test_subclassing.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. # pylint: disable-msg=W0611, W0612, W0511,R0201
  2. """Tests suite for MaskedArray & subclassing.
  3. :author: Pierre Gerard-Marchant
  4. :contact: pierregm_at_uga_dot_edu
  5. :version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $
  6. """
  7. from __future__ import division, absolute_import, print_function
  8. import numpy as np
  9. from numpy.testing import assert_, assert_raises
  10. from numpy.ma.testutils import assert_equal
  11. from numpy.ma.core import (
  12. array, arange, masked, MaskedArray, masked_array, log, add, hypot,
  13. divide, asarray, asanyarray, nomask
  14. )
  15. # from numpy.ma.core import (
  16. def assert_startswith(a, b):
  17. # produces a better error message than assert_(a.startswith(b))
  18. assert_equal(a[:len(b)], b)
  19. class SubArray(np.ndarray):
  20. # Defines a generic np.ndarray subclass, that stores some metadata
  21. # in the dictionary `info`.
  22. def __new__(cls,arr,info={}):
  23. x = np.asanyarray(arr).view(cls)
  24. x.info = info.copy()
  25. return x
  26. def __array_finalize__(self, obj):
  27. if callable(getattr(super(SubArray, self),
  28. '__array_finalize__', None)):
  29. super(SubArray, self).__array_finalize__(obj)
  30. self.info = getattr(obj, 'info', {}).copy()
  31. return
  32. def __add__(self, other):
  33. result = super(SubArray, self).__add__(other)
  34. result.info['added'] = result.info.get('added', 0) + 1
  35. return result
  36. def __iadd__(self, other):
  37. result = super(SubArray, self).__iadd__(other)
  38. result.info['iadded'] = result.info.get('iadded', 0) + 1
  39. return result
  40. subarray = SubArray
  41. class SubMaskedArray(MaskedArray):
  42. """Pure subclass of MaskedArray, keeping some info on subclass."""
  43. def __new__(cls, info=None, **kwargs):
  44. obj = super(SubMaskedArray, cls).__new__(cls, **kwargs)
  45. obj._optinfo['info'] = info
  46. return obj
  47. class MSubArray(SubArray, MaskedArray):
  48. def __new__(cls, data, info={}, mask=nomask):
  49. subarr = SubArray(data, info)
  50. _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
  51. _data.info = subarr.info
  52. return _data
  53. @property
  54. def _series(self):
  55. _view = self.view(MaskedArray)
  56. _view._sharedmask = False
  57. return _view
  58. msubarray = MSubArray
  59. # Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
  60. # setting to non-class values (and thus np.ma.core.masked_print_option)
  61. # and overrides __array_wrap__, updating the info dict, to check that this
  62. # doesn't get destroyed by MaskedArray._update_from. But this one also needs
  63. # its own iterator...
  64. class CSAIterator(object):
  65. """
  66. Flat iterator object that uses its own setter/getter
  67. (works around ndarray.flat not propagating subclass setters/getters
  68. see https://github.com/numpy/numpy/issues/4564)
  69. roughly following MaskedIterator
  70. """
  71. def __init__(self, a):
  72. self._original = a
  73. self._dataiter = a.view(np.ndarray).flat
  74. def __iter__(self):
  75. return self
  76. def __getitem__(self, indx):
  77. out = self._dataiter.__getitem__(indx)
  78. if not isinstance(out, np.ndarray):
  79. out = out.__array__()
  80. out = out.view(type(self._original))
  81. return out
  82. def __setitem__(self, index, value):
  83. self._dataiter[index] = self._original._validate_input(value)
  84. def __next__(self):
  85. return next(self._dataiter).__array__().view(type(self._original))
  86. next = __next__
  87. class ComplicatedSubArray(SubArray):
  88. def __str__(self):
  89. return 'myprefix {0} mypostfix'.format(self.view(SubArray))
  90. def __repr__(self):
  91. # Return a repr that does not start with 'name('
  92. return '<{0} {1}>'.format(self.__class__.__name__, self)
  93. def _validate_input(self, value):
  94. if not isinstance(value, ComplicatedSubArray):
  95. raise ValueError("Can only set to MySubArray values")
  96. return value
  97. def __setitem__(self, item, value):
  98. # validation ensures direct assignment with ndarray or
  99. # masked_print_option will fail
  100. super(ComplicatedSubArray, self).__setitem__(
  101. item, self._validate_input(value))
  102. def __getitem__(self, item):
  103. # ensure getter returns our own class also for scalars
  104. value = super(ComplicatedSubArray, self).__getitem__(item)
  105. if not isinstance(value, np.ndarray): # scalar
  106. value = value.__array__().view(ComplicatedSubArray)
  107. return value
  108. @property
  109. def flat(self):
  110. return CSAIterator(self)
  111. @flat.setter
  112. def flat(self, value):
  113. y = self.ravel()
  114. y[:] = value
  115. def __array_wrap__(self, obj, context=None):
  116. obj = super(ComplicatedSubArray, self).__array_wrap__(obj, context)
  117. if context is not None and context[0] is np.multiply:
  118. obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1
  119. return obj
  120. class TestSubclassing(object):
  121. # Test suite for masked subclasses of ndarray.
  122. def setup(self):
  123. x = np.arange(5, dtype='float')
  124. mx = msubarray(x, mask=[0, 1, 0, 0, 0])
  125. self.data = (x, mx)
  126. def test_data_subclassing(self):
  127. # Tests whether the subclass is kept.
  128. x = np.arange(5)
  129. m = [0, 0, 1, 0, 0]
  130. xsub = SubArray(x)
  131. xmsub = masked_array(xsub, mask=m)
  132. assert_(isinstance(xmsub, MaskedArray))
  133. assert_equal(xmsub._data, xsub)
  134. assert_(isinstance(xmsub._data, SubArray))
  135. def test_maskedarray_subclassing(self):
  136. # Tests subclassing MaskedArray
  137. (x, mx) = self.data
  138. assert_(isinstance(mx._data, subarray))
  139. def test_masked_unary_operations(self):
  140. # Tests masked_unary_operation
  141. (x, mx) = self.data
  142. with np.errstate(divide='ignore'):
  143. assert_(isinstance(log(mx), msubarray))
  144. assert_equal(log(x), np.log(x))
  145. def test_masked_binary_operations(self):
  146. # Tests masked_binary_operation
  147. (x, mx) = self.data
  148. # Result should be a msubarray
  149. assert_(isinstance(add(mx, mx), msubarray))
  150. assert_(isinstance(add(mx, x), msubarray))
  151. # Result should work
  152. assert_equal(add(mx, x), mx+x)
  153. assert_(isinstance(add(mx, mx)._data, subarray))
  154. assert_(isinstance(add.outer(mx, mx), msubarray))
  155. assert_(isinstance(hypot(mx, mx), msubarray))
  156. assert_(isinstance(hypot(mx, x), msubarray))
  157. def test_masked_binary_operations2(self):
  158. # Tests domained_masked_binary_operation
  159. (x, mx) = self.data
  160. xmx = masked_array(mx.data.__array__(), mask=mx.mask)
  161. assert_(isinstance(divide(mx, mx), msubarray))
  162. assert_(isinstance(divide(mx, x), msubarray))
  163. assert_equal(divide(mx, mx), divide(xmx, xmx))
  164. def test_attributepropagation(self):
  165. x = array(arange(5), mask=[0]+[1]*4)
  166. my = masked_array(subarray(x))
  167. ym = msubarray(x)
  168. #
  169. z = (my+1)
  170. assert_(isinstance(z, MaskedArray))
  171. assert_(not isinstance(z, MSubArray))
  172. assert_(isinstance(z._data, SubArray))
  173. assert_equal(z._data.info, {})
  174. #
  175. z = (ym+1)
  176. assert_(isinstance(z, MaskedArray))
  177. assert_(isinstance(z, MSubArray))
  178. assert_(isinstance(z._data, SubArray))
  179. assert_(z._data.info['added'] > 0)
  180. # Test that inplace methods from data get used (gh-4617)
  181. ym += 1
  182. assert_(isinstance(ym, MaskedArray))
  183. assert_(isinstance(ym, MSubArray))
  184. assert_(isinstance(ym._data, SubArray))
  185. assert_(ym._data.info['iadded'] > 0)
  186. #
  187. ym._set_mask([1, 0, 0, 0, 1])
  188. assert_equal(ym._mask, [1, 0, 0, 0, 1])
  189. ym._series._set_mask([0, 0, 0, 0, 1])
  190. assert_equal(ym._mask, [0, 0, 0, 0, 1])
  191. #
  192. xsub = subarray(x, info={'name':'x'})
  193. mxsub = masked_array(xsub)
  194. assert_(hasattr(mxsub, 'info'))
  195. assert_equal(mxsub.info, xsub.info)
  196. def test_subclasspreservation(self):
  197. # Checks that masked_array(...,subok=True) preserves the class.
  198. x = np.arange(5)
  199. m = [0, 0, 1, 0, 0]
  200. xinfo = [(i, j) for (i, j) in zip(x, m)]
  201. xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
  202. #
  203. mxsub = masked_array(xsub, subok=False)
  204. assert_(not isinstance(mxsub, MSubArray))
  205. assert_(isinstance(mxsub, MaskedArray))
  206. assert_equal(mxsub._mask, m)
  207. #
  208. mxsub = asarray(xsub)
  209. assert_(not isinstance(mxsub, MSubArray))
  210. assert_(isinstance(mxsub, MaskedArray))
  211. assert_equal(mxsub._mask, m)
  212. #
  213. mxsub = masked_array(xsub, subok=True)
  214. assert_(isinstance(mxsub, MSubArray))
  215. assert_equal(mxsub.info, xsub.info)
  216. assert_equal(mxsub._mask, xsub._mask)
  217. #
  218. mxsub = asanyarray(xsub)
  219. assert_(isinstance(mxsub, MSubArray))
  220. assert_equal(mxsub.info, xsub.info)
  221. assert_equal(mxsub._mask, m)
  222. def test_subclass_items(self):
  223. """test that getter and setter go via baseclass"""
  224. x = np.arange(5)
  225. xcsub = ComplicatedSubArray(x)
  226. mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
  227. # getter should return a ComplicatedSubArray, even for single item
  228. # first check we wrote ComplicatedSubArray correctly
  229. assert_(isinstance(xcsub[1], ComplicatedSubArray))
  230. assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
  231. assert_(isinstance(xcsub[1:4], ComplicatedSubArray))
  232. # now that it propagates inside the MaskedArray
  233. assert_(isinstance(mxcsub[1], ComplicatedSubArray))
  234. assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
  235. assert_(mxcsub[0] is masked)
  236. assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
  237. assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))
  238. # also for flattened version (which goes via MaskedIterator)
  239. assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
  240. assert_(mxcsub.flat[0] is masked)
  241. assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))
  242. # setter should only work with ComplicatedSubArray input
  243. # first check we wrote ComplicatedSubArray correctly
  244. assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
  245. # now that it propagates inside the MaskedArray
  246. assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
  247. assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
  248. mxcsub[1] = xcsub[4]
  249. mxcsub[1:4] = xcsub[1:4]
  250. # also for flattened version (which goes via MaskedIterator)
  251. assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
  252. assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
  253. mxcsub.flat[1] = xcsub[4]
  254. mxcsub.flat[1:4] = xcsub[1:4]
  255. def test_subclass_nomask_items(self):
  256. x = np.arange(5)
  257. xcsub = ComplicatedSubArray(x)
  258. mxcsub_nomask = masked_array(xcsub)
  259. assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
  260. assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))
  261. assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
  262. assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))
  263. def test_subclass_repr(self):
  264. """test that repr uses the name of the subclass
  265. and 'array' for np.ndarray"""
  266. x = np.arange(5)
  267. mx = masked_array(x, mask=[True, False, True, False, False])
  268. assert_startswith(repr(mx), 'masked_array')
  269. xsub = SubArray(x)
  270. mxsub = masked_array(xsub, mask=[True, False, True, False, False])
  271. assert_startswith(repr(mxsub),
  272. 'masked_{0}(data=[--, 1, --, 3, 4]'.format(SubArray.__name__))
  273. def test_subclass_str(self):
  274. """test str with subclass that has overridden str, setitem"""
  275. # first without override
  276. x = np.arange(5)
  277. xsub = SubArray(x)
  278. mxsub = masked_array(xsub, mask=[True, False, True, False, False])
  279. assert_equal(str(mxsub), '[-- 1 -- 3 4]')
  280. xcsub = ComplicatedSubArray(x)
  281. assert_raises(ValueError, xcsub.__setitem__, 0,
  282. np.ma.core.masked_print_option)
  283. mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
  284. assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')
  285. def test_pure_subclass_info_preservation(self):
  286. # Test that ufuncs and methods conserve extra information consistently;
  287. # see gh-7122.
  288. arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
  289. arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
  290. diff1 = np.subtract(arr1, arr2)
  291. assert_('info' in diff1._optinfo)
  292. assert_(diff1._optinfo['info'] == 'test')
  293. diff2 = arr1 - arr2
  294. assert_('info' in diff2._optinfo)
  295. assert_(diff2._optinfo['info'] == 'test')