123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- import numpy as np
- import pytest
- from pandas.errors import PerformanceWarning
- import pandas as pd
- from pandas import Index, MultiIndex
- import pandas._testing as tm
- def test_drop(idx):
- dropped = idx.drop([("foo", "two"), ("qux", "one")])
- index = MultiIndex.from_tuples([("foo", "two"), ("qux", "one")])
- dropped2 = idx.drop(index)
- expected = idx[[0, 2, 3, 5]]
- tm.assert_index_equal(dropped, expected)
- tm.assert_index_equal(dropped2, expected)
- dropped = idx.drop(["bar"])
- expected = idx[[0, 1, 3, 4, 5]]
- tm.assert_index_equal(dropped, expected)
- dropped = idx.drop("foo")
- expected = idx[[2, 3, 4, 5]]
- tm.assert_index_equal(dropped, expected)
- index = MultiIndex.from_tuples([("bar", "two")])
- with pytest.raises(KeyError, match=r"^10$"):
- idx.drop([("bar", "two")])
- with pytest.raises(KeyError, match=r"^10$"):
- idx.drop(index)
- with pytest.raises(KeyError, match=r"^'two'$"):
- idx.drop(["foo", "two"])
- # partially correct argument
- mixed_index = MultiIndex.from_tuples([("qux", "one"), ("bar", "two")])
- with pytest.raises(KeyError, match=r"^10$"):
- idx.drop(mixed_index)
- # error='ignore'
- dropped = idx.drop(index, errors="ignore")
- expected = idx[[0, 1, 2, 3, 4, 5]]
- tm.assert_index_equal(dropped, expected)
- dropped = idx.drop(mixed_index, errors="ignore")
- expected = idx[[0, 1, 2, 3, 5]]
- tm.assert_index_equal(dropped, expected)
- dropped = idx.drop(["foo", "two"], errors="ignore")
- expected = idx[[2, 3, 4, 5]]
- tm.assert_index_equal(dropped, expected)
- # mixed partial / full drop
- dropped = idx.drop(["foo", ("qux", "one")])
- expected = idx[[2, 3, 5]]
- tm.assert_index_equal(dropped, expected)
- # mixed partial / full drop / error='ignore'
- mixed_index = ["foo", ("qux", "one"), "two"]
- with pytest.raises(KeyError, match=r"^'two'$"):
- idx.drop(mixed_index)
- dropped = idx.drop(mixed_index, errors="ignore")
- expected = idx[[2, 3, 5]]
- tm.assert_index_equal(dropped, expected)
- def test_droplevel_with_names(idx):
- index = idx[idx.get_loc("foo")]
- dropped = index.droplevel(0)
- assert dropped.name == "second"
- index = MultiIndex(
- levels=[Index(range(4)), Index(range(4)), Index(range(4))],
- codes=[
- np.array([0, 0, 1, 2, 2, 2, 3, 3]),
- np.array([0, 1, 0, 0, 0, 1, 0, 1]),
- np.array([1, 0, 1, 1, 0, 0, 1, 0]),
- ],
- names=["one", "two", "three"],
- )
- dropped = index.droplevel(0)
- assert dropped.names == ("two", "three")
- dropped = index.droplevel("two")
- expected = index.droplevel(1)
- assert dropped.equals(expected)
- def test_droplevel_list():
- index = MultiIndex(
- levels=[Index(range(4)), Index(range(4)), Index(range(4))],
- codes=[
- np.array([0, 0, 1, 2, 2, 2, 3, 3]),
- np.array([0, 1, 0, 0, 0, 1, 0, 1]),
- np.array([1, 0, 1, 1, 0, 0, 1, 0]),
- ],
- names=["one", "two", "three"],
- )
- dropped = index[:2].droplevel(["three", "one"])
- expected = index[:2].droplevel(2).droplevel(0)
- assert dropped.equals(expected)
- dropped = index[:2].droplevel([])
- expected = index[:2]
- assert dropped.equals(expected)
- msg = (
- "Cannot remove 3 levels from an index with 3 levels: "
- "at least one level must be left"
- )
- with pytest.raises(ValueError, match=msg):
- index[:2].droplevel(["one", "two", "three"])
- with pytest.raises(KeyError, match="'Level four not found'"):
- index[:2].droplevel(["one", "four"])
- def test_drop_not_lexsorted():
- # GH 12078
- # define the lexsorted version of the multi-index
- tuples = [("a", ""), ("b1", "c1"), ("b2", "c2")]
- lexsorted_mi = MultiIndex.from_tuples(tuples, names=["b", "c"])
- assert lexsorted_mi.is_lexsorted()
- # and the not-lexsorted version
- df = pd.DataFrame(
- columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]]
- )
- df = df.pivot_table(index="a", columns=["b", "c"], values="d")
- df = df.reset_index()
- not_lexsorted_mi = df.columns
- assert not not_lexsorted_mi.is_lexsorted()
- # compare the results
- tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi)
- with tm.assert_produces_warning(PerformanceWarning):
- tm.assert_index_equal(lexsorted_mi.drop("a"), not_lexsorted_mi.drop("a"))
- @pytest.mark.parametrize(
- "msg,labels,level",
- [
- (r"labels \[4\] not found in level", 4, "a"),
- (r"labels \[7\] not found in level", 7, "b"),
- ],
- )
- def test_drop_raise_exception_if_labels_not_in_level(msg, labels, level):
- # GH 8594
- mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
- s = pd.Series([10, 20, 30], index=mi)
- df = pd.DataFrame([10, 20, 30], index=mi)
- with pytest.raises(KeyError, match=msg):
- s.drop(labels, level=level)
- with pytest.raises(KeyError, match=msg):
- df.drop(labels, level=level)
- @pytest.mark.parametrize("labels,level", [(4, "a"), (7, "b")])
- def test_drop_errors_ignore(labels, level):
- # GH 8594
- mi = MultiIndex.from_arrays([[1, 2, 3], [4, 5, 6]], names=["a", "b"])
- s = pd.Series([10, 20, 30], index=mi)
- df = pd.DataFrame([10, 20, 30], index=mi)
- expected_s = s.drop(labels, level=level, errors="ignore")
- tm.assert_series_equal(s, expected_s)
- expected_df = df.drop(labels, level=level, errors="ignore")
- tm.assert_frame_equal(df, expected_df)
- def test_drop_with_non_unique_datetime_index_and_invalid_keys():
- # GH 30399
- # define dataframe with unique datetime index
- df = pd.DataFrame(
- np.random.randn(5, 3),
- columns=["a", "b", "c"],
- index=pd.date_range("2012", freq="H", periods=5),
- )
- # create dataframe with non-unique datetime index
- df = df.iloc[[0, 2, 2, 3]].copy()
- with pytest.raises(KeyError, match="not found in axis"):
- df.drop(["a", "b"]) # Dropping with labels not exist in the index
|