123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934 |
- from collections import abc
- from datetime import date, time, timedelta, timezone
- from decimal import Decimal
- import operator
- import os
- from dateutil.tz import tzlocal, tzutc
- import hypothesis
- from hypothesis import strategies as st
- import numpy as np
- import pytest
- from pytz import FixedOffset, utc
- import pandas.util._test_decorators as td
- import pandas as pd
- from pandas import DataFrame
- import pandas._testing as tm
- from pandas.core import ops
- hypothesis.settings.register_profile(
- "ci",
- # Hypothesis timing checks are tuned for scalars by default, so we bump
- # them from 200ms to 500ms per test case as the global default. If this
- # is too short for a specific test, (a) try to make it faster, and (b)
- # if it really is slow add `@settings(deadline=...)` with a working value,
- # or `deadline=None` to entirely disable timeouts for that test.
- deadline=500,
- suppress_health_check=(hypothesis.HealthCheck.too_slow,),
- )
- hypothesis.settings.load_profile("ci")
- def pytest_addoption(parser):
- parser.addoption("--skip-slow", action="store_true", help="skip slow tests")
- parser.addoption("--skip-network", action="store_true", help="skip network tests")
- parser.addoption("--skip-db", action="store_true", help="skip db tests")
- parser.addoption(
- "--run-high-memory", action="store_true", help="run high memory tests"
- )
- parser.addoption("--only-slow", action="store_true", help="run only slow tests")
- parser.addoption(
- "--strict-data-files",
- action="store_true",
- help="Fail if a test is skipped for missing data file.",
- )
- def pytest_runtest_setup(item):
- if "slow" in item.keywords and item.config.getoption("--skip-slow"):
- pytest.skip("skipping due to --skip-slow")
- if "slow" not in item.keywords and item.config.getoption("--only-slow"):
- pytest.skip("skipping due to --only-slow")
- if "network" in item.keywords and item.config.getoption("--skip-network"):
- pytest.skip("skipping due to --skip-network")
- if "db" in item.keywords and item.config.getoption("--skip-db"):
- pytest.skip("skipping due to --skip-db")
- if "high_memory" in item.keywords and not item.config.getoption(
- "--run-high-memory"
- ):
- pytest.skip("skipping high memory test since --run-high-memory was not set")
- # Configurations for all tests and all test modules
- @pytest.fixture(autouse=True)
- def configure_tests():
- pd.set_option("chained_assignment", "raise")
- # For running doctests: make np and pd names available
- @pytest.fixture(autouse=True)
- def add_imports(doctest_namespace):
- doctest_namespace["np"] = np
- doctest_namespace["pd"] = pd
- @pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
- def spmatrix(request):
- from scipy import sparse
- return getattr(sparse, request.param + "_matrix")
- @pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis {repr(x)}")
- def axis(request):
- """
- Fixture for returning the axis numbers of a DataFrame.
- """
- return request.param
- axis_frame = axis
- @pytest.fixture(params=[0, "index"], ids=lambda x: f"axis {repr(x)}")
- def axis_series(request):
- """
- Fixture for returning the axis numbers of a Series.
- """
- return request.param
- @pytest.fixture
- def ip():
- """
- Get an instance of IPython.InteractiveShell.
- Will raise a skip if IPython is not installed.
- """
- pytest.importorskip("IPython", minversion="6.0.0")
- from IPython.core.interactiveshell import InteractiveShell
- return InteractiveShell()
- @pytest.fixture(params=[True, False, None])
- def observed(request):
- """
- Pass in the observed keyword to groupby for [True, False]
- This indicates whether categoricals should return values for
- values which are not in the grouper [False / None], or only values which
- appear in the grouper [True]. [None] is supported for future compatibility
- if we decide to change the default (and would need to warn if this
- parameter is not passed).
- """
- return request.param
- @pytest.fixture(params=[True, False, None])
- def ordered_fixture(request):
- """
- Boolean 'ordered' parameter for Categorical.
- """
- return request.param
- _all_arithmetic_operators = [
- "__add__",
- "__radd__",
- "__sub__",
- "__rsub__",
- "__mul__",
- "__rmul__",
- "__floordiv__",
- "__rfloordiv__",
- "__truediv__",
- "__rtruediv__",
- "__pow__",
- "__rpow__",
- "__mod__",
- "__rmod__",
- ]
- @pytest.fixture(params=_all_arithmetic_operators)
- def all_arithmetic_operators(request):
- """
- Fixture for dunder names for common arithmetic operations.
- """
- return request.param
- @pytest.fixture(
- params=[
- operator.add,
- ops.radd,
- operator.sub,
- ops.rsub,
- operator.mul,
- ops.rmul,
- operator.truediv,
- ops.rtruediv,
- operator.floordiv,
- ops.rfloordiv,
- operator.mod,
- ops.rmod,
- operator.pow,
- ops.rpow,
- ]
- )
- def all_arithmetic_functions(request):
- """
- Fixture for operator and roperator arithmetic functions.
- Notes
- -----
- This includes divmod and rdivmod, whereas all_arithmetic_operators
- does not.
- """
- return request.param
- _all_numeric_reductions = [
- "sum",
- "max",
- "min",
- "mean",
- "prod",
- "std",
- "var",
- "median",
- "kurt",
- "skew",
- ]
- @pytest.fixture(params=_all_numeric_reductions)
- def all_numeric_reductions(request):
- """
- Fixture for numeric reduction names.
- """
- return request.param
- _all_boolean_reductions = ["all", "any"]
- @pytest.fixture(params=_all_boolean_reductions)
- def all_boolean_reductions(request):
- """
- Fixture for boolean reduction names.
- """
- return request.param
- _cython_table = pd.core.base.SelectionMixin._cython_table.items()
- @pytest.fixture(params=list(_cython_table))
- def cython_table_items(request):
- return request.param
- def _get_cython_table_params(ndframe, func_names_and_expected):
- """
- Combine frame, functions from SelectionMixin._cython_table
- keys and expected result.
- Parameters
- ----------
- ndframe : DataFrame or Series
- func_names_and_expected : Sequence of two items
- The first item is a name of a NDFrame method ('sum', 'prod') etc.
- The second item is the expected return value.
- Returns
- -------
- list
- List of three items (DataFrame, function, expected result)
- """
- results = []
- for func_name, expected in func_names_and_expected:
- results.append((ndframe, func_name, expected))
- results += [
- (ndframe, func, expected)
- for func, name in _cython_table
- if name == func_name
- ]
- return results
- @pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"])
- def all_compare_operators(request):
- """
- Fixture for dunder names for common compare operations
- * >=
- * >
- * ==
- * !=
- * <
- * <=
- """
- return request.param
- @pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"])
- def compare_operators_no_eq_ne(request):
- """
- Fixture for dunder names for compare operations except == and !=
- * >=
- * >
- * <
- * <=
- """
- return request.param
- @pytest.fixture(
- params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"]
- )
- def all_logical_operators(request):
- """
- Fixture for dunder names for common logical operations
- * |
- * &
- * ^
- """
- return request.param
- @pytest.fixture(params=[None, "gzip", "bz2", "zip", "xz"])
- def compression(request):
- """
- Fixture for trying common compression types in compression tests.
- """
- return request.param
- @pytest.fixture(params=["gzip", "bz2", "zip", "xz"])
- def compression_only(request):
- """
- Fixture for trying common compression types in compression tests excluding
- uncompressed case.
- """
- return request.param
- @pytest.fixture(params=[True, False])
- def writable(request):
- """
- Fixture that an array is writable.
- """
- return request.param
- @pytest.fixture(scope="module")
- def datetime_tz_utc():
- return timezone.utc
- @pytest.fixture(params=["utc", "dateutil/UTC", utc, tzutc(), timezone.utc])
- def utc_fixture(request):
- """
- Fixture to provide variants of UTC timezone strings and tzinfo objects.
- """
- return request.param
- @pytest.fixture(params=["inner", "outer", "left", "right"])
- def join_type(request):
- """
- Fixture for trying all types of join operations.
- """
- return request.param
- @pytest.fixture
- def strict_data_files(pytestconfig):
- return pytestconfig.getoption("--strict-data-files")
- @pytest.fixture
- def datapath(strict_data_files):
- """
- Get the path to a data file.
- Parameters
- ----------
- path : str
- Path to the file, relative to ``pandas/tests/``
- Returns
- -------
- path including ``pandas/tests``.
- Raises
- ------
- ValueError
- If the path doesn't exist and the --strict-data-files option is set.
- """
- BASE_PATH = os.path.join(os.path.dirname(__file__), "tests")
- def deco(*args):
- path = os.path.join(BASE_PATH, *args)
- if not os.path.exists(path):
- if strict_data_files:
- raise ValueError(
- f"Could not find file {path} and --strict-data-files is set."
- )
- else:
- pytest.skip(f"Could not find {path}.")
- return path
- return deco
- @pytest.fixture
- def iris(datapath):
- """
- The iris dataset as a DataFrame.
- """
- return pd.read_csv(datapath("data", "iris.csv"))
- @pytest.fixture(params=["nlargest", "nsmallest"])
- def nselect_method(request):
- """
- Fixture for trying all nselect methods.
- """
- return request.param
- @pytest.fixture(params=["left", "right", "both", "neither"])
- def closed(request):
- """
- Fixture for trying all interval closed parameters.
- """
- return request.param
- @pytest.fixture(params=["left", "right", "both", "neither"])
- def other_closed(request):
- """
- Secondary closed fixture to allow parametrizing over all pairs of closed.
- """
- return request.param
- @pytest.fixture(params=[None, np.nan, pd.NaT, float("nan"), np.float("NaN")])
- def nulls_fixture(request):
- """
- Fixture for each null type in pandas.
- """
- return request.param
- nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture
- @pytest.fixture(params=[None, np.nan, pd.NaT])
- def unique_nulls_fixture(request):
- """
- Fixture for each null type in pandas, each null type exactly once.
- """
- return request.param
- # Generate cartesian product of unique_nulls_fixture:
- unique_nulls_fixture2 = unique_nulls_fixture
- TIMEZONES = [
- None,
- "UTC",
- "US/Eastern",
- "Asia/Tokyo",
- "dateutil/US/Pacific",
- "dateutil/Asia/Singapore",
- tzutc(),
- tzlocal(),
- FixedOffset(300),
- FixedOffset(0),
- FixedOffset(-300),
- timezone.utc,
- timezone(timedelta(hours=1)),
- timezone(timedelta(hours=-1), name="foo"),
- ]
- TIMEZONE_IDS = [repr(i) for i in TIMEZONES]
- @td.parametrize_fixture_doc(str(TIMEZONE_IDS))
- @pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS)
- def tz_naive_fixture(request):
- """
- Fixture for trying timezones including default (None): {0}
- """
- return request.param
- @td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:]))
- @pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:])
- def tz_aware_fixture(request):
- """
- Fixture for trying explicit timezones: {0}
- """
- return request.param
- # Generate cartesian product of tz_aware_fixture:
- tz_aware_fixture2 = tz_aware_fixture
- # ----------------------------------------------------------------
- # Dtypes
- # ----------------------------------------------------------------
- UNSIGNED_INT_DTYPES = ["uint8", "uint16", "uint32", "uint64"]
- UNSIGNED_EA_INT_DTYPES = ["UInt8", "UInt16", "UInt32", "UInt64"]
- SIGNED_INT_DTYPES = [int, "int8", "int16", "int32", "int64"]
- SIGNED_EA_INT_DTYPES = ["Int8", "Int16", "Int32", "Int64"]
- ALL_INT_DTYPES = UNSIGNED_INT_DTYPES + SIGNED_INT_DTYPES
- ALL_EA_INT_DTYPES = UNSIGNED_EA_INT_DTYPES + SIGNED_EA_INT_DTYPES
- FLOAT_DTYPES = [float, "float32", "float64"]
- COMPLEX_DTYPES = [complex, "complex64", "complex128"]
- STRING_DTYPES = [str, "str", "U"]
- DATETIME64_DTYPES = ["datetime64[ns]", "M8[ns]"]
- TIMEDELTA64_DTYPES = ["timedelta64[ns]", "m8[ns]"]
- BOOL_DTYPES = [bool, "bool"]
- BYTES_DTYPES = [bytes, "bytes"]
- OBJECT_DTYPES = [object, "object"]
- ALL_REAL_DTYPES = FLOAT_DTYPES + ALL_INT_DTYPES
- ALL_NUMPY_DTYPES = (
- ALL_REAL_DTYPES
- + COMPLEX_DTYPES
- + STRING_DTYPES
- + DATETIME64_DTYPES
- + TIMEDELTA64_DTYPES
- + BOOL_DTYPES
- + OBJECT_DTYPES
- + BYTES_DTYPES
- )
- @pytest.fixture(params=STRING_DTYPES)
- def string_dtype(request):
- """
- Parametrized fixture for string dtypes.
- * str
- * 'str'
- * 'U'
- """
- return request.param
- @pytest.fixture(params=BYTES_DTYPES)
- def bytes_dtype(request):
- """
- Parametrized fixture for bytes dtypes.
- * bytes
- * 'bytes'
- """
- return request.param
- @pytest.fixture(params=OBJECT_DTYPES)
- def object_dtype(request):
- """
- Parametrized fixture for object dtypes.
- * object
- * 'object'
- """
- return request.param
- @pytest.fixture(params=DATETIME64_DTYPES)
- def datetime64_dtype(request):
- """
- Parametrized fixture for datetime64 dtypes.
- * 'datetime64[ns]'
- * 'M8[ns]'
- """
- return request.param
- @pytest.fixture(params=TIMEDELTA64_DTYPES)
- def timedelta64_dtype(request):
- """
- Parametrized fixture for timedelta64 dtypes.
- * 'timedelta64[ns]'
- * 'm8[ns]'
- """
- return request.param
- @pytest.fixture(params=FLOAT_DTYPES)
- def float_dtype(request):
- """
- Parameterized fixture for float dtypes.
- * float
- * 'float32'
- * 'float64'
- """
- return request.param
- @pytest.fixture(params=COMPLEX_DTYPES)
- def complex_dtype(request):
- """
- Parameterized fixture for complex dtypes.
- * complex
- * 'complex64'
- * 'complex128'
- """
- return request.param
- @pytest.fixture(params=SIGNED_INT_DTYPES)
- def sint_dtype(request):
- """
- Parameterized fixture for signed integer dtypes.
- * int
- * 'int8'
- * 'int16'
- * 'int32'
- * 'int64'
- """
- return request.param
- @pytest.fixture(params=UNSIGNED_INT_DTYPES)
- def uint_dtype(request):
- """
- Parameterized fixture for unsigned integer dtypes.
- * 'uint8'
- * 'uint16'
- * 'uint32'
- * 'uint64'
- """
- return request.param
- @pytest.fixture(params=ALL_INT_DTYPES)
- def any_int_dtype(request):
- """
- Parameterized fixture for any integer dtype.
- * int
- * 'int8'
- * 'uint8'
- * 'int16'
- * 'uint16'
- * 'int32'
- * 'uint32'
- * 'int64'
- * 'uint64'
- """
- return request.param
- @pytest.fixture(params=ALL_EA_INT_DTYPES)
- def any_nullable_int_dtype(request):
- """
- Parameterized fixture for any nullable integer dtype.
- * 'UInt8'
- * 'Int8'
- * 'UInt16'
- * 'Int16'
- * 'UInt32'
- * 'Int32'
- * 'UInt64'
- * 'Int64'
- """
- return request.param
- @pytest.fixture(params=ALL_REAL_DTYPES)
- def any_real_dtype(request):
- """
- Parameterized fixture for any (purely) real numeric dtype.
- * int
- * 'int8'
- * 'uint8'
- * 'int16'
- * 'uint16'
- * 'int32'
- * 'uint32'
- * 'int64'
- * 'uint64'
- * float
- * 'float32'
- * 'float64'
- """
- return request.param
- @pytest.fixture(params=ALL_NUMPY_DTYPES)
- def any_numpy_dtype(request):
- """
- Parameterized fixture for all numpy dtypes.
- * bool
- * 'bool'
- * int
- * 'int8'
- * 'uint8'
- * 'int16'
- * 'uint16'
- * 'int32'
- * 'uint32'
- * 'int64'
- * 'uint64'
- * float
- * 'float32'
- * 'float64'
- * complex
- * 'complex64'
- * 'complex128'
- * str
- * 'str'
- * 'U'
- * bytes
- * 'bytes'
- * 'datetime64[ns]'
- * 'M8[ns]'
- * 'timedelta64[ns]'
- * 'm8[ns]'
- * object
- * 'object'
- """
- return request.param
- # categoricals are handled separately
- _any_skipna_inferred_dtype = [
- ("string", ["a", np.nan, "c"]),
- ("string", ["a", pd.NA, "c"]),
- ("bytes", [b"a", np.nan, b"c"]),
- ("empty", [np.nan, np.nan, np.nan]),
- ("empty", []),
- ("mixed-integer", ["a", np.nan, 2]),
- ("mixed", ["a", np.nan, 2.0]),
- ("floating", [1.0, np.nan, 2.0]),
- ("integer", [1, np.nan, 2]),
- ("mixed-integer-float", [1, np.nan, 2.0]),
- ("decimal", [Decimal(1), np.nan, Decimal(2)]),
- ("boolean", [True, np.nan, False]),
- ("boolean", [True, pd.NA, False]),
- ("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]),
- ("datetime", [pd.Timestamp("20130101"), np.nan, pd.Timestamp("20180101")]),
- ("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]),
- # The following two dtypes are commented out due to GH 23554
- # ('complex', [1 + 1j, np.nan, 2 + 2j]),
- # ('timedelta64', [np.timedelta64(1, 'D'),
- # np.nan, np.timedelta64(2, 'D')]),
- ("timedelta", [timedelta(1), np.nan, timedelta(2)]),
- ("time", [time(1), np.nan, time(2)]),
- ("period", [pd.Period(2013), pd.NaT, pd.Period(2018)]),
- ("interval", [pd.Interval(0, 1), np.nan, pd.Interval(0, 2)]),
- ]
- ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id
- @pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids)
- def any_skipna_inferred_dtype(request):
- """
- Fixture for all inferred dtypes from _libs.lib.infer_dtype
- The covered (inferred) types are:
- * 'string'
- * 'empty'
- * 'bytes'
- * 'mixed'
- * 'mixed-integer'
- * 'mixed-integer-float'
- * 'floating'
- * 'integer'
- * 'decimal'
- * 'boolean'
- * 'datetime64'
- * 'datetime'
- * 'date'
- * 'timedelta'
- * 'time'
- * 'period'
- * 'interval'
- Returns
- -------
- inferred_dtype : str
- The string for the inferred dtype from _libs.lib.infer_dtype
- values : np.ndarray
- An array of object dtype that will be inferred to have
- `inferred_dtype`
- Examples
- --------
- >>> import pandas._libs.lib as lib
- >>>
- >>> def test_something(any_skipna_inferred_dtype):
- ... inferred_dtype, values = any_skipna_inferred_dtype
- ... # will pass
- ... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
- """
- inferred_dtype, values = request.param
- values = np.array(values, dtype=object) # object dtype to avoid casting
- # correctness of inference tested in tests/dtypes/test_inference.py
- return inferred_dtype, values
- @pytest.fixture(
- params=[
- getattr(pd.offsets, o)
- for o in pd.offsets.__all__
- if issubclass(getattr(pd.offsets, o), pd.offsets.Tick)
- ]
- )
- def tick_classes(request):
- """
- Fixture for Tick based datetime offsets available for a time series.
- """
- return request.param
- # ----------------------------------------------------------------
- # Global setup for tests using Hypothesis
- # Registering these strategies makes them globally available via st.from_type,
- # which is use for offsets in tests/tseries/offsets/test_offsets_properties.py
- for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split():
- cls = getattr(pd.tseries.offsets, name)
- st.register_type_strategy(
- cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans())
- )
- for name in "YearBegin YearEnd BYearBegin BYearEnd".split():
- cls = getattr(pd.tseries.offsets, name)
- st.register_type_strategy(
- cls,
- st.builds(
- cls,
- n=st.integers(-5, 5),
- normalize=st.booleans(),
- month=st.integers(min_value=1, max_value=12),
- ),
- )
- for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split():
- cls = getattr(pd.tseries.offsets, name)
- st.register_type_strategy(
- cls,
- st.builds(
- cls,
- n=st.integers(-24, 24),
- normalize=st.booleans(),
- startingMonth=st.integers(min_value=1, max_value=12),
- ),
- )
- @pytest.fixture
- def float_frame():
- """
- Fixture for DataFrame of floats with index of unique strings
- Columns are ['A', 'B', 'C', 'D'].
- A B C D
- P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465
- qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901
- tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433
- wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651
- M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938
- QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053
- r78Jwns6dn -0.653707 0.883127 0.682199 0.206159
- ... ... ... ... ...
- IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316
- lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999
- qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121
- yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962
- 65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987
- eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871
- xSucinXxuV -1.263557 0.252799 -0.552247 0.400426
- [30 rows x 4 columns]
- """
- return DataFrame(tm.getSeriesData())
- @pytest.fixture(params=[pd.Index, pd.Series], ids=["index", "series"])
- def index_or_series(request):
- """
- Fixture to parametrize over Index and Series, made necessary by a mypy
- bug, giving an error:
- List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]"
- See GH#29725
- """
- return request.param
- @pytest.fixture
- def dict_subclass():
- """
- Fixture for a dictionary subclass.
- """
- class TestSubDict(dict):
- def __init__(self, *args, **kwargs):
- dict.__init__(self, *args, **kwargs)
- return TestSubDict
- @pytest.fixture
- def non_mapping_dict_subclass():
- """
- Fixture for a non-mapping dictionary subclass.
- """
- class TestNonDictMapping(abc.Mapping):
- def __init__(self, underlying_dict):
- self._data = underlying_dict
- def __getitem__(self, key):
- return self._data.__getitem__(key)
- def __iter__(self):
- return self._data.__iter__()
- def __len__(self):
- return self._data.__len__()
- return TestNonDictMapping
|