- )
- tab.add(c, '成分热力图')
- c = (
- Bar()
- .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
- .add_yaxis('放量差', var, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
- )
- tab.add(c, '方量差柱状图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class KPCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(KPCA_Model, self).__init__(*args, **kwargs)
- self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
- self.n_components = args_use['n_components']
- self.kernel = args_use['kernel']
- self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
- self.Model_Name = 'KPCA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'KPCA'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- Conversion_Separate_Format(y_data, tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class LDA_Model(prep_Base):#有监督学习
- def __init__(self, args_use, model, *args, **kwargs):
- super(LDA_Model, self).__init__(*args, **kwargs)
- self.Model = LDA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components': args_use['n_components']}
- self.Model_Name = 'LDA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'LDA'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_Separate_Format(y_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class NMF_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(NMF_Model, self).__init__(*args, **kwargs)
- self.Model = NMF(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 'NFM'
- self.h_trainData = None
- #x_trainData保存的是W,h_trainData和y_trainData是后来数据
- def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- self.h_trainData = self.Model.components_
- if Add_Func != None and x_name != '':
- Add_Func(self.h_trainData, f'{x_name}:V->NMF[H]')
- return x_Predict,'V->NMF[W]'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- h_data = self.h_trainData
- Conversion_SeparateWH(y_data,h_data,tab)
- wh_data = np.matmul(y_data, h_data)
- difference_data = x_data - wh_data
- def make_HeatMap(data,name,max_,min_):
- x = [f'数据[{i}]' for i in range(len(data))] # 主成分
- y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
- value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
- c = (HeatMap()
- .add_xaxis(x)
- .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
- min_=min_,
- pos_right='3%'))#显示
- )
- tab.add(c,name)
- max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
- min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
- make_HeatMap(x_data,'原始数据热力图',max_,min_)
- make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
- make_HeatMap(difference_data,'数据差热力图',max_,min_)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class TSNE_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(TSNE_Model, self).__init__(*args, **kwargs)
- self.Model = TSNE(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 't-SNE'
- def Fit(self,*args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.fit_transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'SNE'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- Conversion_Separate_Format(y_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
- def __init__(self,args_use,model,*args,**kwargs):
- super(MLP_Model, self).__init__(*args,**kwargs)
- Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
- self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
- solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
- #记录这两个是为了克隆
- self.hidden_layer_sizes = args_use['hidden_size']
- self.activation = args_use['activation']
- self.max_iter = args_use['max_iter']
- self.solver = args_use['solver']
- self.alpha = args_use['alpha']
- self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
- 'solver':args_use['solver'],'alpha':args_use['alpha']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- coefs = self.Model.coefs_
- def make_HeatMap(data,name):
- x = [f'特征(节点)[{i}]' for i in range(len(data))] # 主成分
- y = [f'节点[{i}]' for i in range(len(data[0]))] # 主成分
- value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
- c = (HeatMap()
- .add_xaxis(x)
- .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
- min_=float(data.min()),
- pos_right='3%'))#显示
- )
- tab.add(c,name)
- tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
- heard = ['神经网络层数']
- data = [self.Model.n_layers_]
- for i in range(len(coefs)):
- make_HeatMap(coefs[i],f'{i}层权重矩阵')
- heard.append(f'第{i}层节点数')
- data.append(len(coefs[i][0]))
- if self.Model_Name == 'MLP_class':
- heard += [f'[{i}]类型' for i in range(len(self.Model.classes_))]
- data += self.Model.classes_.tolist()
- tab.add(make_Tab(heard,[data]),'数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class kmeans_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(kmeans_Model, self).__init__(*args, **kwargs)
- self.Model = KMeans(n_clusters=args_use['n_clusters'])
- self.class_ = []
- self.n_clusters = args_use['n_clusters']
- self.k = {'n_clusters':args_use['n_clusters']}
- self.Model_Name = 'k-means'
- def Fit(self, x_data, *args, **kwargs):
- re = super().Fit(x_data,*args,**kwargs)
- self.class_ = list(set(self.Model.labels_.tolist()))
- return re
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- y_Predict = self.Model.predict(x_data)
- self.y_trainData = y_Predict
- return y_Predict,'k-means'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = self.class_
- center = self.Model.cluster_centers_
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization_More(x_data,class_,y,center)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Agglomerative_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(Agglomerative_Model, self).__init__(*args, **kwargs)
- self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
- self.class_ = []
- self.n_clusters = args_use['n_clusters']
- self.k = {'n_clusters':args_use['n_clusters']}
- self.Model_Name = 'Agglomerative'
- def Fit(self, x_data, *args, **kwargs):
- re = super().Fit(x_data,*args,**kwargs)
- self.class_ = list(set(self.Model.labels_.tolist()))
- return re
- def Predict(self, x_data, *args, **kwargs):
- y_Predict = self.Model.fit_predict(x_data)
- self.y_trainData = y_Predict
- return y_Predict,'Agglomerative'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = self.class_
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- linkage_array = ward(self.x_trainData)#self.y_trainData是结果
- dendrogram(linkage_array)
- plt.savefig(Dic + r'/Cluster_graph.png')
- image = Image()
- image.add(
- src=Dic + r'/Cluster_graph.png',
- ).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title="聚类树状图")
- )
- tab.add(image,'聚类树状图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class DBSCAN_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(DBSCAN_Model, self).__init__(*args, **kwargs)
- self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
- #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
- # min_samples
- self.eps = args_use['eps']
- self.min_samples = args_use['min_samples']
- self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
- self.class_ = []
- self.Model_Name = 'DBSCAN'
- def Fit(self, x_data, *args, **kwargs):
- re = super().Fit(x_data,*args,**kwargs)
- self.class_ = list(set(self.Model.labels_.tolist()))
- return re
- def Predict(self, x_data, *args, **kwargs):
- y_Predict = self.Model.fit_predict(x_data)
- self.y_trainData = y_Predict
- return y_Predict,'DBSCAN'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = self.class_
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Machine_Learner(Learner):#数据处理者
- def __init__(self,*args, **kwargs):
- super().__init__(*args, **kwargs)
- self.Learner = {}#记录机器
- self.Learn_Dic = {'Line':Line_Model,
- 'Ridge':Line_Model,
- 'Lasso':Line_Model,
- 'LogisticRegression':LogisticRegression_Model,
- 'Knn_class':Knn_Model,
- 'Knn': Knn_Model,
- 'Tree_class': Tree_Model,
- 'Tree': Tree_Model,
- 'Forest':Forest_Model,
- 'Forest_class': Forest_Model,
- 'GradientTree_class':GradientTree_Model,
- 'GradientTree': GradientTree_Model,
- 'Variance':Variance_Model,
- 'SelectKBest':SelectKBest_Model,
- 'Z-Score':Standardization_Model,
- 'MinMaxScaler':MinMaxScaler_Model,
- 'LogScaler':LogScaler_Model,
- 'atanScaler':atanScaler_Model,
- 'decimalScaler':decimalScaler_Model,
- 'sigmodScaler':sigmodScaler_Model,
- 'Mapzoom':Mapzoom_Model,
- 'Fuzzy_quantization':Fuzzy_quantization_Model,
- 'Regularization':Regularization_Model,
- 'Binarizer':Binarizer_Model,
- 'Discretization':Discretization_Model,
- 'Label':Label_Model,
- 'OneHotEncoder':OneHotEncoder_Model,
- 'Missed':Missed_Model,
- 'PCA':PCA_Model,
- 'RPCA':RPCA_Model,
- 'KPCA':KPCA_Model,
- 'LDA':LDA_Model,
- 'SVC':SVC_Model,
- 'SVR':SVR_Model,
- 'MLP':MLP_Model,
- 'MLP_class': MLP_Model,
- 'NMF':NMF_Model,
- 't-SNE':TSNE_Model,
- 'k-means':kmeans_Model,
- 'Agglomerative':Agglomerative_Model,
- 'DBSCAN':DBSCAN_Model,
- }
- self.Learner_Type = {}#记录机器的类型
- def p_Args(self,Text,Type):#解析参数
- args = {}
- args_use = {}
- #输入数据
- exec(Text,args)
- #处理数据
- if Type in ('MLP','MLP_class'):
- args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
- else:
- args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
- args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
- if Type in ('MLP','MLP_class'):
- args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
- else:
- args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
- args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
- args_use['p'] = int(args.get('p', 2)) # 距离计算方式
- args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
- if Type in ('Tree','Forest','GradientTree'):
- args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
- else:
- args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
- args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
- args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
- args_use['max_depth'] = args.get('max_depth', None) # 最大深度
- args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
- args_use['P'] = float(args.get('min_samples_split', 0.8))
- args_use['k'] = args.get('k',1)
- args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
- 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
- get(args.get('score_func','f_classif'),f_classif))
- args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
- args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
- args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
- args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
- args_use['ndim_up'] = bool(args.get('ndim_up', True))
- args_use['miss_value'] = args.get('miss_value',np.nan)
- args_use['fill_method'] = args.get('fill_method','mean')
- args_use['fill_value'] = args.get('fill_value',None)
- args_use['n_components'] = args.get('n_components',1)
- args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
- args_use['n_Tree'] = args.get('n_Tree',100)
- args_use['gamma'] = args.get('gamma',1)
- args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
- args_use['activation'] = str(args.get('activation','relu'))
- args_use['solver'] = str(args.get('solver','adam'))
- if Type in ('k-means',):
- args_use['n_clusters'] = int(args.get('n_clusters',8))
- else:
- args_use['n_clusters'] = int(args.get('n_clusters', 2))
- args_use['eps'] = float(args.get('n_clusters', 0.5))
- args_use['min_samples'] = int(args.get('n_clusters', 5))
- return args_use
- def Add_Learner(self,Learner,Text=''):
- get = self.Learn_Dic[Learner]
- name = f'Le[{len(self.Learner)}]{Learner}'
- #参数调节
- args_use = self.p_Args(Text,Learner)
- #生成学习器
- self.Learner[name] = get(model=Learner,args_use=args_use)
- self.Learner_Type[name] = Learner
- def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
- model = self.get_Learner(Learner)
- name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
- #参数调节
- args_use = self.p_Args(Text,'SelectFrom_Model')
- #生成学习器
- self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
- self.Learner_Type[name] = 'SelectFrom_Model'
- def Return_Learner(self):
- return self.Learner.copy()
- def get_Learner(self,name):
- return self.Learner[name]
- def get_Learner_Type(self,name):
- return self.Learner_Type[name]
- def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
- x_data = self.get_Sheet(x_name)
- y_data = self.get_Sheet(y_name)
- model = self.get_Learner(Learner)
- return model.Fit(x_data,y_data,split)
- def Predict(self,x_name,Learner,Text='',**kwargs):
- x_data = self.get_Sheet(x_name)
- model = self.get_Learner(Learner)
- y_data,name = model.Predict(x_data,x_name = x_name,Add_Func=self.Add_Form)
- self.Add_Form(y_data,f'{x_name}:{name}')
- return y_data
- def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
- model = self.get_Learner(Learner)
- x = self.get_Sheet(name_x)
- y = self.get_Sheet(name_y)
- return model.Score(x,y)
- def Show_Args(self,Learner,Dic):#显示参数
- model = self.get_Learner(Learner)
- return model.Des(Dic)
- def Del_Leaner(self,Leaner):
- del self.Learner[Leaner]
- del self.Learner_Type[Leaner]
|