123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- """ orc compat """
- import distutils
- from typing import TYPE_CHECKING, List, Optional
- from pandas._typing import FilePathOrBuffer
- from pandas.io.common import get_filepath_or_buffer
- if TYPE_CHECKING:
- from pandas import DataFrame
- def read_orc(
- path: FilePathOrBuffer, columns: Optional[List[str]] = None, **kwargs,
- ) -> "DataFrame":
- """
- Load an ORC object from the file path, returning a DataFrame.
- .. versionadded:: 1.0.0
- Parameters
- ----------
- path : str, path object or file-like object
- Any valid string path is acceptable. The string could be a URL. Valid
- URL schemes include http, ftp, s3, and file. For file URLs, a host is
- expected. A local file could be:
- ``file://localhost/path/to/table.orc``.
- If you want to pass in a path object, pandas accepts any
- ``os.PathLike``.
- By file-like object, we refer to objects with a ``read()`` method,
- such as a file handler (e.g. via builtin ``open`` function)
- or ``StringIO``.
- columns : list, default None
- If not None, only these columns will be read from the file.
- **kwargs
- Any additional kwargs are passed to pyarrow.
- Returns
- -------
- DataFrame
- """
- # we require a newer version of pyarrow than we support for parquet
- import pyarrow
- if distutils.version.LooseVersion(pyarrow.__version__) < "0.13.0":
- raise ImportError("pyarrow must be >= 0.13.0 for read_orc")
- import pyarrow.orc
- path, _, _, _ = get_filepath_or_buffer(path)
- orc_file = pyarrow.orc.ORCFile(path)
- result = orc_file.read(columns=columns, **kwargs).to_pandas()
- return result
|