123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892 |
- import gc
- from typing import Optional, Type
- import numpy as np
- import pytest
- from pandas._libs.tslib import iNaT
- from pandas.core.dtypes.dtypes import CategoricalDtype
- import pandas as pd
- from pandas import (
- CategoricalIndex,
- DatetimeIndex,
- Index,
- Int64Index,
- IntervalIndex,
- MultiIndex,
- PeriodIndex,
- RangeIndex,
- Series,
- TimedeltaIndex,
- UInt64Index,
- isna,
- )
- import pandas._testing as tm
- from pandas.core.indexes.base import InvalidIndexError
- from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin
- class Base:
- """ base class for index sub-class tests """
- _holder: Optional[Type[Index]] = None
- _compat_props = ["shape", "ndim", "size", "nbytes"]
- def test_pickle_compat_construction(self):
- # need an object to create with
- msg = (
- r"Index\(\.\.\.\) must be called with a collection of some"
- r" kind, None was passed|"
- r"__new__\(\) missing 1 required positional argument: 'data'|"
- r"__new__\(\) takes at least 2 arguments \(1 given\)"
- )
- with pytest.raises(TypeError, match=msg):
- self._holder()
- def test_to_series(self):
- # assert that we are creating a copy of the index
- idx = self.create_index()
- s = idx.to_series()
- assert s.values is not idx.values
- assert s.index is not idx
- assert s.name == idx.name
- def test_to_series_with_arguments(self):
- # GH18699
- # index kwarg
- idx = self.create_index()
- s = idx.to_series(index=idx)
- assert s.values is not idx.values
- assert s.index is idx
- assert s.name == idx.name
- # name kwarg
- idx = self.create_index()
- s = idx.to_series(name="__test")
- assert s.values is not idx.values
- assert s.index is not idx
- assert s.name != idx.name
- @pytest.mark.parametrize("name", [None, "new_name"])
- def test_to_frame(self, name):
- # see GH-15230, GH-22580
- idx = self.create_index()
- if name:
- idx_name = name
- else:
- idx_name = idx.name or 0
- df = idx.to_frame(name=idx_name)
- assert df.index is idx
- assert len(df.columns) == 1
- assert df.columns[0] == idx_name
- assert df[idx_name].values is not idx.values
- df = idx.to_frame(index=False, name=idx_name)
- assert df.index is not idx
- def test_shift(self):
- # GH8083 test the base class for shift
- idx = self.create_index()
- msg = "Not supported for type {}".format(type(idx).__name__)
- with pytest.raises(NotImplementedError, match=msg):
- idx.shift(1)
- with pytest.raises(NotImplementedError, match=msg):
- idx.shift(1, 2)
- def test_constructor_name_unhashable(self):
- # GH#29069 check that name is hashable
- # See also same-named test in tests.series.test_constructors
- idx = self.create_index()
- with pytest.raises(TypeError, match="Index.name must be a hashable type"):
- type(idx)(idx, name=[])
- def test_create_index_existing_name(self):
- # GH11193, when an existing index is passed, and a new name is not
- # specified, the new index should inherit the previous object name
- expected = self.create_index()
- if not isinstance(expected, MultiIndex):
- expected.name = "foo"
- result = pd.Index(expected)
- tm.assert_index_equal(result, expected)
- result = pd.Index(expected, name="bar")
- expected.name = "bar"
- tm.assert_index_equal(result, expected)
- else:
- expected.names = ["foo", "bar"]
- result = pd.Index(expected)
- tm.assert_index_equal(
- result,
- Index(
- Index(
- [
- ("foo", "one"),
- ("foo", "two"),
- ("bar", "one"),
- ("baz", "two"),
- ("qux", "one"),
- ("qux", "two"),
- ],
- dtype="object",
- ),
- names=["foo", "bar"],
- ),
- )
- result = pd.Index(expected, names=["A", "B"])
- tm.assert_index_equal(
- result,
- Index(
- Index(
- [
- ("foo", "one"),
- ("foo", "two"),
- ("bar", "one"),
- ("baz", "two"),
- ("qux", "one"),
- ("qux", "two"),
- ],
- dtype="object",
- ),
- names=["A", "B"],
- ),
- )
- def test_numeric_compat(self):
- idx = self.create_index()
- with pytest.raises(TypeError, match="cannot perform __mul__"):
- idx * 1
- with pytest.raises(TypeError, match="cannot perform __rmul__"):
- 1 * idx
- div_err = "cannot perform __truediv__"
- with pytest.raises(TypeError, match=div_err):
- idx / 1
- div_err = div_err.replace(" __", " __r")
- with pytest.raises(TypeError, match=div_err):
- 1 / idx
- with pytest.raises(TypeError, match="cannot perform __floordiv__"):
- idx // 1
- with pytest.raises(TypeError, match="cannot perform __rfloordiv__"):
- 1 // idx
- def test_logical_compat(self):
- idx = self.create_index()
- with pytest.raises(TypeError, match="cannot perform all"):
- idx.all()
- with pytest.raises(TypeError, match="cannot perform any"):
- idx.any()
- def test_boolean_context_compat(self):
- # boolean context compat
- idx = self.create_index()
- with pytest.raises(ValueError, match="The truth value of a"):
- if idx:
- pass
- def test_reindex_base(self):
- idx = self.create_index()
- expected = np.arange(idx.size, dtype=np.intp)
- actual = idx.get_indexer(idx)
- tm.assert_numpy_array_equal(expected, actual)
- with pytest.raises(ValueError, match="Invalid fill method"):
- idx.get_indexer(idx, method="invalid")
- def test_get_indexer_consistency(self, indices):
- # See GH 16819
- if isinstance(indices, IntervalIndex):
- return
- if indices.is_unique or isinstance(indices, CategoricalIndex):
- indexer = indices.get_indexer(indices[0:2])
- assert isinstance(indexer, np.ndarray)
- assert indexer.dtype == np.intp
- else:
- e = "Reindexing only valid with uniquely valued Index objects"
- with pytest.raises(InvalidIndexError, match=e):
- indices.get_indexer(indices[0:2])
- indexer, _ = indices.get_indexer_non_unique(indices[0:2])
- assert isinstance(indexer, np.ndarray)
- assert indexer.dtype == np.intp
- def test_ndarray_compat_properties(self):
- idx = self.create_index()
- assert idx.T.equals(idx)
- assert idx.transpose().equals(idx)
- values = idx.values
- for prop in self._compat_props:
- assert getattr(idx, prop) == getattr(values, prop)
- # test for validity
- idx.nbytes
- idx.values.nbytes
- def test_repr_roundtrip(self):
- idx = self.create_index()
- tm.assert_index_equal(eval(repr(idx)), idx)
- def test_str(self):
- # test the string repr
- idx = self.create_index()
- idx.name = "foo"
- assert "'foo'" in str(idx)
- assert type(idx).__name__ in str(idx)
- def test_repr_max_seq_item_setting(self):
- # GH10182
- idx = self.create_index()
- idx = idx.repeat(50)
- with pd.option_context("display.max_seq_items", None):
- repr(idx)
- assert "..." not in str(idx)
- def test_copy_name(self, indices):
- # gh-12309: Check that the "name" argument
- # passed at initialization is honored.
- if isinstance(indices, MultiIndex):
- return
- first = type(indices)(indices, copy=True, name="mario")
- second = type(first)(first, copy=False)
- # Even though "copy=False", we want a new object.
- assert first is not second
- # Not using tm.assert_index_equal() since names differ.
- assert indices.equals(first)
- assert first.name == "mario"
- assert second.name == "mario"
- s1 = Series(2, index=first)
- s2 = Series(3, index=second[:-1])
- if not isinstance(indices, CategoricalIndex):
- # See gh-13365
- s3 = s1 * s2
- assert s3.index.name == "mario"
- def test_ensure_copied_data(self, indices):
- # Check the "copy" argument of each Index.__new__ is honoured
- # GH12309
- init_kwargs = {}
- if isinstance(indices, PeriodIndex):
- # Needs "freq" specification:
- init_kwargs["freq"] = indices.freq
- elif isinstance(indices, (RangeIndex, MultiIndex, CategoricalIndex)):
- # RangeIndex cannot be initialized from data
- # MultiIndex and CategoricalIndex are tested separately
- return
- index_type = type(indices)
- result = index_type(indices.values, copy=True, **init_kwargs)
- tm.assert_index_equal(indices, result)
- tm.assert_numpy_array_equal(
- indices._ndarray_values, result._ndarray_values, check_same="copy"
- )
- if isinstance(indices, PeriodIndex):
- # .values an object array of Period, thus copied
- result = index_type(ordinal=indices.asi8, copy=False, **init_kwargs)
- tm.assert_numpy_array_equal(
- indices._ndarray_values, result._ndarray_values, check_same="same"
- )
- elif isinstance(indices, IntervalIndex):
- # checked in test_interval.py
- pass
- else:
- result = index_type(indices.values, copy=False, **init_kwargs)
- tm.assert_numpy_array_equal(
- indices.values, result.values, check_same="same"
- )
- tm.assert_numpy_array_equal(
- indices._ndarray_values, result._ndarray_values, check_same="same"
- )
- def test_memory_usage(self, indices):
- indices._engine.clear_mapping()
- result = indices.memory_usage()
- if indices.empty:
- # we report 0 for no-length
- assert result == 0
- return
- # non-zero length
- indices.get_loc(indices[0])
- result2 = indices.memory_usage()
- result3 = indices.memory_usage(deep=True)
- # RangeIndex, IntervalIndex
- # don't have engines
- if not isinstance(indices, (RangeIndex, IntervalIndex)):
- assert result2 > result
- if indices.inferred_type == "object":
- assert result3 > result2
- def test_argsort(self, request, indices):
- # separately tested
- if isinstance(indices, CategoricalIndex):
- return
- result = indices.argsort()
- expected = np.array(indices).argsort()
- tm.assert_numpy_array_equal(result, expected, check_dtype=False)
- def test_numpy_argsort(self, indices):
- result = np.argsort(indices)
- expected = indices.argsort()
- tm.assert_numpy_array_equal(result, expected)
- # these are the only two types that perform
- # pandas compatibility input validation - the
- # rest already perform separate (or no) such
- # validation via their 'values' attribute as
- # defined in pandas.core.indexes/base.py - they
- # cannot be changed at the moment due to
- # backwards compatibility concerns
- if isinstance(type(indices), (CategoricalIndex, RangeIndex)):
- msg = "the 'axis' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.argsort(indices, axis=1)
- msg = "the 'kind' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.argsort(indices, kind="mergesort")
- msg = "the 'order' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.argsort(indices, order=("a", "b"))
- def test_take(self, indices):
- indexer = [4, 3, 0, 2]
- if len(indices) < 5:
- # not enough elements; ignore
- return
- result = indices.take(indexer)
- expected = indices[indexer]
- assert result.equals(expected)
- if not isinstance(indices, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
- # GH 10791
- with pytest.raises(AttributeError):
- indices.freq
- def test_take_invalid_kwargs(self):
- idx = self.create_index()
- indices = [1, 2]
- msg = r"take\(\) got an unexpected keyword argument 'foo'"
- with pytest.raises(TypeError, match=msg):
- idx.take(indices, foo=2)
- msg = "the 'out' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- idx.take(indices, out=indices)
- msg = "the 'mode' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- idx.take(indices, mode="clip")
- def test_repeat(self):
- rep = 2
- i = self.create_index()
- expected = pd.Index(i.values.repeat(rep), name=i.name)
- tm.assert_index_equal(i.repeat(rep), expected)
- i = self.create_index()
- rep = np.arange(len(i))
- expected = pd.Index(i.values.repeat(rep), name=i.name)
- tm.assert_index_equal(i.repeat(rep), expected)
- def test_numpy_repeat(self):
- rep = 2
- i = self.create_index()
- expected = i.repeat(rep)
- tm.assert_index_equal(np.repeat(i, rep), expected)
- msg = "the 'axis' parameter is not supported"
- with pytest.raises(ValueError, match=msg):
- np.repeat(i, rep, axis=0)
- @pytest.mark.parametrize("klass", [list, tuple, np.array, Series])
- def test_where(self, klass):
- i = self.create_index()
- cond = [True] * len(i)
- result = i.where(klass(cond))
- expected = i
- tm.assert_index_equal(result, expected)
- cond = [False] + [True] * len(i[1:])
- expected = pd.Index([i._na_value] + i[1:].tolist(), dtype=i.dtype)
- result = i.where(klass(cond))
- tm.assert_index_equal(result, expected)
- @pytest.mark.parametrize("case", [0.5, "xxx"])
- @pytest.mark.parametrize(
- "method", ["intersection", "union", "difference", "symmetric_difference"]
- )
- def test_set_ops_error_cases(self, case, method, indices):
- # non-iterable input
- msg = "Input must be Index or array-like"
- with pytest.raises(TypeError, match=msg):
- getattr(indices, method)(case)
- def test_intersection_base(self, indices):
- if isinstance(indices, CategoricalIndex):
- return
- first = indices[:5]
- second = indices[:3]
- intersect = first.intersection(second)
- assert tm.equalContents(intersect, second)
- # GH 10149
- cases = [klass(second.values) for klass in [np.array, Series, list]]
- for case in cases:
- result = first.intersection(case)
- assert tm.equalContents(result, second)
- if isinstance(indices, MultiIndex):
- msg = "other must be a MultiIndex or a list of tuples"
- with pytest.raises(TypeError, match=msg):
- first.intersection([1, 2, 3])
- def test_union_base(self, indices):
- first = indices[3:]
- second = indices[:5]
- everything = indices
- union = first.union(second)
- assert tm.equalContents(union, everything)
- # GH 10149
- cases = [klass(second.values) for klass in [np.array, Series, list]]
- for case in cases:
- if not isinstance(indices, CategoricalIndex):
- result = first.union(case)
- assert tm.equalContents(result, everything)
- if isinstance(indices, MultiIndex):
- msg = "other must be a MultiIndex or a list of tuples"
- with pytest.raises(TypeError, match=msg):
- first.union([1, 2, 3])
- @pytest.mark.parametrize("sort", [None, False])
- def test_difference_base(self, sort, indices):
- if isinstance(indices, CategoricalIndex):
- return
- first = indices[2:]
- second = indices[:4]
- answer = indices[4:]
- result = first.difference(second, sort)
- assert tm.equalContents(result, answer)
- # GH 10149
- cases = [klass(second.values) for klass in [np.array, Series, list]]
- for case in cases:
- if isinstance(indices, (DatetimeIndex, TimedeltaIndex)):
- assert type(result) == type(answer)
- tm.assert_numpy_array_equal(
- result.sort_values().asi8, answer.sort_values().asi8
- )
- else:
- result = first.difference(case, sort)
- assert tm.equalContents(result, answer)
- if isinstance(indices, MultiIndex):
- msg = "other must be a MultiIndex or a list of tuples"
- with pytest.raises(TypeError, match=msg):
- first.difference([1, 2, 3], sort)
- def test_symmetric_difference(self, indices):
- if isinstance(indices, CategoricalIndex):
- return
- first = indices[1:]
- second = indices[:-1]
- answer = indices[[0, -1]]
- result = first.symmetric_difference(second)
- assert tm.equalContents(result, answer)
- # GH 10149
- cases = [klass(second.values) for klass in [np.array, Series, list]]
- for case in cases:
- result = first.symmetric_difference(case)
- assert tm.equalContents(result, answer)
- if isinstance(indices, MultiIndex):
- msg = "other must be a MultiIndex or a list of tuples"
- with pytest.raises(TypeError, match=msg):
- first.symmetric_difference([1, 2, 3])
- def test_insert_base(self, indices):
- result = indices[1:4]
- if not len(indices):
- return
- # test 0th element
- assert indices[0:4].equals(result.insert(0, indices[0]))
- def test_delete_base(self, indices):
- if not len(indices):
- return
- if isinstance(indices, RangeIndex):
- # tested in class
- return
- expected = indices[1:]
- result = indices.delete(0)
- assert result.equals(expected)
- assert result.name == expected.name
- expected = indices[:-1]
- result = indices.delete(-1)
- assert result.equals(expected)
- assert result.name == expected.name
- with pytest.raises((IndexError, ValueError)):
- # either depending on numpy version
- indices.delete(len(indices))
- def test_equals(self, indices):
- if isinstance(indices, IntervalIndex):
- # IntervalIndex tested separately
- return
- assert indices.equals(indices)
- assert indices.equals(indices.copy())
- assert indices.equals(indices.astype(object))
- assert not indices.equals(list(indices))
- assert not indices.equals(np.array(indices))
- # Cannot pass in non-int64 dtype to RangeIndex
- if not isinstance(indices, RangeIndex):
- same_values = Index(indices, dtype=object)
- assert indices.equals(same_values)
- assert same_values.equals(indices)
- if indices.nlevels == 1:
- # do not test MultiIndex
- assert not indices.equals(Series(indices))
- def test_equals_op(self):
- # GH9947, GH10637
- index_a = self.create_index()
- if isinstance(index_a, PeriodIndex):
- pytest.skip("Skip check for PeriodIndex")
- n = len(index_a)
- index_b = index_a[0:-1]
- index_c = index_a[0:-1].append(index_a[-2:-1])
- index_d = index_a[0:1]
- msg = "Lengths must match|could not be broadcast"
- with pytest.raises(ValueError, match=msg):
- index_a == index_b
- expected1 = np.array([True] * n)
- expected2 = np.array([True] * (n - 1) + [False])
- tm.assert_numpy_array_equal(index_a == index_a, expected1)
- tm.assert_numpy_array_equal(index_a == index_c, expected2)
- # test comparisons with numpy arrays
- array_a = np.array(index_a)
- array_b = np.array(index_a[0:-1])
- array_c = np.array(index_a[0:-1].append(index_a[-2:-1]))
- array_d = np.array(index_a[0:1])
- with pytest.raises(ValueError, match=msg):
- index_a == array_b
- tm.assert_numpy_array_equal(index_a == array_a, expected1)
- tm.assert_numpy_array_equal(index_a == array_c, expected2)
- # test comparisons with Series
- series_a = Series(array_a)
- series_b = Series(array_b)
- series_c = Series(array_c)
- series_d = Series(array_d)
- with pytest.raises(ValueError, match=msg):
- index_a == series_b
- tm.assert_numpy_array_equal(index_a == series_a, expected1)
- tm.assert_numpy_array_equal(index_a == series_c, expected2)
- # cases where length is 1 for one of them
- with pytest.raises(ValueError, match="Lengths must match"):
- index_a == index_d
- with pytest.raises(ValueError, match="Lengths must match"):
- index_a == series_d
- with pytest.raises(ValueError, match="Lengths must match"):
- index_a == array_d
- msg = "Can only compare identically-labeled Series objects"
- with pytest.raises(ValueError, match=msg):
- series_a == series_d
- with pytest.raises(ValueError, match="Lengths must match"):
- series_a == array_d
- # comparing with a scalar should broadcast; note that we are excluding
- # MultiIndex because in this case each item in the index is a tuple of
- # length 2, and therefore is considered an array of length 2 in the
- # comparison instead of a scalar
- if not isinstance(index_a, MultiIndex):
- expected3 = np.array([False] * (len(index_a) - 2) + [True, False])
- # assuming the 2nd to last item is unique in the data
- item = index_a[-2]
- tm.assert_numpy_array_equal(index_a == item, expected3)
- tm.assert_series_equal(series_a == item, Series(expected3))
- def test_hasnans_isnans(self, indices):
- # GH 11343, added tests for hasnans / isnans
- if isinstance(indices, MultiIndex):
- return
- # cases in indices doesn't include NaN
- idx = indices.copy(deep=True)
- expected = np.array([False] * len(idx), dtype=bool)
- tm.assert_numpy_array_equal(idx._isnan, expected)
- assert idx.hasnans is False
- idx = indices.copy(deep=True)
- values = np.asarray(idx.values)
- if len(indices) == 0:
- return
- elif isinstance(indices, DatetimeIndexOpsMixin):
- values[1] = iNaT
- elif isinstance(indices, (Int64Index, UInt64Index)):
- return
- else:
- values[1] = np.nan
- if isinstance(indices, PeriodIndex):
- idx = type(indices)(values, freq=indices.freq)
- else:
- idx = type(indices)(values)
- expected = np.array([False] * len(idx), dtype=bool)
- expected[1] = True
- tm.assert_numpy_array_equal(idx._isnan, expected)
- assert idx.hasnans is True
- def test_fillna(self, indices):
- # GH 11343
- if len(indices) == 0:
- pass
- elif isinstance(indices, MultiIndex):
- idx = indices.copy(deep=True)
- msg = "isna is not defined for MultiIndex"
- with pytest.raises(NotImplementedError, match=msg):
- idx.fillna(idx[0])
- else:
- idx = indices.copy(deep=True)
- result = idx.fillna(idx[0])
- tm.assert_index_equal(result, idx)
- assert result is not idx
- msg = "'value' must be a scalar, passed: "
- with pytest.raises(TypeError, match=msg):
- idx.fillna([idx[0]])
- idx = indices.copy(deep=True)
- values = np.asarray(idx.values)
- if isinstance(indices, DatetimeIndexOpsMixin):
- values[1] = iNaT
- elif isinstance(indices, (Int64Index, UInt64Index)):
- return
- else:
- values[1] = np.nan
- if isinstance(indices, PeriodIndex):
- idx = type(indices)(values, freq=indices.freq)
- else:
- idx = type(indices)(values)
- expected = np.array([False] * len(idx), dtype=bool)
- expected[1] = True
- tm.assert_numpy_array_equal(idx._isnan, expected)
- assert idx.hasnans is True
- def test_nulls(self, indices):
- # this is really a smoke test for the methods
- # as these are adequately tested for function elsewhere
- if len(indices) == 0:
- tm.assert_numpy_array_equal(indices.isna(), np.array([], dtype=bool))
- elif isinstance(indices, MultiIndex):
- idx = indices.copy()
- msg = "isna is not defined for MultiIndex"
- with pytest.raises(NotImplementedError, match=msg):
- idx.isna()
- elif not indices.hasnans:
- tm.assert_numpy_array_equal(
- indices.isna(), np.zeros(len(indices), dtype=bool)
- )
- tm.assert_numpy_array_equal(
- indices.notna(), np.ones(len(indices), dtype=bool)
- )
- else:
- result = isna(indices)
- tm.assert_numpy_array_equal(indices.isna(), result)
- tm.assert_numpy_array_equal(indices.notna(), ~result)
- def test_empty(self):
- # GH 15270
- index = self.create_index()
- assert not index.empty
- assert index[:0].empty
- def test_join_self_unique(self, join_type):
- index = self.create_index()
- if index.is_unique:
- joined = index.join(index, how=join_type)
- assert (index == joined).all()
- def test_map(self):
- # callable
- index = self.create_index()
- # we don't infer UInt64
- if isinstance(index, pd.UInt64Index):
- expected = index.astype("int64")
- else:
- expected = index
- result = index.map(lambda x: x)
- tm.assert_index_equal(result, expected)
- @pytest.mark.parametrize(
- "mapper",
- [
- lambda values, index: {i: e for e, i in zip(values, index)},
- lambda values, index: pd.Series(values, index),
- ],
- )
- def test_map_dictlike(self, mapper):
- index = self.create_index()
- if isinstance(index, (pd.CategoricalIndex, pd.IntervalIndex)):
- pytest.skip("skipping tests for {}".format(type(index)))
- identity = mapper(index.values, index)
- # we don't infer to UInt64 for a dict
- if isinstance(index, pd.UInt64Index) and isinstance(identity, dict):
- expected = index.astype("int64")
- else:
- expected = index
- result = index.map(identity)
- tm.assert_index_equal(result, expected)
- # empty mappable
- expected = pd.Index([np.nan] * len(index))
- result = index.map(mapper(expected, index))
- tm.assert_index_equal(result, expected)
- def test_map_str(self):
- # GH 31202
- index = self.create_index()
- result = index.map(str)
- expected = Index([str(x) for x in index], dtype=object)
- tm.assert_index_equal(result, expected)
- def test_putmask_with_wrong_mask(self):
- # GH18368
- index = self.create_index()
- with pytest.raises(ValueError):
- index.putmask(np.ones(len(index) + 1, np.bool), 1)
- with pytest.raises(ValueError):
- index.putmask(np.ones(len(index) - 1, np.bool), 1)
- with pytest.raises(ValueError):
- index.putmask("foo", 1)
- @pytest.mark.parametrize("copy", [True, False])
- @pytest.mark.parametrize("name", [None, "foo"])
- @pytest.mark.parametrize("ordered", [True, False])
- def test_astype_category(self, copy, name, ordered):
- # GH 18630
- index = self.create_index()
- if name:
- index = index.rename(name)
- # standard categories
- dtype = CategoricalDtype(ordered=ordered)
- result = index.astype(dtype, copy=copy)
- expected = CategoricalIndex(index.values, name=name, ordered=ordered)
- tm.assert_index_equal(result, expected)
- # non-standard categories
- dtype = CategoricalDtype(index.unique().tolist()[:-1], ordered)
- result = index.astype(dtype, copy=copy)
- expected = CategoricalIndex(index.values, name=name, dtype=dtype)
- tm.assert_index_equal(result, expected)
- if ordered is False:
- # dtype='category' defaults to ordered=False, so only test once
- result = index.astype("category", copy=copy)
- expected = CategoricalIndex(index.values, name=name)
- tm.assert_index_equal(result, expected)
- def test_is_unique(self):
- # initialize a unique index
- index = self.create_index().drop_duplicates()
- assert index.is_unique is True
- # empty index should be unique
- index_empty = index[:0]
- assert index_empty.is_unique is True
- # test basic dupes
- index_dup = index.insert(0, index[0])
- assert index_dup.is_unique is False
- # single NA should be unique
- index_na = index.insert(0, np.nan)
- assert index_na.is_unique is True
- # multiple NA should not be unique
- index_na_dup = index_na.insert(0, np.nan)
- assert index_na_dup.is_unique is False
- def test_engine_reference_cycle(self):
- # GH27585
- index = self.create_index()
- nrefs_pre = len(gc.get_referrers(index))
- index._engine
- assert len(gc.get_referrers(index)) == nrefs_pre
- def test_getitem_2d_deprecated(self):
- # GH#30588
- idx = self.create_index()
- with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False):
- res = idx[:, None]
- assert isinstance(res, np.ndarray), type(res)
|