1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- """
- Read SAS sas7bdat or xport files.
- """
- from pandas.io.common import stringify_path
- def read_sas(
- filepath_or_buffer,
- format=None,
- index=None,
- encoding=None,
- chunksize=None,
- iterator=False,
- ):
- """
- Read SAS files stored as either XPORT or SAS7BDAT format files.
- Parameters
- ----------
- filepath_or_buffer : str, path object or file-like object
- Any valid string path is acceptable. The string could be a URL. Valid
- URL schemes include http, ftp, s3, and file. For file URLs, a host is
- expected. A local file could be:
- ``file://localhost/path/to/table.sas``.
- If you want to pass in a path object, pandas accepts any
- ``os.PathLike``.
- By file-like object, we refer to objects with a ``read()`` method,
- such as a file handler (e.g. via builtin ``open`` function)
- or ``StringIO``.
- format : str {'xport', 'sas7bdat'} or None
- If None, file format is inferred from file extension. If 'xport' or
- 'sas7bdat', uses the corresponding format.
- index : identifier of index column, defaults to None
- Identifier of column that should be used as index of the DataFrame.
- encoding : str, default is None
- Encoding for text data. If None, text data are stored as raw bytes.
- chunksize : int
- Read file `chunksize` lines at a time, returns iterator.
- iterator : bool, defaults to False
- If True, returns an iterator for reading the file incrementally.
- Returns
- -------
- DataFrame if iterator=False and chunksize=None, else SAS7BDATReader
- or XportReader
- """
- if format is None:
- buffer_error_msg = (
- "If this is a buffer object rather "
- "than a string name, you must specify "
- "a format string"
- )
- filepath_or_buffer = stringify_path(filepath_or_buffer)
- if not isinstance(filepath_or_buffer, str):
- raise ValueError(buffer_error_msg)
- fname = filepath_or_buffer.lower()
- if fname.endswith(".xpt"):
- format = "xport"
- elif fname.endswith(".sas7bdat"):
- format = "sas7bdat"
- else:
- raise ValueError("unable to infer format of SAS file")
- if format.lower() == "xport":
- from pandas.io.sas.sas_xport import XportReader
- reader = XportReader(
- filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize
- )
- elif format.lower() == "sas7bdat":
- from pandas.io.sas.sas7bdat import SAS7BDATReader
- reader = SAS7BDATReader(
- filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize
- )
- else:
- raise ValueError("unknown SAS format")
- if iterator or chunksize:
- return reader
- data = reader.read()
- reader.close()
- return data
|