123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798 |
- from datetime import datetime
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import DataFrame, Index, Series, Timestamp, date_range
- import pandas._testing as tm
- class TestDataFrameConcatCommon:
- def test_concat_multiple_frames_dtypes(self):
- # GH 2759
- A = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64)
- B = DataFrame(data=np.ones((10, 2)), dtype=np.float32)
- results = pd.concat((A, B), axis=1).dtypes
- expected = Series(
- [np.dtype("float64")] * 2 + [np.dtype("float32")] * 2,
- index=["foo", "bar", 0, 1],
- )
- tm.assert_series_equal(results, expected)
- @pytest.mark.parametrize(
- "data",
- [
- pd.date_range("2000", periods=4),
- pd.date_range("2000", periods=4, tz="US/Central"),
- pd.period_range("2000", periods=4),
- pd.timedelta_range(0, periods=4),
- ],
- )
- def test_combine_datetlike_udf(self, data):
- # https://github.com/pandas-dev/pandas/issues/23079
- df = pd.DataFrame({"A": data})
- other = df.copy()
- df.iloc[1, 0] = None
- def combiner(a, b):
- return b
- result = df.combine(other, combiner)
- tm.assert_frame_equal(result, other)
- def test_concat_multiple_tzs(self):
- # GH 12467
- # combining datetime tz-aware and naive DataFrames
- ts1 = Timestamp("2015-01-01", tz=None)
- ts2 = Timestamp("2015-01-01", tz="UTC")
- ts3 = Timestamp("2015-01-01", tz="EST")
- df1 = DataFrame(dict(time=[ts1]))
- df2 = DataFrame(dict(time=[ts2]))
- df3 = DataFrame(dict(time=[ts3]))
- results = pd.concat([df1, df2]).reset_index(drop=True)
- expected = DataFrame(dict(time=[ts1, ts2]), dtype=object)
- tm.assert_frame_equal(results, expected)
- results = pd.concat([df1, df3]).reset_index(drop=True)
- expected = DataFrame(dict(time=[ts1, ts3]), dtype=object)
- tm.assert_frame_equal(results, expected)
- results = pd.concat([df2, df3]).reset_index(drop=True)
- expected = DataFrame(dict(time=[ts2, ts3]))
- tm.assert_frame_equal(results, expected)
- @pytest.mark.parametrize(
- "t1",
- [
- "2015-01-01",
- pytest.param(
- pd.NaT,
- marks=pytest.mark.xfail(
- reason="GH23037 incorrect dtype when concatenating"
- ),
- ),
- ],
- )
- def test_concat_tz_NaT(self, t1):
- # GH 22796
- # Concating tz-aware multicolumn DataFrames
- ts1 = Timestamp(t1, tz="UTC")
- ts2 = Timestamp("2015-01-01", tz="UTC")
- ts3 = Timestamp("2015-01-01", tz="UTC")
- df1 = DataFrame([[ts1, ts2]])
- df2 = DataFrame([[ts3]])
- result = pd.concat([df1, df2])
- expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
- tm.assert_frame_equal(result, expected)
- def test_concat_tz_not_aligned(self):
- # GH 22796
- ts = pd.to_datetime([1, 2]).tz_localize("UTC")
- a = pd.DataFrame({"A": ts})
- b = pd.DataFrame({"A": ts, "B": ts})
- result = pd.concat([a, b], sort=True, ignore_index=True)
- expected = pd.DataFrame(
- {"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}
- )
- tm.assert_frame_equal(result, expected)
- def test_concat_tuple_keys(self):
- # GH 14438
- df1 = pd.DataFrame(np.ones((2, 2)), columns=list("AB"))
- df2 = pd.DataFrame(np.ones((3, 2)) * 2, columns=list("AB"))
- results = pd.concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")])
- expected = pd.DataFrame(
- {
- "A": {
- ("bee", "bah", 0): 1.0,
- ("bee", "bah", 1): 1.0,
- ("bee", "boo", 0): 2.0,
- ("bee", "boo", 1): 2.0,
- ("bee", "boo", 2): 2.0,
- },
- "B": {
- ("bee", "bah", 0): 1.0,
- ("bee", "bah", 1): 1.0,
- ("bee", "boo", 0): 2.0,
- ("bee", "boo", 1): 2.0,
- ("bee", "boo", 2): 2.0,
- },
- }
- )
- tm.assert_frame_equal(results, expected)
- def test_update(self):
- df = DataFrame(
- [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
- )
- other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
- df.update(other)
- expected = DataFrame(
- [[1.5, np.nan, 3], [3.6, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]]
- )
- tm.assert_frame_equal(df, expected)
- def test_update_dtypes(self):
- # gh 3016
- df = DataFrame(
- [[1.0, 2.0, False, True], [4.0, 5.0, True, False]],
- columns=["A", "B", "bool1", "bool2"],
- )
- other = DataFrame([[45, 45]], index=[0], columns=["A", "B"])
- df.update(other)
- expected = DataFrame(
- [[45.0, 45.0, False, True], [4.0, 5.0, True, False]],
- columns=["A", "B", "bool1", "bool2"],
- )
- tm.assert_frame_equal(df, expected)
- def test_update_nooverwrite(self):
- df = DataFrame(
- [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
- )
- other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
- df.update(other, overwrite=False)
- expected = DataFrame(
- [[1.5, np.nan, 3], [1.5, 2, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.0]]
- )
- tm.assert_frame_equal(df, expected)
- def test_update_filtered(self):
- df = DataFrame(
- [[1.5, np.nan, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
- )
- other = DataFrame([[3.6, 2.0, np.nan], [np.nan, np.nan, 7]], index=[1, 3])
- df.update(other, filter_func=lambda x: x > 2)
- expected = DataFrame(
- [[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 7.0]]
- )
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "bad_kwarg, exception, msg",
- [
- # errors must be 'ignore' or 'raise'
- ({"errors": "something"}, ValueError, "The parameter errors must.*"),
- ({"join": "inner"}, NotImplementedError, "Only left join is supported"),
- ],
- )
- def test_update_raise_bad_parameter(self, bad_kwarg, exception, msg):
- df = DataFrame([[1.5, 1, 3.0]])
- with pytest.raises(exception, match=msg):
- df.update(df, **bad_kwarg)
- def test_update_raise_on_overlap(self):
- df = DataFrame(
- [[1.5, 1, 3.0], [1.5, np.nan, 3.0], [1.5, np.nan, 3], [1.5, np.nan, 3]]
- )
- other = DataFrame([[2.0, np.nan], [np.nan, 7]], index=[1, 3], columns=[1, 2])
- with pytest.raises(ValueError, match="Data overlaps"):
- df.update(other, errors="raise")
- def test_update_from_non_df(self):
- d = {"a": Series([1, 2, 3, 4]), "b": Series([5, 6, 7, 8])}
- df = DataFrame(d)
- d["a"] = Series([5, 6, 7, 8])
- df.update(d)
- expected = DataFrame(d)
- tm.assert_frame_equal(df, expected)
- d = {"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}
- df = DataFrame(d)
- d["a"] = [5, 6, 7, 8]
- df.update(d)
- expected = DataFrame(d)
- tm.assert_frame_equal(df, expected)
- def test_update_datetime_tz(self):
- # GH 25807
- result = DataFrame([pd.Timestamp("2019", tz="UTC")])
- result.update(result)
- expected = DataFrame([pd.Timestamp("2019", tz="UTC")])
- tm.assert_frame_equal(result, expected)
- def test_join_str_datetime(self):
- str_dates = ["20120209", "20120222"]
- dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
- A = DataFrame(str_dates, index=range(2), columns=["aa"])
- C = DataFrame([[1, 2], [3, 4]], index=str_dates, columns=dt_dates)
- tst = A.join(C, on="aa")
- assert len(tst.columns) == 3
- def test_join_multiindex_leftright(self):
- # GH 10741
- df1 = pd.DataFrame(
- [
- ["a", "x", 0.471780],
- ["a", "y", 0.774908],
- ["a", "z", 0.563634],
- ["b", "x", -0.353756],
- ["b", "y", 0.368062],
- ["b", "z", -1.721840],
- ["c", "x", 1],
- ["c", "y", 2],
- ["c", "z", 3],
- ],
- columns=["first", "second", "value1"],
- ).set_index(["first", "second"])
- df2 = pd.DataFrame(
- [["a", 10], ["b", 20]], columns=["first", "value2"]
- ).set_index(["first"])
- exp = pd.DataFrame(
- [
- [0.471780, 10],
- [0.774908, 10],
- [0.563634, 10],
- [-0.353756, 20],
- [0.368062, 20],
- [-1.721840, 20],
- [1.000000, np.nan],
- [2.000000, np.nan],
- [3.000000, np.nan],
- ],
- index=df1.index,
- columns=["value1", "value2"],
- )
- # these must be the same results (but columns are flipped)
- tm.assert_frame_equal(df1.join(df2, how="left"), exp)
- tm.assert_frame_equal(df2.join(df1, how="right"), exp[["value2", "value1"]])
- exp_idx = pd.MultiIndex.from_product(
- [["a", "b"], ["x", "y", "z"]], names=["first", "second"]
- )
- exp = pd.DataFrame(
- [
- [0.471780, 10],
- [0.774908, 10],
- [0.563634, 10],
- [-0.353756, 20],
- [0.368062, 20],
- [-1.721840, 20],
- ],
- index=exp_idx,
- columns=["value1", "value2"],
- )
- tm.assert_frame_equal(df1.join(df2, how="right"), exp)
- tm.assert_frame_equal(df2.join(df1, how="left"), exp[["value2", "value1"]])
- def test_concat_named_keys(self):
- # GH 14252
- df = pd.DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]})
- index = Index(["a", "b"], name="baz")
- concatted_named_from_keys = pd.concat([df, df], keys=index)
- expected_named = pd.DataFrame(
- {"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
- index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]),
- )
- tm.assert_frame_equal(concatted_named_from_keys, expected_named)
- index_no_name = Index(["a", "b"], name=None)
- concatted_named_from_names = pd.concat(
- [df, df], keys=index_no_name, names=["baz"]
- )
- tm.assert_frame_equal(concatted_named_from_names, expected_named)
- concatted_unnamed = pd.concat([df, df], keys=index_no_name)
- expected_unnamed = pd.DataFrame(
- {"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]},
- index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]),
- )
- tm.assert_frame_equal(concatted_unnamed, expected_unnamed)
- def test_concat_axis_parameter(self):
- # GH 14369
- df1 = pd.DataFrame({"A": [0.1, 0.2]}, index=range(2))
- df2 = pd.DataFrame({"A": [0.3, 0.4]}, index=range(2))
- # Index/row/0 DataFrame
- expected_index = pd.DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1])
- concatted_index = pd.concat([df1, df2], axis="index")
- tm.assert_frame_equal(concatted_index, expected_index)
- concatted_row = pd.concat([df1, df2], axis="rows")
- tm.assert_frame_equal(concatted_row, expected_index)
- concatted_0 = pd.concat([df1, df2], axis=0)
- tm.assert_frame_equal(concatted_0, expected_index)
- # Columns/1 DataFrame
- expected_columns = pd.DataFrame(
- [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"]
- )
- concatted_columns = pd.concat([df1, df2], axis="columns")
- tm.assert_frame_equal(concatted_columns, expected_columns)
- concatted_1 = pd.concat([df1, df2], axis=1)
- tm.assert_frame_equal(concatted_1, expected_columns)
- series1 = pd.Series([0.1, 0.2])
- series2 = pd.Series([0.3, 0.4])
- # Index/row/0 Series
- expected_index_series = pd.Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1])
- concatted_index_series = pd.concat([series1, series2], axis="index")
- tm.assert_series_equal(concatted_index_series, expected_index_series)
- concatted_row_series = pd.concat([series1, series2], axis="rows")
- tm.assert_series_equal(concatted_row_series, expected_index_series)
- concatted_0_series = pd.concat([series1, series2], axis=0)
- tm.assert_series_equal(concatted_0_series, expected_index_series)
- # Columns/1 Series
- expected_columns_series = pd.DataFrame(
- [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1]
- )
- concatted_columns_series = pd.concat([series1, series2], axis="columns")
- tm.assert_frame_equal(concatted_columns_series, expected_columns_series)
- concatted_1_series = pd.concat([series1, series2], axis=1)
- tm.assert_frame_equal(concatted_1_series, expected_columns_series)
- # Testing ValueError
- with pytest.raises(ValueError, match="No axis named"):
- pd.concat([series1, series2], axis="something")
- def test_concat_numerical_names(self):
- # #15262 # #12223
- df = pd.DataFrame(
- {"col": range(9)},
- dtype="int32",
- index=(
- pd.MultiIndex.from_product(
- [["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2]
- )
- ),
- )
- result = pd.concat((df.iloc[:2, :], df.iloc[-2:, :]))
- expected = pd.DataFrame(
- {"col": [0, 1, 7, 8]},
- dtype="int32",
- index=pd.MultiIndex.from_tuples(
- [("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_concat_astype_dup_col(self):
- # gh 23049
- df = pd.DataFrame([{"a": "b"}])
- df = pd.concat([df, df], axis=1)
- result = df.astype("category")
- expected = pd.DataFrame(
- np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"]
- ).astype("category")
- tm.assert_frame_equal(result, expected)
- class TestDataFrameCombineFirst:
- def test_combine_first_mixed(self):
- a = Series(["a", "b"], index=range(2))
- b = Series(range(2), index=range(2))
- f = DataFrame({"A": a, "B": b})
- a = Series(["a", "b"], index=range(5, 7))
- b = Series(range(2), index=range(5, 7))
- g = DataFrame({"A": a, "B": b})
- exp = pd.DataFrame(
- {"A": list("abab"), "B": [0.0, 1.0, 0.0, 1.0]}, index=[0, 1, 5, 6]
- )
- combined = f.combine_first(g)
- tm.assert_frame_equal(combined, exp)
- def test_combine_first(self, float_frame):
- # disjoint
- head, tail = float_frame[:5], float_frame[5:]
- combined = head.combine_first(tail)
- reordered_frame = float_frame.reindex(combined.index)
- tm.assert_frame_equal(combined, reordered_frame)
- assert tm.equalContents(combined.columns, float_frame.columns)
- tm.assert_series_equal(combined["A"], reordered_frame["A"])
- # same index
- fcopy = float_frame.copy()
- fcopy["A"] = 1
- del fcopy["C"]
- fcopy2 = float_frame.copy()
- fcopy2["B"] = 0
- del fcopy2["D"]
- combined = fcopy.combine_first(fcopy2)
- assert (combined["A"] == 1).all()
- tm.assert_series_equal(combined["B"], fcopy["B"])
- tm.assert_series_equal(combined["C"], fcopy2["C"])
- tm.assert_series_equal(combined["D"], fcopy["D"])
- # overlap
- head, tail = reordered_frame[:10].copy(), reordered_frame
- head["A"] = 1
- combined = head.combine_first(tail)
- assert (combined["A"][:10] == 1).all()
- # reverse overlap
- tail["A"][:10] = 0
- combined = tail.combine_first(head)
- assert (combined["A"][:10] == 0).all()
- # no overlap
- f = float_frame[:10]
- g = float_frame[10:]
- combined = f.combine_first(g)
- tm.assert_series_equal(combined["A"].reindex(f.index), f["A"])
- tm.assert_series_equal(combined["A"].reindex(g.index), g["A"])
- # corner cases
- comb = float_frame.combine_first(DataFrame())
- tm.assert_frame_equal(comb, float_frame)
- comb = DataFrame().combine_first(float_frame)
- tm.assert_frame_equal(comb, float_frame)
- comb = float_frame.combine_first(DataFrame(index=["faz", "boo"]))
- assert "faz" in comb.index
- # #2525
- df = DataFrame({"a": [1]}, index=[datetime(2012, 1, 1)])
- df2 = DataFrame(columns=["b"])
- result = df.combine_first(df2)
- assert "b" in result
- def test_combine_first_mixed_bug(self):
- idx = Index(["a", "b", "c", "e"])
- ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx)
- ser2 = Series(["a", "b", "c", "e"], index=idx)
- ser3 = Series([12, 4, 5, 97], index=idx)
- frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3})
- idx = Index(["a", "b", "c", "f"])
- ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx)
- ser2 = Series(["a", "b", "c", "f"], index=idx)
- ser3 = Series([12, 4, 5, 97], index=idx)
- frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3})
- combined = frame1.combine_first(frame2)
- assert len(combined.columns) == 5
- # gh 3016 (same as in update)
- df = DataFrame(
- [[1.0, 2.0, False, True], [4.0, 5.0, True, False]],
- columns=["A", "B", "bool1", "bool2"],
- )
- other = DataFrame([[45, 45]], index=[0], columns=["A", "B"])
- result = df.combine_first(other)
- tm.assert_frame_equal(result, df)
- df.loc[0, "A"] = np.nan
- result = df.combine_first(other)
- df.loc[0, "A"] = 45
- tm.assert_frame_equal(result, df)
- # doc example
- df1 = DataFrame(
- {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
- )
- df2 = DataFrame(
- {
- "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
- "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
- }
- )
- result = df1.combine_first(df2)
- expected = DataFrame({"A": [1, 2, 3, 5, 3, 7.0], "B": [np.nan, 2, 3, 4, 6, 8]})
- tm.assert_frame_equal(result, expected)
- # GH3552, return object dtype with bools
- df1 = DataFrame(
- [[np.nan, 3.0, True], [-4.6, np.nan, True], [np.nan, 7.0, False]]
- )
- df2 = DataFrame([[-42.6, np.nan, True], [-5.0, 1.6, False]], index=[1, 2])
- result = df1.combine_first(df2)[2]
- expected = Series([True, True, False], name=2)
- tm.assert_series_equal(result, expected)
- # GH 3593, converting datetime64[ns] incorrectly
- df0 = DataFrame(
- {"a": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]}
- )
- df1 = DataFrame({"a": [None, None, None]})
- df2 = df1.combine_first(df0)
- tm.assert_frame_equal(df2, df0)
- df2 = df0.combine_first(df1)
- tm.assert_frame_equal(df2, df0)
- df0 = DataFrame(
- {"a": [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]}
- )
- df1 = DataFrame({"a": [datetime(2000, 1, 2), None, None]})
- df2 = df1.combine_first(df0)
- result = df0.copy()
- result.iloc[0, :] = df1.iloc[0, :]
- tm.assert_frame_equal(df2, result)
- df2 = df0.combine_first(df1)
- tm.assert_frame_equal(df2, df0)
- def test_combine_first_align_nan(self):
- # GH 7509 (not fixed)
- dfa = pd.DataFrame([[pd.Timestamp("2011-01-01"), 2]], columns=["a", "b"])
- dfb = pd.DataFrame([[4], [5]], columns=["b"])
- assert dfa["a"].dtype == "datetime64[ns]"
- assert dfa["b"].dtype == "int64"
- res = dfa.combine_first(dfb)
- exp = pd.DataFrame(
- {"a": [pd.Timestamp("2011-01-01"), pd.NaT], "b": [2.0, 5.0]},
- columns=["a", "b"],
- )
- tm.assert_frame_equal(res, exp)
- assert res["a"].dtype == "datetime64[ns]"
- # ToDo: this must be int64
- assert res["b"].dtype == "float64"
- res = dfa.iloc[:0].combine_first(dfb)
- exp = pd.DataFrame({"a": [np.nan, np.nan], "b": [4, 5]}, columns=["a", "b"])
- tm.assert_frame_equal(res, exp)
- # ToDo: this must be datetime64
- assert res["a"].dtype == "float64"
- # ToDo: this must be int64
- assert res["b"].dtype == "int64"
- def test_combine_first_timezone(self):
- # see gh-7630
- data1 = pd.to_datetime("20100101 01:01").tz_localize("UTC")
- df1 = pd.DataFrame(
- columns=["UTCdatetime", "abc"],
- data=data1,
- index=pd.date_range("20140627", periods=1),
- )
- data2 = pd.to_datetime("20121212 12:12").tz_localize("UTC")
- df2 = pd.DataFrame(
- columns=["UTCdatetime", "xyz"],
- data=data2,
- index=pd.date_range("20140628", periods=1),
- )
- res = df2[["UTCdatetime"]].combine_first(df1)
- exp = pd.DataFrame(
- {
- "UTCdatetime": [
- pd.Timestamp("2010-01-01 01:01", tz="UTC"),
- pd.Timestamp("2012-12-12 12:12", tz="UTC"),
- ],
- "abc": [pd.Timestamp("2010-01-01 01:01:00", tz="UTC"), pd.NaT],
- },
- columns=["UTCdatetime", "abc"],
- index=pd.date_range("20140627", periods=2, freq="D"),
- )
- tm.assert_frame_equal(res, exp)
- assert res["UTCdatetime"].dtype == "datetime64[ns, UTC]"
- assert res["abc"].dtype == "datetime64[ns, UTC]"
- # see gh-10567
- dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="UTC")
- df1 = pd.DataFrame({"DATE": dts1})
- dts2 = pd.date_range("2015-01-03", "2015-01-05", tz="UTC")
- df2 = pd.DataFrame({"DATE": dts2})
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res["DATE"].dtype == "datetime64[ns, UTC]"
- dts1 = pd.DatetimeIndex(
- ["2011-01-01", "NaT", "2011-01-03", "2011-01-04"], tz="US/Eastern"
- )
- df1 = pd.DataFrame({"DATE": dts1}, index=[1, 3, 5, 7])
- dts2 = pd.DatetimeIndex(
- ["2012-01-01", "2012-01-02", "2012-01-03"], tz="US/Eastern"
- )
- df2 = pd.DataFrame({"DATE": dts2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.DatetimeIndex(
- [
- "2011-01-01",
- "2012-01-01",
- "NaT",
- "2012-01-02",
- "2011-01-03",
- "2011-01-04",
- ],
- tz="US/Eastern",
- )
- exp = pd.DataFrame({"DATE": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- # different tz
- dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="US/Eastern")
- df1 = pd.DataFrame({"DATE": dts1})
- dts2 = pd.date_range("2015-01-03", "2015-01-05")
- df2 = pd.DataFrame({"DATE": dts2})
- # if df1 doesn't have NaN, keep its dtype
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res["DATE"].dtype == "datetime64[ns, US/Eastern]"
- dts1 = pd.date_range("2015-01-01", "2015-01-02", tz="US/Eastern")
- df1 = pd.DataFrame({"DATE": dts1})
- dts2 = pd.date_range("2015-01-01", "2015-01-03")
- df2 = pd.DataFrame({"DATE": dts2})
- res = df1.combine_first(df2)
- exp_dts = [
- pd.Timestamp("2015-01-01", tz="US/Eastern"),
- pd.Timestamp("2015-01-02", tz="US/Eastern"),
- pd.Timestamp("2015-01-03"),
- ]
- exp = pd.DataFrame({"DATE": exp_dts})
- tm.assert_frame_equal(res, exp)
- assert res["DATE"].dtype == "object"
- def test_combine_first_timedelta(self):
- data1 = pd.TimedeltaIndex(["1 day", "NaT", "3 day", "4day"])
- df1 = pd.DataFrame({"TD": data1}, index=[1, 3, 5, 7])
- data2 = pd.TimedeltaIndex(["10 day", "11 day", "12 day"])
- df2 = pd.DataFrame({"TD": data2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.TimedeltaIndex(
- ["1 day", "10 day", "NaT", "11 day", "3 day", "4 day"]
- )
- exp = pd.DataFrame({"TD": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res["TD"].dtype == "timedelta64[ns]"
- def test_combine_first_period(self):
- data1 = pd.PeriodIndex(["2011-01", "NaT", "2011-03", "2011-04"], freq="M")
- df1 = pd.DataFrame({"P": data1}, index=[1, 3, 5, 7])
- data2 = pd.PeriodIndex(["2012-01-01", "2012-02", "2012-03"], freq="M")
- df2 = pd.DataFrame({"P": data2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.PeriodIndex(
- ["2011-01", "2012-01", "NaT", "2012-02", "2011-03", "2011-04"], freq="M"
- )
- exp = pd.DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res["P"].dtype == data1.dtype
- # different freq
- dts2 = pd.PeriodIndex(["2012-01-01", "2012-01-02", "2012-01-03"], freq="D")
- df2 = pd.DataFrame({"P": dts2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = [
- pd.Period("2011-01", freq="M"),
- pd.Period("2012-01-01", freq="D"),
- pd.NaT,
- pd.Period("2012-01-02", freq="D"),
- pd.Period("2011-03", freq="M"),
- pd.Period("2011-04", freq="M"),
- ]
- exp = pd.DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res["P"].dtype == "object"
- def test_combine_first_int(self):
- # GH14687 - integer series that do no align exactly
- df1 = pd.DataFrame({"a": [0, 1, 3, 5]}, dtype="int64")
- df2 = pd.DataFrame({"a": [1, 4]}, dtype="int64")
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res["a"].dtype == "int64"
- @pytest.mark.parametrize("val", [1, 1.0])
- def test_combine_first_with_asymmetric_other(self, val):
- # see gh-20699
- df1 = pd.DataFrame({"isNum": [val]})
- df2 = pd.DataFrame({"isBool": [True]})
- res = df1.combine_first(df2)
- exp = pd.DataFrame({"isBool": [True], "isNum": [val]})
- tm.assert_frame_equal(res, exp)
- def test_concat_datetime_datetime64_frame(self):
- # #2624
- rows = []
- rows.append([datetime(2010, 1, 1), 1])
- rows.append([datetime(2010, 1, 2), "hi"])
- df2_obj = DataFrame.from_records(rows, columns=["date", "test"])
- ind = date_range(start="2000/1/1", freq="D", periods=10)
- df1 = DataFrame({"date": ind, "test": range(10)})
- # it works!
- pd.concat([df1, df2_obj])
- class TestDataFrameUpdate:
- def test_update_nan(self):
- # #15593 #15617
- # test 1
- df1 = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)})
- df2 = DataFrame({"A": [None, 2, 3]})
- expected = df1.copy()
- df1.update(df2, overwrite=False)
- tm.assert_frame_equal(df1, expected)
- # test 2
- df1 = DataFrame({"A": [1.0, None, 3], "B": date_range("2000", periods=3)})
- df2 = DataFrame({"A": [None, 2, 3]})
- expected = DataFrame({"A": [1.0, 2, 3], "B": date_range("2000", periods=3)})
- df1.update(df2, overwrite=False)
- tm.assert_frame_equal(df1, expected)
|