123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295 |
- from datetime import datetime
- from itertools import permutations
- import struct
- import numpy as np
- from numpy.random import RandomState
- import pytest
- from pandas._libs import algos as libalgos, groupby as libgroupby, hashtable as ht
- from pandas.compat.numpy import np_array_datetime64_compat
- import pandas.util._test_decorators as td
- from pandas.core.dtypes.common import (
- is_bool_dtype,
- is_complex_dtype,
- is_float_dtype,
- is_integer_dtype,
- is_object_dtype,
- )
- from pandas.core.dtypes.dtypes import CategoricalDtype as CDT
- import pandas as pd
- from pandas import (
- Categorical,
- CategoricalIndex,
- DatetimeIndex,
- Index,
- IntervalIndex,
- Series,
- Timestamp,
- compat,
- )
- import pandas._testing as tm
- from pandas.conftest import BYTES_DTYPES, STRING_DTYPES
- import pandas.core.algorithms as algos
- from pandas.core.arrays import DatetimeArray
- import pandas.core.common as com
- class TestFactorize:
- def test_basic(self):
- codes, uniques = algos.factorize(["a", "b", "b", "a", "a", "c", "c", "c"])
- tm.assert_numpy_array_equal(uniques, np.array(["a", "b", "c"], dtype=object))
- codes, uniques = algos.factorize(
- ["a", "b", "b", "a", "a", "c", "c", "c"], sort=True
- )
- exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = np.array(["a", "b", "c"], dtype=object)
- tm.assert_numpy_array_equal(uniques, exp)
- codes, uniques = algos.factorize(list(reversed(range(5))))
- exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = np.array([4, 3, 2, 1, 0], dtype=np.int64)
- tm.assert_numpy_array_equal(uniques, exp)
- codes, uniques = algos.factorize(list(reversed(range(5))), sort=True)
- exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = np.array([0, 1, 2, 3, 4], dtype=np.int64)
- tm.assert_numpy_array_equal(uniques, exp)
- codes, uniques = algos.factorize(list(reversed(np.arange(5.0))))
- exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = np.array([4.0, 3.0, 2.0, 1.0, 0.0], dtype=np.float64)
- tm.assert_numpy_array_equal(uniques, exp)
- codes, uniques = algos.factorize(list(reversed(np.arange(5.0))), sort=True)
- exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = np.array([0.0, 1.0, 2.0, 3.0, 4.0], dtype=np.float64)
- tm.assert_numpy_array_equal(uniques, exp)
- def test_mixed(self):
- # doc example reshaping.rst
- x = Series(["A", "A", np.nan, "B", 3.14, np.inf])
- codes, uniques = algos.factorize(x)
- exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = Index(["A", "B", 3.14, np.inf])
- tm.assert_index_equal(uniques, exp)
- codes, uniques = algos.factorize(x, sort=True)
- exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = Index([3.14, np.inf, "A", "B"])
- tm.assert_index_equal(uniques, exp)
- def test_datelike(self):
- # M8
- v1 = Timestamp("20130101 09:00:00.00004")
- v2 = Timestamp("20130101")
- x = Series([v1, v1, v1, v2, v2, v1])
- codes, uniques = algos.factorize(x)
- exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = DatetimeIndex([v1, v2])
- tm.assert_index_equal(uniques, exp)
- codes, uniques = algos.factorize(x, sort=True)
- exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- exp = DatetimeIndex([v2, v1])
- tm.assert_index_equal(uniques, exp)
- # period
- v1 = pd.Period("201302", freq="M")
- v2 = pd.Period("201303", freq="M")
- x = Series([v1, v1, v1, v2, v2, v1])
- # periods are not 'sorted' as they are converted back into an index
- codes, uniques = algos.factorize(x)
- exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2]))
- codes, uniques = algos.factorize(x, sort=True)
- exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2]))
- # GH 5986
- v1 = pd.to_timedelta("1 day 1 min")
- v2 = pd.to_timedelta("1 day")
- x = Series([v1, v2, v1, v1, v2, v2, v1])
- codes, uniques = algos.factorize(x)
- exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2]))
- codes, uniques = algos.factorize(x, sort=True)
- exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, exp)
- tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1]))
- def test_factorize_nan(self):
- # nan should map to na_sentinel, not reverse_indexer[na_sentinel]
- # rizer.factorize should not raise an exception if na_sentinel indexes
- # outside of reverse_indexer
- key = np.array([1, 2, 1, np.nan], dtype="O")
- rizer = ht.Factorizer(len(key))
- for na_sentinel in (-1, 20):
- ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel)
- expected = np.array([0, 1, 0, na_sentinel], dtype="int32")
- assert len(set(key)) == len(set(expected))
- tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
- # nan still maps to na_sentinel when sort=False
- key = np.array([0, np.nan, 1], dtype="O")
- na_sentinel = -1
- # TODO(wesm): unused?
- ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa
- expected = np.array([2, -1, 0], dtype="int32")
- assert len(set(key)) == len(set(expected))
- tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
- @pytest.mark.parametrize(
- "data, expected_codes, expected_uniques",
- [
- (
- [(1, 1), (1, 2), (0, 0), (1, 2), "nonsense"],
- [0, 1, 2, 1, 3],
- [(1, 1), (1, 2), (0, 0), "nonsense"],
- ),
- (
- [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)],
- [0, 1, 2, 1, 3],
- [(1, 1), (1, 2), (0, 0), (1, 2, 3)],
- ),
- ([(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)]),
- ],
- )
- def test_factorize_tuple_list(self, data, expected_codes, expected_uniques):
- # GH9454
- codes, uniques = pd.factorize(data)
- tm.assert_numpy_array_equal(codes, np.array(expected_codes, dtype=np.intp))
- expected_uniques_array = com.asarray_tuplesafe(expected_uniques, dtype=object)
- tm.assert_numpy_array_equal(uniques, expected_uniques_array)
- def test_complex_sorting(self):
- # gh 12666 - check no segfault
- x17 = np.array([complex(i) for i in range(17)], dtype=object)
- msg = (
- "unorderable types: .* [<>] .*"
- "|" # the above case happens for numpy < 1.14
- "'[<>]' not supported between instances of .*"
- )
- with pytest.raises(TypeError, match=msg):
- algos.factorize(x17[::-1], sort=True)
- def test_float64_factorize(self, writable):
- data = np.array([1.0, 1e8, 1.0, 1e-8, 1e8, 1.0], dtype=np.float64)
- data.setflags(write=writable)
- expected_codes = np.array([0, 1, 0, 2, 1, 0], dtype=np.intp)
- expected_uniques = np.array([1.0, 1e8, 1e-8], dtype=np.float64)
- codes, uniques = algos.factorize(data)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- def test_uint64_factorize(self, writable):
- data = np.array([2 ** 64 - 1, 1, 2 ** 64 - 1], dtype=np.uint64)
- data.setflags(write=writable)
- expected_codes = np.array([0, 1, 0], dtype=np.intp)
- expected_uniques = np.array([2 ** 64 - 1, 1], dtype=np.uint64)
- codes, uniques = algos.factorize(data)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- def test_int64_factorize(self, writable):
- data = np.array([2 ** 63 - 1, -(2 ** 63), 2 ** 63 - 1], dtype=np.int64)
- data.setflags(write=writable)
- expected_codes = np.array([0, 1, 0], dtype=np.intp)
- expected_uniques = np.array([2 ** 63 - 1, -(2 ** 63)], dtype=np.int64)
- codes, uniques = algos.factorize(data)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- def test_string_factorize(self, writable):
- data = np.array(["a", "c", "a", "b", "c"], dtype=object)
- data.setflags(write=writable)
- expected_codes = np.array([0, 1, 0, 2, 1], dtype=np.intp)
- expected_uniques = np.array(["a", "c", "b"], dtype=object)
- codes, uniques = algos.factorize(data)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- def test_object_factorize(self, writable):
- data = np.array(["a", "c", None, np.nan, "a", "b", pd.NaT, "c"], dtype=object)
- data.setflags(write=writable)
- expected_codes = np.array([0, 1, -1, -1, 0, 2, -1, 1], dtype=np.intp)
- expected_uniques = np.array(["a", "c", "b"], dtype=object)
- codes, uniques = algos.factorize(data)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- def test_deprecate_order(self):
- # gh 19727 - check warning is raised for deprecated keyword, order.
- # Test not valid once order keyword is removed.
- data = np.array([2 ** 63, 1, 2 ** 63], dtype=np.uint64)
- with pytest.raises(TypeError, match="got an unexpected keyword"):
- algos.factorize(data, order=True)
- with tm.assert_produces_warning(False):
- algos.factorize(data)
- @pytest.mark.parametrize(
- "data",
- [
- np.array([0, 1, 0], dtype="u8"),
- np.array([-(2 ** 63), 1, -(2 ** 63)], dtype="i8"),
- np.array(["__nan__", "foo", "__nan__"], dtype="object"),
- ],
- )
- def test_parametrized_factorize_na_value_default(self, data):
- # arrays that include the NA default for that type, but isn't used.
- codes, uniques = algos.factorize(data)
- expected_uniques = data[[0, 1]]
- expected_codes = np.array([0, 1, 0], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- @pytest.mark.parametrize(
- "data, na_value",
- [
- (np.array([0, 1, 0, 2], dtype="u8"), 0),
- (np.array([1, 0, 1, 2], dtype="u8"), 1),
- (np.array([-(2 ** 63), 1, -(2 ** 63), 0], dtype="i8"), -(2 ** 63)),
- (np.array([1, -(2 ** 63), 1, 0], dtype="i8"), 1),
- (np.array(["a", "", "a", "b"], dtype=object), "a"),
- (np.array([(), ("a", 1), (), ("a", 2)], dtype=object), ()),
- (np.array([("a", 1), (), ("a", 1), ("a", 2)], dtype=object), ("a", 1)),
- ],
- )
- def test_parametrized_factorize_na_value(self, data, na_value):
- codes, uniques = algos._factorize_array(data, na_value=na_value)
- expected_uniques = data[[1, 3]]
- expected_codes = np.array([-1, 0, -1, 1], dtype=np.intp)
- tm.assert_numpy_array_equal(codes, expected_codes)
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- @pytest.mark.parametrize("sort", [True, False])
- @pytest.mark.parametrize("na_sentinel", [-1, -10, 100])
- @pytest.mark.parametrize(
- "data, uniques",
- [
- (
- np.array(["b", "a", None, "b"], dtype=object),
- np.array(["b", "a"], dtype=object),
- ),
- (
- pd.array([2, 1, np.nan, 2], dtype="Int64"),
- pd.array([2, 1], dtype="Int64"),
- ),
- ],
- ids=["numpy_array", "extension_array"],
- )
- def test_factorize_na_sentinel(self, sort, na_sentinel, data, uniques):
- codes, uniques = algos.factorize(data, sort=sort, na_sentinel=na_sentinel)
- if sort:
- expected_codes = np.array([1, 0, na_sentinel, 1], dtype=np.intp)
- expected_uniques = algos.safe_sort(uniques)
- else:
- expected_codes = np.array([0, 1, na_sentinel, 0], dtype=np.intp)
- expected_uniques = uniques
- tm.assert_numpy_array_equal(codes, expected_codes)
- if isinstance(data, np.ndarray):
- tm.assert_numpy_array_equal(uniques, expected_uniques)
- else:
- tm.assert_extension_array_equal(uniques, expected_uniques)
- class TestUnique:
- def test_ints(self):
- arr = np.random.randint(0, 100, size=50)
- result = algos.unique(arr)
- assert isinstance(result, np.ndarray)
- def test_objects(self):
- arr = np.random.randint(0, 100, size=50).astype("O")
- result = algos.unique(arr)
- assert isinstance(result, np.ndarray)
- def test_object_refcount_bug(self):
- lst = ["A", "B", "C", "D", "E"]
- for i in range(1000):
- len(algos.unique(lst))
- def test_on_index_object(self):
- mindex = pd.MultiIndex.from_arrays(
- [np.arange(5).repeat(5), np.tile(np.arange(5), 5)]
- )
- expected = mindex.values
- expected.sort()
- mindex = mindex.repeat(2)
- result = pd.unique(mindex)
- result.sort()
- tm.assert_almost_equal(result, expected)
- def test_dtype_preservation(self, any_numpy_dtype):
- # GH 15442
- if any_numpy_dtype in (BYTES_DTYPES + STRING_DTYPES):
- pytest.skip("skip string dtype")
- elif is_integer_dtype(any_numpy_dtype):
- data = [1, 2, 2]
- uniques = [1, 2]
- elif is_float_dtype(any_numpy_dtype):
- data = [1, 2, 2]
- uniques = [1.0, 2.0]
- elif is_complex_dtype(any_numpy_dtype):
- data = [complex(1, 0), complex(2, 0), complex(2, 0)]
- uniques = [complex(1, 0), complex(2, 0)]
- elif is_bool_dtype(any_numpy_dtype):
- data = [True, True, False]
- uniques = [True, False]
- elif is_object_dtype(any_numpy_dtype):
- data = ["A", "B", "B"]
- uniques = ["A", "B"]
- else:
- # datetime64[ns]/M8[ns]/timedelta64[ns]/m8[ns] tested elsewhere
- data = [1, 2, 2]
- uniques = [1, 2]
- result = Series(data, dtype=any_numpy_dtype).unique()
- expected = np.array(uniques, dtype=any_numpy_dtype)
- tm.assert_numpy_array_equal(result, expected)
- def test_datetime64_dtype_array_returned(self):
- # GH 9431
- expected = np_array_datetime64_compat(
- [
- "2015-01-03T00:00:00.000000000+0000",
- "2015-01-01T00:00:00.000000000+0000",
- ],
- dtype="M8[ns]",
- )
- dt_index = pd.to_datetime(
- [
- "2015-01-03T00:00:00.000000000",
- "2015-01-01T00:00:00.000000000",
- "2015-01-01T00:00:00.000000000",
- ]
- )
- result = algos.unique(dt_index)
- tm.assert_numpy_array_equal(result, expected)
- assert result.dtype == expected.dtype
- s = Series(dt_index)
- result = algos.unique(s)
- tm.assert_numpy_array_equal(result, expected)
- assert result.dtype == expected.dtype
- arr = s.values
- result = algos.unique(arr)
- tm.assert_numpy_array_equal(result, expected)
- assert result.dtype == expected.dtype
- def test_datetime_non_ns(self):
- a = np.array(["2000", "2000", "2001"], dtype="datetime64[s]")
- result = pd.unique(a)
- expected = np.array(["2000", "2001"], dtype="datetime64[ns]")
- tm.assert_numpy_array_equal(result, expected)
- def test_timedelta_non_ns(self):
- a = np.array(["2000", "2000", "2001"], dtype="timedelta64[s]")
- result = pd.unique(a)
- expected = np.array([2000000000000, 2001000000000], dtype="timedelta64[ns]")
- tm.assert_numpy_array_equal(result, expected)
- def test_timedelta64_dtype_array_returned(self):
- # GH 9431
- expected = np.array([31200, 45678, 10000], dtype="m8[ns]")
- td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678])
- result = algos.unique(td_index)
- tm.assert_numpy_array_equal(result, expected)
- assert result.dtype == expected.dtype
- s = Series(td_index)
- result = algos.unique(s)
- tm.assert_numpy_array_equal(result, expected)
- assert result.dtype == expected.dtype
- arr = s.values
- result = algos.unique(arr)
- tm.assert_numpy_array_equal(result, expected)
- assert result.dtype == expected.dtype
- def test_uint64_overflow(self):
- s = Series([1, 2, 2 ** 63, 2 ** 63], dtype=np.uint64)
- exp = np.array([1, 2, 2 ** 63], dtype=np.uint64)
- tm.assert_numpy_array_equal(algos.unique(s), exp)
- def test_nan_in_object_array(self):
- duplicated_items = ["a", np.nan, "c", "c"]
- result = pd.unique(duplicated_items)
- expected = np.array(["a", np.nan, "c"], dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- def test_categorical(self):
- # we are expecting to return in the order
- # of appearance
- expected = Categorical(list("bac"), categories=list("bac"))
- # we are expecting to return in the order
- # of the categories
- expected_o = Categorical(list("bac"), categories=list("abc"), ordered=True)
- # GH 15939
- c = Categorical(list("baabc"))
- result = c.unique()
- tm.assert_categorical_equal(result, expected)
- result = algos.unique(c)
- tm.assert_categorical_equal(result, expected)
- c = Categorical(list("baabc"), ordered=True)
- result = c.unique()
- tm.assert_categorical_equal(result, expected_o)
- result = algos.unique(c)
- tm.assert_categorical_equal(result, expected_o)
- # Series of categorical dtype
- s = Series(Categorical(list("baabc")), name="foo")
- result = s.unique()
- tm.assert_categorical_equal(result, expected)
- result = pd.unique(s)
- tm.assert_categorical_equal(result, expected)
- # CI -> return CI
- ci = CategoricalIndex(Categorical(list("baabc"), categories=list("bac")))
- expected = CategoricalIndex(expected)
- result = ci.unique()
- tm.assert_index_equal(result, expected)
- result = pd.unique(ci)
- tm.assert_index_equal(result, expected)
- def test_datetime64tz_aware(self):
- # GH 15939
- result = Series(
- Index(
- [
- Timestamp("20160101", tz="US/Eastern"),
- Timestamp("20160101", tz="US/Eastern"),
- ]
- )
- ).unique()
- expected = DatetimeArray._from_sequence(
- np.array([Timestamp("2016-01-01 00:00:00-0500", tz="US/Eastern")])
- )
- tm.assert_extension_array_equal(result, expected)
- result = Index(
- [
- Timestamp("20160101", tz="US/Eastern"),
- Timestamp("20160101", tz="US/Eastern"),
- ]
- ).unique()
- expected = DatetimeIndex(
- ["2016-01-01 00:00:00"], dtype="datetime64[ns, US/Eastern]", freq=None
- )
- tm.assert_index_equal(result, expected)
- result = pd.unique(
- Series(
- Index(
- [
- Timestamp("20160101", tz="US/Eastern"),
- Timestamp("20160101", tz="US/Eastern"),
- ]
- )
- )
- )
- expected = DatetimeArray._from_sequence(
- np.array([Timestamp("2016-01-01", tz="US/Eastern")])
- )
- tm.assert_extension_array_equal(result, expected)
- result = pd.unique(
- Index(
- [
- Timestamp("20160101", tz="US/Eastern"),
- Timestamp("20160101", tz="US/Eastern"),
- ]
- )
- )
- expected = DatetimeIndex(
- ["2016-01-01 00:00:00"], dtype="datetime64[ns, US/Eastern]", freq=None
- )
- tm.assert_index_equal(result, expected)
- def test_order_of_appearance(self):
- # 9346
- # light testing of guarantee of order of appearance
- # these also are the doc-examples
- result = pd.unique(Series([2, 1, 3, 3]))
- tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype="int64"))
- result = pd.unique(Series([2] + [1] * 5))
- tm.assert_numpy_array_equal(result, np.array([2, 1], dtype="int64"))
- result = pd.unique(Series([Timestamp("20160101"), Timestamp("20160101")]))
- expected = np.array(["2016-01-01T00:00:00.000000000"], dtype="datetime64[ns]")
- tm.assert_numpy_array_equal(result, expected)
- result = pd.unique(
- Index(
- [
- Timestamp("20160101", tz="US/Eastern"),
- Timestamp("20160101", tz="US/Eastern"),
- ]
- )
- )
- expected = DatetimeIndex(
- ["2016-01-01 00:00:00"], dtype="datetime64[ns, US/Eastern]", freq=None
- )
- tm.assert_index_equal(result, expected)
- result = pd.unique(list("aabc"))
- expected = np.array(["a", "b", "c"], dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- result = pd.unique(Series(Categorical(list("aabc"))))
- expected = Categorical(list("abc"))
- tm.assert_categorical_equal(result, expected)
- @pytest.mark.parametrize(
- "arg ,expected",
- [
- (("1", "1", "2"), np.array(["1", "2"], dtype=object)),
- (("foo",), np.array(["foo"], dtype=object)),
- ],
- )
- def test_tuple_with_strings(self, arg, expected):
- # see GH 17108
- result = pd.unique(arg)
- tm.assert_numpy_array_equal(result, expected)
- def test_obj_none_preservation(self):
- # GH 20866
- arr = np.array(["foo", None], dtype=object)
- result = pd.unique(arr)
- expected = np.array(["foo", None], dtype=object)
- tm.assert_numpy_array_equal(result, expected, strict_nan=True)
- def test_signed_zero(self):
- # GH 21866
- a = np.array([-0.0, 0.0])
- result = pd.unique(a)
- expected = np.array([-0.0]) # 0.0 and -0.0 are equivalent
- tm.assert_numpy_array_equal(result, expected)
- def test_different_nans(self):
- # GH 21866
- # create different nans from bit-patterns:
- NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
- NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
- assert NAN1 != NAN1
- assert NAN2 != NAN2
- a = np.array([NAN1, NAN2]) # NAN1 and NAN2 are equivalent
- result = pd.unique(a)
- expected = np.array([np.nan])
- tm.assert_numpy_array_equal(result, expected)
- def test_first_nan_kept(self):
- # GH 22295
- # create different nans from bit-patterns:
- bits_for_nan1 = 0xFFF8000000000001
- bits_for_nan2 = 0x7FF8000000000001
- NAN1 = struct.unpack("d", struct.pack("=Q", bits_for_nan1))[0]
- NAN2 = struct.unpack("d", struct.pack("=Q", bits_for_nan2))[0]
- assert NAN1 != NAN1
- assert NAN2 != NAN2
- for el_type in [np.float64, np.object]:
- a = np.array([NAN1, NAN2], dtype=el_type)
- result = pd.unique(a)
- assert result.size == 1
- # use bit patterns to identify which nan was kept:
- result_nan_bits = struct.unpack("=Q", struct.pack("d", result[0]))[0]
- assert result_nan_bits == bits_for_nan1
- def test_do_not_mangle_na_values(self, unique_nulls_fixture, unique_nulls_fixture2):
- # GH 22295
- if unique_nulls_fixture is unique_nulls_fixture2:
- return # skip it, values not unique
- a = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=np.object)
- result = pd.unique(a)
- assert result.size == 2
- assert a[0] is unique_nulls_fixture
- assert a[1] is unique_nulls_fixture2
- class TestIsin:
- def test_invalid(self):
- msg = (
- r"only list-like objects are allowed to be passed to isin\(\),"
- r" you passed a \[int\]"
- )
- with pytest.raises(TypeError, match=msg):
- algos.isin(1, 1)
- with pytest.raises(TypeError, match=msg):
- algos.isin(1, [1])
- with pytest.raises(TypeError, match=msg):
- algos.isin([1], 1)
- def test_basic(self):
- result = algos.isin([1, 2], [1])
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(np.array([1, 2]), [1])
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(Series([1, 2]), [1])
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(Series([1, 2]), Series([1]))
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(Series([1, 2]), {1})
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(["a", "b"], ["a"])
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(Series(["a", "b"]), Series(["a"]))
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(Series(["a", "b"]), {"a"})
- expected = np.array([True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(["a", "b"], [1])
- expected = np.array([False, False])
- tm.assert_numpy_array_equal(result, expected)
- def test_i8(self):
- arr = pd.date_range("20130101", periods=3).values
- result = algos.isin(arr, [arr[0]])
- expected = np.array([True, False, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(arr, arr[0:2])
- expected = np.array([True, True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(arr, set(arr[0:2]))
- expected = np.array([True, True, False])
- tm.assert_numpy_array_equal(result, expected)
- arr = pd.timedelta_range("1 day", periods=3).values
- result = algos.isin(arr, [arr[0]])
- expected = np.array([True, False, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(arr, arr[0:2])
- expected = np.array([True, True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.isin(arr, set(arr[0:2]))
- expected = np.array([True, True, False])
- tm.assert_numpy_array_equal(result, expected)
- def test_large(self):
- s = pd.date_range("20000101", periods=2000000, freq="s").values
- result = algos.isin(s, s[0:2])
- expected = np.zeros(len(s), dtype=bool)
- expected[0] = True
- expected[1] = True
- tm.assert_numpy_array_equal(result, expected)
- def test_categorical_from_codes(self):
- # GH 16639
- vals = np.array([0, 1, 2, 0])
- cats = ["a", "b", "c"]
- Sd = Series(Categorical(1).from_codes(vals, cats))
- St = Series(Categorical(1).from_codes(np.array([0, 1]), cats))
- expected = np.array([True, True, False, True])
- result = algos.isin(Sd, St)
- tm.assert_numpy_array_equal(expected, result)
- def test_same_nan_is_in(self):
- # GH 22160
- # nan is special, because from " a is b" doesn't follow "a == b"
- # at least, isin() should follow python's "np.nan in [nan] == True"
- # casting to -> np.float64 -> another float-object somewhere on
- # the way could lead jepardize this behavior
- comps = [np.nan] # could be casted to float64
- values = [np.nan]
- expected = np.array([True])
- result = algos.isin(comps, values)
- tm.assert_numpy_array_equal(expected, result)
- def test_same_object_is_in(self):
- # GH 22160
- # there could be special treatment for nans
- # the user however could define a custom class
- # with similar behavior, then we at least should
- # fall back to usual python's behavior: "a in [a] == True"
- class LikeNan:
- def __eq__(self, other) -> bool:
- return False
- def __hash__(self):
- return 0
- a, b = LikeNan(), LikeNan()
- # same object -> True
- tm.assert_numpy_array_equal(algos.isin([a], [a]), np.array([True]))
- # different objects -> False
- tm.assert_numpy_array_equal(algos.isin([a], [b]), np.array([False]))
- def test_different_nans(self):
- # GH 22160
- # all nans are handled as equivalent
- comps = [float("nan")]
- values = [float("nan")]
- assert comps[0] is not values[0] # different nan-objects
- # as list of python-objects:
- result = algos.isin(comps, values)
- tm.assert_numpy_array_equal(np.array([True]), result)
- # as object-array:
- result = algos.isin(
- np.asarray(comps, dtype=np.object), np.asarray(values, dtype=np.object)
- )
- tm.assert_numpy_array_equal(np.array([True]), result)
- # as float64-array:
- result = algos.isin(
- np.asarray(comps, dtype=np.float64), np.asarray(values, dtype=np.float64)
- )
- tm.assert_numpy_array_equal(np.array([True]), result)
- def test_no_cast(self):
- # GH 22160
- # ensure 42 is not casted to a string
- comps = ["ss", 42]
- values = ["42"]
- expected = np.array([False, False])
- result = algos.isin(comps, values)
- tm.assert_numpy_array_equal(expected, result)
- @pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
- def test_empty(self, empty):
- # see gh-16991
- vals = Index(["a", "b"])
- expected = np.array([False, False])
- result = algos.isin(vals, empty)
- tm.assert_numpy_array_equal(expected, result)
- def test_different_nan_objects(self):
- # GH 22119
- comps = np.array(["nan", np.nan * 1j, float("nan")], dtype=np.object)
- vals = np.array([float("nan")], dtype=np.object)
- expected = np.array([False, False, True])
- result = algos.isin(comps, vals)
- tm.assert_numpy_array_equal(expected, result)
- def test_different_nans_as_float64(self):
- # GH 21866
- # create different nans from bit-patterns,
- # these nans will land in different buckets in the hash-table
- # if no special care is taken
- NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
- NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
- assert NAN1 != NAN1
- assert NAN2 != NAN2
- # check that NAN1 and NAN2 are equivalent:
- arr = np.array([NAN1, NAN2], dtype=np.float64)
- lookup1 = np.array([NAN1], dtype=np.float64)
- result = algos.isin(arr, lookup1)
- expected = np.array([True, True])
- tm.assert_numpy_array_equal(result, expected)
- lookup2 = np.array([NAN2], dtype=np.float64)
- result = algos.isin(arr, lookup2)
- expected = np.array([True, True])
- tm.assert_numpy_array_equal(result, expected)
- class TestValueCounts:
- def test_value_counts(self):
- np.random.seed(1234)
- from pandas.core.reshape.tile import cut
- arr = np.random.randn(4)
- factor = cut(arr, 4)
- # assert isinstance(factor, n)
- result = algos.value_counts(factor)
- breaks = [-1.194, -0.535, 0.121, 0.777, 1.433]
- index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True))
- expected = Series([1, 1, 1, 1], index=index)
- tm.assert_series_equal(result.sort_index(), expected.sort_index())
- def test_value_counts_bins(self):
- s = [1, 2, 3, 4]
- result = algos.value_counts(s, bins=1)
- expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)]))
- tm.assert_series_equal(result, expected)
- result = algos.value_counts(s, bins=2, sort=False)
- expected = Series(
- [2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])
- )
- tm.assert_series_equal(result, expected)
- def test_value_counts_dtypes(self):
- result = algos.value_counts([1, 1.0])
- assert len(result) == 1
- result = algos.value_counts([1, 1.0], bins=1)
- assert len(result) == 1
- result = algos.value_counts(Series([1, 1.0, "1"])) # object
- assert len(result) == 2
- msg = "bins argument only works with numeric data"
- with pytest.raises(TypeError, match=msg):
- algos.value_counts(["1", 1], bins=1)
- def test_value_counts_nat(self):
- td = Series([np.timedelta64(10000), pd.NaT], dtype="timedelta64[ns]")
- dt = pd.to_datetime(["NaT", "2014-01-01"])
- for s in [td, dt]:
- vc = algos.value_counts(s)
- vc_with_na = algos.value_counts(s, dropna=False)
- assert len(vc) == 1
- assert len(vc_with_na) == 2
- exp_dt = Series({Timestamp("2014-01-01 00:00:00"): 1})
- tm.assert_series_equal(algos.value_counts(dt), exp_dt)
- # TODO same for (timedelta)
- def test_value_counts_datetime_outofbounds(self):
- # GH 13663
- s = Series(
- [
- datetime(3000, 1, 1),
- datetime(5000, 1, 1),
- datetime(5000, 1, 1),
- datetime(6000, 1, 1),
- datetime(3000, 1, 1),
- datetime(3000, 1, 1),
- ]
- )
- res = s.value_counts()
- exp_index = Index(
- [datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)],
- dtype=object,
- )
- exp = Series([3, 2, 1], index=exp_index)
- tm.assert_series_equal(res, exp)
- # GH 12424
- res = pd.to_datetime(Series(["2362-01-01", np.nan]), errors="ignore")
- exp = Series(["2362-01-01", np.nan], dtype=object)
- tm.assert_series_equal(res, exp)
- def test_categorical(self):
- s = Series(Categorical(list("aaabbc")))
- result = s.value_counts()
- expected = Series([3, 2, 1], index=CategoricalIndex(["a", "b", "c"]))
- tm.assert_series_equal(result, expected, check_index_type=True)
- # preserve order?
- s = s.cat.as_ordered()
- result = s.value_counts()
- expected.index = expected.index.as_ordered()
- tm.assert_series_equal(result, expected, check_index_type=True)
- def test_categorical_nans(self):
- s = Series(Categorical(list("aaaaabbbcc"))) # 4,3,2,1 (nan)
- s.iloc[1] = np.nan
- result = s.value_counts()
- expected = Series(
- [4, 3, 2],
- index=CategoricalIndex(["a", "b", "c"], categories=["a", "b", "c"]),
- )
- tm.assert_series_equal(result, expected, check_index_type=True)
- result = s.value_counts(dropna=False)
- expected = Series([4, 3, 2, 1], index=CategoricalIndex(["a", "b", "c", np.nan]))
- tm.assert_series_equal(result, expected, check_index_type=True)
- # out of order
- s = Series(
- Categorical(list("aaaaabbbcc"), ordered=True, categories=["b", "a", "c"])
- )
- s.iloc[1] = np.nan
- result = s.value_counts()
- expected = Series(
- [4, 3, 2],
- index=CategoricalIndex(
- ["a", "b", "c"], categories=["b", "a", "c"], ordered=True
- ),
- )
- tm.assert_series_equal(result, expected, check_index_type=True)
- result = s.value_counts(dropna=False)
- expected = Series(
- [4, 3, 2, 1],
- index=CategoricalIndex(
- ["a", "b", "c", np.nan], categories=["b", "a", "c"], ordered=True
- ),
- )
- tm.assert_series_equal(result, expected, check_index_type=True)
- def test_categorical_zeroes(self):
- # keep the `d` category with 0
- s = Series(Categorical(list("bbbaac"), categories=list("abcd"), ordered=True))
- result = s.value_counts()
- expected = Series(
- [3, 2, 1, 0],
- index=Categorical(
- ["b", "a", "c", "d"], categories=list("abcd"), ordered=True
- ),
- )
- tm.assert_series_equal(result, expected, check_index_type=True)
- def test_dropna(self):
- # https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328
- tm.assert_series_equal(
- Series([True, True, False]).value_counts(dropna=True),
- Series([2, 1], index=[True, False]),
- )
- tm.assert_series_equal(
- Series([True, True, False]).value_counts(dropna=False),
- Series([2, 1], index=[True, False]),
- )
- tm.assert_series_equal(
- Series([True, True, False, None]).value_counts(dropna=True),
- Series([2, 1], index=[True, False]),
- )
- tm.assert_series_equal(
- Series([True, True, False, None]).value_counts(dropna=False),
- Series([2, 1, 1], index=[True, False, np.nan]),
- )
- tm.assert_series_equal(
- Series([10.3, 5.0, 5.0]).value_counts(dropna=True),
- Series([2, 1], index=[5.0, 10.3]),
- )
- tm.assert_series_equal(
- Series([10.3, 5.0, 5.0]).value_counts(dropna=False),
- Series([2, 1], index=[5.0, 10.3]),
- )
- tm.assert_series_equal(
- Series([10.3, 5.0, 5.0, None]).value_counts(dropna=True),
- Series([2, 1], index=[5.0, 10.3]),
- )
- # 32-bit linux has a different ordering
- if not compat.is_platform_32bit():
- result = Series([10.3, 5.0, 5.0, None]).value_counts(dropna=False)
- expected = Series([2, 1, 1], index=[5.0, 10.3, np.nan])
- tm.assert_series_equal(result, expected)
- def test_value_counts_normalized(self):
- # GH12558
- s = Series([1, 2, np.nan, np.nan, np.nan])
- dtypes = (np.float64, np.object, "M8[ns]")
- for t in dtypes:
- s_typed = s.astype(t)
- result = s_typed.value_counts(normalize=True, dropna=False)
- expected = Series(
- [0.6, 0.2, 0.2], index=Series([np.nan, 2.0, 1.0], dtype=t)
- )
- tm.assert_series_equal(result, expected)
- result = s_typed.value_counts(normalize=True, dropna=True)
- expected = Series([0.5, 0.5], index=Series([2.0, 1.0], dtype=t))
- tm.assert_series_equal(result, expected)
- def test_value_counts_uint64(self):
- arr = np.array([2 ** 63], dtype=np.uint64)
- expected = Series([1], index=[2 ** 63])
- result = algos.value_counts(arr)
- tm.assert_series_equal(result, expected)
- arr = np.array([-1, 2 ** 63], dtype=object)
- expected = Series([1, 1], index=[-1, 2 ** 63])
- result = algos.value_counts(arr)
- # 32-bit linux has a different ordering
- if not compat.is_platform_32bit():
- tm.assert_series_equal(result, expected)
- class TestDuplicated:
- def test_duplicated_with_nas(self):
- keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object)
- result = algos.duplicated(keys)
- expected = np.array([False, False, False, True, False, True])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.duplicated(keys, keep="first")
- expected = np.array([False, False, False, True, False, True])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.duplicated(keys, keep="last")
- expected = np.array([True, False, True, False, False, False])
- tm.assert_numpy_array_equal(result, expected)
- result = algos.duplicated(keys, keep=False)
- expected = np.array([True, False, True, True, False, True])
- tm.assert_numpy_array_equal(result, expected)
- keys = np.empty(8, dtype=object)
- for i, t in enumerate(
- zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)
- ):
- keys[i] = t
- result = algos.duplicated(keys)
- falses = [False] * 4
- trues = [True] * 4
- expected = np.array(falses + trues)
- tm.assert_numpy_array_equal(result, expected)
- result = algos.duplicated(keys, keep="last")
- expected = np.array(trues + falses)
- tm.assert_numpy_array_equal(result, expected)
- result = algos.duplicated(keys, keep=False)
- expected = np.array(trues + trues)
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize(
- "case",
- [
- np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]),
- np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]),
- np.array(
- [
- 1 + 1j,
- 2 + 2j,
- 1 + 1j,
- 5 + 5j,
- 3 + 3j,
- 2 + 2j,
- 4 + 4j,
- 1 + 1j,
- 5 + 5j,
- 6 + 6j,
- ]
- ),
- np.array(["a", "b", "a", "e", "c", "b", "d", "a", "e", "f"], dtype=object),
- np.array(
- [1, 2 ** 63, 1, 3 ** 5, 10, 2 ** 63, 39, 1, 3 ** 5, 7], dtype=np.uint64
- ),
- ],
- )
- def test_numeric_object_likes(self, case):
- exp_first = np.array(
- [False, False, True, False, False, True, False, True, True, False]
- )
- exp_last = np.array(
- [True, True, True, True, False, False, False, False, False, False]
- )
- exp_false = exp_first | exp_last
- res_first = algos.duplicated(case, keep="first")
- tm.assert_numpy_array_equal(res_first, exp_first)
- res_last = algos.duplicated(case, keep="last")
- tm.assert_numpy_array_equal(res_last, exp_last)
- res_false = algos.duplicated(case, keep=False)
- tm.assert_numpy_array_equal(res_false, exp_false)
- # index
- for idx in [Index(case), Index(case, dtype="category")]:
- res_first = idx.duplicated(keep="first")
- tm.assert_numpy_array_equal(res_first, exp_first)
- res_last = idx.duplicated(keep="last")
- tm.assert_numpy_array_equal(res_last, exp_last)
- res_false = idx.duplicated(keep=False)
- tm.assert_numpy_array_equal(res_false, exp_false)
- # series
- for s in [Series(case), Series(case, dtype="category")]:
- res_first = s.duplicated(keep="first")
- tm.assert_series_equal(res_first, Series(exp_first))
- res_last = s.duplicated(keep="last")
- tm.assert_series_equal(res_last, Series(exp_last))
- res_false = s.duplicated(keep=False)
- tm.assert_series_equal(res_false, Series(exp_false))
- def test_datetime_likes(self):
- dt = [
- "2011-01-01",
- "2011-01-02",
- "2011-01-01",
- "NaT",
- "2011-01-03",
- "2011-01-02",
- "2011-01-04",
- "2011-01-01",
- "NaT",
- "2011-01-06",
- ]
- td = [
- "1 days",
- "2 days",
- "1 days",
- "NaT",
- "3 days",
- "2 days",
- "4 days",
- "1 days",
- "NaT",
- "6 days",
- ]
- cases = [
- np.array([Timestamp(d) for d in dt]),
- np.array([Timestamp(d, tz="US/Eastern") for d in dt]),
- np.array([pd.Period(d, freq="D") for d in dt]),
- np.array([np.datetime64(d) for d in dt]),
- np.array([pd.Timedelta(d) for d in td]),
- ]
- exp_first = np.array(
- [False, False, True, False, False, True, False, True, True, False]
- )
- exp_last = np.array(
- [True, True, True, True, False, False, False, False, False, False]
- )
- exp_false = exp_first | exp_last
- for case in cases:
- res_first = algos.duplicated(case, keep="first")
- tm.assert_numpy_array_equal(res_first, exp_first)
- res_last = algos.duplicated(case, keep="last")
- tm.assert_numpy_array_equal(res_last, exp_last)
- res_false = algos.duplicated(case, keep=False)
- tm.assert_numpy_array_equal(res_false, exp_false)
- # index
- for idx in [
- Index(case),
- Index(case, dtype="category"),
- Index(case, dtype=object),
- ]:
- res_first = idx.duplicated(keep="first")
- tm.assert_numpy_array_equal(res_first, exp_first)
- res_last = idx.duplicated(keep="last")
- tm.assert_numpy_array_equal(res_last, exp_last)
- res_false = idx.duplicated(keep=False)
- tm.assert_numpy_array_equal(res_false, exp_false)
- # series
- for s in [
- Series(case),
- Series(case, dtype="category"),
- Series(case, dtype=object),
- ]:
- res_first = s.duplicated(keep="first")
- tm.assert_series_equal(res_first, Series(exp_first))
- res_last = s.duplicated(keep="last")
- tm.assert_series_equal(res_last, Series(exp_last))
- res_false = s.duplicated(keep=False)
- tm.assert_series_equal(res_false, Series(exp_false))
- def test_unique_index(self):
- cases = [Index([1, 2, 3]), pd.RangeIndex(0, 3)]
- for case in cases:
- assert case.is_unique is True
- tm.assert_numpy_array_equal(
- case.duplicated(), np.array([False, False, False])
- )
- @pytest.mark.parametrize(
- "arr, unique",
- [
- (
- [(0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (1, 0), (1, 1)],
- [(0, 0), (0, 1), (1, 0), (1, 1)],
- ),
- (
- [("b", "c"), ("a", "b"), ("a", "b"), ("b", "c")],
- [("b", "c"), ("a", "b")],
- ),
- ([("a", 1), ("b", 2), ("a", 3), ("a", 1)], [("a", 1), ("b", 2), ("a", 3)]),
- ],
- )
- def test_unique_tuples(self, arr, unique):
- # https://github.com/pandas-dev/pandas/issues/16519
- expected = np.empty(len(unique), dtype=object)
- expected[:] = unique
- result = pd.unique(arr)
- tm.assert_numpy_array_equal(result, expected)
- class GroupVarTestMixin:
- def test_group_var_generic_1d(self):
- prng = RandomState(1234)
- out = (np.nan * np.ones((5, 1))).astype(self.dtype)
- counts = np.zeros(5, dtype="int64")
- values = 10 * prng.rand(15, 1).astype(self.dtype)
- labels = np.tile(np.arange(5), (3,)).astype("int64")
- expected_out = (
- np.squeeze(values).reshape((5, 3), order="F").std(axis=1, ddof=1) ** 2
- )[:, np.newaxis]
- expected_counts = counts + 3
- self.algo(out, counts, values, labels)
- assert np.allclose(out, expected_out, self.rtol)
- tm.assert_numpy_array_equal(counts, expected_counts)
- def test_group_var_generic_1d_flat_labels(self):
- prng = RandomState(1234)
- out = (np.nan * np.ones((1, 1))).astype(self.dtype)
- counts = np.zeros(1, dtype="int64")
- values = 10 * prng.rand(5, 1).astype(self.dtype)
- labels = np.zeros(5, dtype="int64")
- expected_out = np.array([[values.std(ddof=1) ** 2]])
- expected_counts = counts + 5
- self.algo(out, counts, values, labels)
- assert np.allclose(out, expected_out, self.rtol)
- tm.assert_numpy_array_equal(counts, expected_counts)
- def test_group_var_generic_2d_all_finite(self):
- prng = RandomState(1234)
- out = (np.nan * np.ones((5, 2))).astype(self.dtype)
- counts = np.zeros(5, dtype="int64")
- values = 10 * prng.rand(10, 2).astype(self.dtype)
- labels = np.tile(np.arange(5), (2,)).astype("int64")
- expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2
- expected_counts = counts + 2
- self.algo(out, counts, values, labels)
- assert np.allclose(out, expected_out, self.rtol)
- tm.assert_numpy_array_equal(counts, expected_counts)
- def test_group_var_generic_2d_some_nan(self):
- prng = RandomState(1234)
- out = (np.nan * np.ones((5, 2))).astype(self.dtype)
- counts = np.zeros(5, dtype="int64")
- values = 10 * prng.rand(10, 2).astype(self.dtype)
- values[:, 1] = np.nan
- labels = np.tile(np.arange(5), (2,)).astype("int64")
- expected_out = np.vstack(
- [
- values[:, 0].reshape(5, 2, order="F").std(ddof=1, axis=1) ** 2,
- np.nan * np.ones(5),
- ]
- ).T.astype(self.dtype)
- expected_counts = counts + 2
- self.algo(out, counts, values, labels)
- tm.assert_almost_equal(out, expected_out, check_less_precise=6)
- tm.assert_numpy_array_equal(counts, expected_counts)
- def test_group_var_constant(self):
- # Regression test from GH 10448.
- out = np.array([[np.nan]], dtype=self.dtype)
- counts = np.array([0], dtype="int64")
- values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype)
- labels = np.zeros(3, dtype="int64")
- self.algo(out, counts, values, labels)
- assert counts[0] == 3
- assert out[0, 0] >= 0
- tm.assert_almost_equal(out[0, 0], 0.0)
- class TestGroupVarFloat64(GroupVarTestMixin):
- __test__ = True
- algo = staticmethod(libgroupby.group_var_float64)
- dtype = np.float64
- rtol = 1e-5
- def test_group_var_large_inputs(self):
- prng = RandomState(1234)
- out = np.array([[np.nan]], dtype=self.dtype)
- counts = np.array([0], dtype="int64")
- values = (prng.rand(10 ** 6) + 10 ** 12).astype(self.dtype)
- values.shape = (10 ** 6, 1)
- labels = np.zeros(10 ** 6, dtype="int64")
- self.algo(out, counts, values, labels)
- assert counts[0] == 10 ** 6
- tm.assert_almost_equal(out[0, 0], 1.0 / 12, check_less_precise=True)
- class TestGroupVarFloat32(GroupVarTestMixin):
- __test__ = True
- algo = staticmethod(libgroupby.group_var_float32)
- dtype = np.float32
- rtol = 1e-2
- class TestHashTable:
- def test_string_hashtable_set_item_signature(self):
- # GH#30419 fix typing in StringHashTable.set_item to prevent segfault
- tbl = ht.StringHashTable()
- tbl.set_item("key", 1)
- assert tbl.get_item("key") == 1
- with pytest.raises(TypeError, match="'key' has incorrect type"):
- # key arg typed as string, not object
- tbl.set_item(4, 6)
- with pytest.raises(TypeError, match="'val' has incorrect type"):
- tbl.get_item(4)
- def test_lookup_nan(self, writable):
- xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3])
- # GH 21688 ensure we can deal with readonly memory views
- xs.setflags(write=writable)
- m = ht.Float64HashTable()
- m.map_locations(xs)
- tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64))
- def test_add_signed_zeros(self):
- # GH 21866 inconsistent hash-function for float64
- # default hash-function would lead to different hash-buckets
- # for 0.0 and -0.0 if there are more than 2^30 hash-buckets
- # but this would mean 16GB
- N = 4 # 12 * 10**8 would trigger the error, if you have enough memory
- m = ht.Float64HashTable(N)
- m.set_item(0.0, 0)
- m.set_item(-0.0, 0)
- assert len(m) == 1 # 0.0 and -0.0 are equivalent
- def test_add_different_nans(self):
- # GH 21866 inconsistent hash-function for float64
- # create different nans from bit-patterns:
- NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
- NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
- assert NAN1 != NAN1
- assert NAN2 != NAN2
- # default hash function would lead to different hash-buckets
- # for NAN1 and NAN2 even if there are only 4 buckets:
- m = ht.Float64HashTable()
- m.set_item(NAN1, 0)
- m.set_item(NAN2, 0)
- assert len(m) == 1 # NAN1 and NAN2 are equivalent
- def test_lookup_overflow(self, writable):
- xs = np.array([1, 2, 2 ** 63], dtype=np.uint64)
- # GH 21688 ensure we can deal with readonly memory views
- xs.setflags(write=writable)
- m = ht.UInt64HashTable()
- m.map_locations(xs)
- tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64))
- def test_get_unique(self):
- s = Series([1, 2, 2 ** 63, 2 ** 63], dtype=np.uint64)
- exp = np.array([1, 2, 2 ** 63], dtype=np.uint64)
- tm.assert_numpy_array_equal(s.unique(), exp)
- @pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case
- @pytest.mark.parametrize(
- "htable, uniques, dtype, safely_resizes",
- [
- (ht.PyObjectHashTable, ht.ObjectVector, "object", False),
- (ht.StringHashTable, ht.ObjectVector, "object", True),
- (ht.Float64HashTable, ht.Float64Vector, "float64", False),
- (ht.Int64HashTable, ht.Int64Vector, "int64", False),
- (ht.UInt64HashTable, ht.UInt64Vector, "uint64", False),
- ],
- )
- def test_vector_resize(
- self, writable, htable, uniques, dtype, safely_resizes, nvals
- ):
- # Test for memory errors after internal vector
- # reallocations (GH 7157)
- vals = np.array(np.random.randn(1000), dtype=dtype)
- # GH 21688 ensures we can deal with read-only memory views
- vals.setflags(write=writable)
- # initialise instances; cannot initialise in parametrization,
- # as otherwise external views would be held on the array (which is
- # one of the things this test is checking)
- htable = htable()
- uniques = uniques()
- # get_labels may append to uniques
- htable.get_labels(vals[:nvals], uniques, 0, -1)
- # to_array() sets an external_view_exists flag on uniques.
- tmp = uniques.to_array()
- oldshape = tmp.shape
- # subsequent get_labels() calls can no longer append to it
- # (except for StringHashTables + ObjectVector)
- if safely_resizes:
- htable.get_labels(vals, uniques, 0, -1)
- else:
- with pytest.raises(ValueError, match="external reference.*"):
- htable.get_labels(vals, uniques, 0, -1)
- uniques.to_array() # should not raise here
- assert tmp.shape == oldshape
- @pytest.mark.parametrize(
- "htable, tm_dtype",
- [
- (ht.PyObjectHashTable, "String"),
- (ht.StringHashTable, "String"),
- (ht.Float64HashTable, "Float"),
- (ht.Int64HashTable, "Int"),
- (ht.UInt64HashTable, "UInt"),
- ],
- )
- def test_hashtable_unique(self, htable, tm_dtype, writable):
- # output of maker has guaranteed unique elements
- maker = getattr(tm, "make" + tm_dtype + "Index")
- s = Series(maker(1000))
- if htable == ht.Float64HashTable:
- # add NaN for float column
- s.loc[500] = np.nan
- elif htable == ht.PyObjectHashTable:
- # use different NaN types for object column
- s.loc[500:502] = [np.nan, None, pd.NaT]
- # create duplicated selection
- s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True)
- s_duplicated.values.setflags(write=writable)
- # drop_duplicates has own cython code (hash_table_func_helper.pxi)
- # and is tested separately; keeps first occurrence like ht.unique()
- expected_unique = s_duplicated.drop_duplicates(keep="first").values
- result_unique = htable().unique(s_duplicated.values)
- tm.assert_numpy_array_equal(result_unique, expected_unique)
- # test return_inverse=True
- # reconstruction can only succeed if the inverse is correct
- result_unique, result_inverse = htable().unique(
- s_duplicated.values, return_inverse=True
- )
- tm.assert_numpy_array_equal(result_unique, expected_unique)
- reconstr = result_unique[result_inverse]
- tm.assert_numpy_array_equal(reconstr, s_duplicated.values)
- @pytest.mark.parametrize(
- "htable, tm_dtype",
- [
- (ht.PyObjectHashTable, "String"),
- (ht.StringHashTable, "String"),
- (ht.Float64HashTable, "Float"),
- (ht.Int64HashTable, "Int"),
- (ht.UInt64HashTable, "UInt"),
- ],
- )
- def test_hashtable_factorize(self, htable, tm_dtype, writable):
- # output of maker has guaranteed unique elements
- maker = getattr(tm, "make" + tm_dtype + "Index")
- s = Series(maker(1000))
- if htable == ht.Float64HashTable:
- # add NaN for float column
- s.loc[500] = np.nan
- elif htable == ht.PyObjectHashTable:
- # use different NaN types for object column
- s.loc[500:502] = [np.nan, None, pd.NaT]
- # create duplicated selection
- s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True)
- s_duplicated.values.setflags(write=writable)
- na_mask = s_duplicated.isna().values
- result_unique, result_inverse = htable().factorize(s_duplicated.values)
- # drop_duplicates has own cython code (hash_table_func_helper.pxi)
- # and is tested separately; keeps first occurrence like ht.factorize()
- # since factorize removes all NaNs, we do the same here
- expected_unique = s_duplicated.dropna().drop_duplicates().values
- tm.assert_numpy_array_equal(result_unique, expected_unique)
- # reconstruction can only succeed if the inverse is correct. Since
- # factorize removes the NaNs, those have to be excluded here as well
- result_reconstruct = result_unique[result_inverse[~na_mask]]
- expected_reconstruct = s_duplicated.dropna().values
- tm.assert_numpy_array_equal(result_reconstruct, expected_reconstruct)
- @pytest.mark.parametrize(
- "hashtable",
- [
- ht.PyObjectHashTable,
- ht.StringHashTable,
- ht.Float64HashTable,
- ht.Int64HashTable,
- ht.UInt64HashTable,
- ],
- )
- def test_hashtable_large_sizehint(self, hashtable):
- # GH 22729
- size_hint = np.iinfo(np.uint32).max + 1
- tbl = hashtable(size_hint=size_hint) # noqa
- def test_quantile():
- s = Series(np.random.randn(100))
- result = algos.quantile(s, [0, 0.25, 0.5, 0.75, 1.0])
- expected = algos.quantile(s.values, [0, 0.25, 0.5, 0.75, 1.0])
- tm.assert_almost_equal(result, expected)
- def test_unique_label_indices():
- a = np.random.randint(1, 1 << 10, 1 << 15).astype("i8")
- left = ht.unique_label_indices(a)
- right = np.unique(a, return_index=True)[1]
- tm.assert_numpy_array_equal(left, right, check_dtype=False)
- a[np.random.choice(len(a), 10)] = -1
- left = ht.unique_label_indices(a)
- right = np.unique(a, return_index=True)[1][1:]
- tm.assert_numpy_array_equal(left, right, check_dtype=False)
- class TestRank:
- @td.skip_if_no_scipy
- def test_scipy_compat(self):
- from scipy.stats import rankdata
- def _check(arr):
- mask = ~np.isfinite(arr)
- arr = arr.copy()
- result = libalgos.rank_1d(arr)
- arr[mask] = np.inf
- exp = rankdata(arr)
- exp[mask] = np.nan
- tm.assert_almost_equal(result, exp)
- _check(np.array([np.nan, np.nan, 5.0, 5.0, 5.0, np.nan, 1, 2, 3, np.nan]))
- _check(np.array([4.0, np.nan, 5.0, 5.0, 5.0, np.nan, 1, 2, 4.0, np.nan]))
- def test_basic(self):
- exp = np.array([1, 2], dtype=np.float64)
- for dtype in np.typecodes["AllInteger"]:
- s = Series([1, 100], dtype=dtype)
- tm.assert_numpy_array_equal(algos.rank(s), exp)
- def test_uint64_overflow(self):
- exp = np.array([1, 2], dtype=np.float64)
- for dtype in [np.float64, np.uint64]:
- s = Series([1, 2 ** 63], dtype=dtype)
- tm.assert_numpy_array_equal(algos.rank(s), exp)
- def test_too_many_ndims(self):
- arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
- msg = "Array with ndim > 2 are not supported"
- with pytest.raises(TypeError, match=msg):
- algos.rank(arr)
- @pytest.mark.single
- @pytest.mark.high_memory
- @pytest.mark.parametrize(
- "values",
- [np.arange(2 ** 24 + 1), np.arange(2 ** 25 + 2).reshape(2 ** 24 + 1, 2)],
- ids=["1d", "2d"],
- )
- def test_pct_max_many_rows(self, values):
- # GH 18271
- result = algos.rank(values, pct=True).max()
- assert result == 1
- def test_pad_backfill_object_segfault():
- old = np.array([], dtype="O")
- new = np.array([datetime(2010, 12, 31)], dtype="O")
- result = libalgos.pad["object"](old, new)
- expected = np.array([-1], dtype=np.int64)
- tm.assert_numpy_array_equal(result, expected)
- result = libalgos.pad["object"](new, old)
- expected = np.array([], dtype=np.int64)
- tm.assert_numpy_array_equal(result, expected)
- result = libalgos.backfill["object"](old, new)
- expected = np.array([-1], dtype=np.int64)
- tm.assert_numpy_array_equal(result, expected)
- result = libalgos.backfill["object"](new, old)
- expected = np.array([], dtype=np.int64)
- tm.assert_numpy_array_equal(result, expected)
- class TestTseriesUtil:
- def test_combineFunc(self):
- pass
- def test_reindex(self):
- pass
- def test_isna(self):
- pass
- def test_groupby(self):
- pass
- def test_groupby_withnull(self):
- pass
- def test_backfill(self):
- old = Index([1, 5, 10])
- new = Index(list(range(12)))
- filler = libalgos.backfill["int64_t"](old.values, new.values)
- expect_filler = np.array([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1], dtype=np.int64)
- tm.assert_numpy_array_equal(filler, expect_filler)
- # corner case
- old = Index([1, 4])
- new = Index(list(range(5, 10)))
- filler = libalgos.backfill["int64_t"](old.values, new.values)
- expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64)
- tm.assert_numpy_array_equal(filler, expect_filler)
- def test_pad(self):
- old = Index([1, 5, 10])
- new = Index(list(range(12)))
- filler = libalgos.pad["int64_t"](old.values, new.values)
- expect_filler = np.array([-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2], dtype=np.int64)
- tm.assert_numpy_array_equal(filler, expect_filler)
- # corner case
- old = Index([5, 10])
- new = Index(np.arange(5))
- filler = libalgos.pad["int64_t"](old.values, new.values)
- expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64)
- tm.assert_numpy_array_equal(filler, expect_filler)
- def test_is_lexsorted():
- failure = [
- np.array(
- [
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 3,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 2,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 1,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- 0,
- ],
- dtype="int64",
- ),
- np.array(
- [
- 30,
- 29,
- 28,
- 27,
- 26,
- 25,
- 24,
- 23,
- 22,
- 21,
- 20,
- 19,
- 18,
- 17,
- 16,
- 15,
- 14,
- 13,
- 12,
- 11,
- 10,
- 9,
- 8,
- 7,
- 6,
- 5,
- 4,
- 3,
- 2,
- 1,
- 0,
- 30,
- 29,
- 28,
- 27,
- 26,
- 25,
- 24,
- 23,
- 22,
- 21,
- 20,
- 19,
- 18,
- 17,
- 16,
- 15,
- 14,
- 13,
- 12,
- 11,
- 10,
- 9,
- 8,
- 7,
- 6,
- 5,
- 4,
- 3,
- 2,
- 1,
- 0,
- 30,
- 29,
- 28,
- 27,
- 26,
- 25,
- 24,
- 23,
- 22,
- 21,
- 20,
- 19,
- 18,
- 17,
- 16,
- 15,
- 14,
- 13,
- 12,
- 11,
- 10,
- 9,
- 8,
- 7,
- 6,
- 5,
- 4,
- 3,
- 2,
- 1,
- 0,
- 30,
- 29,
- 28,
- 27,
- 26,
- 25,
- 24,
- 23,
- 22,
- 21,
- 20,
- 19,
- 18,
- 17,
- 16,
- 15,
- 14,
- 13,
- 12,
- 11,
- 10,
- 9,
- 8,
- 7,
- 6,
- 5,
- 4,
- 3,
- 2,
- 1,
- 0,
- ],
- dtype="int64",
- ),
- ]
- assert not libalgos.is_lexsorted(failure)
- def test_groupsort_indexer():
- a = np.random.randint(0, 1000, 100).astype(np.int64)
- b = np.random.randint(0, 1000, 100).astype(np.int64)
- result = libalgos.groupsort_indexer(a, 1000)[0]
- # need to use a stable sort
- # np.argsort returns int, groupsort_indexer
- # always returns int64
- expected = np.argsort(a, kind="mergesort")
- expected = expected.astype(np.int64)
- tm.assert_numpy_array_equal(result, expected)
- # compare with lexsort
- # np.lexsort returns int, groupsort_indexer
- # always returns int64
- key = a * 1000 + b
- result = libalgos.groupsort_indexer(key, 1000000)[0]
- expected = np.lexsort((b, a))
- expected = expected.astype(np.int64)
- tm.assert_numpy_array_equal(result, expected)
- def test_infinity_sort():
- # GH 13445
- # numpy's argsort can be unhappy if something is less than
- # itself. Instead, let's give our infinities a self-consistent
- # ordering, but outside the float extended real line.
- Inf = libalgos.Infinity()
- NegInf = libalgos.NegInfinity()
- ref_nums = [NegInf, float("-inf"), -1e100, 0, 1e100, float("inf"), Inf]
- assert all(Inf >= x for x in ref_nums)
- assert all(Inf > x or x is Inf for x in ref_nums)
- assert Inf >= Inf and Inf == Inf
- assert not Inf < Inf and not Inf > Inf
- assert libalgos.Infinity() == libalgos.Infinity()
- assert not libalgos.Infinity() != libalgos.Infinity()
- assert all(NegInf <= x for x in ref_nums)
- assert all(NegInf < x or x is NegInf for x in ref_nums)
- assert NegInf <= NegInf and NegInf == NegInf
- assert not NegInf < NegInf and not NegInf > NegInf
- assert libalgos.NegInfinity() == libalgos.NegInfinity()
- assert not libalgos.NegInfinity() != libalgos.NegInfinity()
- for perm in permutations(ref_nums):
- assert sorted(perm) == ref_nums
- # smoke tests
- np.array([libalgos.Infinity()] * 32).argsort()
- np.array([libalgos.NegInfinity()] * 32).argsort()
- def test_infinity_against_nan():
- Inf = libalgos.Infinity()
- NegInf = libalgos.NegInfinity()
- assert not Inf > np.nan
- assert not Inf >= np.nan
- assert not Inf < np.nan
- assert not Inf <= np.nan
- assert not Inf == np.nan
- assert Inf != np.nan
- assert not NegInf > np.nan
- assert not NegInf >= np.nan
- assert not NegInf < np.nan
- assert not NegInf <= np.nan
- assert not NegInf == np.nan
- assert NegInf != np.nan
- def test_ensure_platform_int():
- arr = np.arange(100, dtype=np.intp)
- result = libalgos.ensure_platform_int(arr)
- assert result is arr
- def test_int64_add_overflow():
- # see gh-14068
- msg = "Overflow in int64 addition"
- m = np.iinfo(np.int64).max
- n = np.iinfo(np.int64).min
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(np.array([m, m]), m)
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]))
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(np.array([n, n]), n)
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(np.array([n, n]), np.array([n, n]))
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(np.array([m, n]), np.array([n, n]))
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(
- np.array([m, m]), np.array([m, m]), arr_mask=np.array([False, True])
- )
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(
- np.array([m, m]), np.array([m, m]), b_mask=np.array([False, True])
- )
- with pytest.raises(OverflowError, match=msg):
- algos.checked_add_with_arr(
- np.array([m, m]),
- np.array([m, m]),
- arr_mask=np.array([False, True]),
- b_mask=np.array([False, True]),
- )
- with pytest.raises(OverflowError, match=msg):
- with tm.assert_produces_warning(RuntimeWarning):
- algos.checked_add_with_arr(np.array([m, m]), np.array([np.nan, m]))
- # Check that the nan boolean arrays override whether or not
- # the addition overflows. We don't check the result but just
- # the fact that an OverflowError is not raised.
- algos.checked_add_with_arr(
- np.array([m, m]), np.array([m, m]), arr_mask=np.array([True, True])
- )
- algos.checked_add_with_arr(
- np.array([m, m]), np.array([m, m]), b_mask=np.array([True, True])
- )
- algos.checked_add_with_arr(
- np.array([m, m]),
- np.array([m, m]),
- arr_mask=np.array([True, False]),
- b_mask=np.array([False, True]),
- )
- class TestMode:
- def test_no_mode(self):
- exp = Series([], dtype=np.float64)
- tm.assert_series_equal(algos.mode([]), exp)
- def test_mode_single(self):
- # GH 15714
- exp_single = [1]
- data_single = [1]
- exp_multi = [1]
- data_multi = [1, 1]
- for dt in np.typecodes["AllInteger"] + np.typecodes["Float"]:
- s = Series(data_single, dtype=dt)
- exp = Series(exp_single, dtype=dt)
- tm.assert_series_equal(algos.mode(s), exp)
- s = Series(data_multi, dtype=dt)
- exp = Series(exp_multi, dtype=dt)
- tm.assert_series_equal(algos.mode(s), exp)
- exp = Series([1], dtype=np.int)
- tm.assert_series_equal(algos.mode([1]), exp)
- exp = Series(["a", "b", "c"], dtype=np.object)
- tm.assert_series_equal(algos.mode(["a", "b", "c"]), exp)
- def test_number_mode(self):
- exp_single = [1]
- data_single = [1] * 5 + [2] * 3
- exp_multi = [1, 3]
- data_multi = [1] * 5 + [2] * 3 + [3] * 5
- for dt in np.typecodes["AllInteger"] + np.typecodes["Float"]:
- s = Series(data_single, dtype=dt)
- exp = Series(exp_single, dtype=dt)
- tm.assert_series_equal(algos.mode(s), exp)
- s = Series(data_multi, dtype=dt)
- exp = Series(exp_multi, dtype=dt)
- tm.assert_series_equal(algos.mode(s), exp)
- def test_strobj_mode(self):
- exp = ["b"]
- data = ["a"] * 2 + ["b"] * 3
- s = Series(data, dtype="c")
- exp = Series(exp, dtype="c")
- tm.assert_series_equal(algos.mode(s), exp)
- exp = ["bar"]
- data = ["foo"] * 2 + ["bar"] * 3
- for dt in [str, object]:
- s = Series(data, dtype=dt)
- exp = Series(exp, dtype=dt)
- tm.assert_series_equal(algos.mode(s), exp)
- def test_datelike_mode(self):
- exp = Series(["1900-05-03", "2011-01-03", "2013-01-02"], dtype="M8[ns]")
- s = Series(["2011-01-03", "2013-01-02", "1900-05-03"], dtype="M8[ns]")
- tm.assert_series_equal(algos.mode(s), exp)
- exp = Series(["2011-01-03", "2013-01-02"], dtype="M8[ns]")
- s = Series(
- ["2011-01-03", "2013-01-02", "1900-05-03", "2011-01-03", "2013-01-02"],
- dtype="M8[ns]",
- )
- tm.assert_series_equal(algos.mode(s), exp)
- def test_timedelta_mode(self):
- exp = Series(["-1 days", "0 days", "1 days"], dtype="timedelta64[ns]")
- s = Series(["1 days", "-1 days", "0 days"], dtype="timedelta64[ns]")
- tm.assert_series_equal(algos.mode(s), exp)
- exp = Series(["2 min", "1 day"], dtype="timedelta64[ns]")
- s = Series(
- ["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"],
- dtype="timedelta64[ns]",
- )
- tm.assert_series_equal(algos.mode(s), exp)
- def test_mixed_dtype(self):
- exp = Series(["foo"])
- s = Series([1, "foo", "foo"])
- tm.assert_series_equal(algos.mode(s), exp)
- def test_uint64_overflow(self):
- exp = Series([2 ** 63], dtype=np.uint64)
- s = Series([1, 2 ** 63, 2 ** 63], dtype=np.uint64)
- tm.assert_series_equal(algos.mode(s), exp)
- exp = Series([1, 2 ** 63], dtype=np.uint64)
- s = Series([1, 2 ** 63], dtype=np.uint64)
- tm.assert_series_equal(algos.mode(s), exp)
- def test_categorical(self):
- c = Categorical([1, 2])
- exp = c
- tm.assert_categorical_equal(algos.mode(c), exp)
- tm.assert_categorical_equal(c.mode(), exp)
- c = Categorical([1, "a", "a"])
- exp = Categorical(["a"], categories=[1, "a"])
- tm.assert_categorical_equal(algos.mode(c), exp)
- tm.assert_categorical_equal(c.mode(), exp)
- c = Categorical([1, 1, 2, 3, 3])
- exp = Categorical([1, 3], categories=[1, 2, 3])
- tm.assert_categorical_equal(algos.mode(c), exp)
- tm.assert_categorical_equal(c.mode(), exp)
- def test_index(self):
- idx = Index([1, 2, 3])
- exp = Series([1, 2, 3], dtype=np.int64)
- tm.assert_series_equal(algos.mode(idx), exp)
- idx = Index([1, "a", "a"])
- exp = Series(["a"], dtype=object)
- tm.assert_series_equal(algos.mode(idx), exp)
- idx = Index([1, 1, 2, 3, 3])
- exp = Series([1, 3], dtype=np.int64)
- tm.assert_series_equal(algos.mode(idx), exp)
- exp = Series(["2 min", "1 day"], dtype="timedelta64[ns]")
- idx = Index(
- ["1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min"],
- dtype="timedelta64[ns]",
- )
- tm.assert_series_equal(algos.mode(idx), exp)
|