123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- import re
- import numpy as np
- import pytest
- from pandas import DataFrame, Index, MultiIndex, Series
- import pandas._testing as tm
- # Column add, remove, delete.
- class TestDataFrameMutateColumns:
- def test_assign(self):
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- original = df.copy()
- result = df.assign(C=df.B / df.A)
- expected = df.copy()
- expected["C"] = [4, 2.5, 2]
- tm.assert_frame_equal(result, expected)
- # lambda syntax
- result = df.assign(C=lambda x: x.B / x.A)
- tm.assert_frame_equal(result, expected)
- # original is unmodified
- tm.assert_frame_equal(df, original)
- # Non-Series array-like
- result = df.assign(C=[4, 2.5, 2])
- tm.assert_frame_equal(result, expected)
- # original is unmodified
- tm.assert_frame_equal(df, original)
- result = df.assign(B=df.B / df.A)
- expected = expected.drop("B", axis=1).rename(columns={"C": "B"})
- tm.assert_frame_equal(result, expected)
- # overwrite
- result = df.assign(A=df.A + df.B)
- expected = df.copy()
- expected["A"] = [5, 7, 9]
- tm.assert_frame_equal(result, expected)
- # lambda
- result = df.assign(A=lambda x: x.A + x.B)
- tm.assert_frame_equal(result, expected)
- def test_assign_multiple(self):
- df = DataFrame([[1, 4], [2, 5], [3, 6]], columns=["A", "B"])
- result = df.assign(C=[7, 8, 9], D=df.A, E=lambda x: x.B)
- expected = DataFrame(
- [[1, 4, 7, 1, 4], [2, 5, 8, 2, 5], [3, 6, 9, 3, 6]], columns=list("ABCDE")
- )
- tm.assert_frame_equal(result, expected)
- def test_assign_order(self):
- # GH 9818
- df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
- result = df.assign(D=df.A + df.B, C=df.A - df.B)
- expected = DataFrame([[1, 2, 3, -1], [3, 4, 7, -1]], columns=list("ABDC"))
- tm.assert_frame_equal(result, expected)
- result = df.assign(C=df.A - df.B, D=df.A + df.B)
- expected = DataFrame([[1, 2, -1, 3], [3, 4, -1, 7]], columns=list("ABCD"))
- tm.assert_frame_equal(result, expected)
- def test_assign_bad(self):
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- # non-keyword argument
- with pytest.raises(TypeError):
- df.assign(lambda x: x.A)
- with pytest.raises(AttributeError):
- df.assign(C=df.A, D=df.A + df.C)
- def test_assign_dependent(self):
- df = DataFrame({"A": [1, 2], "B": [3, 4]})
- result = df.assign(C=df.A, D=lambda x: x["A"] + x["C"])
- expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
- tm.assert_frame_equal(result, expected)
- result = df.assign(C=lambda df: df.A, D=lambda df: df["A"] + df["C"])
- expected = DataFrame([[1, 3, 1, 2], [2, 4, 2, 4]], columns=list("ABCD"))
- tm.assert_frame_equal(result, expected)
- def test_insert_error_msmgs(self):
- # GH 7432
- df = DataFrame(
- {"foo": ["a", "b", "c"], "bar": [1, 2, 3], "baz": ["d", "e", "f"]}
- ).set_index("foo")
- s = DataFrame(
- {"foo": ["a", "b", "c", "a"], "fiz": ["g", "h", "i", "j"]}
- ).set_index("foo")
- msg = "cannot reindex from a duplicate axis"
- with pytest.raises(ValueError, match=msg):
- df["newcol"] = s
- # GH 4107, more descriptive error message
- df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"])
- msg = "incompatible index of inserted column with frame index"
- with pytest.raises(TypeError, match=msg):
- df["gr"] = df.groupby(["b", "c"]).count()
- def test_insert_benchmark(self):
- # from the vb_suite/frame_methods/frame_insert_columns
- N = 10
- K = 5
- df = DataFrame(index=range(N))
- new_col = np.random.randn(N)
- for i in range(K):
- df[i] = new_col
- expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N))
- tm.assert_frame_equal(df, expected)
- def test_insert(self):
- df = DataFrame(
- np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"]
- )
- df.insert(0, "foo", df["a"])
- tm.assert_index_equal(df.columns, Index(["foo", "c", "b", "a"]))
- tm.assert_series_equal(df["a"], df["foo"], check_names=False)
- df.insert(2, "bar", df["c"])
- tm.assert_index_equal(df.columns, Index(["foo", "c", "bar", "b", "a"]))
- tm.assert_almost_equal(df["c"], df["bar"], check_names=False)
- # diff dtype
- # new item
- df["x"] = df["a"].astype("float32")
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")] * 5 + [np.dtype("float32")],
- index=["foo", "c", "bar", "b", "a", "x"],
- )
- tm.assert_series_equal(result, expected)
- # replacing current (in different block)
- df["a"] = df["a"].astype("float32")
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2,
- index=["foo", "c", "bar", "b", "a", "x"],
- )
- tm.assert_series_equal(result, expected)
- df["y"] = df["a"].astype("int32")
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")],
- index=["foo", "c", "bar", "b", "a", "x", "y"],
- )
- tm.assert_series_equal(result, expected)
- with pytest.raises(ValueError, match="already exists"):
- df.insert(1, "a", df["b"])
- msg = "cannot insert c, already exists"
- with pytest.raises(ValueError, match=msg):
- df.insert(1, "c", df["b"])
- df.columns.name = "some_name"
- # preserve columns name field
- df.insert(0, "baz", df["c"])
- assert df.columns.name == "some_name"
- # GH 13522
- df = DataFrame(index=["A", "B", "C"])
- df["X"] = df.index
- df["X"] = ["x", "y", "z"]
- exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"])
- tm.assert_frame_equal(df, exp)
- def test_delitem(self, float_frame):
- del float_frame["A"]
- assert "A" not in float_frame
- def test_delitem_multiindex(self):
- midx = MultiIndex.from_product([["A", "B"], [1, 2]])
- df = DataFrame(np.random.randn(4, 4), columns=midx)
- assert len(df.columns) == 4
- assert ("A",) in df.columns
- assert "A" in df.columns
- result = df["A"]
- assert isinstance(result, DataFrame)
- del df["A"]
- assert len(df.columns) == 2
- # A still in the levels, BUT get a KeyError if trying
- # to delete
- assert ("A",) not in df.columns
- with pytest.raises(KeyError, match=re.escape("('A',)")):
- del df[("A",)]
- # behavior of dropped/deleted MultiIndex levels changed from
- # GH 2770 to GH 19027: MultiIndex no longer '.__contains__'
- # levels which are dropped/deleted
- assert "A" not in df.columns
- with pytest.raises(KeyError, match=re.escape("('A',)")):
- del df["A"]
- def test_pop(self, float_frame):
- float_frame.columns.name = "baz"
- float_frame.pop("A")
- assert "A" not in float_frame
- float_frame["foo"] = "bar"
- float_frame.pop("foo")
- assert "foo" not in float_frame
- assert float_frame.columns.name == "baz"
- # gh-10912: inplace ops cause caching issue
- a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
- b = a.pop("B")
- b += 1
- # original frame
- expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
- tm.assert_frame_equal(a, expected)
- # result
- expected = Series([2, 5], index=["X", "Y"], name="B") + 1
- tm.assert_series_equal(b, expected)
- def test_pop_non_unique_cols(self):
- df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]})
- df.columns = ["a", "b", "a"]
- res = df.pop("a")
- assert type(res) == DataFrame
- assert len(res) == 2
- assert len(df.columns) == 1
- assert "b" in df.columns
- assert "a" not in df.columns
- assert len(df.index) == 2
- def test_insert_column_bug_4032(self):
- # GH4032, inserting a column and renaming causing errors
- df = DataFrame({"b": [1.1, 2.2]})
- df = df.rename(columns={})
- df.insert(0, "a", [1, 2])
- result = df.rename(columns={})
- str(result)
- expected = DataFrame([[1, 1.1], [2, 2.2]], columns=["a", "b"])
- tm.assert_frame_equal(result, expected)
- df.insert(0, "c", [1.3, 2.3])
- result = df.rename(columns={})
- str(result)
- expected = DataFrame([[1.3, 1, 1.1], [2.3, 2, 2.2]], columns=["c", "a", "b"])
- tm.assert_frame_equal(result, expected)
|