123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813 |
- from typing import Type, Union
- import numpy as np
- import pytest
- from pandas._libs import OutOfBoundsDatetime
- from pandas.compat.numpy import _np_version_under1p18
- import pandas as pd
- import pandas._testing as tm
- from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray
- from pandas.core.indexes.datetimes import DatetimeIndex
- from pandas.core.indexes.period import PeriodIndex
- from pandas.core.indexes.timedeltas import TimedeltaIndex
- # TODO: more freq variants
- @pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
- def period_index(request):
- """
- A fixture to provide PeriodIndex objects with different frequencies.
- Most PeriodArray behavior is already tested in PeriodIndex tests,
- so here we just test that the PeriodArray behavior matches
- the PeriodIndex behavior.
- """
- freqstr = request.param
- # TODO: non-monotone indexes; NaTs, different start dates
- pi = pd.period_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
- return pi
- @pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
- def datetime_index(request):
- """
- A fixture to provide DatetimeIndex objects with different frequencies.
- Most DatetimeArray behavior is already tested in DatetimeIndex tests,
- so here we just test that the DatetimeArray behavior matches
- the DatetimeIndex behavior.
- """
- freqstr = request.param
- # TODO: non-monotone indexes; NaTs, different start dates, timezones
- dti = pd.date_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
- return dti
- @pytest.fixture
- def timedelta_index(request):
- """
- A fixture to provide TimedeltaIndex objects with different frequencies.
- Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
- so here we just test that the TimedeltaArray behavior matches
- the TimedeltaIndex behavior.
- """
- # TODO: flesh this out
- return pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
- class SharedTests:
- index_cls: Type[Union[DatetimeIndex, PeriodIndex, TimedeltaIndex]]
- def test_compare_len1_raises(self):
- # make sure we raise when comparing with different lengths, specific
- # to the case where one has length-1, which numpy would broadcast
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- idx = self.index_cls._simple_new(data, freq="D")
- arr = self.array_cls(idx)
- with pytest.raises(ValueError, match="Lengths must match"):
- arr == arr[:1]
- # test the index classes while we're at it, GH#23078
- with pytest.raises(ValueError, match="Lengths must match"):
- idx <= idx[[0]]
- def test_take(self):
- data = np.arange(100, dtype="i8") * 24 * 3600 * 10 ** 9
- np.random.shuffle(data)
- idx = self.index_cls._simple_new(data, freq="D")
- arr = self.array_cls(idx)
- takers = [1, 4, 94]
- result = arr.take(takers)
- expected = idx.take(takers)
- tm.assert_index_equal(self.index_cls(result), expected)
- takers = np.array([1, 4, 94])
- result = arr.take(takers)
- expected = idx.take(takers)
- tm.assert_index_equal(self.index_cls(result), expected)
- def test_take_fill(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- idx = self.index_cls._simple_new(data, freq="D")
- arr = self.array_cls(idx)
- result = arr.take([-1, 1], allow_fill=True, fill_value=None)
- assert result[0] is pd.NaT
- result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
- assert result[0] is pd.NaT
- result = arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT)
- assert result[0] is pd.NaT
- with pytest.raises(ValueError):
- arr.take([0, 1], allow_fill=True, fill_value=2)
- with pytest.raises(ValueError):
- arr.take([0, 1], allow_fill=True, fill_value=2.0)
- with pytest.raises(ValueError):
- arr.take([0, 1], allow_fill=True, fill_value=pd.Timestamp.now().time)
- def test_concat_same_type(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- idx = self.index_cls._simple_new(data, freq="D").insert(0, pd.NaT)
- arr = self.array_cls(idx)
- result = arr._concat_same_type([arr[:-1], arr[1:], arr])
- expected = idx._concat_same_dtype([idx[:-1], idx[1:], idx], None)
- tm.assert_index_equal(self.index_cls(result), expected)
- def test_unbox_scalar(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- result = arr._unbox_scalar(arr[0])
- assert isinstance(result, int)
- result = arr._unbox_scalar(pd.NaT)
- assert isinstance(result, int)
- with pytest.raises(ValueError):
- arr._unbox_scalar("foo")
- def test_check_compatible_with(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- arr._check_compatible_with(arr[0])
- arr._check_compatible_with(arr[:1])
- arr._check_compatible_with(pd.NaT)
- def test_scalar_from_string(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- result = arr._scalar_from_string(str(arr[0]))
- assert result == arr[0]
- def test_reduce_invalid(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- with pytest.raises(TypeError, match="cannot perform"):
- arr._reduce("not a method")
- @pytest.mark.parametrize("method", ["pad", "backfill"])
- def test_fillna_method_doesnt_change_orig(self, method):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- arr[4] = pd.NaT
- fill_value = arr[3] if method == "pad" else arr[5]
- result = arr.fillna(method=method)
- assert result[4] == fill_value
- # check that the original was not changed
- assert arr[4] is pd.NaT
- def test_searchsorted(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- # scalar
- result = arr.searchsorted(arr[1])
- assert result == 1
- result = arr.searchsorted(arr[2], side="right")
- assert result == 3
- # own-type
- result = arr.searchsorted(arr[1:3])
- expected = np.array([1, 2], dtype=np.intp)
- tm.assert_numpy_array_equal(result, expected)
- result = arr.searchsorted(arr[1:3], side="right")
- expected = np.array([2, 3], dtype=np.intp)
- tm.assert_numpy_array_equal(result, expected)
- # Following numpy convention, NaT goes at the beginning
- # (unlike NaN which goes at the end)
- result = arr.searchsorted(pd.NaT)
- assert result == 0
- def test_setitem(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- arr[0] = arr[1]
- expected = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- expected[0] = expected[1]
- tm.assert_numpy_array_equal(arr.asi8, expected)
- arr[:2] = arr[-2:]
- expected[:2] = expected[-2:]
- tm.assert_numpy_array_equal(arr.asi8, expected)
- def test_setitem_raises(self):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- val = arr[0]
- with pytest.raises(IndexError, match="index 12 is out of bounds"):
- arr[12] = val
- with pytest.raises(TypeError, match="'value' should be a.* 'object'"):
- arr[0] = object()
- def test_inplace_arithmetic(self):
- # GH#24115 check that iadd and isub are actually in-place
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- expected = arr + pd.Timedelta(days=1)
- arr += pd.Timedelta(days=1)
- tm.assert_equal(arr, expected)
- expected = arr - pd.Timedelta(days=1)
- arr -= pd.Timedelta(days=1)
- tm.assert_equal(arr, expected)
- def test_shift_fill_int_deprecated(self):
- # GH#31971
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
- arr = self.array_cls(data, freq="D")
- with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
- result = arr.shift(1, fill_value=1)
- expected = arr.copy()
- if self.array_cls is PeriodArray:
- fill_val = PeriodArray._scalar_type._from_ordinal(1, freq=arr.freq)
- else:
- fill_val = arr._scalar_type(1)
- expected[0] = fill_val
- expected[1:] = arr[:-1]
- tm.assert_equal(result, expected)
- class TestDatetimeArray(SharedTests):
- index_cls = pd.DatetimeIndex
- array_cls = DatetimeArray
- def test_round(self, tz_naive_fixture):
- # GH#24064
- tz = tz_naive_fixture
- dti = pd.date_range("2016-01-01 01:01:00", periods=3, freq="H", tz=tz)
- result = dti.round(freq="2T")
- expected = dti - pd.Timedelta(minutes=1)
- tm.assert_index_equal(result, expected)
- def test_array_interface(self, datetime_index):
- arr = DatetimeArray(datetime_index)
- # default asarray gives the same underlying data (for tz naive)
- result = np.asarray(arr)
- expected = arr._data
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, copy=False)
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- # specifying M8[ns] gives the same result as default
- result = np.asarray(arr, dtype="datetime64[ns]")
- expected = arr._data
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, dtype="datetime64[ns]", copy=False)
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, dtype="datetime64[ns]")
- assert result is not expected
- tm.assert_numpy_array_equal(result, expected)
- # to object dtype
- result = np.asarray(arr, dtype=object)
- expected = np.array(list(arr), dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- # to other dtype always copies
- result = np.asarray(arr, dtype="int64")
- assert result is not arr.asi8
- assert not np.may_share_memory(arr, result)
- expected = arr.asi8.copy()
- tm.assert_numpy_array_equal(result, expected)
- # other dtypes handled by numpy
- for dtype in ["float64", str]:
- result = np.asarray(arr, dtype=dtype)
- expected = np.asarray(arr).astype(dtype)
- tm.assert_numpy_array_equal(result, expected)
- def test_array_object_dtype(self, tz_naive_fixture):
- # GH#23524
- tz = tz_naive_fixture
- dti = pd.date_range("2016-01-01", periods=3, tz=tz)
- arr = DatetimeArray(dti)
- expected = np.array(list(dti))
- result = np.array(arr, dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- # also test the DatetimeIndex method while we're at it
- result = np.array(dti, dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- def test_array_tz(self, tz_naive_fixture):
- # GH#23524
- tz = tz_naive_fixture
- dti = pd.date_range("2016-01-01", periods=3, tz=tz)
- arr = DatetimeArray(dti)
- expected = dti.asi8.view("M8[ns]")
- result = np.array(arr, dtype="M8[ns]")
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, dtype="datetime64[ns]")
- tm.assert_numpy_array_equal(result, expected)
- # check that we are not making copies when setting copy=False
- result = np.array(arr, dtype="M8[ns]", copy=False)
- assert result.base is expected.base
- assert result.base is not None
- result = np.array(arr, dtype="datetime64[ns]", copy=False)
- assert result.base is expected.base
- assert result.base is not None
- def test_array_i8_dtype(self, tz_naive_fixture):
- tz = tz_naive_fixture
- dti = pd.date_range("2016-01-01", periods=3, tz=tz)
- arr = DatetimeArray(dti)
- expected = dti.asi8
- result = np.array(arr, dtype="i8")
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, dtype=np.int64)
- tm.assert_numpy_array_equal(result, expected)
- # check that we are still making copies when setting copy=False
- result = np.array(arr, dtype="i8", copy=False)
- assert result.base is not expected.base
- assert result.base is None
- def test_from_array_keeps_base(self):
- # Ensure that DatetimeArray._data.base isn't lost.
- arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
- dta = DatetimeArray(arr)
- assert dta._data is arr
- dta = DatetimeArray(arr[:0])
- assert dta._data.base is arr
- def test_from_dti(self, tz_naive_fixture):
- tz = tz_naive_fixture
- dti = pd.date_range("2016-01-01", periods=3, tz=tz)
- arr = DatetimeArray(dti)
- assert list(dti) == list(arr)
- # Check that Index.__new__ knows what to do with DatetimeArray
- dti2 = pd.Index(arr)
- assert isinstance(dti2, pd.DatetimeIndex)
- assert list(dti2) == list(arr)
- def test_astype_object(self, tz_naive_fixture):
- tz = tz_naive_fixture
- dti = pd.date_range("2016-01-01", periods=3, tz=tz)
- arr = DatetimeArray(dti)
- asobj = arr.astype("O")
- assert isinstance(asobj, np.ndarray)
- assert asobj.dtype == "O"
- assert list(asobj) == list(dti)
- @pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"])
- def test_to_perioddelta(self, datetime_index, freqstr):
- # GH#23113
- dti = datetime_index
- arr = DatetimeArray(dti)
- expected = dti.to_perioddelta(freq=freqstr)
- result = arr.to_perioddelta(freq=freqstr)
- assert isinstance(result, TimedeltaArray)
- # placeholder until these become actual EA subclasses and we can use
- # an EA-specific tm.assert_ function
- tm.assert_index_equal(pd.Index(result), pd.Index(expected))
- @pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"])
- def test_to_period(self, datetime_index, freqstr):
- dti = datetime_index
- arr = DatetimeArray(dti)
- expected = dti.to_period(freq=freqstr)
- result = arr.to_period(freq=freqstr)
- assert isinstance(result, PeriodArray)
- # placeholder until these become actual EA subclasses and we can use
- # an EA-specific tm.assert_ function
- tm.assert_index_equal(pd.Index(result), pd.Index(expected))
- @pytest.mark.parametrize("propname", pd.DatetimeIndex._bool_ops)
- def test_bool_properties(self, datetime_index, propname):
- # in this case _bool_ops is just `is_leap_year`
- dti = datetime_index
- arr = DatetimeArray(dti)
- assert dti.freq == arr.freq
- result = getattr(arr, propname)
- expected = np.array(getattr(dti, propname), dtype=result.dtype)
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("propname", pd.DatetimeIndex._field_ops)
- def test_int_properties(self, datetime_index, propname):
- dti = datetime_index
- arr = DatetimeArray(dti)
- result = getattr(arr, propname)
- expected = np.array(getattr(dti, propname), dtype=result.dtype)
- tm.assert_numpy_array_equal(result, expected)
- def test_take_fill_valid(self, datetime_index, tz_naive_fixture):
- dti = datetime_index.tz_localize(tz_naive_fixture)
- arr = DatetimeArray(dti)
- now = pd.Timestamp.now().tz_localize(dti.tz)
- result = arr.take([-1, 1], allow_fill=True, fill_value=now)
- assert result[0] == now
- with pytest.raises(ValueError):
- # fill_value Timedelta invalid
- arr.take([-1, 1], allow_fill=True, fill_value=now - now)
- with pytest.raises(ValueError):
- # fill_value Period invalid
- arr.take([-1, 1], allow_fill=True, fill_value=pd.Period("2014Q1"))
- tz = None if dti.tz is not None else "US/Eastern"
- now = pd.Timestamp.now().tz_localize(tz)
- with pytest.raises(TypeError):
- # Timestamp with mismatched tz-awareness
- arr.take([-1, 1], allow_fill=True, fill_value=now)
- with pytest.raises(ValueError):
- # require NaT, not iNaT, as it could be confused with an integer
- arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT.value)
- def test_concat_same_type_invalid(self, datetime_index):
- # different timezones
- dti = datetime_index
- arr = DatetimeArray(dti)
- if arr.tz is None:
- other = arr.tz_localize("UTC")
- else:
- other = arr.tz_localize(None)
- with pytest.raises(AssertionError):
- arr._concat_same_type([arr, other])
- def test_concat_same_type_different_freq(self):
- # we *can* concatenate DTI with different freqs.
- a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
- b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central"))
- result = DatetimeArray._concat_same_type([a, b])
- expected = DatetimeArray(
- pd.to_datetime(
- [
- "2000-01-01 00:00:00",
- "2000-01-02 00:00:00",
- "2000-01-01 00:00:00",
- "2000-01-01 01:00:00",
- ]
- ).tz_localize("US/Central")
- )
- tm.assert_datetime_array_equal(result, expected)
- def test_strftime(self, datetime_index):
- arr = DatetimeArray(datetime_index)
- result = arr.strftime("%Y %b")
- expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- def test_strftime_nat(self):
- # GH 29578
- arr = DatetimeArray(DatetimeIndex(["2019-01-01", pd.NaT]))
- result = arr.strftime("%Y-%m-%d")
- expected = np.array(["2019-01-01", np.nan], dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- class TestTimedeltaArray(SharedTests):
- index_cls = pd.TimedeltaIndex
- array_cls = TimedeltaArray
- def test_from_tdi(self):
- tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
- arr = TimedeltaArray(tdi)
- assert list(arr) == list(tdi)
- # Check that Index.__new__ knows what to do with TimedeltaArray
- tdi2 = pd.Index(arr)
- assert isinstance(tdi2, pd.TimedeltaIndex)
- assert list(tdi2) == list(arr)
- def test_astype_object(self):
- tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
- arr = TimedeltaArray(tdi)
- asobj = arr.astype("O")
- assert isinstance(asobj, np.ndarray)
- assert asobj.dtype == "O"
- assert list(asobj) == list(tdi)
- def test_to_pytimedelta(self, timedelta_index):
- tdi = timedelta_index
- arr = TimedeltaArray(tdi)
- expected = tdi.to_pytimedelta()
- result = arr.to_pytimedelta()
- tm.assert_numpy_array_equal(result, expected)
- def test_total_seconds(self, timedelta_index):
- tdi = timedelta_index
- arr = TimedeltaArray(tdi)
- expected = tdi.total_seconds()
- result = arr.total_seconds()
- tm.assert_numpy_array_equal(result, expected.values)
- @pytest.mark.parametrize("propname", pd.TimedeltaIndex._field_ops)
- def test_int_properties(self, timedelta_index, propname):
- tdi = timedelta_index
- arr = TimedeltaArray(tdi)
- result = getattr(arr, propname)
- expected = np.array(getattr(tdi, propname), dtype=result.dtype)
- tm.assert_numpy_array_equal(result, expected)
- def test_array_interface(self, timedelta_index):
- arr = TimedeltaArray(timedelta_index)
- # default asarray gives the same underlying data
- result = np.asarray(arr)
- expected = arr._data
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, copy=False)
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- # specifying m8[ns] gives the same result as default
- result = np.asarray(arr, dtype="timedelta64[ns]")
- expected = arr._data
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, dtype="timedelta64[ns]", copy=False)
- assert result is expected
- tm.assert_numpy_array_equal(result, expected)
- result = np.array(arr, dtype="timedelta64[ns]")
- assert result is not expected
- tm.assert_numpy_array_equal(result, expected)
- # to object dtype
- result = np.asarray(arr, dtype=object)
- expected = np.array(list(arr), dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- # to other dtype always copies
- result = np.asarray(arr, dtype="int64")
- assert result is not arr.asi8
- assert not np.may_share_memory(arr, result)
- expected = arr.asi8.copy()
- tm.assert_numpy_array_equal(result, expected)
- # other dtypes handled by numpy
- for dtype in ["float64", str]:
- result = np.asarray(arr, dtype=dtype)
- expected = np.asarray(arr).astype(dtype)
- tm.assert_numpy_array_equal(result, expected)
- def test_take_fill_valid(self, timedelta_index):
- tdi = timedelta_index
- arr = TimedeltaArray(tdi)
- td1 = pd.Timedelta(days=1)
- result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
- assert result[0] == td1
- now = pd.Timestamp.now()
- with pytest.raises(ValueError):
- # fill_value Timestamp invalid
- arr.take([0, 1], allow_fill=True, fill_value=now)
- with pytest.raises(ValueError):
- # fill_value Period invalid
- arr.take([0, 1], allow_fill=True, fill_value=now.to_period("D"))
- class TestPeriodArray(SharedTests):
- index_cls = pd.PeriodIndex
- array_cls = PeriodArray
- def test_from_pi(self, period_index):
- pi = period_index
- arr = PeriodArray(pi)
- assert list(arr) == list(pi)
- # Check that Index.__new__ knows what to do with PeriodArray
- pi2 = pd.Index(arr)
- assert isinstance(pi2, pd.PeriodIndex)
- assert list(pi2) == list(arr)
- def test_astype_object(self, period_index):
- pi = period_index
- arr = PeriodArray(pi)
- asobj = arr.astype("O")
- assert isinstance(asobj, np.ndarray)
- assert asobj.dtype == "O"
- assert list(asobj) == list(pi)
- @pytest.mark.parametrize("how", ["S", "E"])
- def test_to_timestamp(self, how, period_index):
- pi = period_index
- arr = PeriodArray(pi)
- expected = DatetimeArray(pi.to_timestamp(how=how))
- result = arr.to_timestamp(how=how)
- assert isinstance(result, DatetimeArray)
- # placeholder until these become actual EA subclasses and we can use
- # an EA-specific tm.assert_ function
- tm.assert_index_equal(pd.Index(result), pd.Index(expected))
- def test_to_timestamp_out_of_bounds(self):
- # GH#19643 previously overflowed silently
- pi = pd.period_range("1500", freq="Y", periods=3)
- with pytest.raises(OutOfBoundsDatetime):
- pi.to_timestamp()
- with pytest.raises(OutOfBoundsDatetime):
- pi._data.to_timestamp()
- @pytest.mark.parametrize("propname", PeriodArray._bool_ops)
- def test_bool_properties(self, period_index, propname):
- # in this case _bool_ops is just `is_leap_year`
- pi = period_index
- arr = PeriodArray(pi)
- result = getattr(arr, propname)
- expected = np.array(getattr(pi, propname))
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("propname", PeriodArray._field_ops)
- def test_int_properties(self, period_index, propname):
- pi = period_index
- arr = PeriodArray(pi)
- result = getattr(arr, propname)
- expected = np.array(getattr(pi, propname))
- tm.assert_numpy_array_equal(result, expected)
- def test_array_interface(self, period_index):
- arr = PeriodArray(period_index)
- # default asarray gives objects
- result = np.asarray(arr)
- expected = np.array(list(arr), dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- # to object dtype (same as default)
- result = np.asarray(arr, dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- # to other dtypes
- with pytest.raises(TypeError):
- np.asarray(arr, dtype="int64")
- with pytest.raises(TypeError):
- np.asarray(arr, dtype="float64")
- result = np.asarray(arr, dtype="S20")
- expected = np.asarray(arr).astype("S20")
- tm.assert_numpy_array_equal(result, expected)
- def test_strftime(self, period_index):
- arr = PeriodArray(period_index)
- result = arr.strftime("%Y")
- expected = np.array([per.strftime("%Y") for per in arr], dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- def test_strftime_nat(self):
- # GH 29578
- arr = PeriodArray(PeriodIndex(["2019-01-01", pd.NaT], dtype="period[D]"))
- result = arr.strftime("%Y-%m-%d")
- expected = np.array(["2019-01-01", np.nan], dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize(
- "array,casting_nats",
- [
- (
- pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
- (pd.NaT, np.timedelta64("NaT", "ns")),
- ),
- (
- pd.date_range("2000-01-01", periods=3, freq="D")._data,
- (pd.NaT, np.datetime64("NaT", "ns")),
- ),
- (pd.period_range("2000-01-01", periods=3, freq="D")._data, (pd.NaT,)),
- ],
- ids=lambda x: type(x).__name__,
- )
- def test_casting_nat_setitem_array(array, casting_nats):
- expected = type(array)._from_sequence([pd.NaT, array[1], array[2]])
- for nat in casting_nats:
- arr = array.copy()
- arr[0] = nat
- tm.assert_equal(arr, expected)
- @pytest.mark.parametrize(
- "array,non_casting_nats",
- [
- (
- pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
- (np.datetime64("NaT", "ns"), pd.NaT.value),
- ),
- (
- pd.date_range("2000-01-01", periods=3, freq="D")._data,
- (np.timedelta64("NaT", "ns"), pd.NaT.value),
- ),
- (
- pd.period_range("2000-01-01", periods=3, freq="D")._data,
- (np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), pd.NaT.value),
- ),
- ],
- ids=lambda x: type(x).__name__,
- )
- def test_invalid_nat_setitem_array(array, non_casting_nats):
- for nat in non_casting_nats:
- with pytest.raises(TypeError):
- array[0] = nat
- @pytest.mark.parametrize(
- "array",
- [
- pd.date_range("2000", periods=4).array,
- pd.timedelta_range("2000", periods=4).array,
- ],
- )
- def test_to_numpy_extra(array):
- if _np_version_under1p18:
- # np.isnan(NaT) raises, so use pandas'
- isnan = pd.isna
- else:
- isnan = np.isnan
- array[0] = pd.NaT
- original = array.copy()
- result = array.to_numpy()
- assert isnan(result[0])
- result = array.to_numpy(dtype="int64")
- assert result[0] == -9223372036854775808
- result = array.to_numpy(dtype="int64", na_value=0)
- assert result[0] == 0
- result = array.to_numpy(na_value=array[1].to_numpy())
- assert result[0] == result[1]
- result = array.to_numpy(na_value=array[1].to_numpy(copy=False))
- assert result[0] == result[1]
- tm.assert_equal(array, original)
|