123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- import numpy as np
- import pytest
- import pandas as pd
- import pandas._testing as tm
- class TestTimedeltaIndexing:
- def test_boolean_indexing(self):
- # GH 14946
- df = pd.DataFrame({"x": range(10)})
- df.index = pd.to_timedelta(range(10), unit="s")
- conditions = [df["x"] > 3, df["x"] == 3, df["x"] < 3]
- expected_data = [
- [0, 1, 2, 3, 10, 10, 10, 10, 10, 10],
- [0, 1, 2, 10, 4, 5, 6, 7, 8, 9],
- [10, 10, 10, 3, 4, 5, 6, 7, 8, 9],
- ]
- for cond, data in zip(conditions, expected_data):
- result = df.assign(x=df.mask(cond, 10).astype("int64"))
- expected = pd.DataFrame(
- data,
- index=pd.to_timedelta(range(10), unit="s"),
- columns=["x"],
- dtype="int64",
- )
- tm.assert_frame_equal(expected, result)
- @pytest.mark.parametrize(
- "indexer, expected",
- [
- (0, [20, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
- (slice(4, 8), [0, 1, 2, 3, 20, 20, 20, 20, 8, 9]),
- ([3, 5], [0, 1, 2, 20, 4, 20, 6, 7, 8, 9]),
- ],
- )
- def test_list_like_indexing(self, indexer, expected):
- # GH 16637
- df = pd.DataFrame({"x": range(10)}, dtype="int64")
- df.index = pd.to_timedelta(range(10), unit="s")
- df.loc[df.index[indexer], "x"] = 20
- expected = pd.DataFrame(
- expected,
- index=pd.to_timedelta(range(10), unit="s"),
- columns=["x"],
- dtype="int64",
- )
- tm.assert_frame_equal(expected, df)
- def test_string_indexing(self):
- # GH 16896
- df = pd.DataFrame({"x": range(3)}, index=pd.to_timedelta(range(3), unit="days"))
- expected = df.iloc[0]
- sliced = df.loc["0 days"]
- tm.assert_series_equal(sliced, expected)
- @pytest.mark.parametrize("value", [None, pd.NaT, np.nan])
- def test_masked_setitem(self, value):
- # issue (#18586)
- series = pd.Series([0, 1, 2], dtype="timedelta64[ns]")
- series[series == series[0]] = value
- expected = pd.Series([pd.NaT, 1, 2], dtype="timedelta64[ns]")
- tm.assert_series_equal(series, expected)
- @pytest.mark.parametrize("value", [None, pd.NaT, np.nan])
- def test_listlike_setitem(self, value):
- # issue (#18586)
- series = pd.Series([0, 1, 2], dtype="timedelta64[ns]")
- series.iloc[0] = value
- expected = pd.Series([pd.NaT, 1, 2], dtype="timedelta64[ns]")
- tm.assert_series_equal(series, expected)
- @pytest.mark.parametrize(
- "start,stop, expected_slice",
- [
- [np.timedelta64(0, "ns"), None, slice(0, 11)],
- [np.timedelta64(1, "D"), np.timedelta64(6, "D"), slice(1, 7)],
- [None, np.timedelta64(4, "D"), slice(0, 5)],
- ],
- )
- def test_numpy_timedelta_scalar_indexing(self, start, stop, expected_slice):
- # GH 20393
- s = pd.Series(range(11), pd.timedelta_range("0 days", "10 days"))
- result = s.loc[slice(start, stop)]
- expected = s.iloc[expected_slice]
- tm.assert_series_equal(result, expected)
- def test_roundtrip_thru_setitem(self):
- # PR 23462
- dt1 = pd.Timedelta(0)
- dt2 = pd.Timedelta(28767471428571405)
- df = pd.DataFrame({"dt": pd.Series([dt1, dt2])})
- df_copy = df.copy()
- s = pd.Series([dt1])
- expected = df["dt"].iloc[1].value
- df.loc[[True, False]] = s
- result = df["dt"].iloc[1].value
- assert expected == result
- tm.assert_frame_equal(df, df_copy)
- def test_loc_str_slicing(self):
- ix = pd.timedelta_range(start="1 day", end="2 days", freq="1H")
- ser = ix.to_series()
- result = ser.loc[:"1 days"]
- expected = ser.iloc[:-1]
- tm.assert_series_equal(result, expected)
- def test_loc_slicing(self):
- ix = pd.timedelta_range(start="1 day", end="2 days", freq="1H")
- ser = ix.to_series()
- result = ser.loc[: ix[-2]]
- expected = ser.iloc[:-1]
- tm.assert_series_equal(result, expected)
|