123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385 |
- import datetime
- import decimal
- import numpy as np
- import pytest
- import pytz
- from pandas.core.dtypes.dtypes import registry
- import pandas as pd
- import pandas._testing as tm
- from pandas.api.extensions import register_extension_dtype
- from pandas.api.types import is_scalar
- from pandas.arrays import (
- BooleanArray,
- DatetimeArray,
- IntegerArray,
- IntervalArray,
- SparseArray,
- StringArray,
- TimedeltaArray,
- )
- from pandas.core.arrays import PandasArray, integer_array, period_array
- from pandas.tests.extension.decimal import DecimalArray, DecimalDtype, to_decimal
- @pytest.mark.parametrize(
- "data, dtype, expected",
- [
- # Basic NumPy defaults.
- ([1, 2], None, IntegerArray._from_sequence([1, 2])),
- ([1, 2], object, PandasArray(np.array([1, 2], dtype=object))),
- (
- [1, 2],
- np.dtype("float32"),
- PandasArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))),
- ),
- (np.array([1, 2], dtype="int64"), None, IntegerArray._from_sequence([1, 2]),),
- # String alias passes through to NumPy
- ([1, 2], "float32", PandasArray(np.array([1, 2], dtype="float32"))),
- # Period alias
- (
- [pd.Period("2000", "D"), pd.Period("2001", "D")],
- "Period[D]",
- period_array(["2000", "2001"], freq="D"),
- ),
- # Period dtype
- (
- [pd.Period("2000", "D")],
- pd.PeriodDtype("D"),
- period_array(["2000"], freq="D"),
- ),
- # Datetime (naive)
- (
- [1, 2],
- np.dtype("datetime64[ns]"),
- DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")),
- ),
- (
- np.array([1, 2], dtype="datetime64[ns]"),
- None,
- DatetimeArray._from_sequence(np.array([1, 2], dtype="datetime64[ns]")),
- ),
- (
- pd.DatetimeIndex(["2000", "2001"]),
- np.dtype("datetime64[ns]"),
- DatetimeArray._from_sequence(["2000", "2001"]),
- ),
- (
- pd.DatetimeIndex(["2000", "2001"]),
- None,
- DatetimeArray._from_sequence(["2000", "2001"]),
- ),
- (
- ["2000", "2001"],
- np.dtype("datetime64[ns]"),
- DatetimeArray._from_sequence(["2000", "2001"]),
- ),
- # Datetime (tz-aware)
- (
- ["2000", "2001"],
- pd.DatetimeTZDtype(tz="CET"),
- DatetimeArray._from_sequence(
- ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
- ),
- ),
- # Timedelta
- (
- ["1H", "2H"],
- np.dtype("timedelta64[ns]"),
- TimedeltaArray._from_sequence(["1H", "2H"]),
- ),
- (
- pd.TimedeltaIndex(["1H", "2H"]),
- np.dtype("timedelta64[ns]"),
- TimedeltaArray._from_sequence(["1H", "2H"]),
- ),
- (
- pd.TimedeltaIndex(["1H", "2H"]),
- None,
- TimedeltaArray._from_sequence(["1H", "2H"]),
- ),
- # Category
- (["a", "b"], "category", pd.Categorical(["a", "b"])),
- (
- ["a", "b"],
- pd.CategoricalDtype(None, ordered=True),
- pd.Categorical(["a", "b"], ordered=True),
- ),
- # Interval
- (
- [pd.Interval(1, 2), pd.Interval(3, 4)],
- "interval",
- IntervalArray.from_tuples([(1, 2), (3, 4)]),
- ),
- # Sparse
- ([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")),
- # IntegerNA
- ([1, None], "Int16", integer_array([1, None], dtype="Int16")),
- (pd.Series([1, 2]), None, PandasArray(np.array([1, 2], dtype=np.int64))),
- # String
- (["a", None], "string", StringArray._from_sequence(["a", None])),
- (["a", None], pd.StringDtype(), StringArray._from_sequence(["a", None]),),
- # Boolean
- ([True, None], "boolean", BooleanArray._from_sequence([True, None])),
- ([True, None], pd.BooleanDtype(), BooleanArray._from_sequence([True, None]),),
- # Index
- (pd.Index([1, 2]), None, PandasArray(np.array([1, 2], dtype=np.int64))),
- # Series[EA] returns the EA
- (
- pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])),
- None,
- pd.Categorical(["a", "b"], categories=["a", "b", "c"]),
- ),
- # "3rd party" EAs work
- ([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])),
- # pass an ExtensionArray, but a different dtype
- (
- period_array(["2000", "2001"], freq="D"),
- "category",
- pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]),
- ),
- ],
- )
- def test_array(data, dtype, expected):
- result = pd.array(data, dtype=dtype)
- tm.assert_equal(result, expected)
- def test_array_copy():
- a = np.array([1, 2])
- # default is to copy
- b = pd.array(a, dtype=a.dtype)
- assert np.shares_memory(a, b._ndarray) is False
- # copy=True
- b = pd.array(a, dtype=a.dtype, copy=True)
- assert np.shares_memory(a, b._ndarray) is False
- # copy=False
- b = pd.array(a, dtype=a.dtype, copy=False)
- assert np.shares_memory(a, b._ndarray) is True
- cet = pytz.timezone("CET")
- @pytest.mark.parametrize(
- "data, expected",
- [
- # period
- (
- [pd.Period("2000", "D"), pd.Period("2001", "D")],
- period_array(["2000", "2001"], freq="D"),
- ),
- # interval
- ([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2]),),
- # datetime
- (
- [pd.Timestamp("2000"), pd.Timestamp("2001")],
- DatetimeArray._from_sequence(["2000", "2001"]),
- ),
- (
- [datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)],
- DatetimeArray._from_sequence(["2000", "2001"]),
- ),
- (
- np.array([1, 2], dtype="M8[ns]"),
- DatetimeArray(np.array([1, 2], dtype="M8[ns]")),
- ),
- (
- np.array([1, 2], dtype="M8[us]"),
- DatetimeArray(np.array([1000, 2000], dtype="M8[ns]")),
- ),
- # datetimetz
- (
- [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")],
- DatetimeArray._from_sequence(
- ["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
- ),
- ),
- (
- [
- datetime.datetime(2000, 1, 1, tzinfo=cet),
- datetime.datetime(2001, 1, 1, tzinfo=cet),
- ],
- DatetimeArray._from_sequence(["2000", "2001"], tz=cet),
- ),
- # timedelta
- (
- [pd.Timedelta("1H"), pd.Timedelta("2H")],
- TimedeltaArray._from_sequence(["1H", "2H"]),
- ),
- (
- np.array([1, 2], dtype="m8[ns]"),
- TimedeltaArray(np.array([1, 2], dtype="m8[ns]")),
- ),
- (
- np.array([1, 2], dtype="m8[us]"),
- TimedeltaArray(np.array([1000, 2000], dtype="m8[ns]")),
- ),
- # integer
- ([1, 2], IntegerArray._from_sequence([1, 2])),
- ([1, None], IntegerArray._from_sequence([1, None])),
- # string
- (["a", "b"], StringArray._from_sequence(["a", "b"])),
- (["a", None], StringArray._from_sequence(["a", None])),
- # Boolean
- ([True, False], BooleanArray._from_sequence([True, False])),
- ([True, None], BooleanArray._from_sequence([True, None])),
- ],
- )
- def test_array_inference(data, expected):
- result = pd.array(data)
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize(
- "data",
- [
- # mix of frequencies
- [pd.Period("2000", "D"), pd.Period("2001", "A")],
- # mix of closed
- [pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")],
- # Mix of timezones
- [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")],
- # Mix of tz-aware and tz-naive
- [pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")],
- np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]),
- ],
- )
- def test_array_inference_fails(data):
- result = pd.array(data)
- expected = PandasArray(np.array(data, dtype=object))
- tm.assert_extension_array_equal(result, expected)
- @pytest.mark.parametrize("data", [np.array([[1, 2], [3, 4]]), [[1, 2], [3, 4]]])
- def test_nd_raises(data):
- with pytest.raises(ValueError, match="PandasArray must be 1-dimensional"):
- pd.array(data, dtype="int64")
- def test_scalar_raises():
- with pytest.raises(ValueError, match="Cannot pass scalar '1'"):
- pd.array(1)
- # ---------------------------------------------------------------------------
- # A couple dummy classes to ensure that Series and Indexes are unboxed before
- # getting to the EA classes.
- @register_extension_dtype
- class DecimalDtype2(DecimalDtype):
- name = "decimal2"
- @classmethod
- def construct_array_type(cls):
- """
- Return the array type associated with this dtype.
- Returns
- -------
- type
- """
- return DecimalArray2
- class DecimalArray2(DecimalArray):
- @classmethod
- def _from_sequence(cls, scalars, dtype=None, copy=False):
- if isinstance(scalars, (pd.Series, pd.Index)):
- raise TypeError
- return super()._from_sequence(scalars, dtype=dtype, copy=copy)
- def test_array_unboxes(index_or_series):
- box = index_or_series
- data = box([decimal.Decimal("1"), decimal.Decimal("2")])
- # make sure it works
- with pytest.raises(TypeError):
- DecimalArray2._from_sequence(data)
- result = pd.array(data, dtype="decimal2")
- expected = DecimalArray2._from_sequence(data.values)
- tm.assert_equal(result, expected)
- @pytest.fixture
- def registry_without_decimal():
- idx = registry.dtypes.index(DecimalDtype)
- registry.dtypes.pop(idx)
- yield
- registry.dtypes.append(DecimalDtype)
- def test_array_not_registered(registry_without_decimal):
- # check we aren't on it
- assert registry.find("decimal") is None
- data = [decimal.Decimal("1"), decimal.Decimal("2")]
- result = pd.array(data, dtype=DecimalDtype)
- expected = DecimalArray._from_sequence(data)
- tm.assert_equal(result, expected)
- class TestArrayAnalytics:
- def test_searchsorted(self, string_dtype):
- arr = pd.array(["a", "b", "c"], dtype=string_dtype)
- result = arr.searchsorted("a", side="left")
- assert is_scalar(result)
- assert result == 0
- result = arr.searchsorted("a", side="right")
- assert is_scalar(result)
- assert result == 1
- def test_searchsorted_numeric_dtypes_scalar(self, any_real_dtype):
- arr = pd.array([1, 3, 90], dtype=any_real_dtype)
- result = arr.searchsorted(30)
- assert is_scalar(result)
- assert result == 2
- result = arr.searchsorted([30])
- expected = np.array([2], dtype=np.intp)
- tm.assert_numpy_array_equal(result, expected)
- def test_searchsorted_numeric_dtypes_vector(self, any_real_dtype):
- arr = pd.array([1, 3, 90], dtype=any_real_dtype)
- result = arr.searchsorted([2, 30])
- expected = np.array([1, 2], dtype=np.intp)
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize(
- "arr, val",
- [
- [
- pd.date_range("20120101", periods=10, freq="2D"),
- pd.Timestamp("20120102"),
- ],
- [
- pd.date_range("20120101", periods=10, freq="2D", tz="Asia/Hong_Kong"),
- pd.Timestamp("20120102", tz="Asia/Hong_Kong"),
- ],
- [
- pd.timedelta_range(start="1 day", end="10 days", periods=10),
- pd.Timedelta("2 days"),
- ],
- ],
- )
- def test_search_sorted_datetime64_scalar(self, arr, val):
- arr = pd.array(arr)
- result = arr.searchsorted(val)
- assert is_scalar(result)
- assert result == 1
- def test_searchsorted_sorter(self, any_real_dtype):
- arr = pd.array([3, 1, 2], dtype=any_real_dtype)
- result = arr.searchsorted([0, 3], sorter=np.argsort(arr))
- expected = np.array([0, 2], dtype=np.intp)
- tm.assert_numpy_array_equal(result, expected)
|