12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084 |
- """
- numpy.ma : a package to handle missing or invalid values.
- This package was initially written for numarray by Paul F. Dubois
- at Lawrence Livermore National Laboratory.
- In 2006, the package was completely rewritten by Pierre Gerard-Marchant
- (University of Georgia) to make the MaskedArray class a subclass of ndarray,
- and to improve support of structured arrays.
- Copyright 1999, 2000, 2001 Regents of the University of California.
- Released for unlimited redistribution.
- * Adapted for numpy_core 2005 by Travis Oliphant and (mainly) Paul Dubois.
- * Subclassing of the base `ndarray` 2006 by Pierre Gerard-Marchant
- (pgmdevlist_AT_gmail_DOT_com)
- * Improvements suggested by Reggie Dugard (reggie_AT_merfinllc_DOT_com)
- .. moduleauthor:: Pierre Gerard-Marchant
- """
- # pylint: disable-msg=E1002
- from __future__ import division, absolute_import, print_function
- import sys
- import operator
- import warnings
- import textwrap
- import re
- from functools import reduce
- if sys.version_info[0] >= 3:
- import builtins
- else:
- import __builtin__ as builtins
- import numpy as np
- import numpy.core.umath as umath
- import numpy.core.numerictypes as ntypes
- from numpy import ndarray, amax, amin, iscomplexobj, bool_, _NoValue
- from numpy import array as narray
- from numpy.lib.function_base import angle
- from numpy.compat import (
- getargspec, formatargspec, long, basestring, unicode, bytes
- )
- from numpy import expand_dims
- from numpy.core.numeric import normalize_axis_tuple
- from numpy.core._internal import recursive
- from numpy.compat import pickle
- __all__ = [
- 'MAError', 'MaskError', 'MaskType', 'MaskedArray', 'abs', 'absolute',
- 'add', 'all', 'allclose', 'allequal', 'alltrue', 'amax', 'amin',
- 'angle', 'anom', 'anomalies', 'any', 'append', 'arange', 'arccos',
- 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh',
- 'argmax', 'argmin', 'argsort', 'around', 'array', 'asanyarray',
- 'asarray', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'bool_', 'ceil',
- 'choose', 'clip', 'common_fill_value', 'compress', 'compressed',
- 'concatenate', 'conjugate', 'convolve', 'copy', 'correlate', 'cos', 'cosh',
- 'count', 'cumprod', 'cumsum', 'default_fill_value', 'diag', 'diagonal',
- 'diff', 'divide', 'empty', 'empty_like', 'equal', 'exp',
- 'expand_dims', 'fabs', 'filled', 'fix_invalid', 'flatten_mask',
- 'flatten_structured_array', 'floor', 'floor_divide', 'fmod',
- 'frombuffer', 'fromflex', 'fromfunction', 'getdata', 'getmask',
- 'getmaskarray', 'greater', 'greater_equal', 'harden_mask', 'hypot',
- 'identity', 'ids', 'indices', 'inner', 'innerproduct', 'isMA',
- 'isMaskedArray', 'is_mask', 'is_masked', 'isarray', 'left_shift',
- 'less', 'less_equal', 'log', 'log10', 'log2',
- 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'make_mask',
- 'make_mask_descr', 'make_mask_none', 'mask_or', 'masked',
- 'masked_array', 'masked_equal', 'masked_greater',
- 'masked_greater_equal', 'masked_inside', 'masked_invalid',
- 'masked_less', 'masked_less_equal', 'masked_not_equal',
- 'masked_object', 'masked_outside', 'masked_print_option',
- 'masked_singleton', 'masked_values', 'masked_where', 'max', 'maximum',
- 'maximum_fill_value', 'mean', 'min', 'minimum', 'minimum_fill_value',
- 'mod', 'multiply', 'mvoid', 'ndim', 'negative', 'nomask', 'nonzero',
- 'not_equal', 'ones', 'outer', 'outerproduct', 'power', 'prod',
- 'product', 'ptp', 'put', 'putmask', 'ravel', 'remainder',
- 'repeat', 'reshape', 'resize', 'right_shift', 'round', 'round_',
- 'set_fill_value', 'shape', 'sin', 'sinh', 'size', 'soften_mask',
- 'sometrue', 'sort', 'sqrt', 'squeeze', 'std', 'subtract', 'sum',
- 'swapaxes', 'take', 'tan', 'tanh', 'trace', 'transpose', 'true_divide',
- 'var', 'where', 'zeros',
- ]
- MaskType = np.bool_
- nomask = MaskType(0)
- class MaskedArrayFutureWarning(FutureWarning):
- pass
- def _deprecate_argsort_axis(arr):
- """
- Adjust the axis passed to argsort, warning if necessary
- Parameters
- ----------
- arr
- The array which argsort was called on
- np.ma.argsort has a long-term bug where the default of the axis argument
- is wrong (gh-8701), which now must be kept for backwards compatibiity.
- Thankfully, this only makes a difference when arrays are 2- or more-
- dimensional, so we only need a warning then.
- """
- if arr.ndim <= 1:
- # no warning needed - but switch to -1 anyway, to avoid surprising
- # subclasses, which are more likely to implement scalar axes.
- return -1
- else:
- # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
- warnings.warn(
- "In the future the default for argsort will be axis=-1, not the "
- "current None, to match its documentation and np.argsort. "
- "Explicitly pass -1 or None to silence this warning.",
- MaskedArrayFutureWarning, stacklevel=3)
- return None
- def doc_note(initialdoc, note):
- """
- Adds a Notes section to an existing docstring.
- """
- if initialdoc is None:
- return
- if note is None:
- return initialdoc
- notesplit = re.split(r'\n\s*?Notes\n\s*?-----', initialdoc)
- notedoc = """\
- Notes
- -----
- %s""" % note
- if len(notesplit) > 1:
- notedoc = '\n\n ' + notedoc + '\n'
- return ''.join(notesplit[:1] + [notedoc] + notesplit[1:])
- def get_object_signature(obj):
- """
- Get the signature from obj
- """
- try:
- sig = formatargspec(*getargspec(obj))
- except TypeError:
- sig = ''
- return sig
- ###############################################################################
- # Exceptions #
- ###############################################################################
- class MAError(Exception):
- """
- Class for masked array related errors.
- """
- pass
- class MaskError(MAError):
- """
- Class for mask related errors.
- """
- pass
- ###############################################################################
- # Filling options #
- ###############################################################################
- # b: boolean - c: complex - f: floats - i: integer - O: object - S: string
- default_filler = {'b': True,
- 'c': 1.e20 + 0.0j,
- 'f': 1.e20,
- 'i': 999999,
- 'O': '?',
- 'S': b'N/A',
- 'u': 999999,
- 'V': b'???',
- 'U': u'N/A'
- }
- # Add datetime64 and timedelta64 types
- for v in ["Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps",
- "fs", "as"]:
- default_filler["M8[" + v + "]"] = np.datetime64("NaT", v)
- default_filler["m8[" + v + "]"] = np.timedelta64("NaT", v)
- max_filler = ntypes._minvals
- max_filler.update([(k, -np.inf) for k in [np.float32, np.float64]])
- min_filler = ntypes._maxvals
- min_filler.update([(k, +np.inf) for k in [np.float32, np.float64]])
- if 'float128' in ntypes.typeDict:
- max_filler.update([(np.float128, -np.inf)])
- min_filler.update([(np.float128, +np.inf)])
- def _recursive_fill_value(dtype, f):
- """
- Recursively produce a fill value for `dtype`, calling f on scalar dtypes
- """
- if dtype.names is not None:
- vals = tuple(_recursive_fill_value(dtype[name], f) for name in dtype.names)
- return np.array(vals, dtype=dtype)[()] # decay to void scalar from 0d
- elif dtype.subdtype:
- subtype, shape = dtype.subdtype
- subval = _recursive_fill_value(subtype, f)
- return np.full(shape, subval)
- else:
- return f(dtype)
- def _get_dtype_of(obj):
- """ Convert the argument for *_fill_value into a dtype """
- if isinstance(obj, np.dtype):
- return obj
- elif hasattr(obj, 'dtype'):
- return obj.dtype
- else:
- return np.asanyarray(obj).dtype
- def default_fill_value(obj):
- """
- Return the default fill value for the argument object.
- The default filling value depends on the datatype of the input
- array or the type of the input scalar:
- ======== ========
- datatype default
- ======== ========
- bool True
- int 999999
- float 1.e20
- complex 1.e20+0j
- object '?'
- string 'N/A'
- ======== ========
- For structured types, a structured scalar is returned, with each field the
- default fill value for its type.
- For subarray types, the fill value is an array of the same size containing
- the default scalar fill value.
- Parameters
- ----------
- obj : ndarray, dtype or scalar
- The array data-type or scalar for which the default fill value
- is returned.
- Returns
- -------
- fill_value : scalar
- The default fill value.
- Examples
- --------
- >>> np.ma.default_fill_value(1)
- 999999
- >>> np.ma.default_fill_value(np.array([1.1, 2., np.pi]))
- 1e+20
- >>> np.ma.default_fill_value(np.dtype(complex))
- (1e+20+0j)
- """
- def _scalar_fill_value(dtype):
- if dtype.kind in 'Mm':
- return default_filler.get(dtype.str[1:], '?')
- else:
- return default_filler.get(dtype.kind, '?')
- dtype = _get_dtype_of(obj)
- return _recursive_fill_value(dtype, _scalar_fill_value)
- def _extremum_fill_value(obj, extremum, extremum_name):
- def _scalar_fill_value(dtype):
- try:
- return extremum[dtype]
- except KeyError:
- raise TypeError(
- "Unsuitable type {} for calculating {}."
- .format(dtype, extremum_name)
- )
- dtype = _get_dtype_of(obj)
- return _recursive_fill_value(dtype, _scalar_fill_value)
- def minimum_fill_value(obj):
- """
- Return the maximum value that can be represented by the dtype of an object.
- This function is useful for calculating a fill value suitable for
- taking the minimum of an array with a given dtype.
- Parameters
- ----------
- obj : ndarray, dtype or scalar
- An object that can be queried for it's numeric type.
- Returns
- -------
- val : scalar
- The maximum representable value.
- Raises
- ------
- TypeError
- If `obj` isn't a suitable numeric type.
- See Also
- --------
- maximum_fill_value : The inverse function.
- set_fill_value : Set the filling value of a masked array.
- MaskedArray.fill_value : Return current fill value.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.int8()
- >>> ma.minimum_fill_value(a)
- 127
- >>> a = np.int32()
- >>> ma.minimum_fill_value(a)
- 2147483647
- An array of numeric data can also be passed.
- >>> a = np.array([1, 2, 3], dtype=np.int8)
- >>> ma.minimum_fill_value(a)
- 127
- >>> a = np.array([1, 2, 3], dtype=np.float32)
- >>> ma.minimum_fill_value(a)
- inf
- """
- return _extremum_fill_value(obj, min_filler, "minimum")
- def maximum_fill_value(obj):
- """
- Return the minimum value that can be represented by the dtype of an object.
- This function is useful for calculating a fill value suitable for
- taking the maximum of an array with a given dtype.
- Parameters
- ----------
- obj : ndarray, dtype or scalar
- An object that can be queried for it's numeric type.
- Returns
- -------
- val : scalar
- The minimum representable value.
- Raises
- ------
- TypeError
- If `obj` isn't a suitable numeric type.
- See Also
- --------
- minimum_fill_value : The inverse function.
- set_fill_value : Set the filling value of a masked array.
- MaskedArray.fill_value : Return current fill value.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.int8()
- >>> ma.maximum_fill_value(a)
- -128
- >>> a = np.int32()
- >>> ma.maximum_fill_value(a)
- -2147483648
- An array of numeric data can also be passed.
- >>> a = np.array([1, 2, 3], dtype=np.int8)
- >>> ma.maximum_fill_value(a)
- -128
- >>> a = np.array([1, 2, 3], dtype=np.float32)
- >>> ma.maximum_fill_value(a)
- -inf
- """
- return _extremum_fill_value(obj, max_filler, "maximum")
- def _recursive_set_fill_value(fillvalue, dt):
- """
- Create a fill value for a structured dtype.
- Parameters
- ----------
- fillvalue: scalar or array_like
- Scalar or array representing the fill value. If it is of shorter
- length than the number of fields in dt, it will be resized.
- dt: dtype
- The structured dtype for which to create the fill value.
- Returns
- -------
- val: tuple
- A tuple of values corresponding to the structured fill value.
- """
- fillvalue = np.resize(fillvalue, len(dt.names))
- output_value = []
- for (fval, name) in zip(fillvalue, dt.names):
- cdtype = dt[name]
- if cdtype.subdtype:
- cdtype = cdtype.subdtype[0]
- if cdtype.names is not None:
- output_value.append(tuple(_recursive_set_fill_value(fval, cdtype)))
- else:
- output_value.append(np.array(fval, dtype=cdtype).item())
- return tuple(output_value)
- def _check_fill_value(fill_value, ndtype):
- """
- Private function validating the given `fill_value` for the given dtype.
- If fill_value is None, it is set to the default corresponding to the dtype.
- If fill_value is not None, its value is forced to the given dtype.
- The result is always a 0d array.
- """
- ndtype = np.dtype(ndtype)
- if fill_value is None:
- fill_value = default_fill_value(ndtype)
- elif ndtype.names is not None:
- if isinstance(fill_value, (ndarray, np.void)):
- try:
- fill_value = np.array(fill_value, copy=False, dtype=ndtype)
- except ValueError:
- err_msg = "Unable to transform %s to dtype %s"
- raise ValueError(err_msg % (fill_value, ndtype))
- else:
- fill_value = np.asarray(fill_value, dtype=object)
- fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype),
- dtype=ndtype)
- else:
- if isinstance(fill_value, basestring) and (ndtype.char not in 'OSVU'):
- # Note this check doesn't work if fill_value is not a scalar
- err_msg = "Cannot set fill value of string with array of dtype %s"
- raise TypeError(err_msg % ndtype)
- else:
- # In case we want to convert 1e20 to int.
- # Also in case of converting string arrays.
- try:
- fill_value = np.array(fill_value, copy=False, dtype=ndtype)
- except (OverflowError, ValueError):
- # Raise TypeError instead of OverflowError or ValueError.
- # OverflowError is seldom used, and the real problem here is
- # that the passed fill_value is not compatible with the ndtype.
- err_msg = "Cannot convert fill_value %s to dtype %s"
- raise TypeError(err_msg % (fill_value, ndtype))
- return np.array(fill_value)
- def set_fill_value(a, fill_value):
- """
- Set the filling value of a, if a is a masked array.
- This function changes the fill value of the masked array `a` in place.
- If `a` is not a masked array, the function returns silently, without
- doing anything.
- Parameters
- ----------
- a : array_like
- Input array.
- fill_value : dtype
- Filling value. A consistency test is performed to make sure
- the value is compatible with the dtype of `a`.
- Returns
- -------
- None
- Nothing returned by this function.
- See Also
- --------
- maximum_fill_value : Return the default fill value for a dtype.
- MaskedArray.fill_value : Return current fill value.
- MaskedArray.set_fill_value : Equivalent method.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(5)
- >>> a
- array([0, 1, 2, 3, 4])
- >>> a = ma.masked_where(a < 3, a)
- >>> a
- masked_array(data=[--, --, --, 3, 4],
- mask=[ True, True, True, False, False],
- fill_value=999999)
- >>> ma.set_fill_value(a, -999)
- >>> a
- masked_array(data=[--, --, --, 3, 4],
- mask=[ True, True, True, False, False],
- fill_value=-999)
- Nothing happens if `a` is not a masked array.
- >>> a = list(range(5))
- >>> a
- [0, 1, 2, 3, 4]
- >>> ma.set_fill_value(a, 100)
- >>> a
- [0, 1, 2, 3, 4]
- >>> a = np.arange(5)
- >>> a
- array([0, 1, 2, 3, 4])
- >>> ma.set_fill_value(a, 100)
- >>> a
- array([0, 1, 2, 3, 4])
- """
- if isinstance(a, MaskedArray):
- a.set_fill_value(fill_value)
- return
- def get_fill_value(a):
- """
- Return the filling value of a, if any. Otherwise, returns the
- default filling value for that type.
- """
- if isinstance(a, MaskedArray):
- result = a.fill_value
- else:
- result = default_fill_value(a)
- return result
- def common_fill_value(a, b):
- """
- Return the common filling value of two masked arrays, if any.
- If ``a.fill_value == b.fill_value``, return the fill value,
- otherwise return None.
- Parameters
- ----------
- a, b : MaskedArray
- The masked arrays for which to compare fill values.
- Returns
- -------
- fill_value : scalar or None
- The common fill value, or None.
- Examples
- --------
- >>> x = np.ma.array([0, 1.], fill_value=3)
- >>> y = np.ma.array([0, 1.], fill_value=3)
- >>> np.ma.common_fill_value(x, y)
- 3.0
- """
- t1 = get_fill_value(a)
- t2 = get_fill_value(b)
- if t1 == t2:
- return t1
- return None
- def filled(a, fill_value=None):
- """
- Return input as an array with masked data replaced by a fill value.
- If `a` is not a `MaskedArray`, `a` itself is returned.
- If `a` is a `MaskedArray` and `fill_value` is None, `fill_value` is set to
- ``a.fill_value``.
- Parameters
- ----------
- a : MaskedArray or array_like
- An input object.
- fill_value : array_like, optional.
- Can be scalar or non-scalar. If non-scalar, the
- resulting filled array should be broadcastable
- over input array. Default is None.
- Returns
- -------
- a : ndarray
- The filled array.
- See Also
- --------
- compressed
- Examples
- --------
- >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
- ... [1, 0, 0],
- ... [0, 0, 0]])
- >>> x.filled()
- array([[999999, 1, 2],
- [999999, 4, 5],
- [ 6, 7, 8]])
- >>> x.filled(fill_value=333)
- array([[333, 1, 2],
- [333, 4, 5],
- [ 6, 7, 8]])
- >>> x.filled(fill_value=np.arange(3))
- array([[0, 1, 2],
- [0, 4, 5],
- [6, 7, 8]])
- """
- if hasattr(a, 'filled'):
- return a.filled(fill_value)
- elif isinstance(a, ndarray):
- # Should we check for contiguity ? and a.flags['CONTIGUOUS']:
- return a
- elif isinstance(a, dict):
- return np.array(a, 'O')
- else:
- return np.array(a)
- def get_masked_subclass(*arrays):
- """
- Return the youngest subclass of MaskedArray from a list of (masked) arrays.
- In case of siblings, the first listed takes over.
- """
- if len(arrays) == 1:
- arr = arrays[0]
- if isinstance(arr, MaskedArray):
- rcls = type(arr)
- else:
- rcls = MaskedArray
- else:
- arrcls = [type(a) for a in arrays]
- rcls = arrcls[0]
- if not issubclass(rcls, MaskedArray):
- rcls = MaskedArray
- for cls in arrcls[1:]:
- if issubclass(cls, rcls):
- rcls = cls
- # Don't return MaskedConstant as result: revert to MaskedArray
- if rcls.__name__ == 'MaskedConstant':
- return MaskedArray
- return rcls
- def getdata(a, subok=True):
- """
- Return the data of a masked array as an ndarray.
- Return the data of `a` (if any) as an ndarray if `a` is a ``MaskedArray``,
- else return `a` as a ndarray or subclass (depending on `subok`) if not.
- Parameters
- ----------
- a : array_like
- Input ``MaskedArray``, alternatively a ndarray or a subclass thereof.
- subok : bool
- Whether to force the output to be a `pure` ndarray (False) or to
- return a subclass of ndarray if appropriate (True, default).
- See Also
- --------
- getmask : Return the mask of a masked array, or nomask.
- getmaskarray : Return the mask of a masked array, or full array of False.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.masked_equal([[1,2],[3,4]], 2)
- >>> a
- masked_array(
- data=[[1, --],
- [3, 4]],
- mask=[[False, True],
- [False, False]],
- fill_value=2)
- >>> ma.getdata(a)
- array([[1, 2],
- [3, 4]])
- Equivalently use the ``MaskedArray`` `data` attribute.
- >>> a.data
- array([[1, 2],
- [3, 4]])
- """
- try:
- data = a._data
- except AttributeError:
- data = np.array(a, copy=False, subok=subok)
- if not subok:
- return data.view(ndarray)
- return data
- get_data = getdata
- def fix_invalid(a, mask=nomask, copy=True, fill_value=None):
- """
- Return input with invalid data masked and replaced by a fill value.
- Invalid data means values of `nan`, `inf`, etc.
- Parameters
- ----------
- a : array_like
- Input array, a (subclass of) ndarray.
- mask : sequence, optional
- Mask. Must be convertible to an array of booleans with the same
- shape as `data`. True indicates a masked (i.e. invalid) data.
- copy : bool, optional
- Whether to use a copy of `a` (True) or to fix `a` in place (False).
- Default is True.
- fill_value : scalar, optional
- Value used for fixing invalid data. Default is None, in which case
- the ``a.fill_value`` is used.
- Returns
- -------
- b : MaskedArray
- The input array with invalid entries fixed.
- Notes
- -----
- A copy is performed by default.
- Examples
- --------
- >>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3)
- >>> x
- masked_array(data=[--, -1.0, nan, inf],
- mask=[ True, False, False, False],
- fill_value=1e+20)
- >>> np.ma.fix_invalid(x)
- masked_array(data=[--, -1.0, --, --],
- mask=[ True, False, True, True],
- fill_value=1e+20)
- >>> fixed = np.ma.fix_invalid(x)
- >>> fixed.data
- array([ 1.e+00, -1.e+00, 1.e+20, 1.e+20])
- >>> x.data
- array([ 1., -1., nan, inf])
- """
- a = masked_array(a, copy=copy, mask=mask, subok=True)
- invalid = np.logical_not(np.isfinite(a._data))
- if not invalid.any():
- return a
- a._mask |= invalid
- if fill_value is None:
- fill_value = a.fill_value
- a._data[invalid] = fill_value
- return a
- def is_string_or_list_of_strings(val):
- return (isinstance(val, basestring) or
- (isinstance(val, list) and val and
- builtins.all(isinstance(s, basestring) for s in val)))
- ###############################################################################
- # Ufuncs #
- ###############################################################################
- ufunc_domain = {}
- ufunc_fills = {}
- class _DomainCheckInterval(object):
- """
- Define a valid interval, so that :
- ``domain_check_interval(a,b)(x) == True`` where
- ``x < a`` or ``x > b``.
- """
- def __init__(self, a, b):
- "domain_check_interval(a,b)(x) = true where x < a or y > b"
- if a > b:
- (a, b) = (b, a)
- self.a = a
- self.b = b
- def __call__(self, x):
- "Execute the call behavior."
- # nans at masked positions cause RuntimeWarnings, even though
- # they are masked. To avoid this we suppress warnings.
- with np.errstate(invalid='ignore'):
- return umath.logical_or(umath.greater(x, self.b),
- umath.less(x, self.a))
- class _DomainTan(object):
- """
- Define a valid interval for the `tan` function, so that:
- ``domain_tan(eps) = True`` where ``abs(cos(x)) < eps``
- """
- def __init__(self, eps):
- "domain_tan(eps) = true where abs(cos(x)) < eps)"
- self.eps = eps
- def __call__(self, x):
- "Executes the call behavior."
- with np.errstate(invalid='ignore'):
- return umath.less(umath.absolute(umath.cos(x)), self.eps)
- class _DomainSafeDivide(object):
- """
- Define a domain for safe division.
- """
- def __init__(self, tolerance=None):
- self.tolerance = tolerance
- def __call__(self, a, b):
- # Delay the selection of the tolerance to here in order to reduce numpy
- # import times. The calculation of these parameters is a substantial
- # component of numpy's import time.
- if self.tolerance is None:
- self.tolerance = np.finfo(float).tiny
- # don't call ma ufuncs from __array_wrap__ which would fail for scalars
- a, b = np.asarray(a), np.asarray(b)
- with np.errstate(invalid='ignore'):
- return umath.absolute(a) * self.tolerance >= umath.absolute(b)
- class _DomainGreater(object):
- """
- DomainGreater(v)(x) is True where x <= v.
- """
- def __init__(self, critical_value):
- "DomainGreater(v)(x) = true where x <= v"
- self.critical_value = critical_value
- def __call__(self, x):
- "Executes the call behavior."
- with np.errstate(invalid='ignore'):
- return umath.less_equal(x, self.critical_value)
- class _DomainGreaterEqual(object):
- """
- DomainGreaterEqual(v)(x) is True where x < v.
- """
- def __init__(self, critical_value):
- "DomainGreaterEqual(v)(x) = true where x < v"
- self.critical_value = critical_value
- def __call__(self, x):
- "Executes the call behavior."
- with np.errstate(invalid='ignore'):
- return umath.less(x, self.critical_value)
- class _MaskedUFunc(object):
- def __init__(self, ufunc):
- self.f = ufunc
- self.__doc__ = ufunc.__doc__
- self.__name__ = ufunc.__name__
- def __str__(self):
- return "Masked version of {}".format(self.f)
- class _MaskedUnaryOperation(_MaskedUFunc):
- """
- Defines masked version of unary operations, where invalid values are
- pre-masked.
- Parameters
- ----------
- mufunc : callable
- The function for which to define a masked version. Made available
- as ``_MaskedUnaryOperation.f``.
- fill : scalar, optional
- Filling value, default is 0.
- domain : class instance
- Domain for the function. Should be one of the ``_Domain*``
- classes. Default is None.
- """
- def __init__(self, mufunc, fill=0, domain=None):
- super(_MaskedUnaryOperation, self).__init__(mufunc)
- self.fill = fill
- self.domain = domain
- ufunc_domain[mufunc] = domain
- ufunc_fills[mufunc] = fill
- def __call__(self, a, *args, **kwargs):
- """
- Execute the call behavior.
- """
- d = getdata(a)
- # Deal with domain
- if self.domain is not None:
- # Case 1.1. : Domained function
- # nans at masked positions cause RuntimeWarnings, even though
- # they are masked. To avoid this we suppress warnings.
- with np.errstate(divide='ignore', invalid='ignore'):
- result = self.f(d, *args, **kwargs)
- # Make a mask
- m = ~umath.isfinite(result)
- m |= self.domain(d)
- m |= getmask(a)
- else:
- # Case 1.2. : Function without a domain
- # Get the result and the mask
- with np.errstate(divide='ignore', invalid='ignore'):
- result = self.f(d, *args, **kwargs)
- m = getmask(a)
- if not result.ndim:
- # Case 2.1. : The result is scalarscalar
- if m:
- return masked
- return result
- if m is not nomask:
- # Case 2.2. The result is an array
- # We need to fill the invalid data back w/ the input Now,
- # that's plain silly: in C, we would just skip the element and
- # keep the original, but we do have to do it that way in Python
- # In case result has a lower dtype than the inputs (as in
- # equal)
- try:
- np.copyto(result, d, where=m)
- except TypeError:
- pass
- # Transform to
- masked_result = result.view(get_masked_subclass(a))
- masked_result._mask = m
- masked_result._update_from(a)
- return masked_result
- class _MaskedBinaryOperation(_MaskedUFunc):
- """
- Define masked version of binary operations, where invalid
- values are pre-masked.
- Parameters
- ----------
- mbfunc : function
- The function for which to define a masked version. Made available
- as ``_MaskedBinaryOperation.f``.
- domain : class instance
- Default domain for the function. Should be one of the ``_Domain*``
- classes. Default is None.
- fillx : scalar, optional
- Filling value for the first argument, default is 0.
- filly : scalar, optional
- Filling value for the second argument, default is 0.
- """
- def __init__(self, mbfunc, fillx=0, filly=0):
- """
- abfunc(fillx, filly) must be defined.
- abfunc(x, filly) = x for all x to enable reduce.
- """
- super(_MaskedBinaryOperation, self).__init__(mbfunc)
- self.fillx = fillx
- self.filly = filly
- ufunc_domain[mbfunc] = None
- ufunc_fills[mbfunc] = (fillx, filly)
- def __call__(self, a, b, *args, **kwargs):
- """
- Execute the call behavior.
- """
- # Get the data, as ndarray
- (da, db) = (getdata(a), getdata(b))
- # Get the result
- with np.errstate():
- np.seterr(divide='ignore', invalid='ignore')
- result = self.f(da, db, *args, **kwargs)
- # Get the mask for the result
- (ma, mb) = (getmask(a), getmask(b))
- if ma is nomask:
- if mb is nomask:
- m = nomask
- else:
- m = umath.logical_or(getmaskarray(a), mb)
- elif mb is nomask:
- m = umath.logical_or(ma, getmaskarray(b))
- else:
- m = umath.logical_or(ma, mb)
- # Case 1. : scalar
- if not result.ndim:
- if m:
- return masked
- return result
- # Case 2. : array
- # Revert result to da where masked
- if m is not nomask and m.any():
- # any errors, just abort; impossible to guarantee masked values
- try:
- np.copyto(result, da, casting='unsafe', where=m)
- except Exception:
- pass
- # Transforms to a (subclass of) MaskedArray
- masked_result = result.view(get_masked_subclass(a, b))
- masked_result._mask = m
- if isinstance(a, MaskedArray):
- masked_result._update_from(a)
- elif isinstance(b, MaskedArray):
- masked_result._update_from(b)
- return masked_result
- def reduce(self, target, axis=0, dtype=None):
- """
- Reduce `target` along the given `axis`.
- """
- tclass = get_masked_subclass(target)
- m = getmask(target)
- t = filled(target, self.filly)
- if t.shape == ():
- t = t.reshape(1)
- if m is not nomask:
- m = make_mask(m, copy=True)
- m.shape = (1,)
- if m is nomask:
- tr = self.f.reduce(t, axis)
- mr = nomask
- else:
- tr = self.f.reduce(t, axis, dtype=dtype or t.dtype)
- mr = umath.logical_and.reduce(m, axis)
- if not tr.shape:
- if mr:
- return masked
- else:
- return tr
- masked_tr = tr.view(tclass)
- masked_tr._mask = mr
- return masked_tr
- def outer(self, a, b):
- """
- Return the function applied to the outer product of a and b.
- """
- (da, db) = (getdata(a), getdata(b))
- d = self.f.outer(da, db)
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- m = nomask
- else:
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = umath.logical_or.outer(ma, mb)
- if (not m.ndim) and m:
- return masked
- if m is not nomask:
- np.copyto(d, da, where=m)
- if not d.shape:
- return d
- masked_d = d.view(get_masked_subclass(a, b))
- masked_d._mask = m
- return masked_d
- def accumulate(self, target, axis=0):
- """Accumulate `target` along `axis` after filling with y fill
- value.
- """
- tclass = get_masked_subclass(target)
- t = filled(target, self.filly)
- result = self.f.accumulate(t, axis)
- masked_result = result.view(tclass)
- return masked_result
- class _DomainedBinaryOperation(_MaskedUFunc):
- """
- Define binary operations that have a domain, like divide.
- They have no reduce, outer or accumulate.
- Parameters
- ----------
- mbfunc : function
- The function for which to define a masked version. Made available
- as ``_DomainedBinaryOperation.f``.
- domain : class instance
- Default domain for the function. Should be one of the ``_Domain*``
- classes.
- fillx : scalar, optional
- Filling value for the first argument, default is 0.
- filly : scalar, optional
- Filling value for the second argument, default is 0.
- """
- def __init__(self, dbfunc, domain, fillx=0, filly=0):
- """abfunc(fillx, filly) must be defined.
- abfunc(x, filly) = x for all x to enable reduce.
- """
- super(_DomainedBinaryOperation, self).__init__(dbfunc)
- self.domain = domain
- self.fillx = fillx
- self.filly = filly
- ufunc_domain[dbfunc] = domain
- ufunc_fills[dbfunc] = (fillx, filly)
- def __call__(self, a, b, *args, **kwargs):
- "Execute the call behavior."
- # Get the data
- (da, db) = (getdata(a), getdata(b))
- # Get the result
- with np.errstate(divide='ignore', invalid='ignore'):
- result = self.f(da, db, *args, **kwargs)
- # Get the mask as a combination of the source masks and invalid
- m = ~umath.isfinite(result)
- m |= getmask(a)
- m |= getmask(b)
- # Apply the domain
- domain = ufunc_domain.get(self.f, None)
- if domain is not None:
- m |= domain(da, db)
- # Take care of the scalar case first
- if not m.ndim:
- if m:
- return masked
- else:
- return result
- # When the mask is True, put back da if possible
- # any errors, just abort; impossible to guarantee masked values
- try:
- np.copyto(result, 0, casting='unsafe', where=m)
- # avoid using "*" since this may be overlaid
- masked_da = umath.multiply(m, da)
- # only add back if it can be cast safely
- if np.can_cast(masked_da.dtype, result.dtype, casting='safe'):
- result += masked_da
- except Exception:
- pass
- # Transforms to a (subclass of) MaskedArray
- masked_result = result.view(get_masked_subclass(a, b))
- masked_result._mask = m
- if isinstance(a, MaskedArray):
- masked_result._update_from(a)
- elif isinstance(b, MaskedArray):
- masked_result._update_from(b)
- return masked_result
- # Unary ufuncs
- exp = _MaskedUnaryOperation(umath.exp)
- conjugate = _MaskedUnaryOperation(umath.conjugate)
- sin = _MaskedUnaryOperation(umath.sin)
- cos = _MaskedUnaryOperation(umath.cos)
- arctan = _MaskedUnaryOperation(umath.arctan)
- arcsinh = _MaskedUnaryOperation(umath.arcsinh)
- sinh = _MaskedUnaryOperation(umath.sinh)
- cosh = _MaskedUnaryOperation(umath.cosh)
- tanh = _MaskedUnaryOperation(umath.tanh)
- abs = absolute = _MaskedUnaryOperation(umath.absolute)
- angle = _MaskedUnaryOperation(angle) # from numpy.lib.function_base
- fabs = _MaskedUnaryOperation(umath.fabs)
- negative = _MaskedUnaryOperation(umath.negative)
- floor = _MaskedUnaryOperation(umath.floor)
- ceil = _MaskedUnaryOperation(umath.ceil)
- around = _MaskedUnaryOperation(np.round_)
- logical_not = _MaskedUnaryOperation(umath.logical_not)
- # Domained unary ufuncs
- sqrt = _MaskedUnaryOperation(umath.sqrt, 0.0,
- _DomainGreaterEqual(0.0))
- log = _MaskedUnaryOperation(umath.log, 1.0,
- _DomainGreater(0.0))
- log2 = _MaskedUnaryOperation(umath.log2, 1.0,
- _DomainGreater(0.0))
- log10 = _MaskedUnaryOperation(umath.log10, 1.0,
- _DomainGreater(0.0))
- tan = _MaskedUnaryOperation(umath.tan, 0.0,
- _DomainTan(1e-35))
- arcsin = _MaskedUnaryOperation(umath.arcsin, 0.0,
- _DomainCheckInterval(-1.0, 1.0))
- arccos = _MaskedUnaryOperation(umath.arccos, 0.0,
- _DomainCheckInterval(-1.0, 1.0))
- arccosh = _MaskedUnaryOperation(umath.arccosh, 1.0,
- _DomainGreaterEqual(1.0))
- arctanh = _MaskedUnaryOperation(umath.arctanh, 0.0,
- _DomainCheckInterval(-1.0 + 1e-15, 1.0 - 1e-15))
- # Binary ufuncs
- add = _MaskedBinaryOperation(umath.add)
- subtract = _MaskedBinaryOperation(umath.subtract)
- multiply = _MaskedBinaryOperation(umath.multiply, 1, 1)
- arctan2 = _MaskedBinaryOperation(umath.arctan2, 0.0, 1.0)
- equal = _MaskedBinaryOperation(umath.equal)
- equal.reduce = None
- not_equal = _MaskedBinaryOperation(umath.not_equal)
- not_equal.reduce = None
- less_equal = _MaskedBinaryOperation(umath.less_equal)
- less_equal.reduce = None
- greater_equal = _MaskedBinaryOperation(umath.greater_equal)
- greater_equal.reduce = None
- less = _MaskedBinaryOperation(umath.less)
- less.reduce = None
- greater = _MaskedBinaryOperation(umath.greater)
- greater.reduce = None
- logical_and = _MaskedBinaryOperation(umath.logical_and)
- alltrue = _MaskedBinaryOperation(umath.logical_and, 1, 1).reduce
- logical_or = _MaskedBinaryOperation(umath.logical_or)
- sometrue = logical_or.reduce
- logical_xor = _MaskedBinaryOperation(umath.logical_xor)
- bitwise_and = _MaskedBinaryOperation(umath.bitwise_and)
- bitwise_or = _MaskedBinaryOperation(umath.bitwise_or)
- bitwise_xor = _MaskedBinaryOperation(umath.bitwise_xor)
- hypot = _MaskedBinaryOperation(umath.hypot)
- # Domained binary ufuncs
- divide = _DomainedBinaryOperation(umath.divide, _DomainSafeDivide(), 0, 1)
- true_divide = _DomainedBinaryOperation(umath.true_divide,
- _DomainSafeDivide(), 0, 1)
- floor_divide = _DomainedBinaryOperation(umath.floor_divide,
- _DomainSafeDivide(), 0, 1)
- remainder = _DomainedBinaryOperation(umath.remainder,
- _DomainSafeDivide(), 0, 1)
- fmod = _DomainedBinaryOperation(umath.fmod, _DomainSafeDivide(), 0, 1)
- mod = _DomainedBinaryOperation(umath.mod, _DomainSafeDivide(), 0, 1)
- ###############################################################################
- # Mask creation functions #
- ###############################################################################
- def _replace_dtype_fields_recursive(dtype, primitive_dtype):
- "Private function allowing recursion in _replace_dtype_fields."
- _recurse = _replace_dtype_fields_recursive
- # Do we have some name fields ?
- if dtype.names is not None:
- descr = []
- for name in dtype.names:
- field = dtype.fields[name]
- if len(field) == 3:
- # Prepend the title to the name
- name = (field[-1], name)
- descr.append((name, _recurse(field[0], primitive_dtype)))
- new_dtype = np.dtype(descr)
- # Is this some kind of composite a la (float,2)
- elif dtype.subdtype:
- descr = list(dtype.subdtype)
- descr[0] = _recurse(dtype.subdtype[0], primitive_dtype)
- new_dtype = np.dtype(tuple(descr))
- # this is a primitive type, so do a direct replacement
- else:
- new_dtype = primitive_dtype
- # preserve identity of dtypes
- if new_dtype == dtype:
- new_dtype = dtype
- return new_dtype
- def _replace_dtype_fields(dtype, primitive_dtype):
- """
- Construct a dtype description list from a given dtype.
- Returns a new dtype object, with all fields and subtypes in the given type
- recursively replaced with `primitive_dtype`.
- Arguments are coerced to dtypes first.
- """
- dtype = np.dtype(dtype)
- primitive_dtype = np.dtype(primitive_dtype)
- return _replace_dtype_fields_recursive(dtype, primitive_dtype)
- def make_mask_descr(ndtype):
- """
- Construct a dtype description list from a given dtype.
- Returns a new dtype object, with the type of all fields in `ndtype` to a
- boolean type. Field names are not altered.
- Parameters
- ----------
- ndtype : dtype
- The dtype to convert.
- Returns
- -------
- result : dtype
- A dtype that looks like `ndtype`, the type of all fields is boolean.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> dtype = np.dtype({'names':['foo', 'bar'],
- ... 'formats':[np.float32, np.int64]})
- >>> dtype
- dtype([('foo', '<f4'), ('bar', '<i8')])
- >>> ma.make_mask_descr(dtype)
- dtype([('foo', '|b1'), ('bar', '|b1')])
- >>> ma.make_mask_descr(np.float32)
- dtype('bool')
- """
- return _replace_dtype_fields(ndtype, MaskType)
- def getmask(a):
- """
- Return the mask of a masked array, or nomask.
- Return the mask of `a` as an ndarray if `a` is a `MaskedArray` and the
- mask is not `nomask`, else return `nomask`. To guarantee a full array
- of booleans of the same shape as a, use `getmaskarray`.
- Parameters
- ----------
- a : array_like
- Input `MaskedArray` for which the mask is required.
- See Also
- --------
- getdata : Return the data of a masked array as an ndarray.
- getmaskarray : Return the mask of a masked array, or full array of False.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.masked_equal([[1,2],[3,4]], 2)
- >>> a
- masked_array(
- data=[[1, --],
- [3, 4]],
- mask=[[False, True],
- [False, False]],
- fill_value=2)
- >>> ma.getmask(a)
- array([[False, True],
- [False, False]])
- Equivalently use the `MaskedArray` `mask` attribute.
- >>> a.mask
- array([[False, True],
- [False, False]])
- Result when mask == `nomask`
- >>> b = ma.masked_array([[1,2],[3,4]])
- >>> b
- masked_array(
- data=[[1, 2],
- [3, 4]],
- mask=False,
- fill_value=999999)
- >>> ma.nomask
- False
- >>> ma.getmask(b) == ma.nomask
- True
- >>> b.mask == ma.nomask
- True
- """
- return getattr(a, '_mask', nomask)
- get_mask = getmask
- def getmaskarray(arr):
- """
- Return the mask of a masked array, or full boolean array of False.
- Return the mask of `arr` as an ndarray if `arr` is a `MaskedArray` and
- the mask is not `nomask`, else return a full boolean array of False of
- the same shape as `arr`.
- Parameters
- ----------
- arr : array_like
- Input `MaskedArray` for which the mask is required.
- See Also
- --------
- getmask : Return the mask of a masked array, or nomask.
- getdata : Return the data of a masked array as an ndarray.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.masked_equal([[1,2],[3,4]], 2)
- >>> a
- masked_array(
- data=[[1, --],
- [3, 4]],
- mask=[[False, True],
- [False, False]],
- fill_value=2)
- >>> ma.getmaskarray(a)
- array([[False, True],
- [False, False]])
- Result when mask == ``nomask``
- >>> b = ma.masked_array([[1,2],[3,4]])
- >>> b
- masked_array(
- data=[[1, 2],
- [3, 4]],
- mask=False,
- fill_value=999999)
- >>> ma.getmaskarray(b)
- array([[False, False],
- [False, False]])
- """
- mask = getmask(arr)
- if mask is nomask:
- mask = make_mask_none(np.shape(arr), getattr(arr, 'dtype', None))
- return mask
- def is_mask(m):
- """
- Return True if m is a valid, standard mask.
- This function does not check the contents of the input, only that the
- type is MaskType. In particular, this function returns False if the
- mask has a flexible dtype.
- Parameters
- ----------
- m : array_like
- Array to test.
- Returns
- -------
- result : bool
- True if `m.dtype.type` is MaskType, False otherwise.
- See Also
- --------
- isMaskedArray : Test whether input is an instance of MaskedArray.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> m = ma.masked_equal([0, 1, 0, 2, 3], 0)
- >>> m
- masked_array(data=[--, 1, --, 2, 3],
- mask=[ True, False, True, False, False],
- fill_value=0)
- >>> ma.is_mask(m)
- False
- >>> ma.is_mask(m.mask)
- True
- Input must be an ndarray (or have similar attributes)
- for it to be considered a valid mask.
- >>> m = [False, True, False]
- >>> ma.is_mask(m)
- False
- >>> m = np.array([False, True, False])
- >>> m
- array([False, True, False])
- >>> ma.is_mask(m)
- True
- Arrays with complex dtypes don't return True.
- >>> dtype = np.dtype({'names':['monty', 'pithon'],
- ... 'formats':[bool, bool]})
- >>> dtype
- dtype([('monty', '|b1'), ('pithon', '|b1')])
- >>> m = np.array([(True, False), (False, True), (True, False)],
- ... dtype=dtype)
- >>> m
- array([( True, False), (False, True), ( True, False)],
- dtype=[('monty', '?'), ('pithon', '?')])
- >>> ma.is_mask(m)
- False
- """
- try:
- return m.dtype.type is MaskType
- except AttributeError:
- return False
- def _shrink_mask(m):
- """
- Shrink a mask to nomask if possible
- """
- if m.dtype.names is None and not m.any():
- return nomask
- else:
- return m
- def make_mask(m, copy=False, shrink=True, dtype=MaskType):
- """
- Create a boolean mask from an array.
- Return `m` as a boolean mask, creating a copy if necessary or requested.
- The function can accept any sequence that is convertible to integers,
- or ``nomask``. Does not require that contents must be 0s and 1s, values
- of 0 are interpreted as False, everything else as True.
- Parameters
- ----------
- m : array_like
- Potential mask.
- copy : bool, optional
- Whether to return a copy of `m` (True) or `m` itself (False).
- shrink : bool, optional
- Whether to shrink `m` to ``nomask`` if all its values are False.
- dtype : dtype, optional
- Data-type of the output mask. By default, the output mask has a
- dtype of MaskType (bool). If the dtype is flexible, each field has
- a boolean dtype. This is ignored when `m` is ``nomask``, in which
- case ``nomask`` is always returned.
- Returns
- -------
- result : ndarray
- A boolean mask derived from `m`.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> m = [True, False, True, True]
- >>> ma.make_mask(m)
- array([ True, False, True, True])
- >>> m = [1, 0, 1, 1]
- >>> ma.make_mask(m)
- array([ True, False, True, True])
- >>> m = [1, 0, 2, -3]
- >>> ma.make_mask(m)
- array([ True, False, True, True])
- Effect of the `shrink` parameter.
- >>> m = np.zeros(4)
- >>> m
- array([0., 0., 0., 0.])
- >>> ma.make_mask(m)
- False
- >>> ma.make_mask(m, shrink=False)
- array([False, False, False, False])
- Using a flexible `dtype`.
- >>> m = [1, 0, 1, 1]
- >>> n = [0, 1, 0, 0]
- >>> arr = []
- >>> for man, mouse in zip(m, n):
- ... arr.append((man, mouse))
- >>> arr
- [(1, 0), (0, 1), (1, 0), (1, 0)]
- >>> dtype = np.dtype({'names':['man', 'mouse'],
- ... 'formats':[np.int64, np.int64]})
- >>> arr = np.array(arr, dtype=dtype)
- >>> arr
- array([(1, 0), (0, 1), (1, 0), (1, 0)],
- dtype=[('man', '<i8'), ('mouse', '<i8')])
- >>> ma.make_mask(arr, dtype=dtype)
- array([(True, False), (False, True), (True, False), (True, False)],
- dtype=[('man', '|b1'), ('mouse', '|b1')])
- """
- if m is nomask:
- return nomask
- # Make sure the input dtype is valid.
- dtype = make_mask_descr(dtype)
- # legacy boolean special case: "existence of fields implies true"
- if isinstance(m, ndarray) and m.dtype.fields and dtype == np.bool_:
- return np.ones(m.shape, dtype=dtype)
- # Fill the mask in case there are missing data; turn it into an ndarray.
- result = np.array(filled(m, True), copy=copy, dtype=dtype, subok=True)
- # Bas les masques !
- if shrink:
- result = _shrink_mask(result)
- return result
- def make_mask_none(newshape, dtype=None):
- """
- Return a boolean mask of the given shape, filled with False.
- This function returns a boolean ndarray with all entries False, that can
- be used in common mask manipulations. If a complex dtype is specified, the
- type of each field is converted to a boolean type.
- Parameters
- ----------
- newshape : tuple
- A tuple indicating the shape of the mask.
- dtype : {None, dtype}, optional
- If None, use a MaskType instance. Otherwise, use a new datatype with
- the same fields as `dtype`, converted to boolean types.
- Returns
- -------
- result : ndarray
- An ndarray of appropriate shape and dtype, filled with False.
- See Also
- --------
- make_mask : Create a boolean mask from an array.
- make_mask_descr : Construct a dtype description list from a given dtype.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> ma.make_mask_none((3,))
- array([False, False, False])
- Defining a more complex dtype.
- >>> dtype = np.dtype({'names':['foo', 'bar'],
- ... 'formats':[np.float32, np.int64]})
- >>> dtype
- dtype([('foo', '<f4'), ('bar', '<i8')])
- >>> ma.make_mask_none((3,), dtype=dtype)
- array([(False, False), (False, False), (False, False)],
- dtype=[('foo', '|b1'), ('bar', '|b1')])
- """
- if dtype is None:
- result = np.zeros(newshape, dtype=MaskType)
- else:
- result = np.zeros(newshape, dtype=make_mask_descr(dtype))
- return result
- def mask_or(m1, m2, copy=False, shrink=True):
- """
- Combine two masks with the ``logical_or`` operator.
- The result may be a view on `m1` or `m2` if the other is `nomask`
- (i.e. False).
- Parameters
- ----------
- m1, m2 : array_like
- Input masks.
- copy : bool, optional
- If copy is False and one of the inputs is `nomask`, return a view
- of the other input mask. Defaults to False.
- shrink : bool, optional
- Whether to shrink the output to `nomask` if all its values are
- False. Defaults to True.
- Returns
- -------
- mask : output mask
- The result masks values that are masked in either `m1` or `m2`.
- Raises
- ------
- ValueError
- If `m1` and `m2` have different flexible dtypes.
- Examples
- --------
- >>> m1 = np.ma.make_mask([0, 1, 1, 0])
- >>> m2 = np.ma.make_mask([1, 0, 0, 0])
- >>> np.ma.mask_or(m1, m2)
- array([ True, True, True, False])
- """
- @recursive
- def _recursive_mask_or(self, m1, m2, newmask):
- names = m1.dtype.names
- for name in names:
- current1 = m1[name]
- if current1.dtype.names is not None:
- self(current1, m2[name], newmask[name])
- else:
- umath.logical_or(current1, m2[name], newmask[name])
- return
- if (m1 is nomask) or (m1 is False):
- dtype = getattr(m2, 'dtype', MaskType)
- return make_mask(m2, copy=copy, shrink=shrink, dtype=dtype)
- if (m2 is nomask) or (m2 is False):
- dtype = getattr(m1, 'dtype', MaskType)
- return make_mask(m1, copy=copy, shrink=shrink, dtype=dtype)
- if m1 is m2 and is_mask(m1):
- return m1
- (dtype1, dtype2) = (getattr(m1, 'dtype', None), getattr(m2, 'dtype', None))
- if dtype1 != dtype2:
- raise ValueError("Incompatible dtypes '%s'<>'%s'" % (dtype1, dtype2))
- if dtype1.names is not None:
- # Allocate an output mask array with the properly broadcast shape.
- newmask = np.empty(np.broadcast(m1, m2).shape, dtype1)
- _recursive_mask_or(m1, m2, newmask)
- return newmask
- return make_mask(umath.logical_or(m1, m2), copy=copy, shrink=shrink)
- def flatten_mask(mask):
- """
- Returns a completely flattened version of the mask, where nested fields
- are collapsed.
- Parameters
- ----------
- mask : array_like
- Input array, which will be interpreted as booleans.
- Returns
- -------
- flattened_mask : ndarray of bools
- The flattened input.
- Examples
- --------
- >>> mask = np.array([0, 0, 1])
- >>> np.ma.flatten_mask(mask)
- array([False, False, True])
- >>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
- >>> np.ma.flatten_mask(mask)
- array([False, False, False, True])
- >>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
- >>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
- >>> np.ma.flatten_mask(mask)
- array([False, False, False, False, False, True])
- """
- def _flatmask(mask):
- "Flatten the mask and returns a (maybe nested) sequence of booleans."
- mnames = mask.dtype.names
- if mnames is not None:
- return [flatten_mask(mask[name]) for name in mnames]
- else:
- return mask
- def _flatsequence(sequence):
- "Generates a flattened version of the sequence."
- try:
- for element in sequence:
- if hasattr(element, '__iter__'):
- for f in _flatsequence(element):
- yield f
- else:
- yield element
- except TypeError:
- yield sequence
- mask = np.asarray(mask)
- flattened = _flatsequence(_flatmask(mask))
- return np.array([_ for _ in flattened], dtype=bool)
- def _check_mask_axis(mask, axis, keepdims=np._NoValue):
- "Check whether there are masked values along the given axis"
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- if mask is not nomask:
- return mask.all(axis=axis, **kwargs)
- return nomask
- ###############################################################################
- # Masking functions #
- ###############################################################################
- def masked_where(condition, a, copy=True):
- """
- Mask an array where a condition is met.
- Return `a` as an array masked where `condition` is True.
- Any masked values of `a` or `condition` are also masked in the output.
- Parameters
- ----------
- condition : array_like
- Masking condition. When `condition` tests floating point values for
- equality, consider using ``masked_values`` instead.
- a : array_like
- Array to mask.
- copy : bool
- If True (default) make a copy of `a` in the result. If False modify
- `a` in place and return a view.
- Returns
- -------
- result : MaskedArray
- The result of masking `a` where `condition` is True.
- See Also
- --------
- masked_values : Mask using floating point equality.
- masked_equal : Mask where equal to a given value.
- masked_not_equal : Mask where `not` equal to a given value.
- masked_less_equal : Mask where less than or equal to a given value.
- masked_greater_equal : Mask where greater than or equal to a given value.
- masked_less : Mask where less than a given value.
- masked_greater : Mask where greater than a given value.
- masked_inside : Mask inside a given interval.
- masked_outside : Mask outside a given interval.
- masked_invalid : Mask invalid values (NaNs or infs).
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_where(a <= 2, a)
- masked_array(data=[--, --, --, 3],
- mask=[ True, True, True, False],
- fill_value=999999)
- Mask array `b` conditional on `a`.
- >>> b = ['a', 'b', 'c', 'd']
- >>> ma.masked_where(a == 2, b)
- masked_array(data=['a', 'b', --, 'd'],
- mask=[False, False, True, False],
- fill_value='N/A',
- dtype='<U1')
- Effect of the `copy` argument.
- >>> c = ma.masked_where(a <= 2, a)
- >>> c
- masked_array(data=[--, --, --, 3],
- mask=[ True, True, True, False],
- fill_value=999999)
- >>> c[0] = 99
- >>> c
- masked_array(data=[99, --, --, 3],
- mask=[False, True, True, False],
- fill_value=999999)
- >>> a
- array([0, 1, 2, 3])
- >>> c = ma.masked_where(a <= 2, a, copy=False)
- >>> c[0] = 99
- >>> c
- masked_array(data=[99, --, --, 3],
- mask=[False, True, True, False],
- fill_value=999999)
- >>> a
- array([99, 1, 2, 3])
- When `condition` or `a` contain masked values.
- >>> a = np.arange(4)
- >>> a = ma.masked_where(a == 2, a)
- >>> a
- masked_array(data=[0, 1, --, 3],
- mask=[False, False, True, False],
- fill_value=999999)
- >>> b = np.arange(4)
- >>> b = ma.masked_where(b == 0, b)
- >>> b
- masked_array(data=[--, 1, 2, 3],
- mask=[ True, False, False, False],
- fill_value=999999)
- >>> ma.masked_where(a == 3, b)
- masked_array(data=[--, 1, --, --],
- mask=[ True, False, True, True],
- fill_value=999999)
- """
- # Make sure that condition is a valid standard-type mask.
- cond = make_mask(condition, shrink=False)
- a = np.array(a, copy=copy, subok=True)
- (cshape, ashape) = (cond.shape, a.shape)
- if cshape and cshape != ashape:
- raise IndexError("Inconsistent shape between the condition and the input"
- " (got %s and %s)" % (cshape, ashape))
- if hasattr(a, '_mask'):
- cond = mask_or(cond, a._mask)
- cls = type(a)
- else:
- cls = MaskedArray
- result = a.view(cls)
- # Assign to *.mask so that structured masks are handled correctly.
- result.mask = _shrink_mask(cond)
- return result
- def masked_greater(x, value, copy=True):
- """
- Mask an array where greater than a given value.
- This function is a shortcut to ``masked_where``, with
- `condition` = (x > value).
- See Also
- --------
- masked_where : Mask where a condition is met.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_greater(a, 2)
- masked_array(data=[0, 1, 2, --],
- mask=[False, False, False, True],
- fill_value=999999)
- """
- return masked_where(greater(x, value), x, copy=copy)
- def masked_greater_equal(x, value, copy=True):
- """
- Mask an array where greater than or equal to a given value.
- This function is a shortcut to ``masked_where``, with
- `condition` = (x >= value).
- See Also
- --------
- masked_where : Mask where a condition is met.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_greater_equal(a, 2)
- masked_array(data=[0, 1, --, --],
- mask=[False, False, True, True],
- fill_value=999999)
- """
- return masked_where(greater_equal(x, value), x, copy=copy)
- def masked_less(x, value, copy=True):
- """
- Mask an array where less than a given value.
- This function is a shortcut to ``masked_where``, with
- `condition` = (x < value).
- See Also
- --------
- masked_where : Mask where a condition is met.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_less(a, 2)
- masked_array(data=[--, --, 2, 3],
- mask=[ True, True, False, False],
- fill_value=999999)
- """
- return masked_where(less(x, value), x, copy=copy)
- def masked_less_equal(x, value, copy=True):
- """
- Mask an array where less than or equal to a given value.
- This function is a shortcut to ``masked_where``, with
- `condition` = (x <= value).
- See Also
- --------
- masked_where : Mask where a condition is met.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_less_equal(a, 2)
- masked_array(data=[--, --, --, 3],
- mask=[ True, True, True, False],
- fill_value=999999)
- """
- return masked_where(less_equal(x, value), x, copy=copy)
- def masked_not_equal(x, value, copy=True):
- """
- Mask an array where `not` equal to a given value.
- This function is a shortcut to ``masked_where``, with
- `condition` = (x != value).
- See Also
- --------
- masked_where : Mask where a condition is met.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_not_equal(a, 2)
- masked_array(data=[--, --, 2, --],
- mask=[ True, True, False, True],
- fill_value=999999)
- """
- return masked_where(not_equal(x, value), x, copy=copy)
- def masked_equal(x, value, copy=True):
- """
- Mask an array where equal to a given value.
- This function is a shortcut to ``masked_where``, with
- `condition` = (x == value). For floating point arrays,
- consider using ``masked_values(x, value)``.
- See Also
- --------
- masked_where : Mask where a condition is met.
- masked_values : Mask using floating point equality.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(4)
- >>> a
- array([0, 1, 2, 3])
- >>> ma.masked_equal(a, 2)
- masked_array(data=[0, 1, --, 3],
- mask=[False, False, True, False],
- fill_value=2)
- """
- output = masked_where(equal(x, value), x, copy=copy)
- output.fill_value = value
- return output
- def masked_inside(x, v1, v2, copy=True):
- """
- Mask an array inside a given interval.
- Shortcut to ``masked_where``, where `condition` is True for `x` inside
- the interval [v1,v2] (v1 <= x <= v2). The boundaries `v1` and `v2`
- can be given in either order.
- See Also
- --------
- masked_where : Mask where a condition is met.
- Notes
- -----
- The array `x` is prefilled with its filling value.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
- >>> ma.masked_inside(x, -0.3, 0.3)
- masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
- mask=[False, False, True, True, False, False],
- fill_value=1e+20)
- The order of `v1` and `v2` doesn't matter.
- >>> ma.masked_inside(x, 0.3, -0.3)
- masked_array(data=[0.31, 1.2, --, --, -0.4, -1.1],
- mask=[False, False, True, True, False, False],
- fill_value=1e+20)
- """
- if v2 < v1:
- (v1, v2) = (v2, v1)
- xf = filled(x)
- condition = (xf >= v1) & (xf <= v2)
- return masked_where(condition, x, copy=copy)
- def masked_outside(x, v1, v2, copy=True):
- """
- Mask an array outside a given interval.
- Shortcut to ``masked_where``, where `condition` is True for `x` outside
- the interval [v1,v2] (x < v1)|(x > v2).
- The boundaries `v1` and `v2` can be given in either order.
- See Also
- --------
- masked_where : Mask where a condition is met.
- Notes
- -----
- The array `x` is prefilled with its filling value.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
- >>> ma.masked_outside(x, -0.3, 0.3)
- masked_array(data=[--, --, 0.01, 0.2, --, --],
- mask=[ True, True, False, False, True, True],
- fill_value=1e+20)
- The order of `v1` and `v2` doesn't matter.
- >>> ma.masked_outside(x, 0.3, -0.3)
- masked_array(data=[--, --, 0.01, 0.2, --, --],
- mask=[ True, True, False, False, True, True],
- fill_value=1e+20)
- """
- if v2 < v1:
- (v1, v2) = (v2, v1)
- xf = filled(x)
- condition = (xf < v1) | (xf > v2)
- return masked_where(condition, x, copy=copy)
- def masked_object(x, value, copy=True, shrink=True):
- """
- Mask the array `x` where the data are exactly equal to value.
- This function is similar to `masked_values`, but only suitable
- for object arrays: for floating point, use `masked_values` instead.
- Parameters
- ----------
- x : array_like
- Array to mask
- value : object
- Comparison value
- copy : {True, False}, optional
- Whether to return a copy of `x`.
- shrink : {True, False}, optional
- Whether to collapse a mask full of False to nomask
- Returns
- -------
- result : MaskedArray
- The result of masking `x` where equal to `value`.
- See Also
- --------
- masked_where : Mask where a condition is met.
- masked_equal : Mask where equal to a given value (integers).
- masked_values : Mask using floating point equality.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> food = np.array(['green_eggs', 'ham'], dtype=object)
- >>> # don't eat spoiled food
- >>> eat = ma.masked_object(food, 'green_eggs')
- >>> eat
- masked_array(data=[--, 'ham'],
- mask=[ True, False],
- fill_value='green_eggs',
- dtype=object)
- >>> # plain ol` ham is boring
- >>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
- >>> eat = ma.masked_object(fresh_food, 'green_eggs')
- >>> eat
- masked_array(data=['cheese', 'ham', 'pineapple'],
- mask=False,
- fill_value='green_eggs',
- dtype=object)
- Note that `mask` is set to ``nomask`` if possible.
- >>> eat
- masked_array(data=['cheese', 'ham', 'pineapple'],
- mask=False,
- fill_value='green_eggs',
- dtype=object)
- """
- if isMaskedArray(x):
- condition = umath.equal(x._data, value)
- mask = x._mask
- else:
- condition = umath.equal(np.asarray(x), value)
- mask = nomask
- mask = mask_or(mask, make_mask(condition, shrink=shrink))
- return masked_array(x, mask=mask, copy=copy, fill_value=value)
- def masked_values(x, value, rtol=1e-5, atol=1e-8, copy=True, shrink=True):
- """
- Mask using floating point equality.
- Return a MaskedArray, masked where the data in array `x` are approximately
- equal to `value`, determined using `isclose`. The default tolerances for
- `masked_values` are the same as those for `isclose`.
- For integer types, exact equality is used, in the same way as
- `masked_equal`.
- The fill_value is set to `value` and the mask is set to ``nomask`` if
- possible.
- Parameters
- ----------
- x : array_like
- Array to mask.
- value : float
- Masking value.
- rtol, atol : float, optional
- Tolerance parameters passed on to `isclose`
- copy : bool, optional
- Whether to return a copy of `x`.
- shrink : bool, optional
- Whether to collapse a mask full of False to ``nomask``.
- Returns
- -------
- result : MaskedArray
- The result of masking `x` where approximately equal to `value`.
- See Also
- --------
- masked_where : Mask where a condition is met.
- masked_equal : Mask where equal to a given value (integers).
- Examples
- --------
- >>> import numpy.ma as ma
- >>> x = np.array([1, 1.1, 2, 1.1, 3])
- >>> ma.masked_values(x, 1.1)
- masked_array(data=[1.0, --, 2.0, --, 3.0],
- mask=[False, True, False, True, False],
- fill_value=1.1)
- Note that `mask` is set to ``nomask`` if possible.
- >>> ma.masked_values(x, 1.5)
- masked_array(data=[1. , 1.1, 2. , 1.1, 3. ],
- mask=False,
- fill_value=1.5)
- For integers, the fill value will be different in general to the
- result of ``masked_equal``.
- >>> x = np.arange(5)
- >>> x
- array([0, 1, 2, 3, 4])
- >>> ma.masked_values(x, 2)
- masked_array(data=[0, 1, --, 3, 4],
- mask=[False, False, True, False, False],
- fill_value=2)
- >>> ma.masked_equal(x, 2)
- masked_array(data=[0, 1, --, 3, 4],
- mask=[False, False, True, False, False],
- fill_value=2)
- """
- xnew = filled(x, value)
- if np.issubdtype(xnew.dtype, np.floating):
- mask = np.isclose(xnew, value, atol=atol, rtol=rtol)
- else:
- mask = umath.equal(xnew, value)
- ret = masked_array(xnew, mask=mask, copy=copy, fill_value=value)
- if shrink:
- ret.shrink_mask()
- return ret
- def masked_invalid(a, copy=True):
- """
- Mask an array where invalid values occur (NaNs or infs).
- This function is a shortcut to ``masked_where``, with
- `condition` = ~(np.isfinite(a)). Any pre-existing mask is conserved.
- Only applies to arrays with a dtype where NaNs or infs make sense
- (i.e. floating point types), but accepts any array_like object.
- See Also
- --------
- masked_where : Mask where a condition is met.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.arange(5, dtype=float)
- >>> a[2] = np.NaN
- >>> a[3] = np.PINF
- >>> a
- array([ 0., 1., nan, inf, 4.])
- >>> ma.masked_invalid(a)
- masked_array(data=[0.0, 1.0, --, --, 4.0],
- mask=[False, False, True, True, False],
- fill_value=1e+20)
- """
- a = np.array(a, copy=copy, subok=True)
- mask = getattr(a, '_mask', None)
- if mask is not None:
- condition = ~(np.isfinite(getdata(a)))
- if mask is not nomask:
- condition |= mask
- cls = type(a)
- else:
- condition = ~(np.isfinite(a))
- cls = MaskedArray
- result = a.view(cls)
- result._mask = condition
- return result
- ###############################################################################
- # Printing options #
- ###############################################################################
- class _MaskedPrintOption(object):
- """
- Handle the string used to represent missing data in a masked array.
- """
- def __init__(self, display):
- """
- Create the masked_print_option object.
- """
- self._display = display
- self._enabled = True
- def display(self):
- """
- Display the string to print for masked values.
- """
- return self._display
- def set_display(self, s):
- """
- Set the string to print for masked values.
- """
- self._display = s
- def enabled(self):
- """
- Is the use of the display value enabled?
- """
- return self._enabled
- def enable(self, shrink=1):
- """
- Set the enabling shrink to `shrink`.
- """
- self._enabled = shrink
- def __str__(self):
- return str(self._display)
- __repr__ = __str__
- # if you single index into a masked location you get this object.
- masked_print_option = _MaskedPrintOption('--')
- def _recursive_printoption(result, mask, printopt):
- """
- Puts printoptions in result where mask is True.
- Private function allowing for recursion
- """
- names = result.dtype.names
- if names is not None:
- for name in names:
- curdata = result[name]
- curmask = mask[name]
- _recursive_printoption(curdata, curmask, printopt)
- else:
- np.copyto(result, printopt, where=mask)
- return
- # For better or worse, these end in a newline
- _legacy_print_templates = dict(
- long_std=textwrap.dedent("""\
- masked_%(name)s(data =
- %(data)s,
- %(nlen)s mask =
- %(mask)s,
- %(nlen)s fill_value = %(fill)s)
- """),
- long_flx=textwrap.dedent("""\
- masked_%(name)s(data =
- %(data)s,
- %(nlen)s mask =
- %(mask)s,
- %(nlen)s fill_value = %(fill)s,
- %(nlen)s dtype = %(dtype)s)
- """),
- short_std=textwrap.dedent("""\
- masked_%(name)s(data = %(data)s,
- %(nlen)s mask = %(mask)s,
- %(nlen)s fill_value = %(fill)s)
- """),
- short_flx=textwrap.dedent("""\
- masked_%(name)s(data = %(data)s,
- %(nlen)s mask = %(mask)s,
- %(nlen)s fill_value = %(fill)s,
- %(nlen)s dtype = %(dtype)s)
- """)
- )
- ###############################################################################
- # MaskedArray class #
- ###############################################################################
- def _recursive_filled(a, mask, fill_value):
- """
- Recursively fill `a` with `fill_value`.
- """
- names = a.dtype.names
- for name in names:
- current = a[name]
- if current.dtype.names is not None:
- _recursive_filled(current, mask[name], fill_value[name])
- else:
- np.copyto(current, fill_value[name], where=mask[name])
- def flatten_structured_array(a):
- """
- Flatten a structured array.
- The data type of the output is chosen such that it can represent all of the
- (nested) fields.
- Parameters
- ----------
- a : structured array
- Returns
- -------
- output : masked array or ndarray
- A flattened masked array if the input is a masked array, otherwise a
- standard ndarray.
- Examples
- --------
- >>> ndtype = [('a', int), ('b', float)]
- >>> a = np.array([(1, 1), (2, 2)], dtype=ndtype)
- >>> np.ma.flatten_structured_array(a)
- array([[1., 1.],
- [2., 2.]])
- """
- def flatten_sequence(iterable):
- """
- Flattens a compound of nested iterables.
- """
- for elm in iter(iterable):
- if hasattr(elm, '__iter__'):
- for f in flatten_sequence(elm):
- yield f
- else:
- yield elm
- a = np.asanyarray(a)
- inishape = a.shape
- a = a.ravel()
- if isinstance(a, MaskedArray):
- out = np.array([tuple(flatten_sequence(d.item())) for d in a._data])
- out = out.view(MaskedArray)
- out._mask = np.array([tuple(flatten_sequence(d.item()))
- for d in getmaskarray(a)])
- else:
- out = np.array([tuple(flatten_sequence(d.item())) for d in a])
- if len(inishape) > 1:
- newshape = list(out.shape)
- newshape[0] = inishape
- out.shape = tuple(flatten_sequence(newshape))
- return out
- def _arraymethod(funcname, onmask=True):
- """
- Return a class method wrapper around a basic array method.
- Creates a class method which returns a masked array, where the new
- ``_data`` array is the output of the corresponding basic method called
- on the original ``_data``.
- If `onmask` is True, the new mask is the output of the method called
- on the initial mask. Otherwise, the new mask is just a reference
- to the initial mask.
- Parameters
- ----------
- funcname : str
- Name of the function to apply on data.
- onmask : bool
- Whether the mask must be processed also (True) or left
- alone (False). Default is True. Make available as `_onmask`
- attribute.
- Returns
- -------
- method : instancemethod
- Class method wrapper of the specified basic array method.
- """
- def wrapped_method(self, *args, **params):
- result = getattr(self._data, funcname)(*args, **params)
- result = result.view(type(self))
- result._update_from(self)
- mask = self._mask
- if not onmask:
- result.__setmask__(mask)
- elif mask is not nomask:
- # __setmask__ makes a copy, which we don't want
- result._mask = getattr(mask, funcname)(*args, **params)
- return result
- methdoc = getattr(ndarray, funcname, None) or getattr(np, funcname, None)
- if methdoc is not None:
- wrapped_method.__doc__ = methdoc.__doc__
- wrapped_method.__name__ = funcname
- return wrapped_method
- class MaskedIterator(object):
- """
- Flat iterator object to iterate over masked arrays.
- A `MaskedIterator` iterator is returned by ``x.flat`` for any masked array
- `x`. It allows iterating over the array as if it were a 1-D array,
- either in a for-loop or by calling its `next` method.
- Iteration is done in C-contiguous style, with the last index varying the
- fastest. The iterator can also be indexed using basic slicing or
- advanced indexing.
- See Also
- --------
- MaskedArray.flat : Return a flat iterator over an array.
- MaskedArray.flatten : Returns a flattened copy of an array.
- Notes
- -----
- `MaskedIterator` is not exported by the `ma` module. Instead of
- instantiating a `MaskedIterator` directly, use `MaskedArray.flat`.
- Examples
- --------
- >>> x = np.ma.array(arange(6).reshape(2, 3))
- >>> fl = x.flat
- >>> type(fl)
- <class 'numpy.ma.core.MaskedIterator'>
- >>> for item in fl:
- ... print(item)
- ...
- 0
- 1
- 2
- 3
- 4
- 5
- Extracting more than a single element b indexing the `MaskedIterator`
- returns a masked array:
- >>> fl[2:4]
- masked_array(data = [2 3],
- mask = False,
- fill_value = 999999)
- """
- def __init__(self, ma):
- self.ma = ma
- self.dataiter = ma._data.flat
- if ma._mask is nomask:
- self.maskiter = None
- else:
- self.maskiter = ma._mask.flat
- def __iter__(self):
- return self
- def __getitem__(self, indx):
- result = self.dataiter.__getitem__(indx).view(type(self.ma))
- if self.maskiter is not None:
- _mask = self.maskiter.__getitem__(indx)
- if isinstance(_mask, ndarray):
- # set shape to match that of data; this is needed for matrices
- _mask.shape = result.shape
- result._mask = _mask
- elif isinstance(_mask, np.void):
- return mvoid(result, mask=_mask, hardmask=self.ma._hardmask)
- elif _mask: # Just a scalar, masked
- return masked
- return result
- # This won't work if ravel makes a copy
- def __setitem__(self, index, value):
- self.dataiter[index] = getdata(value)
- if self.maskiter is not None:
- self.maskiter[index] = getmaskarray(value)
- def __next__(self):
- """
- Return the next value, or raise StopIteration.
- Examples
- --------
- >>> x = np.ma.array([3, 2], mask=[0, 1])
- >>> fl = x.flat
- >>> next(fl)
- 3
- >>> next(fl)
- masked
- >>> next(fl)
- Traceback (most recent call last):
- ...
- StopIteration
- """
- d = next(self.dataiter)
- if self.maskiter is not None:
- m = next(self.maskiter)
- if isinstance(m, np.void):
- return mvoid(d, mask=m, hardmask=self.ma._hardmask)
- elif m: # Just a scalar, masked
- return masked
- return d
- next = __next__
- class MaskedArray(ndarray):
- """
- An array class with possibly masked values.
- Masked values of True exclude the corresponding element from any
- computation.
- Construction::
- x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
- ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
- shrink=True, order=None)
- Parameters
- ----------
- data : array_like
- Input data.
- mask : sequence, optional
- Mask. Must be convertible to an array of booleans with the same
- shape as `data`. True indicates a masked (i.e. invalid) data.
- dtype : dtype, optional
- Data type of the output.
- If `dtype` is None, the type of the data argument (``data.dtype``)
- is used. If `dtype` is not None and different from ``data.dtype``,
- a copy is performed.
- copy : bool, optional
- Whether to copy the input data (True), or to use a reference instead.
- Default is False.
- subok : bool, optional
- Whether to return a subclass of `MaskedArray` if possible (True) or a
- plain `MaskedArray`. Default is True.
- ndmin : int, optional
- Minimum number of dimensions. Default is 0.
- fill_value : scalar, optional
- Value used to fill in the masked values when necessary.
- If None, a default based on the data-type is used.
- keep_mask : bool, optional
- Whether to combine `mask` with the mask of the input data, if any
- (True), or to use only `mask` for the output (False). Default is True.
- hard_mask : bool, optional
- Whether to use a hard mask or not. With a hard mask, masked values
- cannot be unmasked. Default is False.
- shrink : bool, optional
- Whether to force compression of an empty mask. Default is True.
- order : {'C', 'F', 'A'}, optional
- Specify the order of the array. If order is 'C', then the array
- will be in C-contiguous order (last-index varies the fastest).
- If order is 'F', then the returned array will be in
- Fortran-contiguous order (first-index varies the fastest).
- If order is 'A' (default), then the returned array may be
- in any order (either C-, Fortran-contiguous, or even discontiguous),
- unless a copy is required, in which case it will be C-contiguous.
- """
- __array_priority__ = 15
- _defaultmask = nomask
- _defaulthardmask = False
- _baseclass = ndarray
- # Maximum number of elements per axis used when printing an array. The
- # 1d case is handled separately because we need more values in this case.
- _print_width = 100
- _print_width_1d = 1500
- def __new__(cls, data=None, mask=nomask, dtype=None, copy=False,
- subok=True, ndmin=0, fill_value=None, keep_mask=True,
- hard_mask=None, shrink=True, order=None, **options):
- """
- Create a new masked array from scratch.
- Notes
- -----
- A masked array can also be created by taking a .view(MaskedArray).
- """
- # Process data.
- _data = np.array(data, dtype=dtype, copy=copy,
- order=order, subok=True, ndmin=ndmin)
- _baseclass = getattr(data, '_baseclass', type(_data))
- # Check that we're not erasing the mask.
- if isinstance(data, MaskedArray) and (data.shape != _data.shape):
- copy = True
- # Here, we copy the _view_, so that we can attach new properties to it
- # we must never do .view(MaskedConstant), as that would create a new
- # instance of np.ma.masked, which make identity comparison fail
- if isinstance(data, cls) and subok and not isinstance(data, MaskedConstant):
- _data = ndarray.view(_data, type(data))
- else:
- _data = ndarray.view(_data, cls)
- # Backwards compatibility w/ numpy.core.ma.
- if hasattr(data, '_mask') and not isinstance(data, ndarray):
- _data._mask = data._mask
- # FIXME _sharedmask is never used.
- _sharedmask = True
- # Process mask.
- # Type of the mask
- mdtype = make_mask_descr(_data.dtype)
- if mask is nomask:
- # Case 1. : no mask in input.
- # Erase the current mask ?
- if not keep_mask:
- # With a reduced version
- if shrink:
- _data._mask = nomask
- # With full version
- else:
- _data._mask = np.zeros(_data.shape, dtype=mdtype)
- # Check whether we missed something
- elif isinstance(data, (tuple, list)):
- try:
- # If data is a sequence of masked array
- mask = np.array([getmaskarray(m) for m in data],
- dtype=mdtype)
- except ValueError:
- # If data is nested
- mask = nomask
- # Force shrinking of the mask if needed (and possible)
- if (mdtype == MaskType) and mask.any():
- _data._mask = mask
- _data._sharedmask = False
- else:
- _data._sharedmask = not copy
- if copy:
- _data._mask = _data._mask.copy()
- # Reset the shape of the original mask
- if getmask(data) is not nomask:
- data._mask.shape = data.shape
- else:
- # Case 2. : With a mask in input.
- # If mask is boolean, create an array of True or False
- if mask is True and mdtype == MaskType:
- mask = np.ones(_data.shape, dtype=mdtype)
- elif mask is False and mdtype == MaskType:
- mask = np.zeros(_data.shape, dtype=mdtype)
- else:
- # Read the mask with the current mdtype
- try:
- mask = np.array(mask, copy=copy, dtype=mdtype)
- # Or assume it's a sequence of bool/int
- except TypeError:
- mask = np.array([tuple([m] * len(mdtype)) for m in mask],
- dtype=mdtype)
- # Make sure the mask and the data have the same shape
- if mask.shape != _data.shape:
- (nd, nm) = (_data.size, mask.size)
- if nm == 1:
- mask = np.resize(mask, _data.shape)
- elif nm == nd:
- mask = np.reshape(mask, _data.shape)
- else:
- msg = "Mask and data not compatible: data size is %i, " + \
- "mask size is %i."
- raise MaskError(msg % (nd, nm))
- copy = True
- # Set the mask to the new value
- if _data._mask is nomask:
- _data._mask = mask
- _data._sharedmask = not copy
- else:
- if not keep_mask:
- _data._mask = mask
- _data._sharedmask = not copy
- else:
- if _data.dtype.names is not None:
- def _recursive_or(a, b):
- "do a|=b on each field of a, recursively"
- for name in a.dtype.names:
- (af, bf) = (a[name], b[name])
- if af.dtype.names is not None:
- _recursive_or(af, bf)
- else:
- af |= bf
- _recursive_or(_data._mask, mask)
- else:
- _data._mask = np.logical_or(mask, _data._mask)
- _data._sharedmask = False
- # Update fill_value.
- if fill_value is None:
- fill_value = getattr(data, '_fill_value', None)
- # But don't run the check unless we have something to check.
- if fill_value is not None:
- _data._fill_value = _check_fill_value(fill_value, _data.dtype)
- # Process extra options ..
- if hard_mask is None:
- _data._hardmask = getattr(data, '_hardmask', False)
- else:
- _data._hardmask = hard_mask
- _data._baseclass = _baseclass
- return _data
- def _update_from(self, obj):
- """
- Copies some attributes of obj to self.
- """
- if isinstance(obj, ndarray):
- _baseclass = type(obj)
- else:
- _baseclass = ndarray
- # We need to copy the _basedict to avoid backward propagation
- _optinfo = {}
- _optinfo.update(getattr(obj, '_optinfo', {}))
- _optinfo.update(getattr(obj, '_basedict', {}))
- if not isinstance(obj, MaskedArray):
- _optinfo.update(getattr(obj, '__dict__', {}))
- _dict = dict(_fill_value=getattr(obj, '_fill_value', None),
- _hardmask=getattr(obj, '_hardmask', False),
- _sharedmask=getattr(obj, '_sharedmask', False),
- _isfield=getattr(obj, '_isfield', False),
- _baseclass=getattr(obj, '_baseclass', _baseclass),
- _optinfo=_optinfo,
- _basedict=_optinfo)
- self.__dict__.update(_dict)
- self.__dict__.update(_optinfo)
- return
- def __array_finalize__(self, obj):
- """
- Finalizes the masked array.
- """
- # Get main attributes.
- self._update_from(obj)
- # We have to decide how to initialize self.mask, based on
- # obj.mask. This is very difficult. There might be some
- # correspondence between the elements in the array we are being
- # created from (= obj) and us. Or there might not. This method can
- # be called in all kinds of places for all kinds of reasons -- could
- # be empty_like, could be slicing, could be a ufunc, could be a view.
- # The numpy subclassing interface simply doesn't give us any way
- # to know, which means that at best this method will be based on
- # guesswork and heuristics. To make things worse, there isn't even any
- # clear consensus about what the desired behavior is. For instance,
- # most users think that np.empty_like(marr) -- which goes via this
- # method -- should return a masked array with an empty mask (see
- # gh-3404 and linked discussions), but others disagree, and they have
- # existing code which depends on empty_like returning an array that
- # matches the input mask.
- #
- # Historically our algorithm was: if the template object mask had the
- # same *number of elements* as us, then we used *it's mask object
- # itself* as our mask, so that writes to us would also write to the
- # original array. This is horribly broken in multiple ways.
- #
- # Now what we do instead is, if the template object mask has the same
- # number of elements as us, and we do not have the same base pointer
- # as the template object (b/c views like arr[...] should keep the same
- # mask), then we make a copy of the template object mask and use
- # that. This is also horribly broken but somewhat less so. Maybe.
- if isinstance(obj, ndarray):
- # XX: This looks like a bug -- shouldn't it check self.dtype
- # instead?
- if obj.dtype.names is not None:
- _mask = getmaskarray(obj)
- else:
- _mask = getmask(obj)
- # If self and obj point to exactly the same data, then probably
- # self is a simple view of obj (e.g., self = obj[...]), so they
- # should share the same mask. (This isn't 100% reliable, e.g. self
- # could be the first row of obj, or have strange strides, but as a
- # heuristic it's not bad.) In all other cases, we make a copy of
- # the mask, so that future modifications to 'self' do not end up
- # side-effecting 'obj' as well.
- if (_mask is not nomask and obj.__array_interface__["data"][0]
- != self.__array_interface__["data"][0]):
- # We should make a copy. But we could get here via astype,
- # in which case the mask might need a new dtype as well
- # (e.g., changing to or from a structured dtype), and the
- # order could have changed. So, change the mask type if
- # needed and use astype instead of copy.
- if self.dtype == obj.dtype:
- _mask_dtype = _mask.dtype
- else:
- _mask_dtype = make_mask_descr(self.dtype)
- if self.flags.c_contiguous:
- order = "C"
- elif self.flags.f_contiguous:
- order = "F"
- else:
- order = "K"
- _mask = _mask.astype(_mask_dtype, order)
- else:
- # Take a view so shape changes, etc., do not propagate back.
- _mask = _mask.view()
- else:
- _mask = nomask
- self._mask = _mask
- # Finalize the mask
- if self._mask is not nomask:
- try:
- self._mask.shape = self.shape
- except ValueError:
- self._mask = nomask
- except (TypeError, AttributeError):
- # When _mask.shape is not writable (because it's a void)
- pass
- # Finalize the fill_value
- if self._fill_value is not None:
- self._fill_value = _check_fill_value(self._fill_value, self.dtype)
- elif self.dtype.names is not None:
- # Finalize the default fill_value for structured arrays
- self._fill_value = _check_fill_value(None, self.dtype)
- def __array_wrap__(self, obj, context=None):
- """
- Special hook for ufuncs.
- Wraps the numpy array and sets the mask according to context.
- """
- if obj is self: # for in-place operations
- result = obj
- else:
- result = obj.view(type(self))
- result._update_from(self)
- if context is not None:
- result._mask = result._mask.copy()
- func, args, out_i = context
- # args sometimes contains outputs (gh-10459), which we don't want
- input_args = args[:func.nin]
- m = reduce(mask_or, [getmaskarray(arg) for arg in input_args])
- # Get the domain mask
- domain = ufunc_domain.get(func, None)
- if domain is not None:
- # Take the domain, and make sure it's a ndarray
- with np.errstate(divide='ignore', invalid='ignore'):
- d = filled(domain(*input_args), True)
- if d.any():
- # Fill the result where the domain is wrong
- try:
- # Binary domain: take the last value
- fill_value = ufunc_fills[func][-1]
- except TypeError:
- # Unary domain: just use this one
- fill_value = ufunc_fills[func]
- except KeyError:
- # Domain not recognized, use fill_value instead
- fill_value = self.fill_value
- np.copyto(result, fill_value, where=d)
- # Update the mask
- if m is nomask:
- m = d
- else:
- # Don't modify inplace, we risk back-propagation
- m = (m | d)
- # Make sure the mask has the proper size
- if result is not self and result.shape == () and m:
- return masked
- else:
- result._mask = m
- result._sharedmask = False
- return result
- def view(self, dtype=None, type=None, fill_value=None):
- """
- Return a view of the MaskedArray data.
- Parameters
- ----------
- dtype : data-type or ndarray sub-class, optional
- Data-type descriptor of the returned view, e.g., float32 or int16.
- The default, None, results in the view having the same data-type
- as `a`. As with ``ndarray.view``, dtype can also be specified as
- an ndarray sub-class, which then specifies the type of the
- returned object (this is equivalent to setting the ``type``
- parameter).
- type : Python type, optional
- Type of the returned view, either ndarray or a subclass. The
- default None results in type preservation.
- fill_value : scalar, optional
- The value to use for invalid entries (None by default).
- If None, then this argument is inferred from the passed `dtype`, or
- in its absence the original array, as discussed in the notes below.
- See Also
- --------
- numpy.ndarray.view : Equivalent method on ndarray object.
- Notes
- -----
- ``a.view()`` is used two different ways:
- ``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view
- of the array's memory with a different data-type. This can cause a
- reinterpretation of the bytes of memory.
- ``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just
- returns an instance of `ndarray_subclass` that looks at the same array
- (same shape, dtype, etc.) This does not cause a reinterpretation of the
- memory.
- If `fill_value` is not specified, but `dtype` is specified (and is not
- an ndarray sub-class), the `fill_value` of the MaskedArray will be
- reset. If neither `fill_value` nor `dtype` are specified (or if
- `dtype` is an ndarray sub-class), then the fill value is preserved.
- Finally, if `fill_value` is specified, but `dtype` is not, the fill
- value is set to the specified value.
- For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of
- bytes per entry than the previous dtype (for example, converting a
- regular array to a structured array), then the behavior of the view
- cannot be predicted just from the superficial appearance of ``a`` (shown
- by ``print(a)``). It also depends on exactly how ``a`` is stored in
- memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus
- defined as a slice or transpose, etc., the view may give different
- results.
- """
- if dtype is None:
- if type is None:
- output = ndarray.view(self)
- else:
- output = ndarray.view(self, type)
- elif type is None:
- try:
- if issubclass(dtype, ndarray):
- output = ndarray.view(self, dtype)
- dtype = None
- else:
- output = ndarray.view(self, dtype)
- except TypeError:
- output = ndarray.view(self, dtype)
- else:
- output = ndarray.view(self, dtype, type)
- # also make the mask be a view (so attr changes to the view's
- # mask do no affect original object's mask)
- # (especially important to avoid affecting np.masked singleton)
- if getmask(output) is not nomask:
- output._mask = output._mask.view()
- # Make sure to reset the _fill_value if needed
- if getattr(output, '_fill_value', None) is not None:
- if fill_value is None:
- if dtype is None:
- pass # leave _fill_value as is
- else:
- output._fill_value = None
- else:
- output.fill_value = fill_value
- return output
- def __getitem__(self, indx):
- """
- x.__getitem__(y) <==> x[y]
- Return the item described by i, as a masked array.
- """
- # We could directly use ndarray.__getitem__ on self.
- # But then we would have to modify __array_finalize__ to prevent the
- # mask of being reshaped if it hasn't been set up properly yet
- # So it's easier to stick to the current version
- dout = self.data[indx]
- _mask = self._mask
- def _is_scalar(m):
- return not isinstance(m, np.ndarray)
- def _scalar_heuristic(arr, elem):
- """
- Return whether `elem` is a scalar result of indexing `arr`, or None
- if undecidable without promoting nomask to a full mask
- """
- # obviously a scalar
- if not isinstance(elem, np.ndarray):
- return True
- # object array scalar indexing can return anything
- elif arr.dtype.type is np.object_:
- if arr.dtype is not elem.dtype:
- # elem is an array, but dtypes do not match, so must be
- # an element
- return True
- # well-behaved subclass that only returns 0d arrays when
- # expected - this is not a scalar
- elif type(arr).__getitem__ == ndarray.__getitem__:
- return False
- return None
- if _mask is not nomask:
- # _mask cannot be a subclass, so it tells us whether we should
- # expect a scalar. It also cannot be of dtype object.
- mout = _mask[indx]
- scalar_expected = _is_scalar(mout)
- else:
- # attempt to apply the heuristic to avoid constructing a full mask
- mout = nomask
- scalar_expected = _scalar_heuristic(self.data, dout)
- if scalar_expected is None:
- # heuristics have failed
- # construct a full array, so we can be certain. This is costly.
- # we could also fall back on ndarray.__getitem__(self.data, indx)
- scalar_expected = _is_scalar(getmaskarray(self)[indx])
- # Did we extract a single item?
- if scalar_expected:
- # A record
- if isinstance(dout, np.void):
- # We should always re-cast to mvoid, otherwise users can
- # change masks on rows that already have masked values, but not
- # on rows that have no masked values, which is inconsistent.
- return mvoid(dout, mask=mout, hardmask=self._hardmask)
- # special case introduced in gh-5962
- elif (self.dtype.type is np.object_ and
- isinstance(dout, np.ndarray) and
- dout is not masked):
- # If masked, turn into a MaskedArray, with everything masked.
- if mout:
- return MaskedArray(dout, mask=True)
- else:
- return dout
- # Just a scalar
- else:
- if mout:
- return masked
- else:
- return dout
- else:
- # Force dout to MA
- dout = dout.view(type(self))
- # Inherit attributes from self
- dout._update_from(self)
- # Check the fill_value
- if is_string_or_list_of_strings(indx):
- if self._fill_value is not None:
- dout._fill_value = self._fill_value[indx]
- # If we're indexing a multidimensional field in a
- # structured array (such as dtype("(2,)i2,(2,)i1")),
- # dimensionality goes up (M[field].ndim == M.ndim +
- # M.dtype[field].ndim). That's fine for
- # M[field] but problematic for M[field].fill_value
- # which should have shape () to avoid breaking several
- # methods. There is no great way out, so set to
- # first element. See issue #6723.
- if dout._fill_value.ndim > 0:
- if not (dout._fill_value ==
- dout._fill_value.flat[0]).all():
- warnings.warn(
- "Upon accessing multidimensional field "
- "{indx:s}, need to keep dimensionality "
- "of fill_value at 0. Discarding "
- "heterogeneous fill_value and setting "
- "all to {fv!s}.".format(indx=indx,
- fv=dout._fill_value[0]),
- stacklevel=2)
- dout._fill_value = dout._fill_value.flat[0]
- dout._isfield = True
- # Update the mask if needed
- if mout is not nomask:
- # set shape to match that of data; this is needed for matrices
- dout._mask = reshape(mout, dout.shape)
- dout._sharedmask = True
- # Note: Don't try to check for m.any(), that'll take too long
- return dout
- def __setitem__(self, indx, value):
- """
- x.__setitem__(i, y) <==> x[i]=y
- Set item described by index. If value is masked, masks those
- locations.
- """
- if self is masked:
- raise MaskError('Cannot alter the masked element.')
- _data = self._data
- _mask = self._mask
- if isinstance(indx, basestring):
- _data[indx] = value
- if _mask is nomask:
- self._mask = _mask = make_mask_none(self.shape, self.dtype)
- _mask[indx] = getmask(value)
- return
- _dtype = _data.dtype
- if value is masked:
- # The mask wasn't set: create a full version.
- if _mask is nomask:
- _mask = self._mask = make_mask_none(self.shape, _dtype)
- # Now, set the mask to its value.
- if _dtype.names is not None:
- _mask[indx] = tuple([True] * len(_dtype.names))
- else:
- _mask[indx] = True
- return
- # Get the _data part of the new value
- dval = getattr(value, '_data', value)
- # Get the _mask part of the new value
- mval = getmask(value)
- if _dtype.names is not None and mval is nomask:
- mval = tuple([False] * len(_dtype.names))
- if _mask is nomask:
- # Set the data, then the mask
- _data[indx] = dval
- if mval is not nomask:
- _mask = self._mask = make_mask_none(self.shape, _dtype)
- _mask[indx] = mval
- elif not self._hardmask:
- # Set the data, then the mask
- _data[indx] = dval
- _mask[indx] = mval
- elif hasattr(indx, 'dtype') and (indx.dtype == MaskType):
- indx = indx * umath.logical_not(_mask)
- _data[indx] = dval
- else:
- if _dtype.names is not None:
- err_msg = "Flexible 'hard' masks are not yet supported."
- raise NotImplementedError(err_msg)
- mindx = mask_or(_mask[indx], mval, copy=True)
- dindx = self._data[indx]
- if dindx.size > 1:
- np.copyto(dindx, dval, where=~mindx)
- elif mindx is nomask:
- dindx = dval
- _data[indx] = dindx
- _mask[indx] = mindx
- return
- # Define so that we can overwrite the setter.
- @property
- def dtype(self):
- return super(MaskedArray, self).dtype
- @dtype.setter
- def dtype(self, dtype):
- super(MaskedArray, type(self)).dtype.__set__(self, dtype)
- if self._mask is not nomask:
- self._mask = self._mask.view(make_mask_descr(dtype), ndarray)
- # Try to reset the shape of the mask (if we don't have a void).
- # This raises a ValueError if the dtype change won't work.
- try:
- self._mask.shape = self.shape
- except (AttributeError, TypeError):
- pass
- @property
- def shape(self):
- return super(MaskedArray, self).shape
- @shape.setter
- def shape(self, shape):
- super(MaskedArray, type(self)).shape.__set__(self, shape)
- # Cannot use self._mask, since it may not (yet) exist when a
- # masked matrix sets the shape.
- if getmask(self) is not nomask:
- self._mask.shape = self.shape
- def __setmask__(self, mask, copy=False):
- """
- Set the mask.
- """
- idtype = self.dtype
- current_mask = self._mask
- if mask is masked:
- mask = True
- if current_mask is nomask:
- # Make sure the mask is set
- # Just don't do anything if there's nothing to do.
- if mask is nomask:
- return
- current_mask = self._mask = make_mask_none(self.shape, idtype)
- if idtype.names is None:
- # No named fields.
- # Hardmask: don't unmask the data
- if self._hardmask:
- current_mask |= mask
- # Softmask: set everything to False
- # If it's obviously a compatible scalar, use a quick update
- # method.
- elif isinstance(mask, (int, float, np.bool_, np.number)):
- current_mask[...] = mask
- # Otherwise fall back to the slower, general purpose way.
- else:
- current_mask.flat = mask
- else:
- # Named fields w/
- mdtype = current_mask.dtype
- mask = np.array(mask, copy=False)
- # Mask is a singleton
- if not mask.ndim:
- # It's a boolean : make a record
- if mask.dtype.kind == 'b':
- mask = np.array(tuple([mask.item()] * len(mdtype)),
- dtype=mdtype)
- # It's a record: make sure the dtype is correct
- else:
- mask = mask.astype(mdtype)
- # Mask is a sequence
- else:
- # Make sure the new mask is a ndarray with the proper dtype
- try:
- mask = np.array(mask, copy=copy, dtype=mdtype)
- # Or assume it's a sequence of bool/int
- except TypeError:
- mask = np.array([tuple([m] * len(mdtype)) for m in mask],
- dtype=mdtype)
- # Hardmask: don't unmask the data
- if self._hardmask:
- for n in idtype.names:
- current_mask[n] |= mask[n]
- # Softmask: set everything to False
- # If it's obviously a compatible scalar, use a quick update
- # method.
- elif isinstance(mask, (int, float, np.bool_, np.number)):
- current_mask[...] = mask
- # Otherwise fall back to the slower, general purpose way.
- else:
- current_mask.flat = mask
- # Reshape if needed
- if current_mask.shape:
- current_mask.shape = self.shape
- return
- _set_mask = __setmask__
- @property
- def mask(self):
- """ Current mask. """
- # We could try to force a reshape, but that wouldn't work in some
- # cases.
- # Return a view so that the dtype and shape cannot be changed in place
- # This still preserves nomask by identity
- return self._mask.view()
- @mask.setter
- def mask(self, value):
- self.__setmask__(value)
- @property
- def recordmask(self):
- """
- Get or set the mask of the array if it has no named fields. For
- structured arrays, returns a ndarray of booleans where entries are
- ``True`` if **all** the fields are masked, ``False`` otherwise:
- >>> x = np.ma.array([(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)],
- ... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
- ... dtype=[('a', int), ('b', int)])
- >>> x.recordmask
- array([False, False, True, False, False])
- """
- _mask = self._mask.view(ndarray)
- if _mask.dtype.names is None:
- return _mask
- return np.all(flatten_structured_array(_mask), axis=-1)
- @recordmask.setter
- def recordmask(self, mask):
- raise NotImplementedError("Coming soon: setting the mask per records!")
- def harden_mask(self):
- """
- Force the mask to hard.
- Whether the mask of a masked array is hard or soft is determined by
- its `hardmask` property. `harden_mask` sets `hardmask` to True.
- See Also
- --------
- hardmask
- """
- self._hardmask = True
- return self
- def soften_mask(self):
- """
- Force the mask to soft.
- Whether the mask of a masked array is hard or soft is determined by
- its `hardmask` property. `soften_mask` sets `hardmask` to False.
- See Also
- --------
- hardmask
- """
- self._hardmask = False
- return self
- @property
- def hardmask(self):
- """ Hardness of the mask """
- return self._hardmask
- def unshare_mask(self):
- """
- Copy the mask and set the sharedmask flag to False.
- Whether the mask is shared between masked arrays can be seen from
- the `sharedmask` property. `unshare_mask` ensures the mask is not shared.
- A copy of the mask is only made if it was shared.
- See Also
- --------
- sharedmask
- """
- if self._sharedmask:
- self._mask = self._mask.copy()
- self._sharedmask = False
- return self
- @property
- def sharedmask(self):
- """ Share status of the mask (read-only). """
- return self._sharedmask
- def shrink_mask(self):
- """
- Reduce a mask to nomask when possible.
- Parameters
- ----------
- None
- Returns
- -------
- None
- Examples
- --------
- >>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4)
- >>> x.mask
- array([[False, False],
- [False, False]])
- >>> x.shrink_mask()
- masked_array(
- data=[[1, 2],
- [3, 4]],
- mask=False,
- fill_value=999999)
- >>> x.mask
- False
- """
- self._mask = _shrink_mask(self._mask)
- return self
- @property
- def baseclass(self):
- """ Class of the underlying data (read-only). """
- return self._baseclass
- def _get_data(self):
- """
- Returns the underlying data, as a view of the masked array.
- If the underlying data is a subclass of :class:`numpy.ndarray`, it is
- returned as such.
- >>> x = np.ma.array(np.matrix([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
- >>> x.data
- matrix([[1, 2],
- [3, 4]])
- The type of the data can be accessed through the :attr:`baseclass`
- attribute.
- """
- return ndarray.view(self, self._baseclass)
- _data = property(fget=_get_data)
- data = property(fget=_get_data)
- @property
- def flat(self):
- """ Return a flat iterator, or set a flattened version of self to value. """
- return MaskedIterator(self)
- @flat.setter
- def flat(self, value):
- y = self.ravel()
- y[:] = value
- @property
- def fill_value(self):
- """
- The filling value of the masked array is a scalar. When setting, None
- will set to a default based on the data type.
- Examples
- --------
- >>> for dt in [np.int32, np.int64, np.float64, np.complex128]:
- ... np.ma.array([0, 1], dtype=dt).get_fill_value()
- ...
- 999999
- 999999
- 1e+20
- (1e+20+0j)
- >>> x = np.ma.array([0, 1.], fill_value=-np.inf)
- >>> x.fill_value
- -inf
- >>> x.fill_value = np.pi
- >>> x.fill_value
- 3.1415926535897931 # may vary
- Reset to default:
- >>> x.fill_value = None
- >>> x.fill_value
- 1e+20
- """
- if self._fill_value is None:
- self._fill_value = _check_fill_value(None, self.dtype)
- # Temporary workaround to account for the fact that str and bytes
- # scalars cannot be indexed with (), whereas all other numpy
- # scalars can. See issues #7259 and #7267.
- # The if-block can be removed after #7267 has been fixed.
- if isinstance(self._fill_value, ndarray):
- return self._fill_value[()]
- return self._fill_value
- @fill_value.setter
- def fill_value(self, value=None):
- target = _check_fill_value(value, self.dtype)
- if not target.ndim == 0:
- # 2019-11-12, 1.18.0
- warnings.warn(
- "Non-scalar arrays for the fill value are deprecated. Use "
- "arrays with scalar values instead. The filled function "
- "still supports any array as `fill_value`.",
- DeprecationWarning, stacklevel=2)
- _fill_value = self._fill_value
- if _fill_value is None:
- # Create the attribute if it was undefined
- self._fill_value = target
- else:
- # Don't overwrite the attribute, just fill it (for propagation)
- _fill_value[()] = target
- # kept for compatibility
- get_fill_value = fill_value.fget
- set_fill_value = fill_value.fset
- def filled(self, fill_value=None):
- """
- Return a copy of self, with masked values filled with a given value.
- **However**, if there are no masked values to fill, self will be
- returned instead as an ndarray.
- Parameters
- ----------
- fill_value : array_like, optional
- The value to use for invalid entries. Can be scalar or non-scalar.
- If non-scalar, the resulting ndarray must be broadcastable over
- input array. Default is None, in which case, the `fill_value`
- attribute of the array is used instead.
- Returns
- -------
- filled_array : ndarray
- A copy of ``self`` with invalid entries replaced by *fill_value*
- (be it the function argument or the attribute of ``self``), or
- ``self`` itself as an ndarray if there are no invalid entries to
- be replaced.
- Notes
- -----
- The result is **not** a MaskedArray!
- Examples
- --------
- >>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill_value=-999)
- >>> x.filled()
- array([ 1, 2, -999, 4, -999])
- >>> x.filled(fill_value=1000)
- array([ 1, 2, 1000, 4, 1000])
- >>> type(x.filled())
- <class 'numpy.ndarray'>
- Subclassing is preserved. This means that if, e.g., the data part of
- the masked array is a recarray, `filled` returns a recarray:
- >>> x = np.array([(-1, 2), (-3, 4)], dtype='i8,i8').view(np.recarray)
- >>> m = np.ma.array(x, mask=[(True, False), (False, True)])
- >>> m.filled()
- rec.array([(999999, 2), ( -3, 999999)],
- dtype=[('f0', '<i8'), ('f1', '<i8')])
- """
- m = self._mask
- if m is nomask:
- return self._data
- if fill_value is None:
- fill_value = self.fill_value
- else:
- fill_value = _check_fill_value(fill_value, self.dtype)
- if self is masked_singleton:
- return np.asanyarray(fill_value)
- if m.dtype.names is not None:
- result = self._data.copy('K')
- _recursive_filled(result, self._mask, fill_value)
- elif not m.any():
- return self._data
- else:
- result = self._data.copy('K')
- try:
- np.copyto(result, fill_value, where=m)
- except (TypeError, AttributeError):
- fill_value = narray(fill_value, dtype=object)
- d = result.astype(object)
- result = np.choose(m, (d, fill_value))
- except IndexError:
- # ok, if scalar
- if self._data.shape:
- raise
- elif m:
- result = np.array(fill_value, dtype=self.dtype)
- else:
- result = self._data
- return result
- def compressed(self):
- """
- Return all the non-masked data as a 1-D array.
- Returns
- -------
- data : ndarray
- A new `ndarray` holding the non-masked data is returned.
- Notes
- -----
- The result is **not** a MaskedArray!
- Examples
- --------
- >>> x = np.ma.array(np.arange(5), mask=[0]*2 + [1]*3)
- >>> x.compressed()
- array([0, 1])
- >>> type(x.compressed())
- <class 'numpy.ndarray'>
- """
- data = ndarray.ravel(self._data)
- if self._mask is not nomask:
- data = data.compress(np.logical_not(ndarray.ravel(self._mask)))
- return data
- def compress(self, condition, axis=None, out=None):
- """
- Return `a` where condition is ``True``.
- If condition is a `MaskedArray`, missing values are considered
- as ``False``.
- Parameters
- ----------
- condition : var
- Boolean 1-d array selecting which entries to return. If len(condition)
- is less than the size of a along the axis, then output is truncated
- to length of condition array.
- axis : {None, int}, optional
- Axis along which the operation must be performed.
- out : {None, ndarray}, optional
- Alternative output array in which to place the result. It must have
- the same shape as the expected output but the type will be cast if
- necessary.
- Returns
- -------
- result : MaskedArray
- A :class:`MaskedArray` object.
- Notes
- -----
- Please note the difference with :meth:`compressed` !
- The output of :meth:`compress` has a mask, the output of
- :meth:`compressed` does not.
- Examples
- --------
- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> x
- masked_array(
- data=[[1, --, 3],
- [--, 5, --],
- [7, --, 9]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- >>> x.compress([1, 0, 1])
- masked_array(data=[1, 3],
- mask=[False, False],
- fill_value=999999)
- >>> x.compress([1, 0, 1], axis=1)
- masked_array(
- data=[[1, 3],
- [--, --],
- [7, 9]],
- mask=[[False, False],
- [ True, True],
- [False, False]],
- fill_value=999999)
- """
- # Get the basic components
- (_data, _mask) = (self._data, self._mask)
- # Force the condition to a regular ndarray and forget the missing
- # values.
- condition = np.array(condition, copy=False, subok=False)
- _new = _data.compress(condition, axis=axis, out=out).view(type(self))
- _new._update_from(self)
- if _mask is not nomask:
- _new._mask = _mask.compress(condition, axis=axis)
- return _new
- def _insert_masked_print(self):
- """
- Replace masked values with masked_print_option, casting all innermost
- dtypes to object.
- """
- if masked_print_option.enabled():
- mask = self._mask
- if mask is nomask:
- res = self._data
- else:
- # convert to object array to make filled work
- data = self._data
- # For big arrays, to avoid a costly conversion to the
- # object dtype, extract the corners before the conversion.
- print_width = (self._print_width if self.ndim > 1
- else self._print_width_1d)
- for axis in range(self.ndim):
- if data.shape[axis] > print_width:
- ind = print_width // 2
- arr = np.split(data, (ind, -ind), axis=axis)
- data = np.concatenate((arr[0], arr[2]), axis=axis)
- arr = np.split(mask, (ind, -ind), axis=axis)
- mask = np.concatenate((arr[0], arr[2]), axis=axis)
- rdtype = _replace_dtype_fields(self.dtype, "O")
- res = data.astype(rdtype)
- _recursive_printoption(res, mask, masked_print_option)
- else:
- res = self.filled(self.fill_value)
- return res
- def __str__(self):
- return str(self._insert_masked_print())
- if sys.version_info.major < 3:
- def __unicode__(self):
- return unicode(self._insert_masked_print())
- def __repr__(self):
- """
- Literal string representation.
- """
- if self._baseclass is np.ndarray:
- name = 'array'
- else:
- name = self._baseclass.__name__
- # 2016-11-19: Demoted to legacy format
- if np.get_printoptions()['legacy'] == '1.13':
- is_long = self.ndim > 1
- parameters = dict(
- name=name,
- nlen=" " * len(name),
- data=str(self),
- mask=str(self._mask),
- fill=str(self.fill_value),
- dtype=str(self.dtype)
- )
- is_structured = bool(self.dtype.names)
- key = '{}_{}'.format(
- 'long' if is_long else 'short',
- 'flx' if is_structured else 'std'
- )
- return _legacy_print_templates[key] % parameters
- prefix = 'masked_{}('.format(name)
- dtype_needed = (
- not np.core.arrayprint.dtype_is_implied(self.dtype) or
- np.all(self.mask) or
- self.size == 0
- )
- # determine which keyword args need to be shown
- keys = ['data', 'mask', 'fill_value']
- if dtype_needed:
- keys.append('dtype')
- # array has only one row (non-column)
- is_one_row = builtins.all(dim == 1 for dim in self.shape[:-1])
- # choose what to indent each keyword with
- min_indent = 2
- if is_one_row:
- # first key on the same line as the type, remaining keys
- # aligned by equals
- indents = {}
- indents[keys[0]] = prefix
- for k in keys[1:]:
- n = builtins.max(min_indent, len(prefix + keys[0]) - len(k))
- indents[k] = ' ' * n
- prefix = '' # absorbed into the first indent
- else:
- # each key on its own line, indented by two spaces
- indents = {k: ' ' * min_indent for k in keys}
- prefix = prefix + '\n' # first key on the next line
- # format the field values
- reprs = {}
- reprs['data'] = np.array2string(
- self._insert_masked_print(),
- separator=", ",
- prefix=indents['data'] + 'data=',
- suffix=',')
- reprs['mask'] = np.array2string(
- self._mask,
- separator=", ",
- prefix=indents['mask'] + 'mask=',
- suffix=',')
- reprs['fill_value'] = repr(self.fill_value)
- if dtype_needed:
- reprs['dtype'] = np.core.arrayprint.dtype_short_repr(self.dtype)
- # join keys with values and indentations
- result = ',\n'.join(
- '{}{}={}'.format(indents[k], k, reprs[k])
- for k in keys
- )
- return prefix + result + ')'
- def _delegate_binop(self, other):
- # This emulates the logic in
- # private/binop_override.h:forward_binop_should_defer
- if isinstance(other, type(self)):
- return False
- array_ufunc = getattr(other, "__array_ufunc__", False)
- if array_ufunc is False:
- other_priority = getattr(other, "__array_priority__", -1000000)
- return self.__array_priority__ < other_priority
- else:
- # If array_ufunc is not None, it will be called inside the ufunc;
- # None explicitly tells us to not call the ufunc, i.e., defer.
- return array_ufunc is None
- def _comparison(self, other, compare):
- """Compare self with other using operator.eq or operator.ne.
- When either of the elements is masked, the result is masked as well,
- but the underlying boolean data are still set, with self and other
- considered equal if both are masked, and unequal otherwise.
- For structured arrays, all fields are combined, with masked values
- ignored. The result is masked if all fields were masked, with self
- and other considered equal only if both were fully masked.
- """
- omask = getmask(other)
- smask = self.mask
- mask = mask_or(smask, omask, copy=True)
- odata = getdata(other)
- if mask.dtype.names is not None:
- # For possibly masked structured arrays we need to be careful,
- # since the standard structured array comparison will use all
- # fields, masked or not. To avoid masked fields influencing the
- # outcome, we set all masked fields in self to other, so they'll
- # count as equal. To prepare, we ensure we have the right shape.
- broadcast_shape = np.broadcast(self, odata).shape
- sbroadcast = np.broadcast_to(self, broadcast_shape, subok=True)
- sbroadcast._mask = mask
- sdata = sbroadcast.filled(odata)
- # Now take care of the mask; the merged mask should have an item
- # masked if all fields were masked (in one and/or other).
- mask = (mask == np.ones((), mask.dtype))
- else:
- # For regular arrays, just use the data as they come.
- sdata = self.data
- check = compare(sdata, odata)
- if isinstance(check, (np.bool_, bool)):
- return masked if mask else check
- if mask is not nomask:
- # Adjust elements that were masked, which should be treated
- # as equal if masked in both, unequal if masked in one.
- # Note that this works automatically for structured arrays too.
- check = np.where(mask, compare(smask, omask), check)
- if mask.shape != check.shape:
- # Guarantee consistency of the shape, making a copy since the
- # the mask may need to get written to later.
- mask = np.broadcast_to(mask, check.shape).copy()
- check = check.view(type(self))
- check._update_from(self)
- check._mask = mask
- # Cast fill value to bool_ if needed. If it cannot be cast, the
- # default boolean fill value is used.
- if check._fill_value is not None:
- try:
- fill = _check_fill_value(check._fill_value, np.bool_)
- except (TypeError, ValueError):
- fill = _check_fill_value(None, np.bool_)
- check._fill_value = fill
- return check
- def __eq__(self, other):
- """Check whether other equals self elementwise.
- When either of the elements is masked, the result is masked as well,
- but the underlying boolean data are still set, with self and other
- considered equal if both are masked, and unequal otherwise.
- For structured arrays, all fields are combined, with masked values
- ignored. The result is masked if all fields were masked, with self
- and other considered equal only if both were fully masked.
- """
- return self._comparison(other, operator.eq)
- def __ne__(self, other):
- """Check whether other does not equal self elementwise.
- When either of the elements is masked, the result is masked as well,
- but the underlying boolean data are still set, with self and other
- considered equal if both are masked, and unequal otherwise.
- For structured arrays, all fields are combined, with masked values
- ignored. The result is masked if all fields were masked, with self
- and other considered equal only if both were fully masked.
- """
- return self._comparison(other, operator.ne)
- def __add__(self, other):
- """
- Add self to other, and return a new masked array.
- """
- if self._delegate_binop(other):
- return NotImplemented
- return add(self, other)
- def __radd__(self, other):
- """
- Add other to self, and return a new masked array.
- """
- # In analogy with __rsub__ and __rdiv__, use original order:
- # we get here from `other + self`.
- return add(other, self)
- def __sub__(self, other):
- """
- Subtract other from self, and return a new masked array.
- """
- if self._delegate_binop(other):
- return NotImplemented
- return subtract(self, other)
- def __rsub__(self, other):
- """
- Subtract self from other, and return a new masked array.
- """
- return subtract(other, self)
- def __mul__(self, other):
- "Multiply self by other, and return a new masked array."
- if self._delegate_binop(other):
- return NotImplemented
- return multiply(self, other)
- def __rmul__(self, other):
- """
- Multiply other by self, and return a new masked array.
- """
- # In analogy with __rsub__ and __rdiv__, use original order:
- # we get here from `other * self`.
- return multiply(other, self)
- def __div__(self, other):
- """
- Divide other into self, and return a new masked array.
- """
- if self._delegate_binop(other):
- return NotImplemented
- return divide(self, other)
- def __truediv__(self, other):
- """
- Divide other into self, and return a new masked array.
- """
- if self._delegate_binop(other):
- return NotImplemented
- return true_divide(self, other)
- def __rtruediv__(self, other):
- """
- Divide self into other, and return a new masked array.
- """
- return true_divide(other, self)
- def __floordiv__(self, other):
- """
- Divide other into self, and return a new masked array.
- """
- if self._delegate_binop(other):
- return NotImplemented
- return floor_divide(self, other)
- def __rfloordiv__(self, other):
- """
- Divide self into other, and return a new masked array.
- """
- return floor_divide(other, self)
- def __pow__(self, other):
- """
- Raise self to the power other, masking the potential NaNs/Infs
- """
- if self._delegate_binop(other):
- return NotImplemented
- return power(self, other)
- def __rpow__(self, other):
- """
- Raise other to the power self, masking the potential NaNs/Infs
- """
- return power(other, self)
- def __iadd__(self, other):
- """
- Add other to self in-place.
- """
- m = getmask(other)
- if self._mask is nomask:
- if m is not nomask and m.any():
- self._mask = make_mask_none(self.shape, self.dtype)
- self._mask += m
- else:
- if m is not nomask:
- self._mask += m
- self._data.__iadd__(np.where(self._mask, self.dtype.type(0),
- getdata(other)))
- return self
- def __isub__(self, other):
- """
- Subtract other from self in-place.
- """
- m = getmask(other)
- if self._mask is nomask:
- if m is not nomask and m.any():
- self._mask = make_mask_none(self.shape, self.dtype)
- self._mask += m
- elif m is not nomask:
- self._mask += m
- self._data.__isub__(np.where(self._mask, self.dtype.type(0),
- getdata(other)))
- return self
- def __imul__(self, other):
- """
- Multiply self by other in-place.
- """
- m = getmask(other)
- if self._mask is nomask:
- if m is not nomask and m.any():
- self._mask = make_mask_none(self.shape, self.dtype)
- self._mask += m
- elif m is not nomask:
- self._mask += m
- self._data.__imul__(np.where(self._mask, self.dtype.type(1),
- getdata(other)))
- return self
- def __idiv__(self, other):
- """
- Divide self by other in-place.
- """
- other_data = getdata(other)
- dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
- other_mask = getmask(other)
- new_mask = mask_or(other_mask, dom_mask)
- # The following 3 lines control the domain filling
- if dom_mask.any():
- (_, fval) = ufunc_fills[np.divide]
- other_data = np.where(dom_mask, fval, other_data)
- self._mask |= new_mask
- self._data.__idiv__(np.where(self._mask, self.dtype.type(1),
- other_data))
- return self
- def __ifloordiv__(self, other):
- """
- Floor divide self by other in-place.
- """
- other_data = getdata(other)
- dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
- other_mask = getmask(other)
- new_mask = mask_or(other_mask, dom_mask)
- # The following 3 lines control the domain filling
- if dom_mask.any():
- (_, fval) = ufunc_fills[np.floor_divide]
- other_data = np.where(dom_mask, fval, other_data)
- self._mask |= new_mask
- self._data.__ifloordiv__(np.where(self._mask, self.dtype.type(1),
- other_data))
- return self
- def __itruediv__(self, other):
- """
- True divide self by other in-place.
- """
- other_data = getdata(other)
- dom_mask = _DomainSafeDivide().__call__(self._data, other_data)
- other_mask = getmask(other)
- new_mask = mask_or(other_mask, dom_mask)
- # The following 3 lines control the domain filling
- if dom_mask.any():
- (_, fval) = ufunc_fills[np.true_divide]
- other_data = np.where(dom_mask, fval, other_data)
- self._mask |= new_mask
- self._data.__itruediv__(np.where(self._mask, self.dtype.type(1),
- other_data))
- return self
- def __ipow__(self, other):
- """
- Raise self to the power other, in place.
- """
- other_data = getdata(other)
- other_mask = getmask(other)
- with np.errstate(divide='ignore', invalid='ignore'):
- self._data.__ipow__(np.where(self._mask, self.dtype.type(1),
- other_data))
- invalid = np.logical_not(np.isfinite(self._data))
- if invalid.any():
- if self._mask is not nomask:
- self._mask |= invalid
- else:
- self._mask = invalid
- np.copyto(self._data, self.fill_value, where=invalid)
- new_mask = mask_or(other_mask, invalid)
- self._mask = mask_or(self._mask, new_mask)
- return self
- def __float__(self):
- """
- Convert to float.
- """
- if self.size > 1:
- raise TypeError("Only length-1 arrays can be converted "
- "to Python scalars")
- elif self._mask:
- warnings.warn("Warning: converting a masked element to nan.", stacklevel=2)
- return np.nan
- return float(self.item())
- def __int__(self):
- """
- Convert to int.
- """
- if self.size > 1:
- raise TypeError("Only length-1 arrays can be converted "
- "to Python scalars")
- elif self._mask:
- raise MaskError('Cannot convert masked element to a Python int.')
- return int(self.item())
- def __long__(self):
- """
- Convert to long.
- """
- if self.size > 1:
- raise TypeError("Only length-1 arrays can be converted "
- "to Python scalars")
- elif self._mask:
- raise MaskError('Cannot convert masked element to a Python long.')
- return long(self.item())
- @property
- def imag(self):
- """
- The imaginary part of the masked array.
- This property is a view on the imaginary part of this `MaskedArray`.
- See Also
- --------
- real
- Examples
- --------
- >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
- >>> x.imag
- masked_array(data=[1.0, --, 1.6],
- mask=[False, True, False],
- fill_value=1e+20)
- """
- result = self._data.imag.view(type(self))
- result.__setmask__(self._mask)
- return result
- # kept for compatibility
- get_imag = imag.fget
- @property
- def real(self):
- """
- The real part of the masked array.
- This property is a view on the real part of this `MaskedArray`.
- See Also
- --------
- imag
- Examples
- --------
- >>> x = np.ma.array([1+1.j, -2j, 3.45+1.6j], mask=[False, True, False])
- >>> x.real
- masked_array(data=[1.0, --, 3.45],
- mask=[False, True, False],
- fill_value=1e+20)
- """
- result = self._data.real.view(type(self))
- result.__setmask__(self._mask)
- return result
- # kept for compatibility
- get_real = real.fget
- def count(self, axis=None, keepdims=np._NoValue):
- """
- Count the non-masked elements of the array along the given axis.
- Parameters
- ----------
- axis : None or int or tuple of ints, optional
- Axis or axes along which the count is performed.
- The default, None, performs the count over all
- the dimensions of the input array. `axis` may be negative, in
- which case it counts from the last to the first axis.
- .. versionadded:: 1.10.0
- If this is a tuple of ints, the count is performed on multiple
- axes, instead of a single axis or all the axes as before.
- keepdims : bool, optional
- If this is set to True, the axes which are reduced are left
- in the result as dimensions with size one. With this option,
- the result will broadcast correctly against the array.
- Returns
- -------
- result : ndarray or scalar
- An array with the same shape as the input array, with the specified
- axis removed. If the array is a 0-d array, or if `axis` is None, a
- scalar is returned.
- See Also
- --------
- count_masked : Count masked elements in array or along a given axis.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.arange(6).reshape((2, 3))
- >>> a[1, :] = ma.masked
- >>> a
- masked_array(
- data=[[0, 1, 2],
- [--, --, --]],
- mask=[[False, False, False],
- [ True, True, True]],
- fill_value=999999)
- >>> a.count()
- 3
- When the `axis` keyword is specified an array of appropriate size is
- returned.
- >>> a.count(axis=0)
- array([1, 1, 1])
- >>> a.count(axis=1)
- array([3, 0])
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- m = self._mask
- # special case for matrices (we assume no other subclasses modify
- # their dimensions)
- if isinstance(self.data, np.matrix):
- if m is nomask:
- m = np.zeros(self.shape, dtype=np.bool_)
- m = m.view(type(self.data))
- if m is nomask:
- # compare to _count_reduce_items in _methods.py
- if self.shape == ():
- if axis not in (None, 0):
- raise np.AxisError(axis=axis, ndim=self.ndim)
- return 1
- elif axis is None:
- if kwargs.get('keepdims', False):
- return np.array(self.size, dtype=np.intp, ndmin=self.ndim)
- return self.size
- axes = normalize_axis_tuple(axis, self.ndim)
- items = 1
- for ax in axes:
- items *= self.shape[ax]
- if kwargs.get('keepdims', False):
- out_dims = list(self.shape)
- for a in axes:
- out_dims[a] = 1
- else:
- out_dims = [d for n, d in enumerate(self.shape)
- if n not in axes]
- # make sure to return a 0-d array if axis is supplied
- return np.full(out_dims, items, dtype=np.intp)
- # take care of the masked singleton
- if self is masked:
- return 0
- return (~m).sum(axis=axis, dtype=np.intp, **kwargs)
- def ravel(self, order='C'):
- """
- Returns a 1D version of self, as a view.
- Parameters
- ----------
- order : {'C', 'F', 'A', 'K'}, optional
- The elements of `a` are read using this index order. 'C' means to
- index the elements in C-like order, with the last axis index
- changing fastest, back to the first axis index changing slowest.
- 'F' means to index the elements in Fortran-like index order, with
- the first index changing fastest, and the last index changing
- slowest. Note that the 'C' and 'F' options take no account of the
- memory layout of the underlying array, and only refer to the order
- of axis indexing. 'A' means to read the elements in Fortran-like
- index order if `m` is Fortran *contiguous* in memory, C-like order
- otherwise. 'K' means to read the elements in the order they occur
- in memory, except for reversing the data when strides are negative.
- By default, 'C' index order is used.
- Returns
- -------
- MaskedArray
- Output view is of shape ``(self.size,)`` (or
- ``(np.ma.product(self.shape),)``).
- Examples
- --------
- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> x
- masked_array(
- data=[[1, --, 3],
- [--, 5, --],
- [7, --, 9]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- >>> x.ravel()
- masked_array(data=[1, --, 3, --, 5, --, 7, --, 9],
- mask=[False, True, False, True, False, True, False, True,
- False],
- fill_value=999999)
- """
- r = ndarray.ravel(self._data, order=order).view(type(self))
- r._update_from(self)
- if self._mask is not nomask:
- r._mask = ndarray.ravel(self._mask, order=order).reshape(r.shape)
- else:
- r._mask = nomask
- return r
- def reshape(self, *s, **kwargs):
- """
- Give a new shape to the array without changing its data.
- Returns a masked array containing the same data, but with a new shape.
- The result is a view on the original array; if this is not possible, a
- ValueError is raised.
- Parameters
- ----------
- shape : int or tuple of ints
- The new shape should be compatible with the original shape. If an
- integer is supplied, then the result will be a 1-D array of that
- length.
- order : {'C', 'F'}, optional
- Determines whether the array data should be viewed as in C
- (row-major) or FORTRAN (column-major) order.
- Returns
- -------
- reshaped_array : array
- A new view on the array.
- See Also
- --------
- reshape : Equivalent function in the masked array module.
- numpy.ndarray.reshape : Equivalent method on ndarray object.
- numpy.reshape : Equivalent function in the NumPy module.
- Notes
- -----
- The reshaping operation cannot guarantee that a copy will not be made,
- to modify the shape in place, use ``a.shape = s``
- Examples
- --------
- >>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
- >>> x
- masked_array(
- data=[[--, 2],
- [3, --]],
- mask=[[ True, False],
- [False, True]],
- fill_value=999999)
- >>> x = x.reshape((4,1))
- >>> x
- masked_array(
- data=[[--],
- [2],
- [3],
- [--]],
- mask=[[ True],
- [False],
- [False],
- [ True]],
- fill_value=999999)
- """
- kwargs.update(order=kwargs.get('order', 'C'))
- result = self._data.reshape(*s, **kwargs).view(type(self))
- result._update_from(self)
- mask = self._mask
- if mask is not nomask:
- result._mask = mask.reshape(*s, **kwargs)
- return result
- def resize(self, newshape, refcheck=True, order=False):
- """
- .. warning::
- This method does nothing, except raise a ValueError exception. A
- masked array does not own its data and therefore cannot safely be
- resized in place. Use the `numpy.ma.resize` function instead.
- This method is difficult to implement safely and may be deprecated in
- future releases of NumPy.
- """
- # Note : the 'order' keyword looks broken, let's just drop it
- errmsg = "A masked array does not own its data "\
- "and therefore cannot be resized.\n" \
- "Use the numpy.ma.resize function instead."
- raise ValueError(errmsg)
- def put(self, indices, values, mode='raise'):
- """
- Set storage-indexed locations to corresponding values.
- Sets self._data.flat[n] = values[n] for each n in indices.
- If `values` is shorter than `indices` then it will repeat.
- If `values` has some masked values, the initial mask is updated
- in consequence, else the corresponding values are unmasked.
- Parameters
- ----------
- indices : 1-D array_like
- Target indices, interpreted as integers.
- values : array_like
- Values to place in self._data copy at target indices.
- mode : {'raise', 'wrap', 'clip'}, optional
- Specifies how out-of-bounds indices will behave.
- 'raise' : raise an error.
- 'wrap' : wrap around.
- 'clip' : clip to the range.
- Notes
- -----
- `values` can be a scalar or length 1 array.
- Examples
- --------
- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> x
- masked_array(
- data=[[1, --, 3],
- [--, 5, --],
- [7, --, 9]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- >>> x.put([0,4,8],[10,20,30])
- >>> x
- masked_array(
- data=[[10, --, 3],
- [--, 20, --],
- [7, --, 30]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- >>> x.put(4,999)
- >>> x
- masked_array(
- data=[[10, --, 3],
- [--, 999, --],
- [7, --, 30]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- """
- # Hard mask: Get rid of the values/indices that fall on masked data
- if self._hardmask and self._mask is not nomask:
- mask = self._mask[indices]
- indices = narray(indices, copy=False)
- values = narray(values, copy=False, subok=True)
- values.resize(indices.shape)
- indices = indices[~mask]
- values = values[~mask]
- self._data.put(indices, values, mode=mode)
- # short circuit if neither self nor values are masked
- if self._mask is nomask and getmask(values) is nomask:
- return
- m = getmaskarray(self)
- if getmask(values) is nomask:
- m.put(indices, False, mode=mode)
- else:
- m.put(indices, values._mask, mode=mode)
- m = make_mask(m, copy=False, shrink=True)
- self._mask = m
- return
- def ids(self):
- """
- Return the addresses of the data and mask areas.
- Parameters
- ----------
- None
- Examples
- --------
- >>> x = np.ma.array([1, 2, 3], mask=[0, 1, 1])
- >>> x.ids()
- (166670640, 166659832) # may vary
- If the array has no mask, the address of `nomask` is returned. This address
- is typically not close to the data in memory:
- >>> x = np.ma.array([1, 2, 3])
- >>> x.ids()
- (166691080, 3083169284L) # may vary
- """
- if self._mask is nomask:
- return (self.ctypes.data, id(nomask))
- return (self.ctypes.data, self._mask.ctypes.data)
- def iscontiguous(self):
- """
- Return a boolean indicating whether the data is contiguous.
- Parameters
- ----------
- None
- Examples
- --------
- >>> x = np.ma.array([1, 2, 3])
- >>> x.iscontiguous()
- True
- `iscontiguous` returns one of the flags of the masked array:
- >>> x.flags
- C_CONTIGUOUS : True
- F_CONTIGUOUS : True
- OWNDATA : False
- WRITEABLE : True
- ALIGNED : True
- WRITEBACKIFCOPY : False
- UPDATEIFCOPY : False
- """
- return self.flags['CONTIGUOUS']
- def all(self, axis=None, out=None, keepdims=np._NoValue):
- """
- Returns True if all elements evaluate to True.
- The output array is masked where all the values along the given axis
- are masked: if the output would have been a scalar and that all the
- values are masked, then the output is `masked`.
- Refer to `numpy.all` for full documentation.
- See Also
- --------
- numpy.ndarray.all : corresponding function for ndarrays
- numpy.all : equivalent function
- Examples
- --------
- >>> np.ma.array([1,2,3]).all()
- True
- >>> a = np.ma.array([1,2,3], mask=True)
- >>> (a.all() is np.ma.masked)
- True
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- mask = _check_mask_axis(self._mask, axis, **kwargs)
- if out is None:
- d = self.filled(True).all(axis=axis, **kwargs).view(type(self))
- if d.ndim:
- d.__setmask__(mask)
- elif mask:
- return masked
- return d
- self.filled(True).all(axis=axis, out=out, **kwargs)
- if isinstance(out, MaskedArray):
- if out.ndim or mask:
- out.__setmask__(mask)
- return out
- def any(self, axis=None, out=None, keepdims=np._NoValue):
- """
- Returns True if any of the elements of `a` evaluate to True.
- Masked values are considered as False during computation.
- Refer to `numpy.any` for full documentation.
- See Also
- --------
- numpy.ndarray.any : corresponding function for ndarrays
- numpy.any : equivalent function
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- mask = _check_mask_axis(self._mask, axis, **kwargs)
- if out is None:
- d = self.filled(False).any(axis=axis, **kwargs).view(type(self))
- if d.ndim:
- d.__setmask__(mask)
- elif mask:
- d = masked
- return d
- self.filled(False).any(axis=axis, out=out, **kwargs)
- if isinstance(out, MaskedArray):
- if out.ndim or mask:
- out.__setmask__(mask)
- return out
- def nonzero(self):
- """
- Return the indices of unmasked elements that are not zero.
- Returns a tuple of arrays, one for each dimension, containing the
- indices of the non-zero elements in that dimension. The corresponding
- non-zero values can be obtained with::
- a[a.nonzero()]
- To group the indices by element, rather than dimension, use
- instead::
- np.transpose(a.nonzero())
- The result of this is always a 2d array, with a row for each non-zero
- element.
- Parameters
- ----------
- None
- Returns
- -------
- tuple_of_arrays : tuple
- Indices of elements that are non-zero.
- See Also
- --------
- numpy.nonzero :
- Function operating on ndarrays.
- flatnonzero :
- Return indices that are non-zero in the flattened version of the input
- array.
- numpy.ndarray.nonzero :
- Equivalent ndarray method.
- count_nonzero :
- Counts the number of non-zero elements in the input array.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> x = ma.array(np.eye(3))
- >>> x
- masked_array(
- data=[[1., 0., 0.],
- [0., 1., 0.],
- [0., 0., 1.]],
- mask=False,
- fill_value=1e+20)
- >>> x.nonzero()
- (array([0, 1, 2]), array([0, 1, 2]))
- Masked elements are ignored.
- >>> x[1, 1] = ma.masked
- >>> x
- masked_array(
- data=[[1.0, 0.0, 0.0],
- [0.0, --, 0.0],
- [0.0, 0.0, 1.0]],
- mask=[[False, False, False],
- [False, True, False],
- [False, False, False]],
- fill_value=1e+20)
- >>> x.nonzero()
- (array([0, 2]), array([0, 2]))
- Indices can also be grouped by element.
- >>> np.transpose(x.nonzero())
- array([[0, 0],
- [2, 2]])
- A common use for ``nonzero`` is to find the indices of an array, where
- a condition is True. Given an array `a`, the condition `a` > 3 is a
- boolean array and since False is interpreted as 0, ma.nonzero(a > 3)
- yields the indices of the `a` where the condition is true.
- >>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])
- >>> a > 3
- masked_array(
- data=[[False, False, False],
- [ True, True, True],
- [ True, True, True]],
- mask=False,
- fill_value=True)
- >>> ma.nonzero(a > 3)
- (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
- The ``nonzero`` method of the condition array can also be called.
- >>> (a > 3).nonzero()
- (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
- """
- return narray(self.filled(0), copy=False).nonzero()
- def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
- """
- (this docstring should be overwritten)
- """
- #!!!: implement out + test!
- m = self._mask
- if m is nomask:
- result = super(MaskedArray, self).trace(offset=offset, axis1=axis1,
- axis2=axis2, out=out)
- return result.astype(dtype)
- else:
- D = self.diagonal(offset=offset, axis1=axis1, axis2=axis2)
- return D.astype(dtype).filled(0).sum(axis=-1, out=out)
- trace.__doc__ = ndarray.trace.__doc__
- def dot(self, b, out=None, strict=False):
- """
- a.dot(b, out=None)
- Masked dot product of two arrays. Note that `out` and `strict` are
- located in different positions than in `ma.dot`. In order to
- maintain compatibility with the functional version, it is
- recommended that the optional arguments be treated as keyword only.
- At some point that may be mandatory.
- .. versionadded:: 1.10.0
- Parameters
- ----------
- b : masked_array_like
- Inputs array.
- out : masked_array, optional
- Output argument. This must have the exact kind that would be
- returned if it was not used. In particular, it must have the
- right type, must be C-contiguous, and its dtype must be the
- dtype that would be returned for `ma.dot(a,b)`. This is a
- performance feature. Therefore, if these conditions are not
- met, an exception is raised, instead of attempting to be
- flexible.
- strict : bool, optional
- Whether masked data are propagated (True) or set to 0 (False)
- for the computation. Default is False. Propagating the mask
- means that if a masked value appears in a row or column, the
- whole row or column is considered masked.
- .. versionadded:: 1.10.2
- See Also
- --------
- numpy.ma.dot : equivalent function
- """
- return dot(self, b, out=out, strict=strict)
- def sum(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
- """
- Return the sum of the array elements over the given axis.
- Masked elements are set to 0 internally.
- Refer to `numpy.sum` for full documentation.
- See Also
- --------
- numpy.ndarray.sum : corresponding function for ndarrays
- numpy.sum : equivalent function
- Examples
- --------
- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> x
- masked_array(
- data=[[1, --, 3],
- [--, 5, --],
- [7, --, 9]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- >>> x.sum()
- 25
- >>> x.sum(axis=1)
- masked_array(data=[4, 5, 16],
- mask=[False, False, False],
- fill_value=999999)
- >>> x.sum(axis=0)
- masked_array(data=[8, 5, 12],
- mask=[False, False, False],
- fill_value=999999)
- >>> print(type(x.sum(axis=0, dtype=np.int64)[0]))
- <class 'numpy.int64'>
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- _mask = self._mask
- newmask = _check_mask_axis(_mask, axis, **kwargs)
- # No explicit output
- if out is None:
- result = self.filled(0).sum(axis, dtype=dtype, **kwargs)
- rndim = getattr(result, 'ndim', 0)
- if rndim:
- result = result.view(type(self))
- result.__setmask__(newmask)
- elif newmask:
- result = masked
- return result
- # Explicit output
- result = self.filled(0).sum(axis, dtype=dtype, out=out, **kwargs)
- if isinstance(out, MaskedArray):
- outmask = getmask(out)
- if outmask is nomask:
- outmask = out._mask = make_mask_none(out.shape)
- outmask.flat = newmask
- return out
- def cumsum(self, axis=None, dtype=None, out=None):
- """
- Return the cumulative sum of the array elements over the given axis.
- Masked values are set to 0 internally during the computation.
- However, their position is saved, and the result will be masked at
- the same locations.
- Refer to `numpy.cumsum` for full documentation.
- Notes
- -----
- The mask is lost if `out` is not a valid :class:`MaskedArray` !
- Arithmetic is modular when using integer types, and no error is
- raised on overflow.
- See Also
- --------
- numpy.ndarray.cumsum : corresponding function for ndarrays
- numpy.cumsum : equivalent function
- Examples
- --------
- >>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,0])
- >>> marr.cumsum()
- masked_array(data=[0, 1, 3, --, --, --, 9, 16, 24, 33],
- mask=[False, False, False, True, True, True, False, False,
- False, False],
- fill_value=999999)
- """
- result = self.filled(0).cumsum(axis=axis, dtype=dtype, out=out)
- if out is not None:
- if isinstance(out, MaskedArray):
- out.__setmask__(self.mask)
- return out
- result = result.view(type(self))
- result.__setmask__(self._mask)
- return result
- def prod(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
- """
- Return the product of the array elements over the given axis.
- Masked elements are set to 1 internally for computation.
- Refer to `numpy.prod` for full documentation.
- Notes
- -----
- Arithmetic is modular when using integer types, and no error is raised
- on overflow.
- See Also
- --------
- numpy.ndarray.prod : corresponding function for ndarrays
- numpy.prod : equivalent function
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- _mask = self._mask
- newmask = _check_mask_axis(_mask, axis, **kwargs)
- # No explicit output
- if out is None:
- result = self.filled(1).prod(axis, dtype=dtype, **kwargs)
- rndim = getattr(result, 'ndim', 0)
- if rndim:
- result = result.view(type(self))
- result.__setmask__(newmask)
- elif newmask:
- result = masked
- return result
- # Explicit output
- result = self.filled(1).prod(axis, dtype=dtype, out=out, **kwargs)
- if isinstance(out, MaskedArray):
- outmask = getmask(out)
- if outmask is nomask:
- outmask = out._mask = make_mask_none(out.shape)
- outmask.flat = newmask
- return out
- product = prod
- def cumprod(self, axis=None, dtype=None, out=None):
- """
- Return the cumulative product of the array elements over the given axis.
- Masked values are set to 1 internally during the computation.
- However, their position is saved, and the result will be masked at
- the same locations.
- Refer to `numpy.cumprod` for full documentation.
- Notes
- -----
- The mask is lost if `out` is not a valid MaskedArray !
- Arithmetic is modular when using integer types, and no error is
- raised on overflow.
- See Also
- --------
- numpy.ndarray.cumprod : corresponding function for ndarrays
- numpy.cumprod : equivalent function
- """
- result = self.filled(1).cumprod(axis=axis, dtype=dtype, out=out)
- if out is not None:
- if isinstance(out, MaskedArray):
- out.__setmask__(self._mask)
- return out
- result = result.view(type(self))
- result.__setmask__(self._mask)
- return result
- def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue):
- """
- Returns the average of the array elements along given axis.
- Masked entries are ignored, and result elements which are not
- finite will be masked.
- Refer to `numpy.mean` for full documentation.
- See Also
- --------
- numpy.ndarray.mean : corresponding function for ndarrays
- numpy.mean : Equivalent function
- numpy.ma.average: Weighted average.
- Examples
- --------
- >>> a = np.ma.array([1,2,3], mask=[False, False, True])
- >>> a
- masked_array(data=[1, 2, --],
- mask=[False, False, True],
- fill_value=999999)
- >>> a.mean()
- 1.5
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- if self._mask is nomask:
- result = super(MaskedArray, self).mean(axis=axis,
- dtype=dtype, **kwargs)[()]
- else:
- dsum = self.sum(axis=axis, dtype=dtype, **kwargs)
- cnt = self.count(axis=axis, **kwargs)
- if cnt.shape == () and (cnt == 0):
- result = masked
- else:
- result = dsum * 1. / cnt
- if out is not None:
- out.flat = result
- if isinstance(out, MaskedArray):
- outmask = getmask(out)
- if outmask is nomask:
- outmask = out._mask = make_mask_none(out.shape)
- outmask.flat = getmask(result)
- return out
- return result
- def anom(self, axis=None, dtype=None):
- """
- Compute the anomalies (deviations from the arithmetic mean)
- along the given axis.
- Returns an array of anomalies, with the same shape as the input and
- where the arithmetic mean is computed along the given axis.
- Parameters
- ----------
- axis : int, optional
- Axis over which the anomalies are taken.
- The default is to use the mean of the flattened array as reference.
- dtype : dtype, optional
- Type to use in computing the variance. For arrays of integer type
- the default is float32; for arrays of float types it is the same as
- the array type.
- See Also
- --------
- mean : Compute the mean of the array.
- Examples
- --------
- >>> a = np.ma.array([1,2,3])
- >>> a.anom()
- masked_array(data=[-1., 0., 1.],
- mask=False,
- fill_value=1e+20)
- """
- m = self.mean(axis, dtype)
- if m is masked:
- return m
- if not axis:
- return self - m
- else:
- return self - expand_dims(m, axis)
- def var(self, axis=None, dtype=None, out=None, ddof=0,
- keepdims=np._NoValue):
- """
- Returns the variance of the array elements along given axis.
- Masked entries are ignored, and result elements which are not
- finite will be masked.
- Refer to `numpy.var` for full documentation.
- See Also
- --------
- numpy.ndarray.var : corresponding function for ndarrays
- numpy.var : Equivalent function
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- # Easy case: nomask, business as usual
- if self._mask is nomask:
- ret = super(MaskedArray, self).var(axis=axis, dtype=dtype, out=out,
- ddof=ddof, **kwargs)[()]
- if out is not None:
- if isinstance(out, MaskedArray):
- out.__setmask__(nomask)
- return out
- return ret
- # Some data are masked, yay!
- cnt = self.count(axis=axis, **kwargs) - ddof
- danom = self - self.mean(axis, dtype, keepdims=True)
- if iscomplexobj(self):
- danom = umath.absolute(danom) ** 2
- else:
- danom *= danom
- dvar = divide(danom.sum(axis, **kwargs), cnt).view(type(self))
- # Apply the mask if it's not a scalar
- if dvar.ndim:
- dvar._mask = mask_or(self._mask.all(axis, **kwargs), (cnt <= 0))
- dvar._update_from(self)
- elif getmask(dvar):
- # Make sure that masked is returned when the scalar is masked.
- dvar = masked
- if out is not None:
- if isinstance(out, MaskedArray):
- out.flat = 0
- out.__setmask__(True)
- elif out.dtype.kind in 'biu':
- errmsg = "Masked data information would be lost in one or "\
- "more location."
- raise MaskError(errmsg)
- else:
- out.flat = np.nan
- return out
- # In case with have an explicit output
- if out is not None:
- # Set the data
- out.flat = dvar
- # Set the mask if needed
- if isinstance(out, MaskedArray):
- out.__setmask__(dvar.mask)
- return out
- return dvar
- var.__doc__ = np.var.__doc__
- def std(self, axis=None, dtype=None, out=None, ddof=0,
- keepdims=np._NoValue):
- """
- Returns the standard deviation of the array elements along given axis.
- Masked entries are ignored.
- Refer to `numpy.std` for full documentation.
- See Also
- --------
- numpy.ndarray.std : corresponding function for ndarrays
- numpy.std : Equivalent function
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- dvar = self.var(axis, dtype, out, ddof, **kwargs)
- if dvar is not masked:
- if out is not None:
- np.power(out, 0.5, out=out, casting='unsafe')
- return out
- dvar = sqrt(dvar)
- return dvar
- def round(self, decimals=0, out=None):
- """
- Return each element rounded to the given number of decimals.
- Refer to `numpy.around` for full documentation.
- See Also
- --------
- numpy.ndarray.around : corresponding function for ndarrays
- numpy.around : equivalent function
- """
- result = self._data.round(decimals=decimals, out=out).view(type(self))
- if result.ndim > 0:
- result._mask = self._mask
- result._update_from(self)
- elif self._mask:
- # Return masked when the scalar is masked
- result = masked
- # No explicit output: we're done
- if out is None:
- return result
- if isinstance(out, MaskedArray):
- out.__setmask__(self._mask)
- return out
- def argsort(self, axis=np._NoValue, kind=None, order=None,
- endwith=True, fill_value=None):
- """
- Return an ndarray of indices that sort the array along the
- specified axis. Masked values are filled beforehand to
- `fill_value`.
- Parameters
- ----------
- axis : int, optional
- Axis along which to sort. If None, the default, the flattened array
- is used.
- .. versionchanged:: 1.13.0
- Previously, the default was documented to be -1, but that was
- in error. At some future date, the default will change to -1, as
- originally intended.
- Until then, the axis should be given explicitly when
- ``arr.ndim > 1``, to avoid a FutureWarning.
- kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
- The sorting algorithm used.
- order : list, optional
- When `a` is an array with fields defined, this argument specifies
- which fields to compare first, second, etc. Not all fields need be
- specified.
- endwith : {True, False}, optional
- Whether missing values (if any) should be treated as the largest values
- (True) or the smallest values (False)
- When the array contains unmasked values at the same extremes of the
- datatype, the ordering of these values and the masked values is
- undefined.
- fill_value : {var}, optional
- Value used internally for the masked values.
- If ``fill_value`` is not None, it supersedes ``endwith``.
- Returns
- -------
- index_array : ndarray, int
- Array of indices that sort `a` along the specified axis.
- In other words, ``a[index_array]`` yields a sorted `a`.
- See Also
- --------
- MaskedArray.sort : Describes sorting algorithms used.
- lexsort : Indirect stable sort with multiple keys.
- numpy.ndarray.sort : Inplace sort.
- Notes
- -----
- See `sort` for notes on the different sorting algorithms.
- Examples
- --------
- >>> a = np.ma.array([3,2,1], mask=[False, False, True])
- >>> a
- masked_array(data=[3, 2, --],
- mask=[False, False, True],
- fill_value=999999)
- >>> a.argsort()
- array([1, 0, 2])
- """
- # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
- if axis is np._NoValue:
- axis = _deprecate_argsort_axis(self)
- if fill_value is None:
- if endwith:
- # nan > inf
- if np.issubdtype(self.dtype, np.floating):
- fill_value = np.nan
- else:
- fill_value = minimum_fill_value(self)
- else:
- fill_value = maximum_fill_value(self)
- filled = self.filled(fill_value)
- return filled.argsort(axis=axis, kind=kind, order=order)
- def argmin(self, axis=None, fill_value=None, out=None):
- """
- Return array of indices to the minimum values along the given axis.
- Parameters
- ----------
- axis : {None, integer}
- If None, the index is into the flattened array, otherwise along
- the specified axis
- fill_value : {var}, optional
- Value used to fill in the masked values. If None, the output of
- minimum_fill_value(self._data) is used instead.
- out : {None, array}, optional
- Array into which the result can be placed. Its type is preserved
- and it must be of the right shape to hold the output.
- Returns
- -------
- ndarray or scalar
- If multi-dimension input, returns a new ndarray of indices to the
- minimum values along the given axis. Otherwise, returns a scalar
- of index to the minimum values along the given axis.
- Examples
- --------
- >>> x = np.ma.array(np.arange(4), mask=[1,1,0,0])
- >>> x.shape = (2,2)
- >>> x
- masked_array(
- data=[[--, --],
- [2, 3]],
- mask=[[ True, True],
- [False, False]],
- fill_value=999999)
- >>> x.argmin(axis=0, fill_value=-1)
- array([0, 0])
- >>> x.argmin(axis=0, fill_value=9)
- array([1, 1])
- """
- if fill_value is None:
- fill_value = minimum_fill_value(self)
- d = self.filled(fill_value).view(ndarray)
- return d.argmin(axis, out=out)
- def argmax(self, axis=None, fill_value=None, out=None):
- """
- Returns array of indices of the maximum values along the given axis.
- Masked values are treated as if they had the value fill_value.
- Parameters
- ----------
- axis : {None, integer}
- If None, the index is into the flattened array, otherwise along
- the specified axis
- fill_value : {var}, optional
- Value used to fill in the masked values. If None, the output of
- maximum_fill_value(self._data) is used instead.
- out : {None, array}, optional
- Array into which the result can be placed. Its type is preserved
- and it must be of the right shape to hold the output.
- Returns
- -------
- index_array : {integer_array}
- Examples
- --------
- >>> a = np.arange(6).reshape(2,3)
- >>> a.argmax()
- 5
- >>> a.argmax(0)
- array([1, 1, 1])
- >>> a.argmax(1)
- array([2, 2])
- """
- if fill_value is None:
- fill_value = maximum_fill_value(self._data)
- d = self.filled(fill_value).view(ndarray)
- return d.argmax(axis, out=out)
- def sort(self, axis=-1, kind=None, order=None,
- endwith=True, fill_value=None):
- """
- Sort the array, in-place
- Parameters
- ----------
- a : array_like
- Array to be sorted.
- axis : int, optional
- Axis along which to sort. If None, the array is flattened before
- sorting. The default is -1, which sorts along the last axis.
- kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional
- The sorting algorithm used.
- order : list, optional
- When `a` is a structured array, this argument specifies which fields
- to compare first, second, and so on. This list does not need to
- include all of the fields.
- endwith : {True, False}, optional
- Whether missing values (if any) should be treated as the largest values
- (True) or the smallest values (False)
- When the array contains unmasked values sorting at the same extremes of the
- datatype, the ordering of these values and the masked values is
- undefined.
- fill_value : {var}, optional
- Value used internally for the masked values.
- If ``fill_value`` is not None, it supersedes ``endwith``.
- Returns
- -------
- sorted_array : ndarray
- Array of the same type and shape as `a`.
- See Also
- --------
- numpy.ndarray.sort : Method to sort an array in-place.
- argsort : Indirect sort.
- lexsort : Indirect stable sort on multiple keys.
- searchsorted : Find elements in a sorted array.
- Notes
- -----
- See ``sort`` for notes on the different sorting algorithms.
- Examples
- --------
- >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
- >>> # Default
- >>> a.sort()
- >>> a
- masked_array(data=[1, 3, 5, --, --],
- mask=[False, False, False, True, True],
- fill_value=999999)
- >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
- >>> # Put missing values in the front
- >>> a.sort(endwith=False)
- >>> a
- masked_array(data=[--, --, 1, 3, 5],
- mask=[ True, True, False, False, False],
- fill_value=999999)
- >>> a = np.ma.array([1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
- >>> # fill_value takes over endwith
- >>> a.sort(endwith=False, fill_value=3)
- >>> a
- masked_array(data=[1, --, --, 3, 5],
- mask=[False, True, True, False, False],
- fill_value=999999)
- """
- if self._mask is nomask:
- ndarray.sort(self, axis=axis, kind=kind, order=order)
- return
- if self is masked:
- return
- sidx = self.argsort(axis=axis, kind=kind, order=order,
- fill_value=fill_value, endwith=endwith)
- self[...] = np.take_along_axis(self, sidx, axis=axis)
- def min(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
- """
- Return the minimum along a given axis.
- Parameters
- ----------
- axis : {None, int}, optional
- Axis along which to operate. By default, ``axis`` is None and the
- flattened input is used.
- out : array_like, optional
- Alternative output array in which to place the result. Must be of
- the same shape and buffer length as the expected output.
- fill_value : {var}, optional
- Value used to fill in the masked values.
- If None, use the output of `minimum_fill_value`.
- keepdims : bool, optional
- If this is set to True, the axes which are reduced are left
- in the result as dimensions with size one. With this option,
- the result will broadcast correctly against the array.
- Returns
- -------
- amin : array_like
- New array holding the result.
- If ``out`` was specified, ``out`` is returned.
- See Also
- --------
- minimum_fill_value
- Returns the minimum filling value for a given datatype.
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- _mask = self._mask
- newmask = _check_mask_axis(_mask, axis, **kwargs)
- if fill_value is None:
- fill_value = minimum_fill_value(self)
- # No explicit output
- if out is None:
- result = self.filled(fill_value).min(
- axis=axis, out=out, **kwargs).view(type(self))
- if result.ndim:
- # Set the mask
- result.__setmask__(newmask)
- # Get rid of Infs
- if newmask.ndim:
- np.copyto(result, result.fill_value, where=newmask)
- elif newmask:
- result = masked
- return result
- # Explicit output
- result = self.filled(fill_value).min(axis=axis, out=out, **kwargs)
- if isinstance(out, MaskedArray):
- outmask = getmask(out)
- if outmask is nomask:
- outmask = out._mask = make_mask_none(out.shape)
- outmask.flat = newmask
- else:
- if out.dtype.kind in 'biu':
- errmsg = "Masked data information would be lost in one or more"\
- " location."
- raise MaskError(errmsg)
- np.copyto(out, np.nan, where=newmask)
- return out
- # unique to masked arrays
- def mini(self, axis=None):
- """
- Return the array minimum along the specified axis.
- .. deprecated:: 1.13.0
- This function is identical to both:
- * ``self.min(keepdims=True, axis=axis).squeeze(axis=axis)``
- * ``np.ma.minimum.reduce(self, axis=axis)``
- Typically though, ``self.min(axis=axis)`` is sufficient.
- Parameters
- ----------
- axis : int, optional
- The axis along which to find the minima. Default is None, in which case
- the minimum value in the whole array is returned.
- Returns
- -------
- min : scalar or MaskedArray
- If `axis` is None, the result is a scalar. Otherwise, if `axis` is
- given and the array is at least 2-D, the result is a masked array with
- dimension one smaller than the array on which `mini` is called.
- Examples
- --------
- >>> x = np.ma.array(np.arange(6), mask=[0 ,1, 0, 0, 0 ,1]).reshape(3, 2)
- >>> x
- masked_array(
- data=[[0, --],
- [2, 3],
- [4, --]],
- mask=[[False, True],
- [False, False],
- [False, True]],
- fill_value=999999)
- >>> x.mini()
- masked_array(data=0,
- mask=False,
- fill_value=999999)
- >>> x.mini(axis=0)
- masked_array(data=[0, 3],
- mask=[False, False],
- fill_value=999999)
- >>> x.mini(axis=1)
- masked_array(data=[0, 2, 4],
- mask=[False, False, False],
- fill_value=999999)
- There is a small difference between `mini` and `min`:
- >>> x[:,1].mini(axis=0)
- masked_array(data=3,
- mask=False,
- fill_value=999999)
- >>> x[:,1].min(axis=0)
- 3
- """
- # 2016-04-13, 1.13.0, gh-8764
- warnings.warn(
- "`mini` is deprecated; use the `min` method or "
- "`np.ma.minimum.reduce instead.",
- DeprecationWarning, stacklevel=2)
- return minimum.reduce(self, axis)
- def max(self, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
- """
- Return the maximum along a given axis.
- Parameters
- ----------
- axis : {None, int}, optional
- Axis along which to operate. By default, ``axis`` is None and the
- flattened input is used.
- out : array_like, optional
- Alternative output array in which to place the result. Must
- be of the same shape and buffer length as the expected output.
- fill_value : {var}, optional
- Value used to fill in the masked values.
- If None, use the output of maximum_fill_value().
- keepdims : bool, optional
- If this is set to True, the axes which are reduced are left
- in the result as dimensions with size one. With this option,
- the result will broadcast correctly against the array.
- Returns
- -------
- amax : array_like
- New array holding the result.
- If ``out`` was specified, ``out`` is returned.
- See Also
- --------
- maximum_fill_value
- Returns the maximum filling value for a given datatype.
- """
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- _mask = self._mask
- newmask = _check_mask_axis(_mask, axis, **kwargs)
- if fill_value is None:
- fill_value = maximum_fill_value(self)
- # No explicit output
- if out is None:
- result = self.filled(fill_value).max(
- axis=axis, out=out, **kwargs).view(type(self))
- if result.ndim:
- # Set the mask
- result.__setmask__(newmask)
- # Get rid of Infs
- if newmask.ndim:
- np.copyto(result, result.fill_value, where=newmask)
- elif newmask:
- result = masked
- return result
- # Explicit output
- result = self.filled(fill_value).max(axis=axis, out=out, **kwargs)
- if isinstance(out, MaskedArray):
- outmask = getmask(out)
- if outmask is nomask:
- outmask = out._mask = make_mask_none(out.shape)
- outmask.flat = newmask
- else:
- if out.dtype.kind in 'biu':
- errmsg = "Masked data information would be lost in one or more"\
- " location."
- raise MaskError(errmsg)
- np.copyto(out, np.nan, where=newmask)
- return out
- def ptp(self, axis=None, out=None, fill_value=None, keepdims=False):
- """
- Return (maximum - minimum) along the given dimension
- (i.e. peak-to-peak value).
- Parameters
- ----------
- axis : {None, int}, optional
- Axis along which to find the peaks. If None (default) the
- flattened array is used.
- out : {None, array_like}, optional
- Alternative output array in which to place the result. It must
- have the same shape and buffer length as the expected output
- but the type will be cast if necessary.
- fill_value : {var}, optional
- Value used to fill in the masked values.
- keepdims : bool, optional
- If this is set to True, the axes which are reduced are left
- in the result as dimensions with size one. With this option,
- the result will broadcast correctly against the array.
- Returns
- -------
- ptp : ndarray.
- A new array holding the result, unless ``out`` was
- specified, in which case a reference to ``out`` is returned.
- """
- if out is None:
- result = self.max(axis=axis, fill_value=fill_value,
- keepdims=keepdims)
- result -= self.min(axis=axis, fill_value=fill_value,
- keepdims=keepdims)
- return result
- out.flat = self.max(axis=axis, out=out, fill_value=fill_value,
- keepdims=keepdims)
- min_value = self.min(axis=axis, fill_value=fill_value,
- keepdims=keepdims)
- np.subtract(out, min_value, out=out, casting='unsafe')
- return out
- def partition(self, *args, **kwargs):
- warnings.warn("Warning: 'partition' will ignore the 'mask' "
- "of the {}.".format(self.__class__.__name__),
- stacklevel=2)
- return super(MaskedArray, self).partition(*args, **kwargs)
- def argpartition(self, *args, **kwargs):
- warnings.warn("Warning: 'argpartition' will ignore the 'mask' "
- "of the {}.".format(self.__class__.__name__),
- stacklevel=2)
- return super(MaskedArray, self).argpartition(*args, **kwargs)
- def take(self, indices, axis=None, out=None, mode='raise'):
- """
- """
- (_data, _mask) = (self._data, self._mask)
- cls = type(self)
- # Make sure the indices are not masked
- maskindices = getmask(indices)
- if maskindices is not nomask:
- indices = indices.filled(0)
- # Get the data, promoting scalars to 0d arrays with [...] so that
- # .view works correctly
- if out is None:
- out = _data.take(indices, axis=axis, mode=mode)[...].view(cls)
- else:
- np.take(_data, indices, axis=axis, mode=mode, out=out)
- # Get the mask
- if isinstance(out, MaskedArray):
- if _mask is nomask:
- outmask = maskindices
- else:
- outmask = _mask.take(indices, axis=axis, mode=mode)
- outmask |= maskindices
- out.__setmask__(outmask)
- # demote 0d arrays back to scalars, for consistency with ndarray.take
- return out[()]
- # Array methods
- copy = _arraymethod('copy')
- diagonal = _arraymethod('diagonal')
- flatten = _arraymethod('flatten')
- repeat = _arraymethod('repeat')
- squeeze = _arraymethod('squeeze')
- swapaxes = _arraymethod('swapaxes')
- T = property(fget=lambda self: self.transpose())
- transpose = _arraymethod('transpose')
- def tolist(self, fill_value=None):
- """
- Return the data portion of the masked array as a hierarchical Python list.
- Data items are converted to the nearest compatible Python type.
- Masked values are converted to `fill_value`. If `fill_value` is None,
- the corresponding entries in the output list will be ``None``.
- Parameters
- ----------
- fill_value : scalar, optional
- The value to use for invalid entries. Default is None.
- Returns
- -------
- result : list
- The Python list representation of the masked array.
- Examples
- --------
- >>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]*4)
- >>> x.tolist()
- [[1, None, 3], [None, 5, None], [7, None, 9]]
- >>> x.tolist(-999)
- [[1, -999, 3], [-999, 5, -999], [7, -999, 9]]
- """
- _mask = self._mask
- # No mask ? Just return .data.tolist ?
- if _mask is nomask:
- return self._data.tolist()
- # Explicit fill_value: fill the array and get the list
- if fill_value is not None:
- return self.filled(fill_value).tolist()
- # Structured array.
- names = self.dtype.names
- if names:
- result = self._data.astype([(_, object) for _ in names])
- for n in names:
- result[n][_mask[n]] = None
- return result.tolist()
- # Standard arrays.
- if _mask is nomask:
- return [None]
- # Set temps to save time when dealing w/ marrays.
- inishape = self.shape
- result = np.array(self._data.ravel(), dtype=object)
- result[_mask.ravel()] = None
- result.shape = inishape
- return result.tolist()
- def tostring(self, fill_value=None, order='C'):
- """
- This function is a compatibility alias for tobytes. Despite its name it
- returns bytes not strings.
- """
- return self.tobytes(fill_value, order=order)
- def tobytes(self, fill_value=None, order='C'):
- """
- Return the array data as a string containing the raw bytes in the array.
- The array is filled with a fill value before the string conversion.
- .. versionadded:: 1.9.0
- Parameters
- ----------
- fill_value : scalar, optional
- Value used to fill in the masked values. Default is None, in which
- case `MaskedArray.fill_value` is used.
- order : {'C','F','A'}, optional
- Order of the data item in the copy. Default is 'C'.
- - 'C' -- C order (row major).
- - 'F' -- Fortran order (column major).
- - 'A' -- Any, current order of array.
- - None -- Same as 'A'.
- See Also
- --------
- numpy.ndarray.tobytes
- tolist, tofile
- Notes
- -----
- As for `ndarray.tobytes`, information about the shape, dtype, etc.,
- but also about `fill_value`, will be lost.
- Examples
- --------
- >>> x = np.ma.array(np.array([[1, 2], [3, 4]]), mask=[[0, 1], [1, 0]])
- >>> x.tobytes()
- b'\\x01\\x00\\x00\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00?B\\x0f\\x00\\x00\\x00\\x00\\x00\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00'
- """
- return self.filled(fill_value).tobytes(order=order)
- def tofile(self, fid, sep="", format="%s"):
- """
- Save a masked array to a file in binary format.
- .. warning::
- This function is not implemented yet.
- Raises
- ------
- NotImplementedError
- When `tofile` is called.
- """
- raise NotImplementedError("MaskedArray.tofile() not implemented yet.")
- def toflex(self):
- """
- Transforms a masked array into a flexible-type array.
- The flexible type array that is returned will have two fields:
- * the ``_data`` field stores the ``_data`` part of the array.
- * the ``_mask`` field stores the ``_mask`` part of the array.
- Parameters
- ----------
- None
- Returns
- -------
- record : ndarray
- A new flexible-type `ndarray` with two fields: the first element
- containing a value, the second element containing the corresponding
- mask boolean. The returned record shape matches self.shape.
- Notes
- -----
- A side-effect of transforming a masked array into a flexible `ndarray` is
- that meta information (``fill_value``, ...) will be lost.
- Examples
- --------
- >>> x = np.ma.array([[1,2,3],[4,5,6],[7,8,9]], mask=[0] + [1,0]*4)
- >>> x
- masked_array(
- data=[[1, --, 3],
- [--, 5, --],
- [7, --, 9]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- >>> x.toflex()
- array([[(1, False), (2, True), (3, False)],
- [(4, True), (5, False), (6, True)],
- [(7, False), (8, True), (9, False)]],
- dtype=[('_data', '<i8'), ('_mask', '?')])
- """
- # Get the basic dtype.
- ddtype = self.dtype
- # Make sure we have a mask
- _mask = self._mask
- if _mask is None:
- _mask = make_mask_none(self.shape, ddtype)
- # And get its dtype
- mdtype = self._mask.dtype
- record = np.ndarray(shape=self.shape,
- dtype=[('_data', ddtype), ('_mask', mdtype)])
- record['_data'] = self._data
- record['_mask'] = self._mask
- return record
- torecords = toflex
- # Pickling
- def __getstate__(self):
- """Return the internal state of the masked array, for pickling
- purposes.
- """
- cf = 'CF'[self.flags.fnc]
- data_state = super(MaskedArray, self).__reduce__()[2]
- return data_state + (getmaskarray(self).tobytes(cf), self._fill_value)
- def __setstate__(self, state):
- """Restore the internal state of the masked array, for
- pickling purposes. ``state`` is typically the output of the
- ``__getstate__`` output, and is a 5-tuple:
- - class name
- - a tuple giving the shape of the data
- - a typecode for the data
- - a binary string for the data
- - a binary string for the mask.
- """
- (_, shp, typ, isf, raw, msk, flv) = state
- super(MaskedArray, self).__setstate__((shp, typ, isf, raw))
- self._mask.__setstate__((shp, make_mask_descr(typ), isf, msk))
- self.fill_value = flv
- def __reduce__(self):
- """Return a 3-tuple for pickling a MaskedArray.
- """
- return (_mareconstruct,
- (self.__class__, self._baseclass, (0,), 'b',),
- self.__getstate__())
- def __deepcopy__(self, memo=None):
- from copy import deepcopy
- copied = MaskedArray.__new__(type(self), self, copy=True)
- if memo is None:
- memo = {}
- memo[id(self)] = copied
- for (k, v) in self.__dict__.items():
- copied.__dict__[k] = deepcopy(v, memo)
- return copied
- def _mareconstruct(subtype, baseclass, baseshape, basetype,):
- """Internal function that builds a new MaskedArray from the
- information stored in a pickle.
- """
- _data = ndarray.__new__(baseclass, baseshape, basetype)
- _mask = ndarray.__new__(ndarray, baseshape, make_mask_descr(basetype))
- return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
- class mvoid(MaskedArray):
- """
- Fake a 'void' object to use for masked array with structured dtypes.
- """
- def __new__(self, data, mask=nomask, dtype=None, fill_value=None,
- hardmask=False, copy=False, subok=True):
- _data = np.array(data, copy=copy, subok=subok, dtype=dtype)
- _data = _data.view(self)
- _data._hardmask = hardmask
- if mask is not nomask:
- if isinstance(mask, np.void):
- _data._mask = mask
- else:
- try:
- # Mask is already a 0D array
- _data._mask = np.void(mask)
- except TypeError:
- # Transform the mask to a void
- mdtype = make_mask_descr(dtype)
- _data._mask = np.array(mask, dtype=mdtype)[()]
- if fill_value is not None:
- _data.fill_value = fill_value
- return _data
- @property
- def _data(self):
- # Make sure that the _data part is a np.void
- return super(mvoid, self)._data[()]
- def __getitem__(self, indx):
- """
- Get the index.
- """
- m = self._mask
- if isinstance(m[indx], ndarray):
- # Can happen when indx is a multi-dimensional field:
- # A = ma.masked_array(data=[([0,1],)], mask=[([True,
- # False],)], dtype=[("A", ">i2", (2,))])
- # x = A[0]; y = x["A"]; then y.mask["A"].size==2
- # and we can not say masked/unmasked.
- # The result is no longer mvoid!
- # See also issue #6724.
- return masked_array(
- data=self._data[indx], mask=m[indx],
- fill_value=self._fill_value[indx],
- hard_mask=self._hardmask)
- if m is not nomask and m[indx]:
- return masked
- return self._data[indx]
- def __setitem__(self, indx, value):
- self._data[indx] = value
- if self._hardmask:
- self._mask[indx] |= getattr(value, "_mask", False)
- else:
- self._mask[indx] = getattr(value, "_mask", False)
- def __str__(self):
- m = self._mask
- if m is nomask:
- return str(self._data)
- rdtype = _replace_dtype_fields(self._data.dtype, "O")
- data_arr = super(mvoid, self)._data
- res = data_arr.astype(rdtype)
- _recursive_printoption(res, self._mask, masked_print_option)
- return str(res)
- __repr__ = __str__
- def __iter__(self):
- "Defines an iterator for mvoid"
- (_data, _mask) = (self._data, self._mask)
- if _mask is nomask:
- for d in _data:
- yield d
- else:
- for (d, m) in zip(_data, _mask):
- if m:
- yield masked
- else:
- yield d
- def __len__(self):
- return self._data.__len__()
- def filled(self, fill_value=None):
- """
- Return a copy with masked fields filled with a given value.
- Parameters
- ----------
- fill_value : array_like, optional
- The value to use for invalid entries. Can be scalar or
- non-scalar. If latter is the case, the filled array should
- be broadcastable over input array. Default is None, in
- which case the `fill_value` attribute is used instead.
- Returns
- -------
- filled_void
- A `np.void` object
- See Also
- --------
- MaskedArray.filled
- """
- return asarray(self).filled(fill_value)[()]
- def tolist(self):
- """
- Transforms the mvoid object into a tuple.
- Masked fields are replaced by None.
- Returns
- -------
- returned_tuple
- Tuple of fields
- """
- _mask = self._mask
- if _mask is nomask:
- return self._data.tolist()
- result = []
- for (d, m) in zip(self._data, self._mask):
- if m:
- result.append(None)
- else:
- # .item() makes sure we return a standard Python object
- result.append(d.item())
- return tuple(result)
- ##############################################################################
- # Shortcuts #
- ##############################################################################
- def isMaskedArray(x):
- """
- Test whether input is an instance of MaskedArray.
- This function returns True if `x` is an instance of MaskedArray
- and returns False otherwise. Any object is accepted as input.
- Parameters
- ----------
- x : object
- Object to test.
- Returns
- -------
- result : bool
- True if `x` is a MaskedArray.
- See Also
- --------
- isMA : Alias to isMaskedArray.
- isarray : Alias to isMaskedArray.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.eye(3, 3)
- >>> a
- array([[ 1., 0., 0.],
- [ 0., 1., 0.],
- [ 0., 0., 1.]])
- >>> m = ma.masked_values(a, 0)
- >>> m
- masked_array(
- data=[[1.0, --, --],
- [--, 1.0, --],
- [--, --, 1.0]],
- mask=[[False, True, True],
- [ True, False, True],
- [ True, True, False]],
- fill_value=0.0)
- >>> ma.isMaskedArray(a)
- False
- >>> ma.isMaskedArray(m)
- True
- >>> ma.isMaskedArray([0, 1, 2])
- False
- """
- return isinstance(x, MaskedArray)
- isarray = isMaskedArray
- isMA = isMaskedArray # backward compatibility
- class MaskedConstant(MaskedArray):
- # the lone np.ma.masked instance
- __singleton = None
- @classmethod
- def __has_singleton(cls):
- # second case ensures `cls.__singleton` is not just a view on the
- # superclass singleton
- return cls.__singleton is not None and type(cls.__singleton) is cls
- def __new__(cls):
- if not cls.__has_singleton():
- # We define the masked singleton as a float for higher precedence.
- # Note that it can be tricky sometimes w/ type comparison
- data = np.array(0.)
- mask = np.array(True)
- # prevent any modifications
- data.flags.writeable = False
- mask.flags.writeable = False
- # don't fall back on MaskedArray.__new__(MaskedConstant), since
- # that might confuse it - this way, the construction is entirely
- # within our control
- cls.__singleton = MaskedArray(data, mask=mask).view(cls)
- return cls.__singleton
- def __array_finalize__(self, obj):
- if not self.__has_singleton():
- # this handles the `.view` in __new__, which we want to copy across
- # properties normally
- return super(MaskedConstant, self).__array_finalize__(obj)
- elif self is self.__singleton:
- # not clear how this can happen, play it safe
- pass
- else:
- # everywhere else, we want to downcast to MaskedArray, to prevent a
- # duplicate maskedconstant.
- self.__class__ = MaskedArray
- MaskedArray.__array_finalize__(self, obj)
- def __array_prepare__(self, obj, context=None):
- return self.view(MaskedArray).__array_prepare__(obj, context)
- def __array_wrap__(self, obj, context=None):
- return self.view(MaskedArray).__array_wrap__(obj, context)
- def __str__(self):
- return str(masked_print_option._display)
- if sys.version_info.major < 3:
- def __unicode__(self):
- return unicode(masked_print_option._display)
- def __repr__(self):
- if self is MaskedConstant.__singleton:
- return 'masked'
- else:
- # it's a subclass, or something is wrong, make it obvious
- return object.__repr__(self)
- def __reduce__(self):
- """Override of MaskedArray's __reduce__.
- """
- return (self.__class__, ())
- # inplace operations have no effect. We have to override them to avoid
- # trying to modify the readonly data and mask arrays
- def __iop__(self, other):
- return self
- __iadd__ = \
- __isub__ = \
- __imul__ = \
- __ifloordiv__ = \
- __itruediv__ = \
- __ipow__ = \
- __iop__
- del __iop__ # don't leave this around
- def copy(self, *args, **kwargs):
- """ Copy is a no-op on the maskedconstant, as it is a scalar """
- # maskedconstant is a scalar, so copy doesn't need to copy. There's
- # precedent for this with `np.bool_` scalars.
- return self
- def __copy__(self):
- return self
- def __deepcopy__(self, memo):
- return self
- def __setattr__(self, attr, value):
- if not self.__has_singleton():
- # allow the singleton to be initialized
- return super(MaskedConstant, self).__setattr__(attr, value)
- elif self is self.__singleton:
- raise AttributeError(
- "attributes of {!r} are not writeable".format(self))
- else:
- # duplicate instance - we can end up here from __array_finalize__,
- # where we set the __class__ attribute
- return super(MaskedConstant, self).__setattr__(attr, value)
- masked = masked_singleton = MaskedConstant()
- masked_array = MaskedArray
- def array(data, dtype=None, copy=False, order=None,
- mask=nomask, fill_value=None, keep_mask=True,
- hard_mask=False, shrink=True, subok=True, ndmin=0):
- """
- Shortcut to MaskedArray.
- The options are in a different order for convenience and backwards
- compatibility.
- """
- return MaskedArray(data, mask=mask, dtype=dtype, copy=copy,
- subok=subok, keep_mask=keep_mask,
- hard_mask=hard_mask, fill_value=fill_value,
- ndmin=ndmin, shrink=shrink, order=order)
- array.__doc__ = masked_array.__doc__
- def is_masked(x):
- """
- Determine whether input has masked values.
- Accepts any object as input, but always returns False unless the
- input is a MaskedArray containing masked values.
- Parameters
- ----------
- x : array_like
- Array to check for masked values.
- Returns
- -------
- result : bool
- True if `x` is a MaskedArray with masked values, False otherwise.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> x = ma.masked_equal([0, 1, 0, 2, 3], 0)
- >>> x
- masked_array(data=[--, 1, --, 2, 3],
- mask=[ True, False, True, False, False],
- fill_value=0)
- >>> ma.is_masked(x)
- True
- >>> x = ma.masked_equal([0, 1, 0, 2, 3], 42)
- >>> x
- masked_array(data=[0, 1, 0, 2, 3],
- mask=False,
- fill_value=42)
- >>> ma.is_masked(x)
- False
- Always returns False if `x` isn't a MaskedArray.
- >>> x = [False, True, False]
- >>> ma.is_masked(x)
- False
- >>> x = 'a string'
- >>> ma.is_masked(x)
- False
- """
- m = getmask(x)
- if m is nomask:
- return False
- elif m.any():
- return True
- return False
- ##############################################################################
- # Extrema functions #
- ##############################################################################
- class _extrema_operation(_MaskedUFunc):
- """
- Generic class for maximum/minimum functions.
- .. note::
- This is the base class for `_maximum_operation` and
- `_minimum_operation`.
- """
- def __init__(self, ufunc, compare, fill_value):
- super(_extrema_operation, self).__init__(ufunc)
- self.compare = compare
- self.fill_value_func = fill_value
- def __call__(self, a, b=None):
- "Executes the call behavior."
- if b is None:
- # 2016-04-13, 1.13.0
- warnings.warn(
- "Single-argument form of np.ma.{0} is deprecated. Use "
- "np.ma.{0}.reduce instead.".format(self.__name__),
- DeprecationWarning, stacklevel=2)
- return self.reduce(a)
- return where(self.compare(a, b), a, b)
- def reduce(self, target, axis=np._NoValue):
- "Reduce target along the given axis."
- target = narray(target, copy=False, subok=True)
- m = getmask(target)
- if axis is np._NoValue and target.ndim > 1:
- # 2017-05-06, Numpy 1.13.0: warn on axis default
- warnings.warn(
- "In the future the default for ma.{0}.reduce will be axis=0, "
- "not the current None, to match np.{0}.reduce. "
- "Explicitly pass 0 or None to silence this warning.".format(
- self.__name__
- ),
- MaskedArrayFutureWarning, stacklevel=2)
- axis = None
- if axis is not np._NoValue:
- kwargs = dict(axis=axis)
- else:
- kwargs = dict()
- if m is nomask:
- t = self.f.reduce(target, **kwargs)
- else:
- target = target.filled(
- self.fill_value_func(target)).view(type(target))
- t = self.f.reduce(target, **kwargs)
- m = umath.logical_and.reduce(m, **kwargs)
- if hasattr(t, '_mask'):
- t._mask = m
- elif m:
- t = masked
- return t
- def outer(self, a, b):
- "Return the function applied to the outer product of a and b."
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- m = nomask
- else:
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = logical_or.outer(ma, mb)
- result = self.f.outer(filled(a), filled(b))
- if not isinstance(result, MaskedArray):
- result = result.view(MaskedArray)
- result._mask = m
- return result
- def min(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- try:
- return obj.min(axis=axis, fill_value=fill_value, out=out, **kwargs)
- except (AttributeError, TypeError):
- # If obj doesn't have a min method, or if the method doesn't accept a
- # fill_value argument
- return asanyarray(obj).min(axis=axis, fill_value=fill_value,
- out=out, **kwargs)
- min.__doc__ = MaskedArray.min.__doc__
- def max(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- try:
- return obj.max(axis=axis, fill_value=fill_value, out=out, **kwargs)
- except (AttributeError, TypeError):
- # If obj doesn't have a max method, or if the method doesn't accept a
- # fill_value argument
- return asanyarray(obj).max(axis=axis, fill_value=fill_value,
- out=out, **kwargs)
- max.__doc__ = MaskedArray.max.__doc__
- def ptp(obj, axis=None, out=None, fill_value=None, keepdims=np._NoValue):
- kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims}
- try:
- return obj.ptp(axis, out=out, fill_value=fill_value, **kwargs)
- except (AttributeError, TypeError):
- # If obj doesn't have a ptp method or if the method doesn't accept
- # a fill_value argument
- return asanyarray(obj).ptp(axis=axis, fill_value=fill_value,
- out=out, **kwargs)
- ptp.__doc__ = MaskedArray.ptp.__doc__
- ##############################################################################
- # Definition of functions from the corresponding methods #
- ##############################################################################
- class _frommethod(object):
- """
- Define functions from existing MaskedArray methods.
- Parameters
- ----------
- methodname : str
- Name of the method to transform.
- """
- def __init__(self, methodname, reversed=False):
- self.__name__ = methodname
- self.__doc__ = self.getdoc()
- self.reversed = reversed
- def getdoc(self):
- "Return the doc of the function (from the doc of the method)."
- meth = getattr(MaskedArray, self.__name__, None) or\
- getattr(np, self.__name__, None)
- signature = self.__name__ + get_object_signature(meth)
- if meth is not None:
- doc = """ %s\n%s""" % (
- signature, getattr(meth, '__doc__', None))
- return doc
- def __call__(self, a, *args, **params):
- if self.reversed:
- args = list(args)
- a, args[0] = args[0], a
- marr = asanyarray(a)
- method_name = self.__name__
- method = getattr(type(marr), method_name, None)
- if method is None:
- # use the corresponding np function
- method = getattr(np, method_name)
- return method(marr, *args, **params)
- all = _frommethod('all')
- anomalies = anom = _frommethod('anom')
- any = _frommethod('any')
- compress = _frommethod('compress', reversed=True)
- cumprod = _frommethod('cumprod')
- cumsum = _frommethod('cumsum')
- copy = _frommethod('copy')
- diagonal = _frommethod('diagonal')
- harden_mask = _frommethod('harden_mask')
- ids = _frommethod('ids')
- maximum = _extrema_operation(umath.maximum, greater, maximum_fill_value)
- mean = _frommethod('mean')
- minimum = _extrema_operation(umath.minimum, less, minimum_fill_value)
- nonzero = _frommethod('nonzero')
- prod = _frommethod('prod')
- product = _frommethod('prod')
- ravel = _frommethod('ravel')
- repeat = _frommethod('repeat')
- shrink_mask = _frommethod('shrink_mask')
- soften_mask = _frommethod('soften_mask')
- std = _frommethod('std')
- sum = _frommethod('sum')
- swapaxes = _frommethod('swapaxes')
- #take = _frommethod('take')
- trace = _frommethod('trace')
- var = _frommethod('var')
- count = _frommethod('count')
- def take(a, indices, axis=None, out=None, mode='raise'):
- """
- """
- a = masked_array(a)
- return a.take(indices, axis=axis, out=out, mode=mode)
- def power(a, b, third=None):
- """
- Returns element-wise base array raised to power from second array.
- This is the masked array version of `numpy.power`. For details see
- `numpy.power`.
- See Also
- --------
- numpy.power
- Notes
- -----
- The *out* argument to `numpy.power` is not supported, `third` has to be
- None.
- """
- if third is not None:
- raise MaskError("3-argument power not supported.")
- # Get the masks
- ma = getmask(a)
- mb = getmask(b)
- m = mask_or(ma, mb)
- # Get the rawdata
- fa = getdata(a)
- fb = getdata(b)
- # Get the type of the result (so that we preserve subclasses)
- if isinstance(a, MaskedArray):
- basetype = type(a)
- else:
- basetype = MaskedArray
- # Get the result and view it as a (subclass of) MaskedArray
- with np.errstate(divide='ignore', invalid='ignore'):
- result = np.where(m, fa, umath.power(fa, fb)).view(basetype)
- result._update_from(a)
- # Find where we're in trouble w/ NaNs and Infs
- invalid = np.logical_not(np.isfinite(result.view(ndarray)))
- # Add the initial mask
- if m is not nomask:
- if not result.ndim:
- return masked
- result._mask = np.logical_or(m, invalid)
- # Fix the invalid parts
- if invalid.any():
- if not result.ndim:
- return masked
- elif result._mask is nomask:
- result._mask = invalid
- result._data[invalid] = result.fill_value
- return result
- argmin = _frommethod('argmin')
- argmax = _frommethod('argmax')
- def argsort(a, axis=np._NoValue, kind=None, order=None, endwith=True, fill_value=None):
- "Function version of the eponymous method."
- a = np.asanyarray(a)
- # 2017-04-11, Numpy 1.13.0, gh-8701: warn on axis default
- if axis is np._NoValue:
- axis = _deprecate_argsort_axis(a)
- if isinstance(a, MaskedArray):
- return a.argsort(axis=axis, kind=kind, order=order,
- endwith=endwith, fill_value=fill_value)
- else:
- return a.argsort(axis=axis, kind=kind, order=order)
- argsort.__doc__ = MaskedArray.argsort.__doc__
- def sort(a, axis=-1, kind=None, order=None, endwith=True, fill_value=None):
- "Function version of the eponymous method."
- a = np.array(a, copy=True, subok=True)
- if axis is None:
- a = a.flatten()
- axis = 0
- if isinstance(a, MaskedArray):
- a.sort(axis=axis, kind=kind, order=order,
- endwith=endwith, fill_value=fill_value)
- else:
- a.sort(axis=axis, kind=kind, order=order)
- return a
- sort.__doc__ = MaskedArray.sort.__doc__
- def compressed(x):
- """
- Return all the non-masked data as a 1-D array.
- This function is equivalent to calling the "compressed" method of a
- `MaskedArray`, see `MaskedArray.compressed` for details.
- See Also
- --------
- MaskedArray.compressed
- Equivalent method.
- """
- return asanyarray(x).compressed()
- def concatenate(arrays, axis=0):
- """
- Concatenate a sequence of arrays along the given axis.
- Parameters
- ----------
- arrays : sequence of array_like
- The arrays must have the same shape, except in the dimension
- corresponding to `axis` (the first, by default).
- axis : int, optional
- The axis along which the arrays will be joined. Default is 0.
- Returns
- -------
- result : MaskedArray
- The concatenated array with any masked entries preserved.
- See Also
- --------
- numpy.concatenate : Equivalent function in the top-level NumPy module.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.arange(3)
- >>> a[1] = ma.masked
- >>> b = ma.arange(2, 5)
- >>> a
- masked_array(data=[0, --, 2],
- mask=[False, True, False],
- fill_value=999999)
- >>> b
- masked_array(data=[2, 3, 4],
- mask=False,
- fill_value=999999)
- >>> ma.concatenate([a, b])
- masked_array(data=[0, --, 2, 2, 3, 4],
- mask=[False, True, False, False, False, False],
- fill_value=999999)
- """
- d = np.concatenate([getdata(a) for a in arrays], axis)
- rcls = get_masked_subclass(*arrays)
- data = d.view(rcls)
- # Check whether one of the arrays has a non-empty mask.
- for x in arrays:
- if getmask(x) is not nomask:
- break
- else:
- return data
- # OK, so we have to concatenate the masks
- dm = np.concatenate([getmaskarray(a) for a in arrays], axis)
- dm = dm.reshape(d.shape)
- # If we decide to keep a '_shrinkmask' option, we want to check that
- # all of them are True, and then check for dm.any()
- data._mask = _shrink_mask(dm)
- return data
- def diag(v, k=0):
- """
- Extract a diagonal or construct a diagonal array.
- This function is the equivalent of `numpy.diag` that takes masked
- values into account, see `numpy.diag` for details.
- See Also
- --------
- numpy.diag : Equivalent function for ndarrays.
- """
- output = np.diag(v, k).view(MaskedArray)
- if getmask(v) is not nomask:
- output._mask = np.diag(v._mask, k)
- return output
- def left_shift(a, n):
- """
- Shift the bits of an integer to the left.
- This is the masked array version of `numpy.left_shift`, for details
- see that function.
- See Also
- --------
- numpy.left_shift
- """
- m = getmask(a)
- if m is nomask:
- d = umath.left_shift(filled(a), n)
- return masked_array(d)
- else:
- d = umath.left_shift(filled(a, 0), n)
- return masked_array(d, mask=m)
- def right_shift(a, n):
- """
- Shift the bits of an integer to the right.
- This is the masked array version of `numpy.right_shift`, for details
- see that function.
- See Also
- --------
- numpy.right_shift
- """
- m = getmask(a)
- if m is nomask:
- d = umath.right_shift(filled(a), n)
- return masked_array(d)
- else:
- d = umath.right_shift(filled(a, 0), n)
- return masked_array(d, mask=m)
- def put(a, indices, values, mode='raise'):
- """
- Set storage-indexed locations to corresponding values.
- This function is equivalent to `MaskedArray.put`, see that method
- for details.
- See Also
- --------
- MaskedArray.put
- """
- # We can't use 'frommethod', the order of arguments is different
- try:
- return a.put(indices, values, mode=mode)
- except AttributeError:
- return narray(a, copy=False).put(indices, values, mode=mode)
- def putmask(a, mask, values): # , mode='raise'):
- """
- Changes elements of an array based on conditional and input values.
- This is the masked array version of `numpy.putmask`, for details see
- `numpy.putmask`.
- See Also
- --------
- numpy.putmask
- Notes
- -----
- Using a masked array as `values` will **not** transform a `ndarray` into
- a `MaskedArray`.
- """
- # We can't use 'frommethod', the order of arguments is different
- if not isinstance(a, MaskedArray):
- a = a.view(MaskedArray)
- (valdata, valmask) = (getdata(values), getmask(values))
- if getmask(a) is nomask:
- if valmask is not nomask:
- a._sharedmask = True
- a._mask = make_mask_none(a.shape, a.dtype)
- np.copyto(a._mask, valmask, where=mask)
- elif a._hardmask:
- if valmask is not nomask:
- m = a._mask.copy()
- np.copyto(m, valmask, where=mask)
- a.mask |= m
- else:
- if valmask is nomask:
- valmask = getmaskarray(values)
- np.copyto(a._mask, valmask, where=mask)
- np.copyto(a._data, valdata, where=mask)
- return
- def transpose(a, axes=None):
- """
- Permute the dimensions of an array.
- This function is exactly equivalent to `numpy.transpose`.
- See Also
- --------
- numpy.transpose : Equivalent function in top-level NumPy module.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> x = ma.arange(4).reshape((2,2))
- >>> x[1, 1] = ma.masked
- >>> x
- masked_array(
- data=[[0, 1],
- [2, --]],
- mask=[[False, False],
- [False, True]],
- fill_value=999999)
- >>> ma.transpose(x)
- masked_array(
- data=[[0, 2],
- [1, --]],
- mask=[[False, False],
- [False, True]],
- fill_value=999999)
- """
- # We can't use 'frommethod', as 'transpose' doesn't take keywords
- try:
- return a.transpose(axes)
- except AttributeError:
- return narray(a, copy=False).transpose(axes).view(MaskedArray)
- def reshape(a, new_shape, order='C'):
- """
- Returns an array containing the same data with a new shape.
- Refer to `MaskedArray.reshape` for full documentation.
- See Also
- --------
- MaskedArray.reshape : equivalent function
- """
- # We can't use 'frommethod', it whine about some parameters. Dmmit.
- try:
- return a.reshape(new_shape, order=order)
- except AttributeError:
- _tmp = narray(a, copy=False).reshape(new_shape, order=order)
- return _tmp.view(MaskedArray)
- def resize(x, new_shape):
- """
- Return a new masked array with the specified size and shape.
- This is the masked equivalent of the `numpy.resize` function. The new
- array is filled with repeated copies of `x` (in the order that the
- data are stored in memory). If `x` is masked, the new array will be
- masked, and the new mask will be a repetition of the old one.
- See Also
- --------
- numpy.resize : Equivalent function in the top level NumPy module.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.array([[1, 2] ,[3, 4]])
- >>> a[0, 1] = ma.masked
- >>> a
- masked_array(
- data=[[1, --],
- [3, 4]],
- mask=[[False, True],
- [False, False]],
- fill_value=999999)
- >>> np.resize(a, (3, 3))
- masked_array(
- data=[[1, 2, 3],
- [4, 1, 2],
- [3, 4, 1]],
- mask=False,
- fill_value=999999)
- >>> ma.resize(a, (3, 3))
- masked_array(
- data=[[1, --, 3],
- [4, 1, --],
- [3, 4, 1]],
- mask=[[False, True, False],
- [False, False, True],
- [False, False, False]],
- fill_value=999999)
- A MaskedArray is always returned, regardless of the input type.
- >>> a = np.array([[1, 2] ,[3, 4]])
- >>> ma.resize(a, (3, 3))
- masked_array(
- data=[[1, 2, 3],
- [4, 1, 2],
- [3, 4, 1]],
- mask=False,
- fill_value=999999)
- """
- # We can't use _frommethods here, as N.resize is notoriously whiny.
- m = getmask(x)
- if m is not nomask:
- m = np.resize(m, new_shape)
- result = np.resize(x, new_shape).view(get_masked_subclass(x))
- if result.ndim:
- result._mask = m
- return result
- def ndim(obj):
- """
- maskedarray version of the numpy function.
- """
- return np.ndim(getdata(obj))
- ndim.__doc__ = np.ndim.__doc__
- def shape(obj):
- "maskedarray version of the numpy function."
- return np.shape(getdata(obj))
- shape.__doc__ = np.shape.__doc__
- def size(obj, axis=None):
- "maskedarray version of the numpy function."
- return np.size(getdata(obj), axis)
- size.__doc__ = np.size.__doc__
- ##############################################################################
- # Extra functions #
- ##############################################################################
- def where(condition, x=_NoValue, y=_NoValue):
- """
- Return a masked array with elements from `x` or `y`, depending on condition.
- .. note::
- When only `condition` is provided, this function is identical to
- `nonzero`. The rest of this documentation covers only the case where
- all three arguments are provided.
- Parameters
- ----------
- condition : array_like, bool
- Where True, yield `x`, otherwise yield `y`.
- x, y : array_like, optional
- Values from which to choose. `x`, `y` and `condition` need to be
- broadcastable to some shape.
- Returns
- -------
- out : MaskedArray
- An masked array with `masked` elements where the condition is masked,
- elements from `x` where `condition` is True, and elements from `y`
- elsewhere.
- See Also
- --------
- numpy.where : Equivalent function in the top-level NumPy module.
- nonzero : The function that is called when x and y are omitted
- Examples
- --------
- >>> x = np.ma.array(np.arange(9.).reshape(3, 3), mask=[[0, 1, 0],
- ... [1, 0, 1],
- ... [0, 1, 0]])
- >>> x
- masked_array(
- data=[[0.0, --, 2.0],
- [--, 4.0, --],
- [6.0, --, 8.0]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=1e+20)
- >>> np.ma.where(x > 5, x, -3.1416)
- masked_array(
- data=[[-3.1416, --, -3.1416],
- [--, -3.1416, --],
- [6.0, --, 8.0]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=1e+20)
- """
- # handle the single-argument case
- missing = (x is _NoValue, y is _NoValue).count(True)
- if missing == 1:
- raise ValueError("Must provide both 'x' and 'y' or neither.")
- if missing == 2:
- return nonzero(condition)
- # we only care if the condition is true - false or masked pick y
- cf = filled(condition, False)
- xd = getdata(x)
- yd = getdata(y)
- # we need the full arrays here for correct final dimensions
- cm = getmaskarray(condition)
- xm = getmaskarray(x)
- ym = getmaskarray(y)
- # deal with the fact that masked.dtype == float64, but we don't actually
- # want to treat it as that.
- if x is masked and y is not masked:
- xd = np.zeros((), dtype=yd.dtype)
- xm = np.ones((), dtype=ym.dtype)
- elif y is masked and x is not masked:
- yd = np.zeros((), dtype=xd.dtype)
- ym = np.ones((), dtype=xm.dtype)
- data = np.where(cf, xd, yd)
- mask = np.where(cf, xm, ym)
- mask = np.where(cm, np.ones((), dtype=mask.dtype), mask)
- # collapse the mask, for backwards compatibility
- mask = _shrink_mask(mask)
- return masked_array(data, mask=mask)
- def choose(indices, choices, out=None, mode='raise'):
- """
- Use an index array to construct a new array from a set of choices.
- Given an array of integers and a set of n choice arrays, this method
- will create a new array that merges each of the choice arrays. Where a
- value in `a` is i, the new array will have the value that choices[i]
- contains in the same place.
- Parameters
- ----------
- a : ndarray of ints
- This array must contain integers in ``[0, n-1]``, where n is the
- number of choices.
- choices : sequence of arrays
- Choice arrays. The index array and all of the choices should be
- broadcastable to the same shape.
- out : array, optional
- If provided, the result will be inserted into this array. It should
- be of the appropriate shape and `dtype`.
- mode : {'raise', 'wrap', 'clip'}, optional
- Specifies how out-of-bounds indices will behave.
- * 'raise' : raise an error
- * 'wrap' : wrap around
- * 'clip' : clip to the range
- Returns
- -------
- merged_array : array
- See Also
- --------
- choose : equivalent function
- Examples
- --------
- >>> choice = np.array([[1,1,1], [2,2,2], [3,3,3]])
- >>> a = np.array([2, 1, 0])
- >>> np.ma.choose(a, choice)
- masked_array(data=[3, 2, 1],
- mask=False,
- fill_value=999999)
- """
- def fmask(x):
- "Returns the filled array, or True if masked."
- if x is masked:
- return True
- return filled(x)
- def nmask(x):
- "Returns the mask, True if ``masked``, False if ``nomask``."
- if x is masked:
- return True
- return getmask(x)
- # Get the indices.
- c = filled(indices, 0)
- # Get the masks.
- masks = [nmask(x) for x in choices]
- data = [fmask(x) for x in choices]
- # Construct the mask
- outputmask = np.choose(c, masks, mode=mode)
- outputmask = make_mask(mask_or(outputmask, getmask(indices)),
- copy=False, shrink=True)
- # Get the choices.
- d = np.choose(c, data, mode=mode, out=out).view(MaskedArray)
- if out is not None:
- if isinstance(out, MaskedArray):
- out.__setmask__(outputmask)
- return out
- d.__setmask__(outputmask)
- return d
- def round_(a, decimals=0, out=None):
- """
- Return a copy of a, rounded to 'decimals' places.
- When 'decimals' is negative, it specifies the number of positions
- to the left of the decimal point. The real and imaginary parts of
- complex numbers are rounded separately. Nothing is done if the
- array is not of float type and 'decimals' is greater than or equal
- to 0.
- Parameters
- ----------
- decimals : int
- Number of decimals to round to. May be negative.
- out : array_like
- Existing array to use for output.
- If not given, returns a default copy of a.
- Notes
- -----
- If out is given and does not have a mask attribute, the mask of a
- is lost!
- """
- if out is None:
- return np.round_(a, decimals, out)
- else:
- np.round_(getdata(a), decimals, out)
- if hasattr(out, '_mask'):
- out._mask = getmask(a)
- return out
- round = round_
- # Needed by dot, so move here from extras.py. It will still be exported
- # from extras.py for compatibility.
- def mask_rowcols(a, axis=None):
- """
- Mask rows and/or columns of a 2D array that contain masked values.
- Mask whole rows and/or columns of a 2D array that contain
- masked values. The masking behavior is selected using the
- `axis` parameter.
- - If `axis` is None, rows *and* columns are masked.
- - If `axis` is 0, only rows are masked.
- - If `axis` is 1 or -1, only columns are masked.
- Parameters
- ----------
- a : array_like, MaskedArray
- The array to mask. If not a MaskedArray instance (or if no array
- elements are masked). The result is a MaskedArray with `mask` set
- to `nomask` (False). Must be a 2D array.
- axis : int, optional
- Axis along which to perform the operation. If None, applies to a
- flattened version of the array.
- Returns
- -------
- a : MaskedArray
- A modified version of the input array, masked depending on the value
- of the `axis` parameter.
- Raises
- ------
- NotImplementedError
- If input array `a` is not 2D.
- See Also
- --------
- mask_rows : Mask rows of a 2D array that contain masked values.
- mask_cols : Mask cols of a 2D array that contain masked values.
- masked_where : Mask where a condition is met.
- Notes
- -----
- The input array's mask is modified by this function.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = np.zeros((3, 3), dtype=int)
- >>> a[1, 1] = 1
- >>> a
- array([[0, 0, 0],
- [0, 1, 0],
- [0, 0, 0]])
- >>> a = ma.masked_equal(a, 1)
- >>> a
- masked_array(
- data=[[0, 0, 0],
- [0, --, 0],
- [0, 0, 0]],
- mask=[[False, False, False],
- [False, True, False],
- [False, False, False]],
- fill_value=1)
- >>> ma.mask_rowcols(a)
- masked_array(
- data=[[0, --, 0],
- [--, --, --],
- [0, --, 0]],
- mask=[[False, True, False],
- [ True, True, True],
- [False, True, False]],
- fill_value=1)
- """
- a = array(a, subok=False)
- if a.ndim != 2:
- raise NotImplementedError("mask_rowcols works for 2D arrays only.")
- m = getmask(a)
- # Nothing is masked: return a
- if m is nomask or not m.any():
- return a
- maskedval = m.nonzero()
- a._mask = a._mask.copy()
- if not axis:
- a[np.unique(maskedval[0])] = masked
- if axis in [None, 1, -1]:
- a[:, np.unique(maskedval[1])] = masked
- return a
- # Include masked dot here to avoid import problems in getting it from
- # extras.py. Note that it is not included in __all__, but rather exported
- # from extras in order to avoid backward compatibility problems.
- def dot(a, b, strict=False, out=None):
- """
- Return the dot product of two arrays.
- This function is the equivalent of `numpy.dot` that takes masked values
- into account. Note that `strict` and `out` are in different position
- than in the method version. In order to maintain compatibility with the
- corresponding method, it is recommended that the optional arguments be
- treated as keyword only. At some point that may be mandatory.
- .. note::
- Works only with 2-D arrays at the moment.
- Parameters
- ----------
- a, b : masked_array_like
- Inputs arrays.
- strict : bool, optional
- Whether masked data are propagated (True) or set to 0 (False) for
- the computation. Default is False. Propagating the mask means that
- if a masked value appears in a row or column, the whole row or
- column is considered masked.
- out : masked_array, optional
- Output argument. This must have the exact kind that would be returned
- if it was not used. In particular, it must have the right type, must be
- C-contiguous, and its dtype must be the dtype that would be returned
- for `dot(a,b)`. This is a performance feature. Therefore, if these
- conditions are not met, an exception is raised, instead of attempting
- to be flexible.
- .. versionadded:: 1.10.2
- See Also
- --------
- numpy.dot : Equivalent function for ndarrays.
- Examples
- --------
- >>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, 0, 0], [0, 0, 0]])
- >>> b = np.ma.array([[1, 2], [3, 4], [5, 6]], mask=[[1, 0], [0, 0], [0, 0]])
- >>> np.ma.dot(a, b)
- masked_array(
- data=[[21, 26],
- [45, 64]],
- mask=[[False, False],
- [False, False]],
- fill_value=999999)
- >>> np.ma.dot(a, b, strict=True)
- masked_array(
- data=[[--, --],
- [--, 64]],
- mask=[[ True, True],
- [ True, False]],
- fill_value=999999)
- """
- # !!!: Works only with 2D arrays. There should be a way to get it to run
- # with higher dimension
- if strict and (a.ndim == 2) and (b.ndim == 2):
- a = mask_rowcols(a, 0)
- b = mask_rowcols(b, 1)
- am = ~getmaskarray(a)
- bm = ~getmaskarray(b)
- if out is None:
- d = np.dot(filled(a, 0), filled(b, 0))
- m = ~np.dot(am, bm)
- if d.ndim == 0:
- d = np.asarray(d)
- r = d.view(get_masked_subclass(a, b))
- r.__setmask__(m)
- return r
- else:
- d = np.dot(filled(a, 0), filled(b, 0), out._data)
- if out.mask.shape != d.shape:
- out._mask = np.empty(d.shape, MaskType)
- np.dot(am, bm, out._mask)
- np.logical_not(out._mask, out._mask)
- return out
- def inner(a, b):
- """
- Returns the inner product of a and b for arrays of floating point types.
- Like the generic NumPy equivalent the product sum is over the last dimension
- of a and b. The first argument is not conjugated.
- """
- fa = filled(a, 0)
- fb = filled(b, 0)
- if fa.ndim == 0:
- fa.shape = (1,)
- if fb.ndim == 0:
- fb.shape = (1,)
- return np.inner(fa, fb).view(MaskedArray)
- inner.__doc__ = doc_note(np.inner.__doc__,
- "Masked values are replaced by 0.")
- innerproduct = inner
- def outer(a, b):
- "maskedarray version of the numpy function."
- fa = filled(a, 0).ravel()
- fb = filled(b, 0).ravel()
- d = np.outer(fa, fb)
- ma = getmask(a)
- mb = getmask(b)
- if ma is nomask and mb is nomask:
- return masked_array(d)
- ma = getmaskarray(a)
- mb = getmaskarray(b)
- m = make_mask(1 - np.outer(1 - ma, 1 - mb), copy=False)
- return masked_array(d, mask=m)
- outer.__doc__ = doc_note(np.outer.__doc__,
- "Masked values are replaced by 0.")
- outerproduct = outer
- def _convolve_or_correlate(f, a, v, mode, propagate_mask):
- """
- Helper function for ma.correlate and ma.convolve
- """
- if propagate_mask:
- # results which are contributed to by either item in any pair being invalid
- mask = (
- f(getmaskarray(a), np.ones(np.shape(v), dtype=bool), mode=mode)
- | f(np.ones(np.shape(a), dtype=bool), getmaskarray(v), mode=mode)
- )
- data = f(getdata(a), getdata(v), mode=mode)
- else:
- # results which are not contributed to by any pair of valid elements
- mask = ~f(~getmaskarray(a), ~getmaskarray(v))
- data = f(filled(a, 0), filled(v, 0), mode=mode)
- return masked_array(data, mask=mask)
- def correlate(a, v, mode='valid', propagate_mask=True):
- """
- Cross-correlation of two 1-dimensional sequences.
- Parameters
- ----------
- a, v : array_like
- Input sequences.
- mode : {'valid', 'same', 'full'}, optional
- Refer to the `np.convolve` docstring. Note that the default
- is 'valid', unlike `convolve`, which uses 'full'.
- propagate_mask : bool
- If True, then a result element is masked if any masked element contributes towards it.
- If False, then a result element is only masked if no non-masked element
- contribute towards it
- Returns
- -------
- out : MaskedArray
- Discrete cross-correlation of `a` and `v`.
- See Also
- --------
- numpy.correlate : Equivalent function in the top-level NumPy module.
- """
- return _convolve_or_correlate(np.correlate, a, v, mode, propagate_mask)
- def convolve(a, v, mode='full', propagate_mask=True):
- """
- Returns the discrete, linear convolution of two one-dimensional sequences.
- Parameters
- ----------
- a, v : array_like
- Input sequences.
- mode : {'valid', 'same', 'full'}, optional
- Refer to the `np.convolve` docstring.
- propagate_mask : bool
- If True, then if any masked element is included in the sum for a result
- element, then the result is masked.
- If False, then the result element is only masked if no non-masked cells
- contribute towards it
- Returns
- -------
- out : MaskedArray
- Discrete, linear convolution of `a` and `v`.
- See Also
- --------
- numpy.convolve : Equivalent function in the top-level NumPy module.
- """
- return _convolve_or_correlate(np.convolve, a, v, mode, propagate_mask)
- def allequal(a, b, fill_value=True):
- """
- Return True if all entries of a and b are equal, using
- fill_value as a truth value where either or both are masked.
- Parameters
- ----------
- a, b : array_like
- Input arrays to compare.
- fill_value : bool, optional
- Whether masked values in a or b are considered equal (True) or not
- (False).
- Returns
- -------
- y : bool
- Returns True if the two arrays are equal within the given
- tolerance, False otherwise. If either array contains NaN,
- then False is returned.
- See Also
- --------
- all, any
- numpy.ma.allclose
- Examples
- --------
- >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
- >>> a
- masked_array(data=[10000000000.0, 1e-07, --],
- mask=[False, False, True],
- fill_value=1e+20)
- >>> b = np.array([1e10, 1e-7, -42.0])
- >>> b
- array([ 1.00000000e+10, 1.00000000e-07, -4.20000000e+01])
- >>> np.ma.allequal(a, b, fill_value=False)
- False
- >>> np.ma.allequal(a, b)
- True
- """
- m = mask_or(getmask(a), getmask(b))
- if m is nomask:
- x = getdata(a)
- y = getdata(b)
- d = umath.equal(x, y)
- return d.all()
- elif fill_value:
- x = getdata(a)
- y = getdata(b)
- d = umath.equal(x, y)
- dm = array(d, mask=m, copy=False)
- return dm.filled(True).all(None)
- else:
- return False
- def allclose(a, b, masked_equal=True, rtol=1e-5, atol=1e-8):
- """
- Returns True if two arrays are element-wise equal within a tolerance.
- This function is equivalent to `allclose` except that masked values
- are treated as equal (default) or unequal, depending on the `masked_equal`
- argument.
- Parameters
- ----------
- a, b : array_like
- Input arrays to compare.
- masked_equal : bool, optional
- Whether masked values in `a` and `b` are considered equal (True) or not
- (False). They are considered equal by default.
- rtol : float, optional
- Relative tolerance. The relative difference is equal to ``rtol * b``.
- Default is 1e-5.
- atol : float, optional
- Absolute tolerance. The absolute difference is equal to `atol`.
- Default is 1e-8.
- Returns
- -------
- y : bool
- Returns True if the two arrays are equal within the given
- tolerance, False otherwise. If either array contains NaN, then
- False is returned.
- See Also
- --------
- all, any
- numpy.allclose : the non-masked `allclose`.
- Notes
- -----
- If the following equation is element-wise True, then `allclose` returns
- True::
- absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
- Return True if all elements of `a` and `b` are equal subject to
- given tolerances.
- Examples
- --------
- >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1])
- >>> a
- masked_array(data=[10000000000.0, 1e-07, --],
- mask=[False, False, True],
- fill_value=1e+20)
- >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1])
- >>> np.ma.allclose(a, b)
- False
- >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
- >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
- >>> np.ma.allclose(a, b)
- True
- >>> np.ma.allclose(a, b, masked_equal=False)
- False
- Masked values are not compared directly.
- >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1])
- >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1])
- >>> np.ma.allclose(a, b)
- True
- >>> np.ma.allclose(a, b, masked_equal=False)
- False
- """
- x = masked_array(a, copy=False)
- y = masked_array(b, copy=False)
- # make sure y is an inexact type to avoid abs(MIN_INT); will cause
- # casting of x later.
- dtype = np.result_type(y, 1.)
- if y.dtype != dtype:
- y = masked_array(y, dtype=dtype, copy=False)
- m = mask_or(getmask(x), getmask(y))
- xinf = np.isinf(masked_array(x, copy=False, mask=m)).filled(False)
- # If we have some infs, they should fall at the same place.
- if not np.all(xinf == filled(np.isinf(y), False)):
- return False
- # No infs at all
- if not np.any(xinf):
- d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)),
- masked_equal)
- return np.all(d)
- if not np.all(filled(x[xinf] == y[xinf], masked_equal)):
- return False
- x = x[~xinf]
- y = y[~xinf]
- d = filled(less_equal(absolute(x - y), atol + rtol * absolute(y)),
- masked_equal)
- return np.all(d)
- def asarray(a, dtype=None, order=None):
- """
- Convert the input to a masked array of the given data-type.
- No copy is performed if the input is already an `ndarray`. If `a` is
- a subclass of `MaskedArray`, a base class `MaskedArray` is returned.
- Parameters
- ----------
- a : array_like
- Input data, in any form that can be converted to a masked array. This
- includes lists, lists of tuples, tuples, tuples of tuples, tuples
- of lists, ndarrays and masked arrays.
- dtype : dtype, optional
- By default, the data-type is inferred from the input data.
- order : {'C', 'F'}, optional
- Whether to use row-major ('C') or column-major ('FORTRAN') memory
- representation. Default is 'C'.
- Returns
- -------
- out : MaskedArray
- Masked array interpretation of `a`.
- See Also
- --------
- asanyarray : Similar to `asarray`, but conserves subclasses.
- Examples
- --------
- >>> x = np.arange(10.).reshape(2, 5)
- >>> x
- array([[0., 1., 2., 3., 4.],
- [5., 6., 7., 8., 9.]])
- >>> np.ma.asarray(x)
- masked_array(
- data=[[0., 1., 2., 3., 4.],
- [5., 6., 7., 8., 9.]],
- mask=False,
- fill_value=1e+20)
- >>> type(np.ma.asarray(x))
- <class 'numpy.ma.core.MaskedArray'>
- """
- order = order or 'C'
- return masked_array(a, dtype=dtype, copy=False, keep_mask=True,
- subok=False, order=order)
- def asanyarray(a, dtype=None):
- """
- Convert the input to a masked array, conserving subclasses.
- If `a` is a subclass of `MaskedArray`, its class is conserved.
- No copy is performed if the input is already an `ndarray`.
- Parameters
- ----------
- a : array_like
- Input data, in any form that can be converted to an array.
- dtype : dtype, optional
- By default, the data-type is inferred from the input data.
- order : {'C', 'F'}, optional
- Whether to use row-major ('C') or column-major ('FORTRAN') memory
- representation. Default is 'C'.
- Returns
- -------
- out : MaskedArray
- MaskedArray interpretation of `a`.
- See Also
- --------
- asarray : Similar to `asanyarray`, but does not conserve subclass.
- Examples
- --------
- >>> x = np.arange(10.).reshape(2, 5)
- >>> x
- array([[0., 1., 2., 3., 4.],
- [5., 6., 7., 8., 9.]])
- >>> np.ma.asanyarray(x)
- masked_array(
- data=[[0., 1., 2., 3., 4.],
- [5., 6., 7., 8., 9.]],
- mask=False,
- fill_value=1e+20)
- >>> type(np.ma.asanyarray(x))
- <class 'numpy.ma.core.MaskedArray'>
- """
- # workaround for #8666, to preserve identity. Ideally the bottom line
- # would handle this for us.
- if isinstance(a, MaskedArray) and (dtype is None or dtype == a.dtype):
- return a
- return masked_array(a, dtype=dtype, copy=False, keep_mask=True, subok=True)
- ##############################################################################
- # Pickling #
- ##############################################################################
- def _pickle_warn(method):
- # NumPy 1.15.0, 2017-12-10
- warnings.warn(
- "np.ma.{method} is deprecated, use pickle.{method} instead"
- .format(method=method),
- DeprecationWarning,
- stacklevel=3)
- def fromfile(file, dtype=float, count=-1, sep=''):
- raise NotImplementedError(
- "fromfile() not yet implemented for a MaskedArray.")
- def fromflex(fxarray):
- """
- Build a masked array from a suitable flexible-type array.
- The input array has to have a data-type with ``_data`` and ``_mask``
- fields. This type of array is output by `MaskedArray.toflex`.
- Parameters
- ----------
- fxarray : ndarray
- The structured input array, containing ``_data`` and ``_mask``
- fields. If present, other fields are discarded.
- Returns
- -------
- result : MaskedArray
- The constructed masked array.
- See Also
- --------
- MaskedArray.toflex : Build a flexible-type array from a masked array.
- Examples
- --------
- >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4)
- >>> rec = x.toflex()
- >>> rec
- array([[(0, False), (1, True), (2, False)],
- [(3, True), (4, False), (5, True)],
- [(6, False), (7, True), (8, False)]],
- dtype=[('_data', '<i8'), ('_mask', '?')])
- >>> x2 = np.ma.fromflex(rec)
- >>> x2
- masked_array(
- data=[[0, --, 2],
- [--, 4, --],
- [6, --, 8]],
- mask=[[False, True, False],
- [ True, False, True],
- [False, True, False]],
- fill_value=999999)
- Extra fields can be present in the structured array but are discarded:
- >>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')]
- >>> rec2 = np.zeros((2, 2), dtype=dt)
- >>> rec2
- array([[(0, False, 0.), (0, False, 0.)],
- [(0, False, 0.), (0, False, 0.)]],
- dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')])
- >>> y = np.ma.fromflex(rec2)
- >>> y
- masked_array(
- data=[[0, 0],
- [0, 0]],
- mask=[[False, False],
- [False, False]],
- fill_value=999999,
- dtype=int32)
- """
- return masked_array(fxarray['_data'], mask=fxarray['_mask'])
- class _convert2ma(object):
- """
- Convert functions from numpy to numpy.ma.
- Parameters
- ----------
- _methodname : string
- Name of the method to transform.
- """
- __doc__ = None
- def __init__(self, funcname, params=None):
- self._func = getattr(np, funcname)
- self.__doc__ = self.getdoc()
- self._extras = params or {}
- def getdoc(self):
- "Return the doc of the function (from the doc of the method)."
- doc = getattr(self._func, '__doc__', None)
- sig = get_object_signature(self._func)
- if doc:
- # Add the signature of the function at the beginning of the doc
- if sig:
- sig = "%s%s\n" % (self._func.__name__, sig)
- doc = sig + doc
- return doc
- def __call__(self, *args, **params):
- # Find the common parameters to the call and the definition
- _extras = self._extras
- common_params = set(params).intersection(_extras)
- # Drop the common parameters from the call
- for p in common_params:
- _extras[p] = params.pop(p)
- # Get the result
- result = self._func.__call__(*args, **params).view(MaskedArray)
- if "fill_value" in common_params:
- result.fill_value = _extras.get("fill_value", None)
- if "hardmask" in common_params:
- result._hardmask = bool(_extras.get("hard_mask", False))
- return result
- arange = _convert2ma('arange', params=dict(fill_value=None, hardmask=False))
- clip = np.clip
- diff = np.diff
- empty = _convert2ma('empty', params=dict(fill_value=None, hardmask=False))
- empty_like = _convert2ma('empty_like')
- frombuffer = _convert2ma('frombuffer')
- fromfunction = _convert2ma('fromfunction')
- identity = _convert2ma(
- 'identity', params=dict(fill_value=None, hardmask=False))
- indices = np.indices
- ones = _convert2ma('ones', params=dict(fill_value=None, hardmask=False))
- ones_like = np.ones_like
- squeeze = np.squeeze
- zeros = _convert2ma('zeros', params=dict(fill_value=None, hardmask=False))
- zeros_like = np.zeros_like
- def append(a, b, axis=None):
- """Append values to the end of an array.
- .. versionadded:: 1.9.0
- Parameters
- ----------
- a : array_like
- Values are appended to a copy of this array.
- b : array_like
- These values are appended to a copy of `a`. It must be of the
- correct shape (the same shape as `a`, excluding `axis`). If `axis`
- is not specified, `b` can be any shape and will be flattened
- before use.
- axis : int, optional
- The axis along which `v` are appended. If `axis` is not given,
- both `a` and `b` are flattened before use.
- Returns
- -------
- append : MaskedArray
- A copy of `a` with `b` appended to `axis`. Note that `append`
- does not occur in-place: a new array is allocated and filled. If
- `axis` is None, the result is a flattened array.
- See Also
- --------
- numpy.append : Equivalent function in the top-level NumPy module.
- Examples
- --------
- >>> import numpy.ma as ma
- >>> a = ma.masked_values([1, 2, 3], 2)
- >>> b = ma.masked_values([[4, 5, 6], [7, 8, 9]], 7)
- >>> ma.append(a, b)
- masked_array(data=[1, --, 3, 4, 5, 6, --, 8, 9],
- mask=[False, True, False, False, False, False, True, False,
- False],
- fill_value=999999)
- """
- return concatenate([a, b], axis)
|