123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- from datetime import time, timedelta
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import Series, TimedeltaIndex, isna, to_timedelta
- import pandas._testing as tm
- class TestTimedeltas:
- def test_to_timedelta(self):
- result = to_timedelta(["", ""])
- assert isna(result).all()
- # pass thru
- result = to_timedelta(np.array([np.timedelta64(1, "s")]))
- expected = pd.Index(np.array([np.timedelta64(1, "s")]))
- tm.assert_index_equal(result, expected)
- # Series
- expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)])
- result = to_timedelta(Series(["1d", "1days 00:00:01"]))
- tm.assert_series_equal(result, expected)
- # with units
- result = TimedeltaIndex(
- [np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")]
- )
- expected = to_timedelta([0, 10], unit="s")
- tm.assert_index_equal(result, expected)
- # arrays of various dtypes
- arr = np.array([1] * 5, dtype="int64")
- result = to_timedelta(arr, unit="s")
- expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5)
- tm.assert_index_equal(result, expected)
- arr = np.array([1] * 5, dtype="int64")
- result = to_timedelta(arr, unit="m")
- expected = TimedeltaIndex([np.timedelta64(1, "m")] * 5)
- tm.assert_index_equal(result, expected)
- arr = np.array([1] * 5, dtype="int64")
- result = to_timedelta(arr, unit="h")
- expected = TimedeltaIndex([np.timedelta64(1, "h")] * 5)
- tm.assert_index_equal(result, expected)
- arr = np.array([1] * 5, dtype="timedelta64[s]")
- result = to_timedelta(arr)
- expected = TimedeltaIndex([np.timedelta64(1, "s")] * 5)
- tm.assert_index_equal(result, expected)
- arr = np.array([1] * 5, dtype="timedelta64[D]")
- result = to_timedelta(arr)
- expected = TimedeltaIndex([np.timedelta64(1, "D")] * 5)
- tm.assert_index_equal(result, expected)
- def test_to_timedelta_invalid(self):
- # bad value for errors parameter
- msg = "errors must be one of"
- with pytest.raises(ValueError, match=msg):
- to_timedelta(["foo"], errors="never")
- # these will error
- msg = "invalid unit abbreviation: foo"
- with pytest.raises(ValueError, match=msg):
- to_timedelta([1, 2], unit="foo")
- with pytest.raises(ValueError, match=msg):
- to_timedelta(1, unit="foo")
- # time not supported ATM
- msg = (
- "Value must be Timedelta, string, integer, float, timedelta or convertible"
- )
- with pytest.raises(ValueError, match=msg):
- to_timedelta(time(second=1))
- assert to_timedelta(time(second=1), errors="coerce") is pd.NaT
- msg = "unit abbreviation w/o a number"
- with pytest.raises(ValueError, match=msg):
- to_timedelta(["foo", "bar"])
- tm.assert_index_equal(
- TimedeltaIndex([pd.NaT, pd.NaT]),
- to_timedelta(["foo", "bar"], errors="coerce"),
- )
- tm.assert_index_equal(
- TimedeltaIndex(["1 day", pd.NaT, "1 min"]),
- to_timedelta(["1 day", "bar", "1 min"], errors="coerce"),
- )
- # gh-13613: these should not error because errors='ignore'
- invalid_data = "apple"
- assert invalid_data == to_timedelta(invalid_data, errors="ignore")
- invalid_data = ["apple", "1 days"]
- tm.assert_numpy_array_equal(
- np.array(invalid_data, dtype=object),
- to_timedelta(invalid_data, errors="ignore"),
- )
- invalid_data = pd.Index(["apple", "1 days"])
- tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore"))
- invalid_data = Series(["apple", "1 days"])
- tm.assert_series_equal(
- invalid_data, to_timedelta(invalid_data, errors="ignore")
- )
- def test_to_timedelta_via_apply(self):
- # GH 5458
- expected = Series([np.timedelta64(1, "s")])
- result = Series(["00:00:01"]).apply(to_timedelta)
- tm.assert_series_equal(result, expected)
- result = Series([to_timedelta("00:00:01")])
- tm.assert_series_equal(result, expected)
- def test_to_timedelta_on_missing_values(self):
- # GH5438
- timedelta_NaT = np.timedelta64("NaT")
- actual = pd.to_timedelta(Series(["00:00:01", np.nan]))
- expected = Series(
- [np.timedelta64(1000000000, "ns"), timedelta_NaT], dtype="<m8[ns]"
- )
- tm.assert_series_equal(actual, expected)
- actual = pd.to_timedelta(Series(["00:00:01", pd.NaT]))
- tm.assert_series_equal(actual, expected)
- actual = pd.to_timedelta(np.nan)
- assert actual.value == timedelta_NaT.astype("int64")
- actual = pd.to_timedelta(pd.NaT)
- assert actual.value == timedelta_NaT.astype("int64")
- def test_to_timedelta_float(self):
- # https://github.com/pandas-dev/pandas/issues/25077
- arr = np.arange(0, 1, 1e-6)[-10:]
- result = pd.to_timedelta(arr, unit="s")
- expected_asi8 = np.arange(999990000, int(1e9), 1000, dtype="int64")
- tm.assert_numpy_array_equal(result.asi8, expected_asi8)
|