123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- # coding: utf-8
- import itertools
- import string
- import numpy as np
- from numpy import random
- import pytest
- import pandas.util._test_decorators as td
- from pandas import DataFrame, MultiIndex, Series, date_range, timedelta_range
- import pandas._testing as tm
- from pandas.tests.plotting.common import TestPlotBase, _check_plot_works
- import pandas.plotting as plotting
- """ Test cases for .boxplot method """
- @td.skip_if_no_mpl
- class TestDataFramePlots(TestPlotBase):
- @pytest.mark.slow
- def test_boxplot_legacy1(self):
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["one", "two", "three", "four"],
- )
- df["indic"] = ["foo", "bar"] * 3
- df["indic2"] = ["foo", "bar", "foo"] * 2
- _check_plot_works(df.boxplot, return_type="dict")
- _check_plot_works(df.boxplot, column=["one", "two"], return_type="dict")
- # _check_plot_works adds an ax so catch warning. see GH #13188
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, column=["one", "two"], by="indic")
- _check_plot_works(df.boxplot, column="one", by=["indic", "indic2"])
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by="indic")
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by=["indic", "indic2"])
- _check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict")
- _check_plot_works(df.boxplot, notch=1, return_type="dict")
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by="indic", notch=1)
- @pytest.mark.slow
- def test_boxplot_legacy2(self):
- df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"])
- df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"])
- df["Y"] = Series(["A"] * 10)
- with tm.assert_produces_warning(UserWarning):
- _check_plot_works(df.boxplot, by="X")
- # When ax is supplied and required number of axes is 1,
- # passed ax should be used:
- fig, ax = self.plt.subplots()
- axes = df.boxplot("Col1", by="X", ax=ax)
- ax_axes = ax.axes
- assert ax_axes is axes
- fig, ax = self.plt.subplots()
- axes = df.groupby("Y").boxplot(ax=ax, return_type="axes")
- ax_axes = ax.axes
- assert ax_axes is axes["A"]
- # Multiple columns with an ax argument should use same figure
- fig, ax = self.plt.subplots()
- with tm.assert_produces_warning(UserWarning):
- axes = df.boxplot(
- column=["Col1", "Col2"], by="X", ax=ax, return_type="axes"
- )
- assert axes["Col1"].get_figure() is fig
- # When by is None, check that all relevant lines are present in the
- # dict
- fig, ax = self.plt.subplots()
- d = df.boxplot(ax=ax, return_type="dict")
- lines = list(itertools.chain.from_iterable(d.values()))
- assert len(ax.get_lines()) == len(lines)
- @pytest.mark.slow
- def test_boxplot_return_type_none(self):
- # GH 12216; return_type=None & by=None -> axes
- result = self.hist_df.boxplot()
- assert isinstance(result, self.plt.Axes)
- @pytest.mark.slow
- def test_boxplot_return_type_legacy(self):
- # API change in https://github.com/pandas-dev/pandas/pull/7096
- import matplotlib as mpl # noqa
- df = DataFrame(
- np.random.randn(6, 4),
- index=list(string.ascii_letters[:6]),
- columns=["one", "two", "three", "four"],
- )
- with pytest.raises(ValueError):
- df.boxplot(return_type="NOTATYPE")
- result = df.boxplot()
- self._check_box_return_type(result, "axes")
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type="dict")
- self._check_box_return_type(result, "dict")
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type="axes")
- self._check_box_return_type(result, "axes")
- with tm.assert_produces_warning(False):
- result = df.boxplot(return_type="both")
- self._check_box_return_type(result, "both")
- @pytest.mark.slow
- def test_boxplot_axis_limits(self):
- def _check_ax_limits(col, ax):
- y_min, y_max = ax.get_ylim()
- assert y_min <= col.min()
- assert y_max >= col.max()
- df = self.hist_df.copy()
- df["age"] = np.random.randint(1, 20, df.shape[0])
- # One full row
- height_ax, weight_ax = df.boxplot(["height", "weight"], by="category")
- _check_ax_limits(df["height"], height_ax)
- _check_ax_limits(df["weight"], weight_ax)
- assert weight_ax._sharey == height_ax
- # Two rows, one partial
- p = df.boxplot(["height", "weight", "age"], by="category")
- height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0]
- dummy_ax = p[1, 1]
- _check_ax_limits(df["height"], height_ax)
- _check_ax_limits(df["weight"], weight_ax)
- _check_ax_limits(df["age"], age_ax)
- assert weight_ax._sharey == height_ax
- assert age_ax._sharey == height_ax
- assert dummy_ax._sharey is None
- @pytest.mark.slow
- def test_boxplot_empty_column(self):
- df = DataFrame(np.random.randn(20, 4))
- df.loc[:, 0] = np.nan
- _check_plot_works(df.boxplot, return_type="axes")
- @pytest.mark.slow
- def test_figsize(self):
- df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"])
- result = df.boxplot(return_type="axes", figsize=(12, 8))
- assert result.figure.bbox_inches.width == 12
- assert result.figure.bbox_inches.height == 8
- def test_fontsize(self):
- df = DataFrame({"a": [1, 2, 3, 4, 5, 6]})
- self._check_ticks_props(
- df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16
- )
- def test_boxplot_numeric_data(self):
- # GH 22799
- df = DataFrame(
- {
- "a": date_range("2012-01-01", periods=100),
- "b": np.random.randn(100),
- "c": np.random.randn(100) + 2,
- "d": date_range("2012-01-01", periods=100).astype(str),
- "e": date_range("2012-01-01", periods=100, tz="UTC"),
- "f": timedelta_range("1 days", periods=100),
- }
- )
- ax = df.plot(kind="box")
- assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"]
- @pytest.mark.parametrize(
- "colors_kwd, expected",
- [
- (
- dict(boxes="r", whiskers="b", medians="g", caps="c"),
- dict(boxes="r", whiskers="b", medians="g", caps="c"),
- ),
- (dict(boxes="r"), dict(boxes="r")),
- ("r", dict(boxes="r", whiskers="r", medians="r", caps="r")),
- ],
- )
- def test_color_kwd(self, colors_kwd, expected):
- # GH: 26214
- df = DataFrame(random.rand(10, 2))
- result = df.boxplot(color=colors_kwd, return_type="dict")
- for k, v in expected.items():
- assert result[k][0].get_color() == v
- @pytest.mark.parametrize(
- "dict_colors, msg",
- [(dict(boxes="r", invalid_key="r"), "invalid key 'invalid_key'")],
- )
- def test_color_kwd_errors(self, dict_colors, msg):
- # GH: 26214
- df = DataFrame(random.rand(10, 2))
- with pytest.raises(ValueError, match=msg):
- df.boxplot(color=dict_colors, return_type="dict")
- @td.skip_if_no_mpl
- class TestDataFrameGroupByPlots(TestPlotBase):
- @pytest.mark.slow
- def test_boxplot_legacy1(self):
- grouped = self.hist_df.groupby(by="gender")
- with tm.assert_produces_warning(UserWarning):
- axes = _check_plot_works(grouped.boxplot, return_type="axes")
- self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2))
- axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_boxplot_legacy2(self):
- tuples = zip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
- grouped = df.groupby(level=1)
- with tm.assert_produces_warning(UserWarning):
- axes = _check_plot_works(grouped.boxplot, return_type="axes")
- self._check_axes_shape(list(axes.values), axes_num=10, layout=(4, 3))
- axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_boxplot_legacy3(self):
- tuples = zip(string.ascii_letters[:10], range(10))
- df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples))
- grouped = df.unstack(level=1).groupby(level=0, axis=1)
- with tm.assert_produces_warning(UserWarning):
- axes = _check_plot_works(grouped.boxplot, return_type="axes")
- self._check_axes_shape(list(axes.values), axes_num=3, layout=(2, 2))
- axes = _check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
- self._check_axes_shape(axes, axes_num=1, layout=(1, 1))
- @pytest.mark.slow
- def test_grouped_plot_fignums(self):
- n = 10
- weight = Series(np.random.normal(166, 20, size=n))
- height = Series(np.random.normal(60, 10, size=n))
- with tm.RNGContext(42):
- gender = np.random.choice(["male", "female"], size=n)
- df = DataFrame({"height": height, "weight": weight, "gender": gender})
- gb = df.groupby("gender")
- res = gb.plot()
- assert len(self.plt.get_fignums()) == 2
- assert len(res) == 2
- tm.close()
- res = gb.boxplot(return_type="axes")
- assert len(self.plt.get_fignums()) == 1
- assert len(res) == 2
- tm.close()
- # now works with GH 5610 as gender is excluded
- res = df.groupby("gender").hist()
- tm.close()
- @pytest.mark.slow
- def test_grouped_box_return_type(self):
- df = self.hist_df
- # old style: return_type=None
- result = df.boxplot(by="gender")
- assert isinstance(result, np.ndarray)
- self._check_box_return_type(
- result, None, expected_keys=["height", "weight", "category"]
- )
- # now for groupby
- result = df.groupby("gender").boxplot(return_type="dict")
- self._check_box_return_type(result, "dict", expected_keys=["Male", "Female"])
- columns2 = "X B C D A G Y N Q O".split()
- df2 = DataFrame(random.randn(50, 10), columns=columns2)
- categories2 = "A B C D E F G H I J".split()
- df2["category"] = categories2 * 5
- for t in ["dict", "axes", "both"]:
- returned = df.groupby("classroom").boxplot(return_type=t)
- self._check_box_return_type(returned, t, expected_keys=["A", "B", "C"])
- returned = df.boxplot(by="classroom", return_type=t)
- self._check_box_return_type(
- returned, t, expected_keys=["height", "weight", "category"]
- )
- returned = df2.groupby("category").boxplot(return_type=t)
- self._check_box_return_type(returned, t, expected_keys=categories2)
- returned = df2.boxplot(by="category", return_type=t)
- self._check_box_return_type(returned, t, expected_keys=columns2)
- @pytest.mark.slow
- def test_grouped_box_layout(self):
- df = self.hist_df
- msg = "Layout of 1x1 must be larger than required size 2"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(column=["weight", "height"], by=df.gender, layout=(1, 1))
- msg = "The 'layout' keyword is not supported when 'by' is None"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(
- column=["height", "weight", "category"],
- layout=(2, 1),
- return_type="dict",
- )
- msg = "At least one dimension of layout must be positive"
- with pytest.raises(ValueError, match=msg):
- df.boxplot(column=["weight", "height"], by=df.gender, layout=(-1, -1))
- # _check_plot_works adds an ax so catch warning. see GH #13188
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(
- df.groupby("gender").boxplot, column="height", return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=2, layout=(1, 2))
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(
- df.groupby("category").boxplot, column="height", return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
- # GH 6769
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(
- df.groupby("classroom").boxplot, column="height", return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- # GH 5897
- axes = df.boxplot(
- column=["height", "weight", "category"], by="gender", return_type="axes"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- for ax in [axes["height"]]:
- self._check_visible(ax.get_xticklabels(), visible=False)
- self._check_visible([ax.xaxis.get_label()], visible=False)
- for ax in [axes["weight"], axes["category"]]:
- self._check_visible(ax.get_xticklabels())
- self._check_visible([ax.xaxis.get_label()])
- box = df.groupby("classroom").boxplot(
- column=["height", "weight", "category"], return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(2, 2))
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(
- df.groupby("category").boxplot,
- column="height",
- layout=(3, 2),
- return_type="dict",
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
- with tm.assert_produces_warning(UserWarning):
- box = _check_plot_works(
- df.groupby("category").boxplot,
- column="height",
- layout=(3, -1),
- return_type="dict",
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(3, 2))
- box = df.boxplot(
- column=["height", "weight", "category"], by="gender", layout=(4, 1)
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(4, 1))
- box = df.boxplot(
- column=["height", "weight", "category"], by="gender", layout=(-1, 1)
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(3, 1))
- box = df.groupby("classroom").boxplot(
- column=["height", "weight", "category"], layout=(1, 4), return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 4))
- box = df.groupby("classroom").boxplot( # noqa
- column=["height", "weight", "category"], layout=(1, -1), return_type="dict"
- )
- self._check_axes_shape(self.plt.gcf().axes, axes_num=3, layout=(1, 3))
- @pytest.mark.slow
- def test_grouped_box_multiple_axes(self):
- # GH 6970, GH 7069
- df = self.hist_df
- # check warning to ignore sharex / sharey
- # this check should be done in the first function which
- # passes multiple axes to plot, hist or boxplot
- # location should be changed if other test is added
- # which has earlier alphabetical order
- with tm.assert_produces_warning(UserWarning):
- fig, axes = self.plt.subplots(2, 2)
- df.groupby("category").boxplot(column="height", return_type="axes", ax=axes)
- self._check_axes_shape(self.plt.gcf().axes, axes_num=4, layout=(2, 2))
- fig, axes = self.plt.subplots(2, 3)
- with tm.assert_produces_warning(UserWarning):
- returned = df.boxplot(
- column=["height", "weight", "category"],
- by="gender",
- return_type="axes",
- ax=axes[0],
- )
- returned = np.array(list(returned.values))
- self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
- tm.assert_numpy_array_equal(returned, axes[0])
- assert returned[0].figure is fig
- # draw on second row
- with tm.assert_produces_warning(UserWarning):
- returned = df.groupby("classroom").boxplot(
- column=["height", "weight", "category"], return_type="axes", ax=axes[1]
- )
- returned = np.array(list(returned.values))
- self._check_axes_shape(returned, axes_num=3, layout=(1, 3))
- tm.assert_numpy_array_equal(returned, axes[1])
- assert returned[0].figure is fig
- with pytest.raises(ValueError):
- fig, axes = self.plt.subplots(2, 3)
- # pass different number of axes from required
- with tm.assert_produces_warning(UserWarning):
- axes = df.groupby("classroom").boxplot(ax=axes)
- def test_fontsize(self):
- df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [0, 0, 0, 1, 1, 1]})
- self._check_ticks_props(
- df.boxplot("a", by="b", fontsize=16), xlabelsize=16, ylabelsize=16
- )
|