123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- """ pickle compat """
- import pickle
- from typing import Any, Optional
- import warnings
- from pandas._typing import FilePathOrBuffer
- from pandas.compat import pickle_compat as pc
- from pandas.io.common import get_filepath_or_buffer, get_handle
- def to_pickle(
- obj: Any,
- filepath_or_buffer: FilePathOrBuffer,
- compression: Optional[str] = "infer",
- protocol: int = pickle.HIGHEST_PROTOCOL,
- ):
- """
- Pickle (serialize) object to file.
- Parameters
- ----------
- obj : any object
- Any python object.
- filepath_or_buffer : str, path object or file-like object
- File path, URL, or buffer where the pickled object will be stored.
- .. versionchanged:: 1.0.0
- Accept URL. URL has to be of S3 or GCS.
- compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
- If 'infer' and 'path_or_url' is path-like, then detect compression from
- the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
- compression) If 'infer' and 'path_or_url' is not path-like, then use
- None (= no decompression).
- protocol : int
- Int which indicates which protocol should be used by the pickler,
- default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
- values for this parameter depend on the version of Python. For Python
- 2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
- For Python >= 3.4, 4 is a valid value. A negative value for the
- protocol parameter is equivalent to setting its value to
- HIGHEST_PROTOCOL.
- .. [1] https://docs.python.org/3/library/pickle.html
- .. versionadded:: 0.21.0
- See Also
- --------
- read_pickle : Load pickled pandas object (or any object) from file.
- DataFrame.to_hdf : Write DataFrame to an HDF5 file.
- DataFrame.to_sql : Write DataFrame to a SQL database.
- DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
- Examples
- --------
- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
- >>> original_df
- foo bar
- 0 0 5
- 1 1 6
- 2 2 7
- 3 3 8
- 4 4 9
- >>> pd.to_pickle(original_df, "./dummy.pkl")
- >>> unpickled_df = pd.read_pickle("./dummy.pkl")
- >>> unpickled_df
- foo bar
- 0 0 5
- 1 1 6
- 2 2 7
- 3 3 8
- 4 4 9
- >>> import os
- >>> os.remove("./dummy.pkl")
- """
- fp_or_buf, _, compression, should_close = get_filepath_or_buffer(
- filepath_or_buffer, compression=compression, mode="wb"
- )
- if not isinstance(fp_or_buf, str) and compression == "infer":
- compression = None
- f, fh = get_handle(fp_or_buf, "wb", compression=compression, is_text=False)
- if protocol < 0:
- protocol = pickle.HIGHEST_PROTOCOL
- try:
- f.write(pickle.dumps(obj, protocol=protocol))
- finally:
- f.close()
- for _f in fh:
- _f.close()
- if should_close:
- try:
- fp_or_buf.close()
- except ValueError:
- pass
- def read_pickle(
- filepath_or_buffer: FilePathOrBuffer, compression: Optional[str] = "infer"
- ):
- """
- Load pickled pandas object (or any object) from file.
- .. warning::
- Loading pickled data received from untrusted sources can be
- unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__.
- Parameters
- ----------
- filepath_or_buffer : str, path object or file-like object
- File path, URL, or buffer where the pickled object will be loaded from.
- .. versionchanged:: 1.0.0
- Accept URL. URL is not limited to S3 and GCS.
- compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
- If 'infer' and 'path_or_url' is path-like, then detect compression from
- the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
- compression) If 'infer' and 'path_or_url' is not path-like, then use
- None (= no decompression).
- Returns
- -------
- unpickled : same type as object stored in file
- See Also
- --------
- DataFrame.to_pickle : Pickle (serialize) DataFrame object to file.
- Series.to_pickle : Pickle (serialize) Series object to file.
- read_hdf : Read HDF5 file into a DataFrame.
- read_sql : Read SQL query or database table into a DataFrame.
- read_parquet : Load a parquet object, returning a DataFrame.
- Notes
- -----
- read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3.
- Examples
- --------
- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
- >>> original_df
- foo bar
- 0 0 5
- 1 1 6
- 2 2 7
- 3 3 8
- 4 4 9
- >>> pd.to_pickle(original_df, "./dummy.pkl")
- >>> unpickled_df = pd.read_pickle("./dummy.pkl")
- >>> unpickled_df
- foo bar
- 0 0 5
- 1 1 6
- 2 2 7
- 3 3 8
- 4 4 9
- >>> import os
- >>> os.remove("./dummy.pkl")
- """
- fp_or_buf, _, compression, should_close = get_filepath_or_buffer(
- filepath_or_buffer, compression=compression
- )
- if not isinstance(fp_or_buf, str) and compression == "infer":
- compression = None
- f, fh = get_handle(fp_or_buf, "rb", compression=compression, is_text=False)
- # 1) try standard library Pickle
- # 2) try pickle_compat (older pandas version) to handle subclass changes
- # 3) try pickle_compat with latin-1 encoding upon a UnicodeDecodeError
- try:
- excs_to_catch = (AttributeError, ImportError, ModuleNotFoundError)
- try:
- with warnings.catch_warnings(record=True):
- # We want to silence any warnings about, e.g. moved modules.
- warnings.simplefilter("ignore", Warning)
- return pickle.load(f)
- except excs_to_catch:
- # e.g.
- # "No module named 'pandas.core.sparse.series'"
- # "Can't get attribute '__nat_unpickle' on <module 'pandas._libs.tslib"
- return pc.load(f, encoding=None)
- except UnicodeDecodeError:
- # e.g. can occur for files written in py27; see GH#28645 and GH#31988
- return pc.load(f, encoding="latin-1")
- finally:
- f.close()
- for _f in fh:
- _f.close()
- if should_close:
- try:
- fp_or_buf.close()
- except ValueError:
- pass
|