polynomial.py 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493
  1. """
  2. Objects for dealing with polynomials.
  3. This module provides a number of objects (mostly functions) useful for
  4. dealing with polynomials, including a `Polynomial` class that
  5. encapsulates the usual arithmetic operations. (General information
  6. on how this module represents and works with polynomial objects is in
  7. the docstring for its "parent" sub-package, `numpy.polynomial`).
  8. Constants
  9. ---------
  10. - `polydomain` -- Polynomial default domain, [-1,1].
  11. - `polyzero` -- (Coefficients of the) "zero polynomial."
  12. - `polyone` -- (Coefficients of the) constant polynomial 1.
  13. - `polyx` -- (Coefficients of the) identity map polynomial, ``f(x) = x``.
  14. Arithmetic
  15. ----------
  16. - `polyadd` -- add two polynomials.
  17. - `polysub` -- subtract one polynomial from another.
  18. - `polymulx` -- multiply a polynomial in ``P_i(x)`` by ``x``.
  19. - `polymul` -- multiply two polynomials.
  20. - `polydiv` -- divide one polynomial by another.
  21. - `polypow` -- raise a polynomial to a positive integer power.
  22. - `polyval` -- evaluate a polynomial at given points.
  23. - `polyval2d` -- evaluate a 2D polynomial at given points.
  24. - `polyval3d` -- evaluate a 3D polynomial at given points.
  25. - `polygrid2d` -- evaluate a 2D polynomial on a Cartesian product.
  26. - `polygrid3d` -- evaluate a 3D polynomial on a Cartesian product.
  27. Calculus
  28. --------
  29. - `polyder` -- differentiate a polynomial.
  30. - `polyint` -- integrate a polynomial.
  31. Misc Functions
  32. --------------
  33. - `polyfromroots` -- create a polynomial with specified roots.
  34. - `polyroots` -- find the roots of a polynomial.
  35. - `polyvalfromroots` -- evaluate a polynomial at given points from roots.
  36. - `polyvander` -- Vandermonde-like matrix for powers.
  37. - `polyvander2d` -- Vandermonde-like matrix for 2D power series.
  38. - `polyvander3d` -- Vandermonde-like matrix for 3D power series.
  39. - `polycompanion` -- companion matrix in power series form.
  40. - `polyfit` -- least-squares fit returning a polynomial.
  41. - `polytrim` -- trim leading coefficients from a polynomial.
  42. - `polyline` -- polynomial representing given straight line.
  43. Classes
  44. -------
  45. - `Polynomial` -- polynomial class.
  46. See Also
  47. --------
  48. `numpy.polynomial`
  49. """
  50. from __future__ import division, absolute_import, print_function
  51. __all__ = [
  52. 'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd',
  53. 'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval',
  54. 'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
  55. 'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d',
  56. 'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d']
  57. import warnings
  58. import numpy as np
  59. import numpy.linalg as la
  60. from numpy.core.multiarray import normalize_axis_index
  61. from . import polyutils as pu
  62. from ._polybase import ABCPolyBase
  63. polytrim = pu.trimcoef
  64. #
  65. # These are constant arrays are of integer type so as to be compatible
  66. # with the widest range of other types, such as Decimal.
  67. #
  68. # Polynomial default domain.
  69. polydomain = np.array([-1, 1])
  70. # Polynomial coefficients representing zero.
  71. polyzero = np.array([0])
  72. # Polynomial coefficients representing one.
  73. polyone = np.array([1])
  74. # Polynomial coefficients representing the identity x.
  75. polyx = np.array([0, 1])
  76. #
  77. # Polynomial series functions
  78. #
  79. def polyline(off, scl):
  80. """
  81. Returns an array representing a linear polynomial.
  82. Parameters
  83. ----------
  84. off, scl : scalars
  85. The "y-intercept" and "slope" of the line, respectively.
  86. Returns
  87. -------
  88. y : ndarray
  89. This module's representation of the linear polynomial ``off +
  90. scl*x``.
  91. See Also
  92. --------
  93. chebline
  94. Examples
  95. --------
  96. >>> from numpy.polynomial import polynomial as P
  97. >>> P.polyline(1,-1)
  98. array([ 1, -1])
  99. >>> P.polyval(1, P.polyline(1,-1)) # should be 0
  100. 0.0
  101. """
  102. if scl != 0:
  103. return np.array([off, scl])
  104. else:
  105. return np.array([off])
  106. def polyfromroots(roots):
  107. """
  108. Generate a monic polynomial with given roots.
  109. Return the coefficients of the polynomial
  110. .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
  111. where the `r_n` are the roots specified in `roots`. If a zero has
  112. multiplicity n, then it must appear in `roots` n times. For instance,
  113. if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
  114. then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear
  115. in any order.
  116. If the returned coefficients are `c`, then
  117. .. math:: p(x) = c_0 + c_1 * x + ... + x^n
  118. The coefficient of the last term is 1 for monic polynomials in this
  119. form.
  120. Parameters
  121. ----------
  122. roots : array_like
  123. Sequence containing the roots.
  124. Returns
  125. -------
  126. out : ndarray
  127. 1-D array of the polynomial's coefficients If all the roots are
  128. real, then `out` is also real, otherwise it is complex. (see
  129. Examples below).
  130. See Also
  131. --------
  132. chebfromroots, legfromroots, lagfromroots, hermfromroots
  133. hermefromroots
  134. Notes
  135. -----
  136. The coefficients are determined by multiplying together linear factors
  137. of the form `(x - r_i)`, i.e.
  138. .. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n)
  139. where ``n == len(roots) - 1``; note that this implies that `1` is always
  140. returned for :math:`a_n`.
  141. Examples
  142. --------
  143. >>> from numpy.polynomial import polynomial as P
  144. >>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
  145. array([ 0., -1., 0., 1.])
  146. >>> j = complex(0,1)
  147. >>> P.polyfromroots((-j,j)) # complex returned, though values are real
  148. array([1.+0.j, 0.+0.j, 1.+0.j])
  149. """
  150. return pu._fromroots(polyline, polymul, roots)
  151. def polyadd(c1, c2):
  152. """
  153. Add one polynomial to another.
  154. Returns the sum of two polynomials `c1` + `c2`. The arguments are
  155. sequences of coefficients from lowest order term to highest, i.e.,
  156. [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
  157. Parameters
  158. ----------
  159. c1, c2 : array_like
  160. 1-D arrays of polynomial coefficients ordered from low to high.
  161. Returns
  162. -------
  163. out : ndarray
  164. The coefficient array representing their sum.
  165. See Also
  166. --------
  167. polysub, polymulx, polymul, polydiv, polypow
  168. Examples
  169. --------
  170. >>> from numpy.polynomial import polynomial as P
  171. >>> c1 = (1,2,3)
  172. >>> c2 = (3,2,1)
  173. >>> sum = P.polyadd(c1,c2); sum
  174. array([4., 4., 4.])
  175. >>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
  176. 28.0
  177. """
  178. return pu._add(c1, c2)
  179. def polysub(c1, c2):
  180. """
  181. Subtract one polynomial from another.
  182. Returns the difference of two polynomials `c1` - `c2`. The arguments
  183. are sequences of coefficients from lowest order term to highest, i.e.,
  184. [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
  185. Parameters
  186. ----------
  187. c1, c2 : array_like
  188. 1-D arrays of polynomial coefficients ordered from low to
  189. high.
  190. Returns
  191. -------
  192. out : ndarray
  193. Of coefficients representing their difference.
  194. See Also
  195. --------
  196. polyadd, polymulx, polymul, polydiv, polypow
  197. Examples
  198. --------
  199. >>> from numpy.polynomial import polynomial as P
  200. >>> c1 = (1,2,3)
  201. >>> c2 = (3,2,1)
  202. >>> P.polysub(c1,c2)
  203. array([-2., 0., 2.])
  204. >>> P.polysub(c2,c1) # -P.polysub(c1,c2)
  205. array([ 2., 0., -2.])
  206. """
  207. return pu._sub(c1, c2)
  208. def polymulx(c):
  209. """Multiply a polynomial by x.
  210. Multiply the polynomial `c` by x, where x is the independent
  211. variable.
  212. Parameters
  213. ----------
  214. c : array_like
  215. 1-D array of polynomial coefficients ordered from low to
  216. high.
  217. Returns
  218. -------
  219. out : ndarray
  220. Array representing the result of the multiplication.
  221. See Also
  222. --------
  223. polyadd, polysub, polymul, polydiv, polypow
  224. Notes
  225. -----
  226. .. versionadded:: 1.5.0
  227. """
  228. # c is a trimmed copy
  229. [c] = pu.as_series([c])
  230. # The zero series needs special treatment
  231. if len(c) == 1 and c[0] == 0:
  232. return c
  233. prd = np.empty(len(c) + 1, dtype=c.dtype)
  234. prd[0] = c[0]*0
  235. prd[1:] = c
  236. return prd
  237. def polymul(c1, c2):
  238. """
  239. Multiply one polynomial by another.
  240. Returns the product of two polynomials `c1` * `c2`. The arguments are
  241. sequences of coefficients, from lowest order term to highest, e.g.,
  242. [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``
  243. Parameters
  244. ----------
  245. c1, c2 : array_like
  246. 1-D arrays of coefficients representing a polynomial, relative to the
  247. "standard" basis, and ordered from lowest order term to highest.
  248. Returns
  249. -------
  250. out : ndarray
  251. Of the coefficients of their product.
  252. See Also
  253. --------
  254. polyadd, polysub, polymulx, polydiv, polypow
  255. Examples
  256. --------
  257. >>> from numpy.polynomial import polynomial as P
  258. >>> c1 = (1,2,3)
  259. >>> c2 = (3,2,1)
  260. >>> P.polymul(c1,c2)
  261. array([ 3., 8., 14., 8., 3.])
  262. """
  263. # c1, c2 are trimmed copies
  264. [c1, c2] = pu.as_series([c1, c2])
  265. ret = np.convolve(c1, c2)
  266. return pu.trimseq(ret)
  267. def polydiv(c1, c2):
  268. """
  269. Divide one polynomial by another.
  270. Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
  271. The arguments are sequences of coefficients, from lowest order term
  272. to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.
  273. Parameters
  274. ----------
  275. c1, c2 : array_like
  276. 1-D arrays of polynomial coefficients ordered from low to high.
  277. Returns
  278. -------
  279. [quo, rem] : ndarrays
  280. Of coefficient series representing the quotient and remainder.
  281. See Also
  282. --------
  283. polyadd, polysub, polymulx, polymul, polypow
  284. Examples
  285. --------
  286. >>> from numpy.polynomial import polynomial as P
  287. >>> c1 = (1,2,3)
  288. >>> c2 = (3,2,1)
  289. >>> P.polydiv(c1,c2)
  290. (array([3.]), array([-8., -4.]))
  291. >>> P.polydiv(c2,c1)
  292. (array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary
  293. """
  294. # c1, c2 are trimmed copies
  295. [c1, c2] = pu.as_series([c1, c2])
  296. if c2[-1] == 0:
  297. raise ZeroDivisionError()
  298. # note: this is more efficient than `pu._div(polymul, c1, c2)`
  299. lc1 = len(c1)
  300. lc2 = len(c2)
  301. if lc1 < lc2:
  302. return c1[:1]*0, c1
  303. elif lc2 == 1:
  304. return c1/c2[-1], c1[:1]*0
  305. else:
  306. dlen = lc1 - lc2
  307. scl = c2[-1]
  308. c2 = c2[:-1]/scl
  309. i = dlen
  310. j = lc1 - 1
  311. while i >= 0:
  312. c1[i:j] -= c2*c1[j]
  313. i -= 1
  314. j -= 1
  315. return c1[j+1:]/scl, pu.trimseq(c1[:j+1])
  316. def polypow(c, pow, maxpower=None):
  317. """Raise a polynomial to a power.
  318. Returns the polynomial `c` raised to the power `pow`. The argument
  319. `c` is a sequence of coefficients ordered from low to high. i.e.,
  320. [1,2,3] is the series ``1 + 2*x + 3*x**2.``
  321. Parameters
  322. ----------
  323. c : array_like
  324. 1-D array of array of series coefficients ordered from low to
  325. high degree.
  326. pow : integer
  327. Power to which the series will be raised
  328. maxpower : integer, optional
  329. Maximum power allowed. This is mainly to limit growth of the series
  330. to unmanageable size. Default is 16
  331. Returns
  332. -------
  333. coef : ndarray
  334. Power series of power.
  335. See Also
  336. --------
  337. polyadd, polysub, polymulx, polymul, polydiv
  338. Examples
  339. --------
  340. >>> from numpy.polynomial import polynomial as P
  341. >>> P.polypow([1,2,3], 2)
  342. array([ 1., 4., 10., 12., 9.])
  343. """
  344. # note: this is more efficient than `pu._pow(polymul, c1, c2)`, as it
  345. # avoids calling `as_series` repeatedly
  346. return pu._pow(np.convolve, c, pow, maxpower)
  347. def polyder(c, m=1, scl=1, axis=0):
  348. """
  349. Differentiate a polynomial.
  350. Returns the polynomial coefficients `c` differentiated `m` times along
  351. `axis`. At each iteration the result is multiplied by `scl` (the
  352. scaling factor is for use in a linear change of variable). The
  353. argument `c` is an array of coefficients from low to high degree along
  354. each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``
  355. while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is
  356. ``x`` and axis=1 is ``y``.
  357. Parameters
  358. ----------
  359. c : array_like
  360. Array of polynomial coefficients. If c is multidimensional the
  361. different axis correspond to different variables with the degree
  362. in each axis given by the corresponding index.
  363. m : int, optional
  364. Number of derivatives taken, must be non-negative. (Default: 1)
  365. scl : scalar, optional
  366. Each differentiation is multiplied by `scl`. The end result is
  367. multiplication by ``scl**m``. This is for use in a linear change
  368. of variable. (Default: 1)
  369. axis : int, optional
  370. Axis over which the derivative is taken. (Default: 0).
  371. .. versionadded:: 1.7.0
  372. Returns
  373. -------
  374. der : ndarray
  375. Polynomial coefficients of the derivative.
  376. See Also
  377. --------
  378. polyint
  379. Examples
  380. --------
  381. >>> from numpy.polynomial import polynomial as P
  382. >>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
  383. >>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
  384. array([ 2., 6., 12.])
  385. >>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
  386. array([24.])
  387. >>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
  388. array([ -2., -6., -12.])
  389. >>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
  390. array([ 6., 24.])
  391. """
  392. c = np.array(c, ndmin=1, copy=True)
  393. if c.dtype.char in '?bBhHiIlLqQpP':
  394. # astype fails with NA
  395. c = c + 0.0
  396. cdt = c.dtype
  397. cnt = pu._deprecate_as_int(m, "the order of derivation")
  398. iaxis = pu._deprecate_as_int(axis, "the axis")
  399. if cnt < 0:
  400. raise ValueError("The order of derivation must be non-negative")
  401. iaxis = normalize_axis_index(iaxis, c.ndim)
  402. if cnt == 0:
  403. return c
  404. c = np.moveaxis(c, iaxis, 0)
  405. n = len(c)
  406. if cnt >= n:
  407. c = c[:1]*0
  408. else:
  409. for i in range(cnt):
  410. n = n - 1
  411. c *= scl
  412. der = np.empty((n,) + c.shape[1:], dtype=cdt)
  413. for j in range(n, 0, -1):
  414. der[j - 1] = j*c[j]
  415. c = der
  416. c = np.moveaxis(c, 0, iaxis)
  417. return c
  418. def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
  419. """
  420. Integrate a polynomial.
  421. Returns the polynomial coefficients `c` integrated `m` times from
  422. `lbnd` along `axis`. At each iteration the resulting series is
  423. **multiplied** by `scl` and an integration constant, `k`, is added.
  424. The scaling factor is for use in a linear change of variable. ("Buyer
  425. beware": note that, depending on what one is doing, one may want `scl`
  426. to be the reciprocal of what one might expect; for more information,
  427. see the Notes section below.) The argument `c` is an array of
  428. coefficients, from low to high degree along each axis, e.g., [1,2,3]
  429. represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]]
  430. represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is
  431. ``y``.
  432. Parameters
  433. ----------
  434. c : array_like
  435. 1-D array of polynomial coefficients, ordered from low to high.
  436. m : int, optional
  437. Order of integration, must be positive. (Default: 1)
  438. k : {[], list, scalar}, optional
  439. Integration constant(s). The value of the first integral at zero
  440. is the first value in the list, the value of the second integral
  441. at zero is the second value, etc. If ``k == []`` (the default),
  442. all constants are set to zero. If ``m == 1``, a single scalar can
  443. be given instead of a list.
  444. lbnd : scalar, optional
  445. The lower bound of the integral. (Default: 0)
  446. scl : scalar, optional
  447. Following each integration the result is *multiplied* by `scl`
  448. before the integration constant is added. (Default: 1)
  449. axis : int, optional
  450. Axis over which the integral is taken. (Default: 0).
  451. .. versionadded:: 1.7.0
  452. Returns
  453. -------
  454. S : ndarray
  455. Coefficient array of the integral.
  456. Raises
  457. ------
  458. ValueError
  459. If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
  460. ``np.ndim(scl) != 0``.
  461. See Also
  462. --------
  463. polyder
  464. Notes
  465. -----
  466. Note that the result of each integration is *multiplied* by `scl`. Why
  467. is this important to note? Say one is making a linear change of
  468. variable :math:`u = ax + b` in an integral relative to `x`. Then
  469. :math:`dx = du/a`, so one will need to set `scl` equal to
  470. :math:`1/a` - perhaps not what one would have first thought.
  471. Examples
  472. --------
  473. >>> from numpy.polynomial import polynomial as P
  474. >>> c = (1,2,3)
  475. >>> P.polyint(c) # should return array([0, 1, 1, 1])
  476. array([0., 1., 1., 1.])
  477. >>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
  478. array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary
  479. 0.05 ])
  480. >>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
  481. array([3., 1., 1., 1.])
  482. >>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
  483. array([6., 1., 1., 1.])
  484. >>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
  485. array([ 0., -2., -2., -2.])
  486. """
  487. c = np.array(c, ndmin=1, copy=True)
  488. if c.dtype.char in '?bBhHiIlLqQpP':
  489. # astype doesn't preserve mask attribute.
  490. c = c + 0.0
  491. cdt = c.dtype
  492. if not np.iterable(k):
  493. k = [k]
  494. cnt = pu._deprecate_as_int(m, "the order of integration")
  495. iaxis = pu._deprecate_as_int(axis, "the axis")
  496. if cnt < 0:
  497. raise ValueError("The order of integration must be non-negative")
  498. if len(k) > cnt:
  499. raise ValueError("Too many integration constants")
  500. if np.ndim(lbnd) != 0:
  501. raise ValueError("lbnd must be a scalar.")
  502. if np.ndim(scl) != 0:
  503. raise ValueError("scl must be a scalar.")
  504. iaxis = normalize_axis_index(iaxis, c.ndim)
  505. if cnt == 0:
  506. return c
  507. k = list(k) + [0]*(cnt - len(k))
  508. c = np.moveaxis(c, iaxis, 0)
  509. for i in range(cnt):
  510. n = len(c)
  511. c *= scl
  512. if n == 1 and np.all(c[0] == 0):
  513. c[0] += k[i]
  514. else:
  515. tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
  516. tmp[0] = c[0]*0
  517. tmp[1] = c[0]
  518. for j in range(1, n):
  519. tmp[j + 1] = c[j]/(j + 1)
  520. tmp[0] += k[i] - polyval(lbnd, tmp)
  521. c = tmp
  522. c = np.moveaxis(c, 0, iaxis)
  523. return c
  524. def polyval(x, c, tensor=True):
  525. """
  526. Evaluate a polynomial at points x.
  527. If `c` is of length `n + 1`, this function returns the value
  528. .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n
  529. The parameter `x` is converted to an array only if it is a tuple or a
  530. list, otherwise it is treated as a scalar. In either case, either `x`
  531. or its elements must support multiplication and addition both with
  532. themselves and with the elements of `c`.
  533. If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
  534. `c` is multidimensional, then the shape of the result depends on the
  535. value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
  536. x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
  537. scalars have shape (,).
  538. Trailing zeros in the coefficients will be used in the evaluation, so
  539. they should be avoided if efficiency is a concern.
  540. Parameters
  541. ----------
  542. x : array_like, compatible object
  543. If `x` is a list or tuple, it is converted to an ndarray, otherwise
  544. it is left unchanged and treated as a scalar. In either case, `x`
  545. or its elements must support addition and multiplication with
  546. with themselves and with the elements of `c`.
  547. c : array_like
  548. Array of coefficients ordered so that the coefficients for terms of
  549. degree n are contained in c[n]. If `c` is multidimensional the
  550. remaining indices enumerate multiple polynomials. In the two
  551. dimensional case the coefficients may be thought of as stored in
  552. the columns of `c`.
  553. tensor : boolean, optional
  554. If True, the shape of the coefficient array is extended with ones
  555. on the right, one for each dimension of `x`. Scalars have dimension 0
  556. for this action. The result is that every column of coefficients in
  557. `c` is evaluated for every element of `x`. If False, `x` is broadcast
  558. over the columns of `c` for the evaluation. This keyword is useful
  559. when `c` is multidimensional. The default value is True.
  560. .. versionadded:: 1.7.0
  561. Returns
  562. -------
  563. values : ndarray, compatible object
  564. The shape of the returned array is described above.
  565. See Also
  566. --------
  567. polyval2d, polygrid2d, polyval3d, polygrid3d
  568. Notes
  569. -----
  570. The evaluation uses Horner's method.
  571. Examples
  572. --------
  573. >>> from numpy.polynomial.polynomial import polyval
  574. >>> polyval(1, [1,2,3])
  575. 6.0
  576. >>> a = np.arange(4).reshape(2,2)
  577. >>> a
  578. array([[0, 1],
  579. [2, 3]])
  580. >>> polyval(a, [1,2,3])
  581. array([[ 1., 6.],
  582. [17., 34.]])
  583. >>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
  584. >>> coef
  585. array([[0, 1],
  586. [2, 3]])
  587. >>> polyval([1,2], coef, tensor=True)
  588. array([[2., 4.],
  589. [4., 7.]])
  590. >>> polyval([1,2], coef, tensor=False)
  591. array([2., 7.])
  592. """
  593. c = np.array(c, ndmin=1, copy=False)
  594. if c.dtype.char in '?bBhHiIlLqQpP':
  595. # astype fails with NA
  596. c = c + 0.0
  597. if isinstance(x, (tuple, list)):
  598. x = np.asarray(x)
  599. if isinstance(x, np.ndarray) and tensor:
  600. c = c.reshape(c.shape + (1,)*x.ndim)
  601. c0 = c[-1] + x*0
  602. for i in range(2, len(c) + 1):
  603. c0 = c[-i] + c0*x
  604. return c0
  605. def polyvalfromroots(x, r, tensor=True):
  606. """
  607. Evaluate a polynomial specified by its roots at points x.
  608. If `r` is of length `N`, this function returns the value
  609. .. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)
  610. The parameter `x` is converted to an array only if it is a tuple or a
  611. list, otherwise it is treated as a scalar. In either case, either `x`
  612. or its elements must support multiplication and addition both with
  613. themselves and with the elements of `r`.
  614. If `r` is a 1-D array, then `p(x)` will have the same shape as `x`. If `r`
  615. is multidimensional, then the shape of the result depends on the value of
  616. `tensor`. If `tensor is ``True`` the shape will be r.shape[1:] + x.shape;
  617. that is, each polynomial is evaluated at every value of `x`. If `tensor` is
  618. ``False``, the shape will be r.shape[1:]; that is, each polynomial is
  619. evaluated only for the corresponding broadcast value of `x`. Note that
  620. scalars have shape (,).
  621. .. versionadded:: 1.12
  622. Parameters
  623. ----------
  624. x : array_like, compatible object
  625. If `x` is a list or tuple, it is converted to an ndarray, otherwise
  626. it is left unchanged and treated as a scalar. In either case, `x`
  627. or its elements must support addition and multiplication with
  628. with themselves and with the elements of `r`.
  629. r : array_like
  630. Array of roots. If `r` is multidimensional the first index is the
  631. root index, while the remaining indices enumerate multiple
  632. polynomials. For instance, in the two dimensional case the roots
  633. of each polynomial may be thought of as stored in the columns of `r`.
  634. tensor : boolean, optional
  635. If True, the shape of the roots array is extended with ones on the
  636. right, one for each dimension of `x`. Scalars have dimension 0 for this
  637. action. The result is that every column of coefficients in `r` is
  638. evaluated for every element of `x`. If False, `x` is broadcast over the
  639. columns of `r` for the evaluation. This keyword is useful when `r` is
  640. multidimensional. The default value is True.
  641. Returns
  642. -------
  643. values : ndarray, compatible object
  644. The shape of the returned array is described above.
  645. See Also
  646. --------
  647. polyroots, polyfromroots, polyval
  648. Examples
  649. --------
  650. >>> from numpy.polynomial.polynomial import polyvalfromroots
  651. >>> polyvalfromroots(1, [1,2,3])
  652. 0.0
  653. >>> a = np.arange(4).reshape(2,2)
  654. >>> a
  655. array([[0, 1],
  656. [2, 3]])
  657. >>> polyvalfromroots(a, [-1, 0, 1])
  658. array([[-0., 0.],
  659. [ 6., 24.]])
  660. >>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
  661. >>> r # each column of r defines one polynomial
  662. array([[-2, -1],
  663. [ 0, 1]])
  664. >>> b = [-2, 1]
  665. >>> polyvalfromroots(b, r, tensor=True)
  666. array([[-0., 3.],
  667. [ 3., 0.]])
  668. >>> polyvalfromroots(b, r, tensor=False)
  669. array([-0., 0.])
  670. """
  671. r = np.array(r, ndmin=1, copy=False)
  672. if r.dtype.char in '?bBhHiIlLqQpP':
  673. r = r.astype(np.double)
  674. if isinstance(x, (tuple, list)):
  675. x = np.asarray(x)
  676. if isinstance(x, np.ndarray):
  677. if tensor:
  678. r = r.reshape(r.shape + (1,)*x.ndim)
  679. elif x.ndim >= r.ndim:
  680. raise ValueError("x.ndim must be < r.ndim when tensor == False")
  681. return np.prod(x - r, axis=0)
  682. def polyval2d(x, y, c):
  683. """
  684. Evaluate a 2-D polynomial at points (x, y).
  685. This function returns the value
  686. .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j
  687. The parameters `x` and `y` are converted to arrays only if they are
  688. tuples or a lists, otherwise they are treated as a scalars and they
  689. must have the same shape after conversion. In either case, either `x`
  690. and `y` or their elements must support multiplication and addition both
  691. with themselves and with the elements of `c`.
  692. If `c` has fewer than two dimensions, ones are implicitly appended to
  693. its shape to make it 2-D. The shape of the result will be c.shape[2:] +
  694. x.shape.
  695. Parameters
  696. ----------
  697. x, y : array_like, compatible objects
  698. The two dimensional series is evaluated at the points `(x, y)`,
  699. where `x` and `y` must have the same shape. If `x` or `y` is a list
  700. or tuple, it is first converted to an ndarray, otherwise it is left
  701. unchanged and, if it isn't an ndarray, it is treated as a scalar.
  702. c : array_like
  703. Array of coefficients ordered so that the coefficient of the term
  704. of multi-degree i,j is contained in `c[i,j]`. If `c` has
  705. dimension greater than two the remaining indices enumerate multiple
  706. sets of coefficients.
  707. Returns
  708. -------
  709. values : ndarray, compatible object
  710. The values of the two dimensional polynomial at points formed with
  711. pairs of corresponding values from `x` and `y`.
  712. See Also
  713. --------
  714. polyval, polygrid2d, polyval3d, polygrid3d
  715. Notes
  716. -----
  717. .. versionadded:: 1.7.0
  718. """
  719. return pu._valnd(polyval, c, x, y)
  720. def polygrid2d(x, y, c):
  721. """
  722. Evaluate a 2-D polynomial on the Cartesian product of x and y.
  723. This function returns the values:
  724. .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j
  725. where the points `(a, b)` consist of all pairs formed by taking
  726. `a` from `x` and `b` from `y`. The resulting points form a grid with
  727. `x` in the first dimension and `y` in the second.
  728. The parameters `x` and `y` are converted to arrays only if they are
  729. tuples or a lists, otherwise they are treated as a scalars. In either
  730. case, either `x` and `y` or their elements must support multiplication
  731. and addition both with themselves and with the elements of `c`.
  732. If `c` has fewer than two dimensions, ones are implicitly appended to
  733. its shape to make it 2-D. The shape of the result will be c.shape[2:] +
  734. x.shape + y.shape.
  735. Parameters
  736. ----------
  737. x, y : array_like, compatible objects
  738. The two dimensional series is evaluated at the points in the
  739. Cartesian product of `x` and `y`. If `x` or `y` is a list or
  740. tuple, it is first converted to an ndarray, otherwise it is left
  741. unchanged and, if it isn't an ndarray, it is treated as a scalar.
  742. c : array_like
  743. Array of coefficients ordered so that the coefficients for terms of
  744. degree i,j are contained in ``c[i,j]``. If `c` has dimension
  745. greater than two the remaining indices enumerate multiple sets of
  746. coefficients.
  747. Returns
  748. -------
  749. values : ndarray, compatible object
  750. The values of the two dimensional polynomial at points in the Cartesian
  751. product of `x` and `y`.
  752. See Also
  753. --------
  754. polyval, polyval2d, polyval3d, polygrid3d
  755. Notes
  756. -----
  757. .. versionadded:: 1.7.0
  758. """
  759. return pu._gridnd(polyval, c, x, y)
  760. def polyval3d(x, y, z, c):
  761. """
  762. Evaluate a 3-D polynomial at points (x, y, z).
  763. This function returns the values:
  764. .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k
  765. The parameters `x`, `y`, and `z` are converted to arrays only if
  766. they are tuples or a lists, otherwise they are treated as a scalars and
  767. they must have the same shape after conversion. In either case, either
  768. `x`, `y`, and `z` or their elements must support multiplication and
  769. addition both with themselves and with the elements of `c`.
  770. If `c` has fewer than 3 dimensions, ones are implicitly appended to its
  771. shape to make it 3-D. The shape of the result will be c.shape[3:] +
  772. x.shape.
  773. Parameters
  774. ----------
  775. x, y, z : array_like, compatible object
  776. The three dimensional series is evaluated at the points
  777. `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
  778. any of `x`, `y`, or `z` is a list or tuple, it is first converted
  779. to an ndarray, otherwise it is left unchanged and if it isn't an
  780. ndarray it is treated as a scalar.
  781. c : array_like
  782. Array of coefficients ordered so that the coefficient of the term of
  783. multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
  784. greater than 3 the remaining indices enumerate multiple sets of
  785. coefficients.
  786. Returns
  787. -------
  788. values : ndarray, compatible object
  789. The values of the multidimensional polynomial on points formed with
  790. triples of corresponding values from `x`, `y`, and `z`.
  791. See Also
  792. --------
  793. polyval, polyval2d, polygrid2d, polygrid3d
  794. Notes
  795. -----
  796. .. versionadded:: 1.7.0
  797. """
  798. return pu._valnd(polyval, c, x, y, z)
  799. def polygrid3d(x, y, z, c):
  800. """
  801. Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
  802. This function returns the values:
  803. .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k
  804. where the points `(a, b, c)` consist of all triples formed by taking
  805. `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
  806. a grid with `x` in the first dimension, `y` in the second, and `z` in
  807. the third.
  808. The parameters `x`, `y`, and `z` are converted to arrays only if they
  809. are tuples or a lists, otherwise they are treated as a scalars. In
  810. either case, either `x`, `y`, and `z` or their elements must support
  811. multiplication and addition both with themselves and with the elements
  812. of `c`.
  813. If `c` has fewer than three dimensions, ones are implicitly appended to
  814. its shape to make it 3-D. The shape of the result will be c.shape[3:] +
  815. x.shape + y.shape + z.shape.
  816. Parameters
  817. ----------
  818. x, y, z : array_like, compatible objects
  819. The three dimensional series is evaluated at the points in the
  820. Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
  821. list or tuple, it is first converted to an ndarray, otherwise it is
  822. left unchanged and, if it isn't an ndarray, it is treated as a
  823. scalar.
  824. c : array_like
  825. Array of coefficients ordered so that the coefficients for terms of
  826. degree i,j are contained in ``c[i,j]``. If `c` has dimension
  827. greater than two the remaining indices enumerate multiple sets of
  828. coefficients.
  829. Returns
  830. -------
  831. values : ndarray, compatible object
  832. The values of the two dimensional polynomial at points in the Cartesian
  833. product of `x` and `y`.
  834. See Also
  835. --------
  836. polyval, polyval2d, polygrid2d, polyval3d
  837. Notes
  838. -----
  839. .. versionadded:: 1.7.0
  840. """
  841. return pu._gridnd(polyval, c, x, y, z)
  842. def polyvander(x, deg):
  843. """Vandermonde matrix of given degree.
  844. Returns the Vandermonde matrix of degree `deg` and sample points
  845. `x`. The Vandermonde matrix is defined by
  846. .. math:: V[..., i] = x^i,
  847. where `0 <= i <= deg`. The leading indices of `V` index the elements of
  848. `x` and the last index is the power of `x`.
  849. If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
  850. matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and
  851. ``polyval(x, c)`` are the same up to roundoff. This equivalence is
  852. useful both for least squares fitting and for the evaluation of a large
  853. number of polynomials of the same degree and sample points.
  854. Parameters
  855. ----------
  856. x : array_like
  857. Array of points. The dtype is converted to float64 or complex128
  858. depending on whether any of the elements are complex. If `x` is
  859. scalar it is converted to a 1-D array.
  860. deg : int
  861. Degree of the resulting matrix.
  862. Returns
  863. -------
  864. vander : ndarray.
  865. The Vandermonde matrix. The shape of the returned matrix is
  866. ``x.shape + (deg + 1,)``, where the last index is the power of `x`.
  867. The dtype will be the same as the converted `x`.
  868. See Also
  869. --------
  870. polyvander2d, polyvander3d
  871. """
  872. ideg = pu._deprecate_as_int(deg, "deg")
  873. if ideg < 0:
  874. raise ValueError("deg must be non-negative")
  875. x = np.array(x, copy=False, ndmin=1) + 0.0
  876. dims = (ideg + 1,) + x.shape
  877. dtyp = x.dtype
  878. v = np.empty(dims, dtype=dtyp)
  879. v[0] = x*0 + 1
  880. if ideg > 0:
  881. v[1] = x
  882. for i in range(2, ideg + 1):
  883. v[i] = v[i-1]*x
  884. return np.moveaxis(v, 0, -1)
  885. def polyvander2d(x, y, deg):
  886. """Pseudo-Vandermonde matrix of given degrees.
  887. Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
  888. points `(x, y)`. The pseudo-Vandermonde matrix is defined by
  889. .. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j,
  890. where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
  891. `V` index the points `(x, y)` and the last index encodes the powers of
  892. `x` and `y`.
  893. If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
  894. correspond to the elements of a 2-D coefficient array `c` of shape
  895. (xdeg + 1, ydeg + 1) in the order
  896. .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
  897. and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same
  898. up to roundoff. This equivalence is useful both for least squares
  899. fitting and for the evaluation of a large number of 2-D polynomials
  900. of the same degrees and sample points.
  901. Parameters
  902. ----------
  903. x, y : array_like
  904. Arrays of point coordinates, all of the same shape. The dtypes
  905. will be converted to either float64 or complex128 depending on
  906. whether any of the elements are complex. Scalars are converted to
  907. 1-D arrays.
  908. deg : list of ints
  909. List of maximum degrees of the form [x_deg, y_deg].
  910. Returns
  911. -------
  912. vander2d : ndarray
  913. The shape of the returned matrix is ``x.shape + (order,)``, where
  914. :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same
  915. as the converted `x` and `y`.
  916. See Also
  917. --------
  918. polyvander, polyvander3d, polyval2d, polyval3d
  919. """
  920. return pu._vander_nd_flat((polyvander, polyvander), (x, y), deg)
  921. def polyvander3d(x, y, z, deg):
  922. """Pseudo-Vandermonde matrix of given degrees.
  923. Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
  924. points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
  925. then The pseudo-Vandermonde matrix is defined by
  926. .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,
  927. where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
  928. indices of `V` index the points `(x, y, z)` and the last index encodes
  929. the powers of `x`, `y`, and `z`.
  930. If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
  931. of `V` correspond to the elements of a 3-D coefficient array `c` of
  932. shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
  933. .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
  934. and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the
  935. same up to roundoff. This equivalence is useful both for least squares
  936. fitting and for the evaluation of a large number of 3-D polynomials
  937. of the same degrees and sample points.
  938. Parameters
  939. ----------
  940. x, y, z : array_like
  941. Arrays of point coordinates, all of the same shape. The dtypes will
  942. be converted to either float64 or complex128 depending on whether
  943. any of the elements are complex. Scalars are converted to 1-D
  944. arrays.
  945. deg : list of ints
  946. List of maximum degrees of the form [x_deg, y_deg, z_deg].
  947. Returns
  948. -------
  949. vander3d : ndarray
  950. The shape of the returned matrix is ``x.shape + (order,)``, where
  951. :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will
  952. be the same as the converted `x`, `y`, and `z`.
  953. See Also
  954. --------
  955. polyvander, polyvander3d, polyval2d, polyval3d
  956. Notes
  957. -----
  958. .. versionadded:: 1.7.0
  959. """
  960. return pu._vander_nd_flat((polyvander, polyvander, polyvander), (x, y, z), deg)
  961. def polyfit(x, y, deg, rcond=None, full=False, w=None):
  962. """
  963. Least-squares fit of a polynomial to data.
  964. Return the coefficients of a polynomial of degree `deg` that is the
  965. least squares fit to the data values `y` given at points `x`. If `y` is
  966. 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
  967. fits are done, one for each column of `y`, and the resulting
  968. coefficients are stored in the corresponding columns of a 2-D return.
  969. The fitted polynomial(s) are in the form
  970. .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n,
  971. where `n` is `deg`.
  972. Parameters
  973. ----------
  974. x : array_like, shape (`M`,)
  975. x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
  976. y : array_like, shape (`M`,) or (`M`, `K`)
  977. y-coordinates of the sample points. Several sets of sample points
  978. sharing the same x-coordinates can be (independently) fit with one
  979. call to `polyfit` by passing in for `y` a 2-D array that contains
  980. one data set per column.
  981. deg : int or 1-D array_like
  982. Degree(s) of the fitting polynomials. If `deg` is a single integer
  983. all terms up to and including the `deg`'th term are included in the
  984. fit. For NumPy versions >= 1.11.0 a list of integers specifying the
  985. degrees of the terms to include may be used instead.
  986. rcond : float, optional
  987. Relative condition number of the fit. Singular values smaller
  988. than `rcond`, relative to the largest singular value, will be
  989. ignored. The default value is ``len(x)*eps``, where `eps` is the
  990. relative precision of the platform's float type, about 2e-16 in
  991. most cases.
  992. full : bool, optional
  993. Switch determining the nature of the return value. When ``False``
  994. (the default) just the coefficients are returned; when ``True``,
  995. diagnostic information from the singular value decomposition (used
  996. to solve the fit's matrix equation) is also returned.
  997. w : array_like, shape (`M`,), optional
  998. Weights. If not None, the contribution of each point
  999. ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
  1000. weights are chosen so that the errors of the products ``w[i]*y[i]``
  1001. all have the same variance. The default value is None.
  1002. .. versionadded:: 1.5.0
  1003. Returns
  1004. -------
  1005. coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
  1006. Polynomial coefficients ordered from low to high. If `y` was 2-D,
  1007. the coefficients in column `k` of `coef` represent the polynomial
  1008. fit to the data in `y`'s `k`-th column.
  1009. [residuals, rank, singular_values, rcond] : list
  1010. These values are only returned if `full` = True
  1011. resid -- sum of squared residuals of the least squares fit
  1012. rank -- the numerical rank of the scaled Vandermonde matrix
  1013. sv -- singular values of the scaled Vandermonde matrix
  1014. rcond -- value of `rcond`.
  1015. For more details, see `linalg.lstsq`.
  1016. Raises
  1017. ------
  1018. RankWarning
  1019. Raised if the matrix in the least-squares fit is rank deficient.
  1020. The warning is only raised if `full` == False. The warnings can
  1021. be turned off by:
  1022. >>> import warnings
  1023. >>> warnings.simplefilter('ignore', np.RankWarning)
  1024. See Also
  1025. --------
  1026. chebfit, legfit, lagfit, hermfit, hermefit
  1027. polyval : Evaluates a polynomial.
  1028. polyvander : Vandermonde matrix for powers.
  1029. linalg.lstsq : Computes a least-squares fit from the matrix.
  1030. scipy.interpolate.UnivariateSpline : Computes spline fits.
  1031. Notes
  1032. -----
  1033. The solution is the coefficients of the polynomial `p` that minimizes
  1034. the sum of the weighted squared errors
  1035. .. math :: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
  1036. where the :math:`w_j` are the weights. This problem is solved by
  1037. setting up the (typically) over-determined matrix equation:
  1038. .. math :: V(x) * c = w * y,
  1039. where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
  1040. coefficients to be solved for, `w` are the weights, and `y` are the
  1041. observed values. This equation is then solved using the singular value
  1042. decomposition of `V`.
  1043. If some of the singular values of `V` are so small that they are
  1044. neglected (and `full` == ``False``), a `RankWarning` will be raised.
  1045. This means that the coefficient values may be poorly determined.
  1046. Fitting to a lower order polynomial will usually get rid of the warning
  1047. (but may not be what you want, of course; if you have independent
  1048. reason(s) for choosing the degree which isn't working, you may have to:
  1049. a) reconsider those reasons, and/or b) reconsider the quality of your
  1050. data). The `rcond` parameter can also be set to a value smaller than
  1051. its default, but the resulting fit may be spurious and have large
  1052. contributions from roundoff error.
  1053. Polynomial fits using double precision tend to "fail" at about
  1054. (polynomial) degree 20. Fits using Chebyshev or Legendre series are
  1055. generally better conditioned, but much can still depend on the
  1056. distribution of the sample points and the smoothness of the data. If
  1057. the quality of the fit is inadequate, splines may be a good
  1058. alternative.
  1059. Examples
  1060. --------
  1061. >>> np.random.seed(123)
  1062. >>> from numpy.polynomial import polynomial as P
  1063. >>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
  1064. >>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
  1065. >>> c, stats = P.polyfit(x,y,3,full=True)
  1066. >>> np.random.seed(123)
  1067. >>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
  1068. array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) # may vary
  1069. >>> stats # note the large SSR, explaining the rather poor results
  1070. [array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316, # may vary
  1071. 0.28853036]), 1.1324274851176597e-014]
  1072. Same thing without the added noise
  1073. >>> y = x**3 - x
  1074. >>> c, stats = P.polyfit(x,y,3,full=True)
  1075. >>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
  1076. array([-6.36925336e-18, -1.00000000e+00, -4.08053781e-16, 1.00000000e+00])
  1077. >>> stats # note the minuscule SSR
  1078. [array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158, # may vary
  1079. 0.50443316, 0.28853036]), 1.1324274851176597e-014]
  1080. """
  1081. return pu._fit(polyvander, x, y, deg, rcond, full, w)
  1082. def polycompanion(c):
  1083. """
  1084. Return the companion matrix of c.
  1085. The companion matrix for power series cannot be made symmetric by
  1086. scaling the basis, so this function differs from those for the
  1087. orthogonal polynomials.
  1088. Parameters
  1089. ----------
  1090. c : array_like
  1091. 1-D array of polynomial coefficients ordered from low to high
  1092. degree.
  1093. Returns
  1094. -------
  1095. mat : ndarray
  1096. Companion matrix of dimensions (deg, deg).
  1097. Notes
  1098. -----
  1099. .. versionadded:: 1.7.0
  1100. """
  1101. # c is a trimmed copy
  1102. [c] = pu.as_series([c])
  1103. if len(c) < 2:
  1104. raise ValueError('Series must have maximum degree of at least 1.')
  1105. if len(c) == 2:
  1106. return np.array([[-c[0]/c[1]]])
  1107. n = len(c) - 1
  1108. mat = np.zeros((n, n), dtype=c.dtype)
  1109. bot = mat.reshape(-1)[n::n+1]
  1110. bot[...] = 1
  1111. mat[:, -1] -= c[:-1]/c[-1]
  1112. return mat
  1113. def polyroots(c):
  1114. """
  1115. Compute the roots of a polynomial.
  1116. Return the roots (a.k.a. "zeros") of the polynomial
  1117. .. math:: p(x) = \\sum_i c[i] * x^i.
  1118. Parameters
  1119. ----------
  1120. c : 1-D array_like
  1121. 1-D array of polynomial coefficients.
  1122. Returns
  1123. -------
  1124. out : ndarray
  1125. Array of the roots of the polynomial. If all the roots are real,
  1126. then `out` is also real, otherwise it is complex.
  1127. See Also
  1128. --------
  1129. chebroots
  1130. Notes
  1131. -----
  1132. The root estimates are obtained as the eigenvalues of the companion
  1133. matrix, Roots far from the origin of the complex plane may have large
  1134. errors due to the numerical instability of the power series for such
  1135. values. Roots with multiplicity greater than 1 will also show larger
  1136. errors as the value of the series near such points is relatively
  1137. insensitive to errors in the roots. Isolated roots near the origin can
  1138. be improved by a few iterations of Newton's method.
  1139. Examples
  1140. --------
  1141. >>> import numpy.polynomial.polynomial as poly
  1142. >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
  1143. array([-1., 0., 1.])
  1144. >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
  1145. dtype('float64')
  1146. >>> j = complex(0,1)
  1147. >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
  1148. array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary
  1149. """
  1150. # c is a trimmed copy
  1151. [c] = pu.as_series([c])
  1152. if len(c) < 2:
  1153. return np.array([], dtype=c.dtype)
  1154. if len(c) == 2:
  1155. return np.array([-c[0]/c[1]])
  1156. # rotated companion matrix reduces error
  1157. m = polycompanion(c)[::-1,::-1]
  1158. r = la.eigvals(m)
  1159. r.sort()
  1160. return r
  1161. #
  1162. # polynomial class
  1163. #
  1164. class Polynomial(ABCPolyBase):
  1165. """A power series class.
  1166. The Polynomial class provides the standard Python numerical methods
  1167. '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
  1168. attributes and methods listed in the `ABCPolyBase` documentation.
  1169. Parameters
  1170. ----------
  1171. coef : array_like
  1172. Polynomial coefficients in order of increasing degree, i.e.,
  1173. ``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``.
  1174. domain : (2,) array_like, optional
  1175. Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
  1176. to the interval ``[window[0], window[1]]`` by shifting and scaling.
  1177. The default value is [-1, 1].
  1178. window : (2,) array_like, optional
  1179. Window, see `domain` for its use. The default value is [-1, 1].
  1180. .. versionadded:: 1.6.0
  1181. """
  1182. # Virtual Functions
  1183. _add = staticmethod(polyadd)
  1184. _sub = staticmethod(polysub)
  1185. _mul = staticmethod(polymul)
  1186. _div = staticmethod(polydiv)
  1187. _pow = staticmethod(polypow)
  1188. _val = staticmethod(polyval)
  1189. _int = staticmethod(polyint)
  1190. _der = staticmethod(polyder)
  1191. _fit = staticmethod(polyfit)
  1192. _line = staticmethod(polyline)
  1193. _roots = staticmethod(polyroots)
  1194. _fromroots = staticmethod(polyfromroots)
  1195. # Virtual properties
  1196. nickname = 'poly'
  1197. domain = np.array(polydomain)
  1198. window = np.array(polydomain)
  1199. basis_name = None
  1200. @staticmethod
  1201. def _repr_latex_term(i, arg_str, needs_parens):
  1202. if needs_parens:
  1203. arg_str = r'\left({}\right)'.format(arg_str)
  1204. if i == 0:
  1205. return '1'
  1206. elif i == 1:
  1207. return arg_str
  1208. else:
  1209. return '{}^{{{}}}'.format(arg_str, i)