test_smoke.py 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. import pickle
  2. import time
  3. from functools import partial
  4. import numpy as np
  5. import pytest
  6. from numpy.testing import assert_equal, assert_, assert_array_equal
  7. from numpy.random import (Generator, MT19937, PCG64, Philox, SFC64)
  8. @pytest.fixture(scope='module',
  9. params=(np.bool_, np.int8, np.int16, np.int32, np.int64,
  10. np.uint8, np.uint16, np.uint32, np.uint64))
  11. def dtype(request):
  12. return request.param
  13. def params_0(f):
  14. val = f()
  15. assert_(np.isscalar(val))
  16. val = f(10)
  17. assert_(val.shape == (10,))
  18. val = f((10, 10))
  19. assert_(val.shape == (10, 10))
  20. val = f((10, 10, 10))
  21. assert_(val.shape == (10, 10, 10))
  22. val = f(size=(5, 5))
  23. assert_(val.shape == (5, 5))
  24. def params_1(f, bounded=False):
  25. a = 5.0
  26. b = np.arange(2.0, 12.0)
  27. c = np.arange(2.0, 102.0).reshape((10, 10))
  28. d = np.arange(2.0, 1002.0).reshape((10, 10, 10))
  29. e = np.array([2.0, 3.0])
  30. g = np.arange(2.0, 12.0).reshape((1, 10, 1))
  31. if bounded:
  32. a = 0.5
  33. b = b / (1.5 * b.max())
  34. c = c / (1.5 * c.max())
  35. d = d / (1.5 * d.max())
  36. e = e / (1.5 * e.max())
  37. g = g / (1.5 * g.max())
  38. # Scalar
  39. f(a)
  40. # Scalar - size
  41. f(a, size=(10, 10))
  42. # 1d
  43. f(b)
  44. # 2d
  45. f(c)
  46. # 3d
  47. f(d)
  48. # 1d size
  49. f(b, size=10)
  50. # 2d - size - broadcast
  51. f(e, size=(10, 2))
  52. # 3d - size
  53. f(g, size=(10, 10, 10))
  54. def comp_state(state1, state2):
  55. identical = True
  56. if isinstance(state1, dict):
  57. for key in state1:
  58. identical &= comp_state(state1[key], state2[key])
  59. elif type(state1) != type(state2):
  60. identical &= type(state1) == type(state2)
  61. else:
  62. if (isinstance(state1, (list, tuple, np.ndarray)) and isinstance(
  63. state2, (list, tuple, np.ndarray))):
  64. for s1, s2 in zip(state1, state2):
  65. identical &= comp_state(s1, s2)
  66. else:
  67. identical &= state1 == state2
  68. return identical
  69. def warmup(rg, n=None):
  70. if n is None:
  71. n = 11 + np.random.randint(0, 20)
  72. rg.standard_normal(n)
  73. rg.standard_normal(n)
  74. rg.standard_normal(n, dtype=np.float32)
  75. rg.standard_normal(n, dtype=np.float32)
  76. rg.integers(0, 2 ** 24, n, dtype=np.uint64)
  77. rg.integers(0, 2 ** 48, n, dtype=np.uint64)
  78. rg.standard_gamma(11.0, n)
  79. rg.standard_gamma(11.0, n, dtype=np.float32)
  80. rg.random(n, dtype=np.float64)
  81. rg.random(n, dtype=np.float32)
  82. class RNG(object):
  83. @classmethod
  84. def setup_class(cls):
  85. # Overridden in test classes. Place holder to silence IDE noise
  86. cls.bit_generator = PCG64
  87. cls.advance = None
  88. cls.seed = [12345]
  89. cls.rg = Generator(cls.bit_generator(*cls.seed))
  90. cls.initial_state = cls.rg.bit_generator.state
  91. cls.seed_vector_bits = 64
  92. cls._extra_setup()
  93. @classmethod
  94. def _extra_setup(cls):
  95. cls.vec_1d = np.arange(2.0, 102.0)
  96. cls.vec_2d = np.arange(2.0, 102.0)[None, :]
  97. cls.mat = np.arange(2.0, 102.0, 0.01).reshape((100, 100))
  98. cls.seed_error = TypeError
  99. def _reset_state(self):
  100. self.rg.bit_generator.state = self.initial_state
  101. def test_init(self):
  102. rg = Generator(self.bit_generator())
  103. state = rg.bit_generator.state
  104. rg.standard_normal(1)
  105. rg.standard_normal(1)
  106. rg.bit_generator.state = state
  107. new_state = rg.bit_generator.state
  108. assert_(comp_state(state, new_state))
  109. def test_advance(self):
  110. state = self.rg.bit_generator.state
  111. if hasattr(self.rg.bit_generator, 'advance'):
  112. self.rg.bit_generator.advance(self.advance)
  113. assert_(not comp_state(state, self.rg.bit_generator.state))
  114. else:
  115. bitgen_name = self.rg.bit_generator.__class__.__name__
  116. pytest.skip('Advance is not supported by {0}'.format(bitgen_name))
  117. def test_jump(self):
  118. state = self.rg.bit_generator.state
  119. if hasattr(self.rg.bit_generator, 'jumped'):
  120. bit_gen2 = self.rg.bit_generator.jumped()
  121. jumped_state = bit_gen2.state
  122. assert_(not comp_state(state, jumped_state))
  123. self.rg.random(2 * 3 * 5 * 7 * 11 * 13 * 17)
  124. self.rg.bit_generator.state = state
  125. bit_gen3 = self.rg.bit_generator.jumped()
  126. rejumped_state = bit_gen3.state
  127. assert_(comp_state(jumped_state, rejumped_state))
  128. else:
  129. bitgen_name = self.rg.bit_generator.__class__.__name__
  130. if bitgen_name not in ('SFC64',):
  131. raise AttributeError('no "jumped" in %s' % bitgen_name)
  132. pytest.skip('Jump is not supported by {0}'.format(bitgen_name))
  133. def test_uniform(self):
  134. r = self.rg.uniform(-1.0, 0.0, size=10)
  135. assert_(len(r) == 10)
  136. assert_((r > -1).all())
  137. assert_((r <= 0).all())
  138. def test_uniform_array(self):
  139. r = self.rg.uniform(np.array([-1.0] * 10), 0.0, size=10)
  140. assert_(len(r) == 10)
  141. assert_((r > -1).all())
  142. assert_((r <= 0).all())
  143. r = self.rg.uniform(np.array([-1.0] * 10),
  144. np.array([0.0] * 10), size=10)
  145. assert_(len(r) == 10)
  146. assert_((r > -1).all())
  147. assert_((r <= 0).all())
  148. r = self.rg.uniform(-1.0, np.array([0.0] * 10), size=10)
  149. assert_(len(r) == 10)
  150. assert_((r > -1).all())
  151. assert_((r <= 0).all())
  152. def test_random(self):
  153. assert_(len(self.rg.random(10)) == 10)
  154. params_0(self.rg.random)
  155. def test_standard_normal_zig(self):
  156. assert_(len(self.rg.standard_normal(10)) == 10)
  157. def test_standard_normal(self):
  158. assert_(len(self.rg.standard_normal(10)) == 10)
  159. params_0(self.rg.standard_normal)
  160. def test_standard_gamma(self):
  161. assert_(len(self.rg.standard_gamma(10, 10)) == 10)
  162. assert_(len(self.rg.standard_gamma(np.array([10] * 10), 10)) == 10)
  163. params_1(self.rg.standard_gamma)
  164. def test_standard_exponential(self):
  165. assert_(len(self.rg.standard_exponential(10)) == 10)
  166. params_0(self.rg.standard_exponential)
  167. def test_standard_exponential_float(self):
  168. randoms = self.rg.standard_exponential(10, dtype='float32')
  169. assert_(len(randoms) == 10)
  170. assert randoms.dtype == np.float32
  171. params_0(partial(self.rg.standard_exponential, dtype='float32'))
  172. def test_standard_exponential_float_log(self):
  173. randoms = self.rg.standard_exponential(10, dtype='float32',
  174. method='inv')
  175. assert_(len(randoms) == 10)
  176. assert randoms.dtype == np.float32
  177. params_0(partial(self.rg.standard_exponential, dtype='float32',
  178. method='inv'))
  179. def test_standard_cauchy(self):
  180. assert_(len(self.rg.standard_cauchy(10)) == 10)
  181. params_0(self.rg.standard_cauchy)
  182. def test_standard_t(self):
  183. assert_(len(self.rg.standard_t(10, 10)) == 10)
  184. params_1(self.rg.standard_t)
  185. def test_binomial(self):
  186. assert_(self.rg.binomial(10, .5) >= 0)
  187. assert_(self.rg.binomial(1000, .5) >= 0)
  188. def test_reset_state(self):
  189. state = self.rg.bit_generator.state
  190. int_1 = self.rg.integers(2**31)
  191. self.rg.bit_generator.state = state
  192. int_2 = self.rg.integers(2**31)
  193. assert_(int_1 == int_2)
  194. def test_entropy_init(self):
  195. rg = Generator(self.bit_generator())
  196. rg2 = Generator(self.bit_generator())
  197. assert_(not comp_state(rg.bit_generator.state,
  198. rg2.bit_generator.state))
  199. def test_seed(self):
  200. rg = Generator(self.bit_generator(*self.seed))
  201. rg2 = Generator(self.bit_generator(*self.seed))
  202. rg.random()
  203. rg2.random()
  204. assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
  205. def test_reset_state_gauss(self):
  206. rg = Generator(self.bit_generator(*self.seed))
  207. rg.standard_normal()
  208. state = rg.bit_generator.state
  209. n1 = rg.standard_normal(size=10)
  210. rg2 = Generator(self.bit_generator())
  211. rg2.bit_generator.state = state
  212. n2 = rg2.standard_normal(size=10)
  213. assert_array_equal(n1, n2)
  214. def test_reset_state_uint32(self):
  215. rg = Generator(self.bit_generator(*self.seed))
  216. rg.integers(0, 2 ** 24, 120, dtype=np.uint32)
  217. state = rg.bit_generator.state
  218. n1 = rg.integers(0, 2 ** 24, 10, dtype=np.uint32)
  219. rg2 = Generator(self.bit_generator())
  220. rg2.bit_generator.state = state
  221. n2 = rg2.integers(0, 2 ** 24, 10, dtype=np.uint32)
  222. assert_array_equal(n1, n2)
  223. def test_reset_state_float(self):
  224. rg = Generator(self.bit_generator(*self.seed))
  225. rg.random(dtype='float32')
  226. state = rg.bit_generator.state
  227. n1 = rg.random(size=10, dtype='float32')
  228. rg2 = Generator(self.bit_generator())
  229. rg2.bit_generator.state = state
  230. n2 = rg2.random(size=10, dtype='float32')
  231. assert_((n1 == n2).all())
  232. def test_shuffle(self):
  233. original = np.arange(200, 0, -1)
  234. permuted = self.rg.permutation(original)
  235. assert_((original != permuted).any())
  236. def test_permutation(self):
  237. original = np.arange(200, 0, -1)
  238. permuted = self.rg.permutation(original)
  239. assert_((original != permuted).any())
  240. def test_beta(self):
  241. vals = self.rg.beta(2.0, 2.0, 10)
  242. assert_(len(vals) == 10)
  243. vals = self.rg.beta(np.array([2.0] * 10), 2.0)
  244. assert_(len(vals) == 10)
  245. vals = self.rg.beta(2.0, np.array([2.0] * 10))
  246. assert_(len(vals) == 10)
  247. vals = self.rg.beta(np.array([2.0] * 10), np.array([2.0] * 10))
  248. assert_(len(vals) == 10)
  249. vals = self.rg.beta(np.array([2.0] * 10), np.array([[2.0]] * 10))
  250. assert_(vals.shape == (10, 10))
  251. def test_bytes(self):
  252. vals = self.rg.bytes(10)
  253. assert_(len(vals) == 10)
  254. def test_chisquare(self):
  255. vals = self.rg.chisquare(2.0, 10)
  256. assert_(len(vals) == 10)
  257. params_1(self.rg.chisquare)
  258. def test_exponential(self):
  259. vals = self.rg.exponential(2.0, 10)
  260. assert_(len(vals) == 10)
  261. params_1(self.rg.exponential)
  262. def test_f(self):
  263. vals = self.rg.f(3, 1000, 10)
  264. assert_(len(vals) == 10)
  265. def test_gamma(self):
  266. vals = self.rg.gamma(3, 2, 10)
  267. assert_(len(vals) == 10)
  268. def test_geometric(self):
  269. vals = self.rg.geometric(0.5, 10)
  270. assert_(len(vals) == 10)
  271. params_1(self.rg.exponential, bounded=True)
  272. def test_gumbel(self):
  273. vals = self.rg.gumbel(2.0, 2.0, 10)
  274. assert_(len(vals) == 10)
  275. def test_laplace(self):
  276. vals = self.rg.laplace(2.0, 2.0, 10)
  277. assert_(len(vals) == 10)
  278. def test_logitic(self):
  279. vals = self.rg.logistic(2.0, 2.0, 10)
  280. assert_(len(vals) == 10)
  281. def test_logseries(self):
  282. vals = self.rg.logseries(0.5, 10)
  283. assert_(len(vals) == 10)
  284. def test_negative_binomial(self):
  285. vals = self.rg.negative_binomial(10, 0.2, 10)
  286. assert_(len(vals) == 10)
  287. def test_noncentral_chisquare(self):
  288. vals = self.rg.noncentral_chisquare(10, 2, 10)
  289. assert_(len(vals) == 10)
  290. def test_noncentral_f(self):
  291. vals = self.rg.noncentral_f(3, 1000, 2, 10)
  292. assert_(len(vals) == 10)
  293. vals = self.rg.noncentral_f(np.array([3] * 10), 1000, 2)
  294. assert_(len(vals) == 10)
  295. vals = self.rg.noncentral_f(3, np.array([1000] * 10), 2)
  296. assert_(len(vals) == 10)
  297. vals = self.rg.noncentral_f(3, 1000, np.array([2] * 10))
  298. assert_(len(vals) == 10)
  299. def test_normal(self):
  300. vals = self.rg.normal(10, 0.2, 10)
  301. assert_(len(vals) == 10)
  302. def test_pareto(self):
  303. vals = self.rg.pareto(3.0, 10)
  304. assert_(len(vals) == 10)
  305. def test_poisson(self):
  306. vals = self.rg.poisson(10, 10)
  307. assert_(len(vals) == 10)
  308. vals = self.rg.poisson(np.array([10] * 10))
  309. assert_(len(vals) == 10)
  310. params_1(self.rg.poisson)
  311. def test_power(self):
  312. vals = self.rg.power(0.2, 10)
  313. assert_(len(vals) == 10)
  314. def test_integers(self):
  315. vals = self.rg.integers(10, 20, 10)
  316. assert_(len(vals) == 10)
  317. def test_rayleigh(self):
  318. vals = self.rg.rayleigh(0.2, 10)
  319. assert_(len(vals) == 10)
  320. params_1(self.rg.rayleigh, bounded=True)
  321. def test_vonmises(self):
  322. vals = self.rg.vonmises(10, 0.2, 10)
  323. assert_(len(vals) == 10)
  324. def test_wald(self):
  325. vals = self.rg.wald(1.0, 1.0, 10)
  326. assert_(len(vals) == 10)
  327. def test_weibull(self):
  328. vals = self.rg.weibull(1.0, 10)
  329. assert_(len(vals) == 10)
  330. def test_zipf(self):
  331. vals = self.rg.zipf(10, 10)
  332. assert_(len(vals) == 10)
  333. vals = self.rg.zipf(self.vec_1d)
  334. assert_(len(vals) == 100)
  335. vals = self.rg.zipf(self.vec_2d)
  336. assert_(vals.shape == (1, 100))
  337. vals = self.rg.zipf(self.mat)
  338. assert_(vals.shape == (100, 100))
  339. def test_hypergeometric(self):
  340. vals = self.rg.hypergeometric(25, 25, 20)
  341. assert_(np.isscalar(vals))
  342. vals = self.rg.hypergeometric(np.array([25] * 10), 25, 20)
  343. assert_(vals.shape == (10,))
  344. def test_triangular(self):
  345. vals = self.rg.triangular(-5, 0, 5)
  346. assert_(np.isscalar(vals))
  347. vals = self.rg.triangular(-5, np.array([0] * 10), 5)
  348. assert_(vals.shape == (10,))
  349. def test_multivariate_normal(self):
  350. mean = [0, 0]
  351. cov = [[1, 0], [0, 100]] # diagonal covariance
  352. x = self.rg.multivariate_normal(mean, cov, 5000)
  353. assert_(x.shape == (5000, 2))
  354. x_zig = self.rg.multivariate_normal(mean, cov, 5000)
  355. assert_(x.shape == (5000, 2))
  356. x_inv = self.rg.multivariate_normal(mean, cov, 5000)
  357. assert_(x.shape == (5000, 2))
  358. assert_((x_zig != x_inv).any())
  359. def test_multinomial(self):
  360. vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3])
  361. assert_(vals.shape == (2,))
  362. vals = self.rg.multinomial(100, [1.0 / 3, 2.0 / 3], size=10)
  363. assert_(vals.shape == (10, 2))
  364. def test_dirichlet(self):
  365. s = self.rg.dirichlet((10, 5, 3), 20)
  366. assert_(s.shape == (20, 3))
  367. def test_pickle(self):
  368. pick = pickle.dumps(self.rg)
  369. unpick = pickle.loads(pick)
  370. assert_((type(self.rg) == type(unpick)))
  371. assert_(comp_state(self.rg.bit_generator.state,
  372. unpick.bit_generator.state))
  373. pick = pickle.dumps(self.rg)
  374. unpick = pickle.loads(pick)
  375. assert_((type(self.rg) == type(unpick)))
  376. assert_(comp_state(self.rg.bit_generator.state,
  377. unpick.bit_generator.state))
  378. def test_seed_array(self):
  379. if self.seed_vector_bits is None:
  380. bitgen_name = self.bit_generator.__name__
  381. pytest.skip('Vector seeding is not supported by '
  382. '{0}'.format(bitgen_name))
  383. if self.seed_vector_bits == 32:
  384. dtype = np.uint32
  385. else:
  386. dtype = np.uint64
  387. seed = np.array([1], dtype=dtype)
  388. bg = self.bit_generator(seed)
  389. state1 = bg.state
  390. bg = self.bit_generator(1)
  391. state2 = bg.state
  392. assert_(comp_state(state1, state2))
  393. seed = np.arange(4, dtype=dtype)
  394. bg = self.bit_generator(seed)
  395. state1 = bg.state
  396. bg = self.bit_generator(seed[0])
  397. state2 = bg.state
  398. assert_(not comp_state(state1, state2))
  399. seed = np.arange(1500, dtype=dtype)
  400. bg = self.bit_generator(seed)
  401. state1 = bg.state
  402. bg = self.bit_generator(seed[0])
  403. state2 = bg.state
  404. assert_(not comp_state(state1, state2))
  405. seed = 2 ** np.mod(np.arange(1500, dtype=dtype),
  406. self.seed_vector_bits - 1) + 1
  407. bg = self.bit_generator(seed)
  408. state1 = bg.state
  409. bg = self.bit_generator(seed[0])
  410. state2 = bg.state
  411. assert_(not comp_state(state1, state2))
  412. def test_uniform_float(self):
  413. rg = Generator(self.bit_generator(12345))
  414. warmup(rg)
  415. state = rg.bit_generator.state
  416. r1 = rg.random(11, dtype=np.float32)
  417. rg2 = Generator(self.bit_generator())
  418. warmup(rg2)
  419. rg2.bit_generator.state = state
  420. r2 = rg2.random(11, dtype=np.float32)
  421. assert_array_equal(r1, r2)
  422. assert_equal(r1.dtype, np.float32)
  423. assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
  424. def test_gamma_floats(self):
  425. rg = Generator(self.bit_generator())
  426. warmup(rg)
  427. state = rg.bit_generator.state
  428. r1 = rg.standard_gamma(4.0, 11, dtype=np.float32)
  429. rg2 = Generator(self.bit_generator())
  430. warmup(rg2)
  431. rg2.bit_generator.state = state
  432. r2 = rg2.standard_gamma(4.0, 11, dtype=np.float32)
  433. assert_array_equal(r1, r2)
  434. assert_equal(r1.dtype, np.float32)
  435. assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
  436. def test_normal_floats(self):
  437. rg = Generator(self.bit_generator())
  438. warmup(rg)
  439. state = rg.bit_generator.state
  440. r1 = rg.standard_normal(11, dtype=np.float32)
  441. rg2 = Generator(self.bit_generator())
  442. warmup(rg2)
  443. rg2.bit_generator.state = state
  444. r2 = rg2.standard_normal(11, dtype=np.float32)
  445. assert_array_equal(r1, r2)
  446. assert_equal(r1.dtype, np.float32)
  447. assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
  448. def test_normal_zig_floats(self):
  449. rg = Generator(self.bit_generator())
  450. warmup(rg)
  451. state = rg.bit_generator.state
  452. r1 = rg.standard_normal(11, dtype=np.float32)
  453. rg2 = Generator(self.bit_generator())
  454. warmup(rg2)
  455. rg2.bit_generator.state = state
  456. r2 = rg2.standard_normal(11, dtype=np.float32)
  457. assert_array_equal(r1, r2)
  458. assert_equal(r1.dtype, np.float32)
  459. assert_(comp_state(rg.bit_generator.state, rg2.bit_generator.state))
  460. def test_output_fill(self):
  461. rg = self.rg
  462. state = rg.bit_generator.state
  463. size = (31, 7, 97)
  464. existing = np.empty(size)
  465. rg.bit_generator.state = state
  466. rg.standard_normal(out=existing)
  467. rg.bit_generator.state = state
  468. direct = rg.standard_normal(size=size)
  469. assert_equal(direct, existing)
  470. sized = np.empty(size)
  471. rg.bit_generator.state = state
  472. rg.standard_normal(out=sized, size=sized.shape)
  473. existing = np.empty(size, dtype=np.float32)
  474. rg.bit_generator.state = state
  475. rg.standard_normal(out=existing, dtype=np.float32)
  476. rg.bit_generator.state = state
  477. direct = rg.standard_normal(size=size, dtype=np.float32)
  478. assert_equal(direct, existing)
  479. def test_output_filling_uniform(self):
  480. rg = self.rg
  481. state = rg.bit_generator.state
  482. size = (31, 7, 97)
  483. existing = np.empty(size)
  484. rg.bit_generator.state = state
  485. rg.random(out=existing)
  486. rg.bit_generator.state = state
  487. direct = rg.random(size=size)
  488. assert_equal(direct, existing)
  489. existing = np.empty(size, dtype=np.float32)
  490. rg.bit_generator.state = state
  491. rg.random(out=existing, dtype=np.float32)
  492. rg.bit_generator.state = state
  493. direct = rg.random(size=size, dtype=np.float32)
  494. assert_equal(direct, existing)
  495. def test_output_filling_exponential(self):
  496. rg = self.rg
  497. state = rg.bit_generator.state
  498. size = (31, 7, 97)
  499. existing = np.empty(size)
  500. rg.bit_generator.state = state
  501. rg.standard_exponential(out=existing)
  502. rg.bit_generator.state = state
  503. direct = rg.standard_exponential(size=size)
  504. assert_equal(direct, existing)
  505. existing = np.empty(size, dtype=np.float32)
  506. rg.bit_generator.state = state
  507. rg.standard_exponential(out=existing, dtype=np.float32)
  508. rg.bit_generator.state = state
  509. direct = rg.standard_exponential(size=size, dtype=np.float32)
  510. assert_equal(direct, existing)
  511. def test_output_filling_gamma(self):
  512. rg = self.rg
  513. state = rg.bit_generator.state
  514. size = (31, 7, 97)
  515. existing = np.zeros(size)
  516. rg.bit_generator.state = state
  517. rg.standard_gamma(1.0, out=existing)
  518. rg.bit_generator.state = state
  519. direct = rg.standard_gamma(1.0, size=size)
  520. assert_equal(direct, existing)
  521. existing = np.zeros(size, dtype=np.float32)
  522. rg.bit_generator.state = state
  523. rg.standard_gamma(1.0, out=existing, dtype=np.float32)
  524. rg.bit_generator.state = state
  525. direct = rg.standard_gamma(1.0, size=size, dtype=np.float32)
  526. assert_equal(direct, existing)
  527. def test_output_filling_gamma_broadcast(self):
  528. rg = self.rg
  529. state = rg.bit_generator.state
  530. size = (31, 7, 97)
  531. mu = np.arange(97.0) + 1.0
  532. existing = np.zeros(size)
  533. rg.bit_generator.state = state
  534. rg.standard_gamma(mu, out=existing)
  535. rg.bit_generator.state = state
  536. direct = rg.standard_gamma(mu, size=size)
  537. assert_equal(direct, existing)
  538. existing = np.zeros(size, dtype=np.float32)
  539. rg.bit_generator.state = state
  540. rg.standard_gamma(mu, out=existing, dtype=np.float32)
  541. rg.bit_generator.state = state
  542. direct = rg.standard_gamma(mu, size=size, dtype=np.float32)
  543. assert_equal(direct, existing)
  544. def test_output_fill_error(self):
  545. rg = self.rg
  546. size = (31, 7, 97)
  547. existing = np.empty(size)
  548. with pytest.raises(TypeError):
  549. rg.standard_normal(out=existing, dtype=np.float32)
  550. with pytest.raises(ValueError):
  551. rg.standard_normal(out=existing[::3])
  552. existing = np.empty(size, dtype=np.float32)
  553. with pytest.raises(TypeError):
  554. rg.standard_normal(out=existing, dtype=np.float64)
  555. existing = np.zeros(size, dtype=np.float32)
  556. with pytest.raises(TypeError):
  557. rg.standard_gamma(1.0, out=existing, dtype=np.float64)
  558. with pytest.raises(ValueError):
  559. rg.standard_gamma(1.0, out=existing[::3], dtype=np.float32)
  560. existing = np.zeros(size, dtype=np.float64)
  561. with pytest.raises(TypeError):
  562. rg.standard_gamma(1.0, out=existing, dtype=np.float32)
  563. with pytest.raises(ValueError):
  564. rg.standard_gamma(1.0, out=existing[::3])
  565. def test_integers_broadcast(self, dtype):
  566. if dtype == np.bool_:
  567. upper = 2
  568. lower = 0
  569. else:
  570. info = np.iinfo(dtype)
  571. upper = int(info.max) + 1
  572. lower = info.min
  573. self._reset_state()
  574. a = self.rg.integers(lower, [upper] * 10, dtype=dtype)
  575. self._reset_state()
  576. b = self.rg.integers([lower] * 10, upper, dtype=dtype)
  577. assert_equal(a, b)
  578. self._reset_state()
  579. c = self.rg.integers(lower, upper, size=10, dtype=dtype)
  580. assert_equal(a, c)
  581. self._reset_state()
  582. d = self.rg.integers(np.array(
  583. [lower] * 10), np.array([upper], dtype=object), size=10,
  584. dtype=dtype)
  585. assert_equal(a, d)
  586. self._reset_state()
  587. e = self.rg.integers(
  588. np.array([lower] * 10), np.array([upper] * 10), size=10,
  589. dtype=dtype)
  590. assert_equal(a, e)
  591. self._reset_state()
  592. a = self.rg.integers(0, upper, size=10, dtype=dtype)
  593. self._reset_state()
  594. b = self.rg.integers([upper] * 10, dtype=dtype)
  595. assert_equal(a, b)
  596. def test_integers_numpy(self, dtype):
  597. high = np.array([1])
  598. low = np.array([0])
  599. out = self.rg.integers(low, high, dtype=dtype)
  600. assert out.shape == (1,)
  601. out = self.rg.integers(low[0], high, dtype=dtype)
  602. assert out.shape == (1,)
  603. out = self.rg.integers(low, high[0], dtype=dtype)
  604. assert out.shape == (1,)
  605. def test_integers_broadcast_errors(self, dtype):
  606. if dtype == np.bool_:
  607. upper = 2
  608. lower = 0
  609. else:
  610. info = np.iinfo(dtype)
  611. upper = int(info.max) + 1
  612. lower = info.min
  613. with pytest.raises(ValueError):
  614. self.rg.integers(lower, [upper + 1] * 10, dtype=dtype)
  615. with pytest.raises(ValueError):
  616. self.rg.integers(lower - 1, [upper] * 10, dtype=dtype)
  617. with pytest.raises(ValueError):
  618. self.rg.integers([lower - 1], [upper] * 10, dtype=dtype)
  619. with pytest.raises(ValueError):
  620. self.rg.integers([0], [0], dtype=dtype)
  621. class TestMT19937(RNG):
  622. @classmethod
  623. def setup_class(cls):
  624. cls.bit_generator = MT19937
  625. cls.advance = None
  626. cls.seed = [2 ** 21 + 2 ** 16 + 2 ** 5 + 1]
  627. cls.rg = Generator(cls.bit_generator(*cls.seed))
  628. cls.initial_state = cls.rg.bit_generator.state
  629. cls.seed_vector_bits = 32
  630. cls._extra_setup()
  631. cls.seed_error = ValueError
  632. def test_numpy_state(self):
  633. nprg = np.random.RandomState()
  634. nprg.standard_normal(99)
  635. state = nprg.get_state()
  636. self.rg.bit_generator.state = state
  637. state2 = self.rg.bit_generator.state
  638. assert_((state[1] == state2['state']['key']).all())
  639. assert_((state[2] == state2['state']['pos']))
  640. class TestPhilox(RNG):
  641. @classmethod
  642. def setup_class(cls):
  643. cls.bit_generator = Philox
  644. cls.advance = 2**63 + 2**31 + 2**15 + 1
  645. cls.seed = [12345]
  646. cls.rg = Generator(cls.bit_generator(*cls.seed))
  647. cls.initial_state = cls.rg.bit_generator.state
  648. cls.seed_vector_bits = 64
  649. cls._extra_setup()
  650. class TestSFC64(RNG):
  651. @classmethod
  652. def setup_class(cls):
  653. cls.bit_generator = SFC64
  654. cls.advance = None
  655. cls.seed = [12345]
  656. cls.rg = Generator(cls.bit_generator(*cls.seed))
  657. cls.initial_state = cls.rg.bit_generator.state
  658. cls.seed_vector_bits = 192
  659. cls._extra_setup()
  660. class TestPCG64(RNG):
  661. @classmethod
  662. def setup_class(cls):
  663. cls.bit_generator = PCG64
  664. cls.advance = 2**63 + 2**31 + 2**15 + 1
  665. cls.seed = [12345]
  666. cls.rg = Generator(cls.bit_generator(*cls.seed))
  667. cls.initial_state = cls.rg.bit_generator.state
  668. cls.seed_vector_bits = 64
  669. cls._extra_setup()
  670. class TestDefaultRNG(RNG):
  671. @classmethod
  672. def setup_class(cls):
  673. # This will duplicate some tests that directly instantiate a fresh
  674. # Generator(), but that's okay.
  675. cls.bit_generator = PCG64
  676. cls.advance = 2**63 + 2**31 + 2**15 + 1
  677. cls.seed = [12345]
  678. cls.rg = np.random.default_rng(*cls.seed)
  679. cls.initial_state = cls.rg.bit_generator.state
  680. cls.seed_vector_bits = 64
  681. cls._extra_setup()
  682. def test_default_is_pcg64(self):
  683. # In order to change the default BitGenerator, we'll go through
  684. # a deprecation cycle to move to a different function.
  685. assert_(isinstance(self.rg.bit_generator, PCG64))
  686. def test_seed(self):
  687. np.random.default_rng()
  688. np.random.default_rng(None)
  689. np.random.default_rng(12345)
  690. np.random.default_rng(0)
  691. np.random.default_rng(43660444402423911716352051725018508569)
  692. np.random.default_rng([43660444402423911716352051725018508569,
  693. 279705150948142787361475340226491943209])
  694. with pytest.raises(ValueError):
  695. np.random.default_rng(-1)
  696. with pytest.raises(ValueError):
  697. np.random.default_rng([12345, -1])