1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792 |
- """
- These are classes to support contour plotting and labelling for the Axes class.
- """
- from numbers import Integral
- import numpy as np
- from numpy import ma
- import matplotlib as mpl
- import matplotlib.path as mpath
- import matplotlib.ticker as ticker
- import matplotlib.cm as cm
- import matplotlib.colors as mcolors
- import matplotlib.collections as mcoll
- import matplotlib.font_manager as font_manager
- import matplotlib.text as text
- import matplotlib.cbook as cbook
- import matplotlib.mathtext as mathtext
- import matplotlib.patches as mpatches
- import matplotlib.texmanager as texmanager
- import matplotlib.transforms as mtransforms
- # Import needed for adding manual selection capability to clabel
- from matplotlib.blocking_input import BlockingContourLabeler
- # We can't use a single line collection for contour because a line
- # collection can have only a single line style, and we want to be able to have
- # dashed negative contours, for example, and solid positive contours.
- # We could use a single polygon collection for filled contours, but it
- # seems better to keep line and filled contours similar, with one collection
- # per level.
- class ClabelText(text.Text):
- """
- Unlike the ordinary text, the get_rotation returns an updated
- angle in the pixel coordinate assuming that the input rotation is
- an angle in data coordinate (or whatever transform set).
- """
- def get_rotation(self):
- new_angle, = self.get_transform().transform_angles(
- [text.Text.get_rotation(self)], [self.get_position()])
- return new_angle
- class ContourLabeler:
- """Mixin to provide labelling capability to `.ContourSet`."""
- def clabel(self, levels=None, *,
- fontsize=None, inline=True, inline_spacing=5, fmt='%1.3f',
- colors=None, use_clabeltext=False, manual=False,
- rightside_up=True):
- """
- Label a contour plot.
- Adds labels to line contours in this `.ContourSet` (which inherits from
- this mixin class).
- Parameters
- ----------
- levels : array-like, optional
- A list of level values, that should be labeled. The list must be
- a subset of ``cs.levels``. If not given, all levels are labeled.
- fontsize : str or float, optional
- Size in points or relative size e.g., 'smaller', 'x-large'.
- See `.Text.set_size` for accepted string values.
- colors : color-spec, optional
- The label colors:
- - If *None*, the color of each label matches the color of
- the corresponding contour.
- - If one string color, e.g., *colors* = 'r' or *colors* =
- 'red', all labels will be plotted in this color.
- - If a tuple of matplotlib color args (string, float, rgb, etc),
- different labels will be plotted in different colors in the order
- specified.
- inline : bool, optional
- If ``True`` the underlying contour is removed where the label is
- placed. Default is ``True``.
- inline_spacing : float, optional
- Space in pixels to leave on each side of label when
- placing inline. Defaults to 5.
- This spacing will be exact for labels at locations where the
- contour is straight, less so for labels on curved contours.
- fmt : str or dict, optional
- A format string for the label. Default is '%1.3f'
- Alternatively, this can be a dictionary matching contour levels
- with arbitrary strings to use for each contour level (i.e.,
- fmt[level]=string), or it can be any callable, such as a
- `.Formatter` instance, that returns a string when called with a
- numeric contour level.
- manual : bool or iterable, optional
- If ``True``, contour labels will be placed manually using
- mouse clicks. Click the first button near a contour to
- add a label, click the second button (or potentially both
- mouse buttons at once) to finish adding labels. The third
- button can be used to remove the last label added, but
- only if labels are not inline. Alternatively, the keyboard
- can be used to select label locations (enter to end label
- placement, delete or backspace act like the third mouse button,
- and any other key will select a label location).
- *manual* can also be an iterable object of (x, y) tuples.
- Contour labels will be created as if mouse is clicked at each
- (x, y) position.
- rightside_up : bool, optional
- If ``True``, label rotations will always be plus
- or minus 90 degrees from level. Default is ``True``.
- use_clabeltext : bool, optional
- If ``True``, `.ClabelText` class (instead of `.Text`) is used to
- create labels. `ClabelText` recalculates rotation angles
- of texts during the drawing time, therefore this can be used if
- aspect of the axes changes. Default is ``False``.
- Returns
- -------
- labels
- A list of `.Text` instances for the labels.
- """
- # clabel basically takes the input arguments and uses them to
- # add a list of "label specific" attributes to the ContourSet
- # object. These attributes are all of the form label* and names
- # should be fairly self explanatory.
- #
- # Once these attributes are set, clabel passes control to the
- # labels method (case of automatic label placement) or
- # `BlockingContourLabeler` (case of manual label placement).
- self.labelFmt = fmt
- self._use_clabeltext = use_clabeltext
- # Detect if manual selection is desired and remove from argument list.
- self.labelManual = manual
- self.rightside_up = rightside_up
- if levels is None:
- levels = self.levels
- indices = list(range(len(self.cvalues)))
- else:
- levlabs = list(levels)
- indices, levels = [], []
- for i, lev in enumerate(self.levels):
- if lev in levlabs:
- indices.append(i)
- levels.append(lev)
- if len(levels) < len(levlabs):
- raise ValueError(f"Specified levels {levlabs} don't match "
- f"available levels {self.levels}")
- self.labelLevelList = levels
- self.labelIndiceList = indices
- self.labelFontProps = font_manager.FontProperties()
- self.labelFontProps.set_size(fontsize)
- font_size_pts = self.labelFontProps.get_size_in_points()
- self.labelFontSizeList = [font_size_pts] * len(levels)
- if colors is None:
- self.labelMappable = self
- self.labelCValueList = np.take(self.cvalues, self.labelIndiceList)
- else:
- cmap = mcolors.ListedColormap(colors, N=len(self.labelLevelList))
- self.labelCValueList = list(range(len(self.labelLevelList)))
- self.labelMappable = cm.ScalarMappable(cmap=cmap,
- norm=mcolors.NoNorm())
- self.labelXYs = []
- if np.iterable(self.labelManual):
- for x, y in self.labelManual:
- self.add_label_near(x, y, inline, inline_spacing)
- elif self.labelManual:
- print('Select label locations manually using first mouse button.')
- print('End manual selection with second mouse button.')
- if not inline:
- print('Remove last label by clicking third mouse button.')
- blocking_contour_labeler = BlockingContourLabeler(self)
- blocking_contour_labeler(inline, inline_spacing)
- else:
- self.labels(inline, inline_spacing)
- self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts)
- return self.labelTextsList
- def print_label(self, linecontour, labelwidth):
- "Return *False* if contours are too short for a label."
- return (len(linecontour) > 10 * labelwidth
- or (np.ptp(linecontour, axis=0) > 1.2 * labelwidth).any())
- def too_close(self, x, y, lw):
- "Return *True* if a label is already near this location."
- thresh = (1.2 * lw) ** 2
- return any((x - loc[0]) ** 2 + (y - loc[1]) ** 2 < thresh
- for loc in self.labelXYs)
- def get_label_coords(self, distances, XX, YY, ysize, lw):
- """
- Return x, y, and the index of a label location.
- Labels are plotted at a location with the smallest
- deviation of the contour from a straight line
- unless there is another label nearby, in which case
- the next best place on the contour is picked up.
- If all such candidates are rejected, the beginning
- of the contour is chosen.
- """
- hysize = int(ysize / 2)
- adist = np.argsort(distances)
- for ind in adist:
- x, y = XX[ind][hysize], YY[ind][hysize]
- if self.too_close(x, y, lw):
- continue
- return x, y, ind
- ind = adist[0]
- x, y = XX[ind][hysize], YY[ind][hysize]
- return x, y, ind
- def get_label_width(self, lev, fmt, fsize):
- """
- Return the width of the label in points.
- """
- if not isinstance(lev, str):
- lev = self.get_text(lev, fmt)
- lev, ismath = text.Text()._preprocess_math(lev)
- if ismath == 'TeX':
- lw, _, _ = (texmanager.TexManager()
- .get_text_width_height_descent(lev, fsize))
- elif ismath:
- if not hasattr(self, '_mathtext_parser'):
- self._mathtext_parser = mathtext.MathTextParser('bitmap')
- img, _ = self._mathtext_parser.parse(lev, dpi=72,
- prop=self.labelFontProps)
- _, lw = np.shape(img) # at dpi=72, the units are PostScript points
- else:
- # width is much less than "font size"
- lw = len(lev) * fsize * 0.6
- return lw
- def set_label_props(self, label, text, color):
- """Set the label properties - color, fontsize, text."""
- label.set_text(text)
- label.set_color(color)
- label.set_fontproperties(self.labelFontProps)
- label.set_clip_box(self.ax.bbox)
- def get_text(self, lev, fmt):
- """Get the text of the label."""
- if isinstance(lev, str):
- return lev
- else:
- if isinstance(fmt, dict):
- return fmt.get(lev, '%1.3f')
- elif callable(fmt):
- return fmt(lev)
- else:
- return fmt % lev
- def locate_label(self, linecontour, labelwidth):
- """
- Find good place to draw a label (relatively flat part of the contour).
- """
- # Number of contour points
- nsize = len(linecontour)
- if labelwidth > 1:
- xsize = int(np.ceil(nsize / labelwidth))
- else:
- xsize = 1
- if xsize == 1:
- ysize = nsize
- else:
- ysize = int(labelwidth)
- XX = np.resize(linecontour[:, 0], (xsize, ysize))
- YY = np.resize(linecontour[:, 1], (xsize, ysize))
- # I might have fouled up the following:
- yfirst = YY[:, :1]
- ylast = YY[:, -1:]
- xfirst = XX[:, :1]
- xlast = XX[:, -1:]
- s = (yfirst - YY) * (xlast - xfirst) - (xfirst - XX) * (ylast - yfirst)
- L = np.hypot(xlast - xfirst, ylast - yfirst)
- # Ignore warning that divide by zero throws, as this is a valid option
- with np.errstate(divide='ignore', invalid='ignore'):
- dist = np.sum(np.abs(s) / L, axis=-1)
- x, y, ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth)
- # There must be a more efficient way...
- lc = [tuple(l) for l in linecontour]
- dind = lc.index((x, y))
- return x, y, dind
- def calc_label_rot_and_inline(self, slc, ind, lw, lc=None, spacing=5):
- """
- This function calculates the appropriate label rotation given
- the linecontour coordinates in screen units, the index of the
- label location and the label width.
- It will also break contour and calculate inlining if *lc* is
- not empty (lc defaults to the empty list if None). *spacing*
- is the space around the label in pixels to leave empty.
- Do both of these tasks at once to avoid calculating path lengths
- multiple times, which is relatively costly.
- The method used here involves calculating the path length
- along the contour in pixel coordinates and then looking
- approximately label width / 2 away from central point to
- determine rotation and then to break contour if desired.
- """
- if lc is None:
- lc = []
- # Half the label width
- hlw = lw / 2.0
- # Check if closed and, if so, rotate contour so label is at edge
- closed = _is_closed_polygon(slc)
- if closed:
- slc = np.r_[slc[ind:-1], slc[:ind + 1]]
- if len(lc): # Rotate lc also if not empty
- lc = np.r_[lc[ind:-1], lc[:ind + 1]]
- ind = 0
- # Calculate path lengths
- pl = np.zeros(slc.shape[0], dtype=float)
- dx = np.diff(slc, axis=0)
- pl[1:] = np.cumsum(np.hypot(dx[:, 0], dx[:, 1]))
- pl = pl - pl[ind]
- # Use linear interpolation to get points around label
- xi = np.array([-hlw, hlw])
- if closed: # Look at end also for closed contours
- dp = np.array([pl[-1], 0])
- else:
- dp = np.zeros_like(xi)
- # Get angle of vector between the two ends of the label - must be
- # calculated in pixel space for text rotation to work correctly.
- (dx,), (dy,) = (np.diff(np.interp(dp + xi, pl, slc_col))
- for slc_col in slc.T)
- rotation = np.rad2deg(np.arctan2(dy, dx))
- if self.rightside_up:
- # Fix angle so text is never upside-down
- rotation = (rotation + 90) % 180 - 90
- # Break contour if desired
- nlc = []
- if len(lc):
- # Expand range by spacing
- xi = dp + xi + np.array([-spacing, spacing])
- # Get (integer) indices near points of interest; use -1 as marker
- # for out of bounds.
- I = np.interp(xi, pl, np.arange(len(pl)), left=-1, right=-1)
- I = [np.floor(I[0]).astype(int), np.ceil(I[1]).astype(int)]
- if I[0] != -1:
- xy1 = [np.interp(xi[0], pl, lc_col) for lc_col in lc.T]
- if I[1] != -1:
- xy2 = [np.interp(xi[1], pl, lc_col) for lc_col in lc.T]
- # Actually break contours
- if closed:
- # This will remove contour if shorter than label
- if all(i != -1 for i in I):
- nlc.append(np.row_stack([xy2, lc[I[1]:I[0]+1], xy1]))
- else:
- # These will remove pieces of contour if they have length zero
- if I[0] != -1:
- nlc.append(np.row_stack([lc[:I[0]+1], xy1]))
- if I[1] != -1:
- nlc.append(np.row_stack([xy2, lc[I[1]:]]))
- # The current implementation removes contours completely
- # covered by labels. Uncomment line below to keep
- # original contour if this is the preferred behavior.
- # if not len(nlc): nlc = [ lc ]
- return rotation, nlc
- def _get_label_text(self, x, y, rotation):
- dx, dy = self.ax.transData.inverted().transform((x, y))
- t = text.Text(dx, dy, rotation=rotation,
- horizontalalignment='center',
- verticalalignment='center')
- return t
- def _get_label_clabeltext(self, x, y, rotation):
- # x, y, rotation is given in pixel coordinate. Convert them to
- # the data coordinate and create a label using ClabelText
- # class. This way, the rotation of the clabel is along the
- # contour line always.
- transDataInv = self.ax.transData.inverted()
- dx, dy = transDataInv.transform((x, y))
- drotation = transDataInv.transform_angles(np.array([rotation]),
- np.array([[x, y]]))
- t = ClabelText(dx, dy, rotation=drotation[0],
- horizontalalignment='center',
- verticalalignment='center')
- return t
- def _add_label(self, t, x, y, lev, cvalue):
- color = self.labelMappable.to_rgba(cvalue, alpha=self.alpha)
- _text = self.get_text(lev, self.labelFmt)
- self.set_label_props(t, _text, color)
- self.labelTexts.append(t)
- self.labelCValues.append(cvalue)
- self.labelXYs.append((x, y))
- # Add label to plot here - useful for manual mode label selection
- self.ax.add_artist(t)
- def add_label(self, x, y, rotation, lev, cvalue):
- """
- Add contour label using :class:`~matplotlib.text.Text` class.
- """
- t = self._get_label_text(x, y, rotation)
- self._add_label(t, x, y, lev, cvalue)
- def add_label_clabeltext(self, x, y, rotation, lev, cvalue):
- """
- Add contour label using :class:`ClabelText` class.
- """
- # x, y, rotation is given in pixel coordinate. Convert them to
- # the data coordinate and create a label using ClabelText
- # class. This way, the rotation of the clabel is along the
- # contour line always.
- t = self._get_label_clabeltext(x, y, rotation)
- self._add_label(t, x, y, lev, cvalue)
- def add_label_near(self, x, y, inline=True, inline_spacing=5,
- transform=None):
- """
- Add a label near the point (x, y). If transform is None
- (default), (x, y) is in data coordinates; if transform is
- False, (x, y) is in display coordinates; otherwise, the
- specified transform will be used to translate (x, y) into
- display coordinates.
- Parameters
- ----------
- x, y : float
- The approximate location of the label.
- inline : bool, optional, default: True
- If *True* remove the segment of the contour beneath the label.
- inline_spacing : int, optional, default: 5
- Space in pixels to leave on each side of label when placing
- inline. This spacing will be exact for labels at locations where
- the contour is straight, less so for labels on curved contours.
- """
- if transform is None:
- transform = self.ax.transData
- if transform:
- x, y = transform.transform((x, y))
- # find the nearest contour _in screen units_
- conmin, segmin, imin, xmin, ymin = self.find_nearest_contour(
- x, y, self.labelIndiceList)[:5]
- # The calc_label_rot_and_inline routine requires that (xmin, ymin)
- # be a vertex in the path. So, if it isn't, add a vertex here
- # grab the paths from the collections
- paths = self.collections[conmin].get_paths()
- # grab the correct segment
- active_path = paths[segmin]
- # grab its vertices
- lc = active_path.vertices
- # sort out where the new vertex should be added data-units
- xcmin = self.ax.transData.inverted().transform([xmin, ymin])
- # if there isn't a vertex close enough
- if not np.allclose(xcmin, lc[imin]):
- # insert new data into the vertex list
- lc = np.r_[lc[:imin], np.array(xcmin)[None, :], lc[imin:]]
- # replace the path with the new one
- paths[segmin] = mpath.Path(lc)
- # Get index of nearest level in subset of levels used for labeling
- lmin = self.labelIndiceList.index(conmin)
- # Coordinates of contour
- paths = self.collections[conmin].get_paths()
- lc = paths[segmin].vertices
- # In pixel/screen space
- slc = self.ax.transData.transform(lc)
- # Get label width for rotating labels and breaking contours
- lw = self.get_label_width(self.labelLevelList[lmin],
- self.labelFmt, self.labelFontSizeList[lmin])
- # lw is in points.
- lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates
- # now lw in pixels
- # Figure out label rotation.
- if inline:
- lcarg = lc
- else:
- lcarg = None
- rotation, nlc = self.calc_label_rot_and_inline(
- slc, imin, lw, lcarg,
- inline_spacing)
- self.add_label(xmin, ymin, rotation, self.labelLevelList[lmin],
- self.labelCValueList[lmin])
- if inline:
- # Remove old, not looping over paths so we can do this up front
- paths.pop(segmin)
- # Add paths if not empty or single point
- for n in nlc:
- if len(n) > 1:
- paths.append(mpath.Path(n))
- def pop_label(self, index=-1):
- """Defaults to removing last label, but any index can be supplied"""
- self.labelCValues.pop(index)
- t = self.labelTexts.pop(index)
- t.remove()
- def labels(self, inline, inline_spacing):
- if self._use_clabeltext:
- add_label = self.add_label_clabeltext
- else:
- add_label = self.add_label
- for icon, lev, fsize, cvalue in zip(
- self.labelIndiceList, self.labelLevelList,
- self.labelFontSizeList, self.labelCValueList):
- con = self.collections[icon]
- trans = con.get_transform()
- lw = self.get_label_width(lev, self.labelFmt, fsize)
- lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates
- additions = []
- paths = con.get_paths()
- for segNum, linepath in enumerate(paths):
- lc = linepath.vertices # Line contour
- slc0 = trans.transform(lc) # Line contour in screen coords
- # For closed polygons, add extra point to avoid division by
- # zero in print_label and locate_label. Other than these
- # functions, this is not necessary and should probably be
- # eventually removed.
- if _is_closed_polygon(lc):
- slc = np.r_[slc0, slc0[1:2, :]]
- else:
- slc = slc0
- # Check if long enough for a label
- if self.print_label(slc, lw):
- x, y, ind = self.locate_label(slc, lw)
- if inline:
- lcarg = lc
- else:
- lcarg = None
- rotation, new = self.calc_label_rot_and_inline(
- slc0, ind, lw, lcarg,
- inline_spacing)
- # Actually add the label
- add_label(x, y, rotation, lev, cvalue)
- # If inline, add new contours
- if inline:
- for n in new:
- # Add path if not empty or single point
- if len(n) > 1:
- additions.append(mpath.Path(n))
- else: # If not adding label, keep old path
- additions.append(linepath)
- # After looping over all segments on a contour, replace old paths
- # by new ones if inlining.
- if inline:
- paths[:] = additions
- def _find_closest_point_on_leg(p1, p2, p0):
- """Find the closest point to p0 on line segment connecting p1 and p2."""
- # handle degenerate case
- if np.all(p2 == p1):
- d = np.sum((p0 - p1)**2)
- return d, p1
- d21 = p2 - p1
- d01 = p0 - p1
- # project on to line segment to find closest point
- proj = np.dot(d01, d21) / np.dot(d21, d21)
- if proj < 0:
- proj = 0
- if proj > 1:
- proj = 1
- pc = p1 + proj * d21
- # find squared distance
- d = np.sum((pc-p0)**2)
- return d, pc
- def _is_closed_polygon(X):
- """
- Return whether first and last object in a sequence are the same. These are
- presumably coordinates on a polygonal curve, in which case this function
- tests if that curve is closed.
- """
- return np.all(X[0] == X[-1])
- def _find_closest_point_on_path(lc, point):
- """
- Parameters
- ----------
- lc : coordinates of vertices
- point : coordinates of test point
- """
- # find index of closest vertex for this segment
- ds = np.sum((lc - point[None, :])**2, 1)
- imin = np.argmin(ds)
- dmin = np.inf
- xcmin = None
- legmin = (None, None)
- closed = _is_closed_polygon(lc)
- # build list of legs before and after this vertex
- legs = []
- if imin > 0 or closed:
- legs.append(((imin-1) % len(lc), imin))
- if imin < len(lc) - 1 or closed:
- legs.append((imin, (imin+1) % len(lc)))
- for leg in legs:
- d, xc = _find_closest_point_on_leg(lc[leg[0]], lc[leg[1]], point)
- if d < dmin:
- dmin = d
- xcmin = xc
- legmin = leg
- return (dmin, xcmin, legmin)
- class ContourSet(cm.ScalarMappable, ContourLabeler):
- """
- Store a set of contour lines or filled regions.
- User-callable method: `~.axes.Axes.clabel`
- Parameters
- ----------
- ax : `~.axes.Axes`
- levels : [level0, level1, ..., leveln]
- A list of floating point numbers indicating the contour
- levels.
- allsegs : [level0segs, level1segs, ...]
- List of all the polygon segments for all the *levels*.
- For contour lines ``len(allsegs) == len(levels)``, and for
- filled contour regions ``len(allsegs) = len(levels)-1``. The lists
- should look like ::
- level0segs = [polygon0, polygon1, ...]
- polygon0 = [[x0, y0], [x1, y1], ...]
- allkinds : ``None`` or [level0kinds, level1kinds, ...]
- Optional list of all the polygon vertex kinds (code types), as
- described and used in Path. This is used to allow multiply-
- connected paths such as holes within filled polygons.
- If not ``None``, ``len(allkinds) == len(allsegs)``. The lists
- should look like ::
- level0kinds = [polygon0kinds, ...]
- polygon0kinds = [vertexcode0, vertexcode1, ...]
- If *allkinds* is not ``None``, usually all polygons for a
- particular contour level are grouped together so that
- ``level0segs = [polygon0]`` and ``level0kinds = [polygon0kinds]``.
- **kwargs
- Keyword arguments are as described in the docstring of
- `~.axes.Axes.contour`.
- Attributes
- ----------
- ax
- The axes object in which the contours are drawn.
- collections
- A silent_list of LineCollections or PolyCollections.
- levels
- Contour levels.
- layers
- Same as levels for line contours; half-way between
- levels for filled contours. See :meth:`_process_colors`.
- """
- def __init__(self, ax, *args,
- levels=None, filled=False, linewidths=None, linestyles=None,
- alpha=None, origin=None, extent=None,
- cmap=None, colors=None, norm=None, vmin=None, vmax=None,
- extend='neither', antialiased=None,
- **kwargs):
- """
- Draw contour lines or filled regions, depending on
- whether keyword arg *filled* is ``False`` (default) or ``True``.
- Call signature::
- ContourSet(ax, levels, allsegs, [allkinds], **kwargs)
- Parameters
- ----------
- ax : `~.axes.Axes`
- The `~.axes.Axes` object to draw on.
- levels : [level0, level1, ..., leveln]
- A list of floating point numbers indicating the contour
- levels.
- allsegs : [level0segs, level1segs, ...]
- List of all the polygon segments for all the *levels*.
- For contour lines ``len(allsegs) == len(levels)``, and for
- filled contour regions ``len(allsegs) = len(levels)-1``. The lists
- should look like ::
- level0segs = [polygon0, polygon1, ...]
- polygon0 = [[x0, y0], [x1, y1], ...]
- allkinds : [level0kinds, level1kinds, ...], optional
- Optional list of all the polygon vertex kinds (code types), as
- described and used in Path. This is used to allow multiply-
- connected paths such as holes within filled polygons.
- If not ``None``, ``len(allkinds) == len(allsegs)``. The lists
- should look like ::
- level0kinds = [polygon0kinds, ...]
- polygon0kinds = [vertexcode0, vertexcode1, ...]
- If *allkinds* is not ``None``, usually all polygons for a
- particular contour level are grouped together so that
- ``level0segs = [polygon0]`` and ``level0kinds = [polygon0kinds]``.
- **kwargs
- Keyword arguments are as described in the docstring of
- `~axes.Axes.contour`.
- """
- self.ax = ax
- self.levels = levels
- self.filled = filled
- self.linewidths = linewidths
- self.linestyles = linestyles
- self.hatches = kwargs.pop('hatches', [None])
- self.alpha = alpha
- self.origin = origin
- self.extent = extent
- self.colors = colors
- self.extend = extend
- self.antialiased = antialiased
- if self.antialiased is None and self.filled:
- # Eliminate artifacts; we are not stroking the boundaries.
- self.antialiased = False
- # The default for line contours will be taken from the
- # LineCollection default, which uses :rc:`lines.antialiased`.
- self.nchunk = kwargs.pop('nchunk', 0)
- self.locator = kwargs.pop('locator', None)
- if (isinstance(norm, mcolors.LogNorm)
- or isinstance(self.locator, ticker.LogLocator)):
- self.logscale = True
- if norm is None:
- norm = mcolors.LogNorm()
- else:
- self.logscale = False
- cbook._check_in_list([None, 'lower', 'upper', 'image'], origin=origin)
- if self.extent is not None and len(self.extent) != 4:
- raise ValueError(
- "If given, 'extent' must be None or (x0, x1, y0, y1)")
- if self.colors is not None and cmap is not None:
- raise ValueError('Either colors or cmap must be None')
- if self.origin == 'image':
- self.origin = mpl.rcParams['image.origin']
- self._transform = kwargs.pop('transform', None)
- kwargs = self._process_args(*args, **kwargs)
- self._process_levels()
- if self.colors is not None:
- ncolors = len(self.levels)
- if self.filled:
- ncolors -= 1
- i0 = 0
- # Handle the case where colors are given for the extended
- # parts of the contour.
- extend_min = self.extend in ['min', 'both']
- extend_max = self.extend in ['max', 'both']
- use_set_under_over = False
- # if we are extending the lower end, and we've been given enough
- # colors then skip the first color in the resulting cmap. For the
- # extend_max case we don't need to worry about passing more colors
- # than ncolors as ListedColormap will clip.
- total_levels = ncolors + int(extend_min) + int(extend_max)
- if len(self.colors) == total_levels and (extend_min or extend_max):
- use_set_under_over = True
- if extend_min:
- i0 = 1
- cmap = mcolors.ListedColormap(self.colors[i0:None], N=ncolors)
- if use_set_under_over:
- if extend_min:
- cmap.set_under(self.colors[0])
- if extend_max:
- cmap.set_over(self.colors[-1])
- if self.filled:
- self.collections = cbook.silent_list('mcoll.PathCollection')
- else:
- self.collections = cbook.silent_list('mcoll.LineCollection')
- # label lists must be initialized here
- self.labelTexts = []
- self.labelCValues = []
- kw = {'cmap': cmap}
- if norm is not None:
- kw['norm'] = norm
- # sets self.cmap, norm if needed;
- cm.ScalarMappable.__init__(self, **kw)
- if vmin is not None:
- self.norm.vmin = vmin
- if vmax is not None:
- self.norm.vmax = vmax
- self._process_colors()
- self.allsegs, self.allkinds = self._get_allsegs_and_allkinds()
- if self.filled:
- if self.linewidths is not None:
- cbook._warn_external('linewidths is ignored by contourf')
- # Lower and upper contour levels.
- lowers, uppers = self._get_lowers_and_uppers()
- # Ensure allkinds can be zipped below.
- if self.allkinds is None:
- self.allkinds = [None] * len(self.allsegs)
- # Default zorder taken from Collection
- zorder = kwargs.pop('zorder', 1)
- for level, level_upper, segs, kinds in \
- zip(lowers, uppers, self.allsegs, self.allkinds):
- paths = self._make_paths(segs, kinds)
- col = mcoll.PathCollection(
- paths,
- antialiaseds=(self.antialiased,),
- edgecolors='none',
- alpha=self.alpha,
- transform=self.get_transform(),
- zorder=zorder)
- self.ax.add_collection(col, autolim=False)
- self.collections.append(col)
- else:
- tlinewidths = self._process_linewidths()
- self.tlinewidths = tlinewidths
- tlinestyles = self._process_linestyles()
- aa = self.antialiased
- if aa is not None:
- aa = (self.antialiased,)
- # Default zorder taken from LineCollection
- zorder = kwargs.pop('zorder', 2)
- for level, width, lstyle, segs in \
- zip(self.levels, tlinewidths, tlinestyles, self.allsegs):
- col = mcoll.LineCollection(
- segs,
- antialiaseds=aa,
- linewidths=width,
- linestyles=[lstyle],
- alpha=self.alpha,
- transform=self.get_transform(),
- zorder=zorder)
- col.set_label('_nolegend_')
- self.ax.add_collection(col, autolim=False)
- self.collections.append(col)
- for col in self.collections:
- col.sticky_edges.x[:] = [self._mins[0], self._maxs[0]]
- col.sticky_edges.y[:] = [self._mins[1], self._maxs[1]]
- self.ax.update_datalim([self._mins, self._maxs])
- self.ax.autoscale_view(tight=True)
- self.changed() # set the colors
- if kwargs:
- s = ", ".join(map(repr, kwargs))
- cbook._warn_external('The following kwargs were not used by '
- 'contour: ' + s)
- def get_transform(self):
- """
- Return the :class:`~matplotlib.transforms.Transform`
- instance used by this ContourSet.
- """
- if self._transform is None:
- self._transform = self.ax.transData
- elif (not isinstance(self._transform, mtransforms.Transform)
- and hasattr(self._transform, '_as_mpl_transform')):
- self._transform = self._transform._as_mpl_transform(self.ax)
- return self._transform
- def __getstate__(self):
- state = self.__dict__.copy()
- # the C object _contour_generator cannot currently be pickled. This
- # isn't a big issue as it is not actually used once the contour has
- # been calculated.
- state['_contour_generator'] = None
- return state
- def legend_elements(self, variable_name='x', str_format=str):
- """
- Return a list of artists and labels suitable for passing through
- to :func:`plt.legend` which represent this ContourSet.
- The labels have the form "0 < x <= 1" stating the data ranges which
- the artists represent.
- Parameters
- ----------
- variable_name : str
- The string used inside the inequality used on the labels.
- str_format : function: float -> str
- Function used to format the numbers in the labels.
- Returns
- -------
- artists : List[`.Artist`]
- A list of the artists.
- labels : List[str]
- A list of the labels.
- """
- artists = []
- labels = []
- if self.filled:
- lowers, uppers = self._get_lowers_and_uppers()
- n_levels = len(self.collections)
- for i, (collection, lower, upper) in enumerate(
- zip(self.collections, lowers, uppers)):
- patch = mpatches.Rectangle(
- (0, 0), 1, 1,
- facecolor=collection.get_facecolor()[0],
- hatch=collection.get_hatch(),
- alpha=collection.get_alpha())
- artists.append(patch)
- lower = str_format(lower)
- upper = str_format(upper)
- if i == 0 and self.extend in ('min', 'both'):
- labels.append(fr'${variable_name} \leq {lower}s$')
- elif i == n_levels - 1 and self.extend in ('max', 'both'):
- labels.append(fr'${variable_name} > {upper}s$')
- else:
- labels.append(fr'${lower} < {variable_name} \leq {upper}$')
- else:
- for collection, level in zip(self.collections, self.levels):
- patch = mcoll.LineCollection(None)
- patch.update_from(collection)
- artists.append(patch)
- # format the level for insertion into the labels
- level = str_format(level)
- labels.append(fr'${variable_name} = {level}$')
- return artists, labels
- def _process_args(self, *args, **kwargs):
- """
- Process *args* and *kwargs*; override in derived classes.
- Must set self.levels, self.zmin and self.zmax, and update axes
- limits.
- """
- self.levels = args[0]
- self.allsegs = args[1]
- self.allkinds = args[2] if len(args) > 2 else None
- self.zmax = np.max(self.levels)
- self.zmin = np.min(self.levels)
- # Check lengths of levels and allsegs.
- if self.filled:
- if len(self.allsegs) != len(self.levels) - 1:
- raise ValueError('must be one less number of segments as '
- 'levels')
- else:
- if len(self.allsegs) != len(self.levels):
- raise ValueError('must be same number of segments as levels')
- # Check length of allkinds.
- if (self.allkinds is not None and
- len(self.allkinds) != len(self.allsegs)):
- raise ValueError('allkinds has different length to allsegs')
- # Determine x, y bounds and update axes data limits.
- flatseglist = [s for seg in self.allsegs for s in seg]
- points = np.concatenate(flatseglist, axis=0)
- self._mins = points.min(axis=0)
- self._maxs = points.max(axis=0)
- return kwargs
- def _get_allsegs_and_allkinds(self):
- """
- Override in derived classes to create and return allsegs and allkinds.
- allkinds can be None.
- """
- return self.allsegs, self.allkinds
- def _get_lowers_and_uppers(self):
- """
- Return ``(lowers, uppers)`` for filled contours.
- """
- lowers = self._levels[:-1]
- if self.zmin == lowers[0]:
- # Include minimum values in lowest interval
- lowers = lowers.copy() # so we don't change self._levels
- if self.logscale:
- lowers[0] = 0.99 * self.zmin
- else:
- lowers[0] -= 1
- uppers = self._levels[1:]
- return (lowers, uppers)
- def _make_paths(self, segs, kinds):
- if kinds is not None:
- return [mpath.Path(seg, codes=kind)
- for seg, kind in zip(segs, kinds)]
- else:
- return [mpath.Path(seg) for seg in segs]
- def changed(self):
- tcolors = [(tuple(rgba),)
- for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)]
- self.tcolors = tcolors
- hatches = self.hatches * len(tcolors)
- for color, hatch, collection in zip(tcolors, hatches,
- self.collections):
- if self.filled:
- collection.set_facecolor(color)
- # update the collection's hatch (may be None)
- collection.set_hatch(hatch)
- else:
- collection.set_color(color)
- for label, cv in zip(self.labelTexts, self.labelCValues):
- label.set_alpha(self.alpha)
- label.set_color(self.labelMappable.to_rgba(cv))
- # add label colors
- cm.ScalarMappable.changed(self)
- def _autolev(self, N):
- """
- Select contour levels to span the data.
- The target number of levels, *N*, is used only when the
- scale is not log and default locator is used.
- We need two more levels for filled contours than for
- line contours, because for the latter we need to specify
- the lower and upper boundary of each range. For example,
- a single contour boundary, say at z = 0, requires only
- one contour line, but two filled regions, and therefore
- three levels to provide boundaries for both regions.
- """
- if self.locator is None:
- if self.logscale:
- self.locator = ticker.LogLocator()
- else:
- self.locator = ticker.MaxNLocator(N + 1, min_n_ticks=1)
- lev = self.locator.tick_values(self.zmin, self.zmax)
- try:
- if self.locator._symmetric:
- return lev
- except AttributeError:
- pass
- # Trim excess levels the locator may have supplied.
- under = np.nonzero(lev < self.zmin)[0]
- i0 = under[-1] if len(under) else 0
- over = np.nonzero(lev > self.zmax)[0]
- i1 = over[0] + 1 if len(over) else len(lev)
- if self.extend in ('min', 'both'):
- i0 += 1
- if self.extend in ('max', 'both'):
- i1 -= 1
- if i1 - i0 < 3:
- i0, i1 = 0, len(lev)
- return lev[i0:i1]
- def _contour_level_args(self, z, args):
- """
- Determine the contour levels and store in self.levels.
- """
- if self.levels is None:
- if len(args) == 0:
- levels_arg = 7 # Default, hard-wired.
- else:
- levels_arg = args[0]
- else:
- levels_arg = self.levels
- if isinstance(levels_arg, Integral):
- self.levels = self._autolev(levels_arg)
- else:
- self.levels = np.asarray(levels_arg).astype(np.float64)
- if not self.filled:
- inside = (self.levels > self.zmin) & (self.levels < self.zmax)
- levels_in = self.levels[inside]
- if len(levels_in) == 0:
- self.levels = [self.zmin]
- cbook._warn_external(
- "No contour levels were found within the data range.")
- if self.filled and len(self.levels) < 2:
- raise ValueError("Filled contours require at least 2 levels.")
- if len(self.levels) > 1 and np.min(np.diff(self.levels)) <= 0.0:
- raise ValueError("Contour levels must be increasing")
- def _process_levels(self):
- """
- Assign values to :attr:`layers` based on :attr:`levels`,
- adding extended layers as needed if contours are filled.
- For line contours, layers simply coincide with levels;
- a line is a thin layer. No extended levels are needed
- with line contours.
- """
- # Make a private _levels to include extended regions; we
- # want to leave the original levels attribute unchanged.
- # (Colorbar needs this even for line contours.)
- self._levels = list(self.levels)
- if self.logscale:
- lower, upper = 1e-250, 1e250
- else:
- lower, upper = -1e250, 1e250
- if self.extend in ('both', 'min'):
- self._levels.insert(0, lower)
- if self.extend in ('both', 'max'):
- self._levels.append(upper)
- self._levels = np.asarray(self._levels)
- if not self.filled:
- self.layers = self.levels
- return
- # Layer values are mid-way between levels in screen space.
- if self.logscale:
- # Avoid overflow by taking sqrt before multiplying.
- self.layers = (np.sqrt(self._levels[:-1])
- * np.sqrt(self._levels[1:]))
- else:
- self.layers = 0.5 * (self._levels[:-1] + self._levels[1:])
- def _process_colors(self):
- """
- Color argument processing for contouring.
- Note that we base the color mapping on the contour levels
- and layers, not on the actual range of the Z values. This
- means we don't have to worry about bad values in Z, and we
- always have the full dynamic range available for the selected
- levels.
- The color is based on the midpoint of the layer, except for
- extended end layers. By default, the norm vmin and vmax
- are the extreme values of the non-extended levels. Hence,
- the layer color extremes are not the extreme values of
- the colormap itself, but approach those values as the number
- of levels increases. An advantage of this scheme is that
- line contours, when added to filled contours, take on
- colors that are consistent with those of the filled regions;
- for example, a contour line on the boundary between two
- regions will have a color intermediate between those
- of the regions.
- """
- self.monochrome = self.cmap.monochrome
- if self.colors is not None:
- # Generate integers for direct indexing.
- i0, i1 = 0, len(self.levels)
- if self.filled:
- i1 -= 1
- # Out of range indices for over and under:
- if self.extend in ('both', 'min'):
- i0 -= 1
- if self.extend in ('both', 'max'):
- i1 += 1
- self.cvalues = list(range(i0, i1))
- self.set_norm(mcolors.NoNorm())
- else:
- self.cvalues = self.layers
- self.set_array(self.levels)
- self.autoscale_None()
- if self.extend in ('both', 'max', 'min'):
- self.norm.clip = False
- # self.tcolors are set by the "changed" method
- def _process_linewidths(self):
- linewidths = self.linewidths
- Nlev = len(self.levels)
- if linewidths is None:
- tlinewidths = [(mpl.rcParams['lines.linewidth'],)] * Nlev
- else:
- if not np.iterable(linewidths):
- linewidths = [linewidths] * Nlev
- else:
- linewidths = list(linewidths)
- if len(linewidths) < Nlev:
- nreps = int(np.ceil(Nlev / len(linewidths)))
- linewidths = linewidths * nreps
- if len(linewidths) > Nlev:
- linewidths = linewidths[:Nlev]
- tlinewidths = [(w,) for w in linewidths]
- return tlinewidths
- def _process_linestyles(self):
- linestyles = self.linestyles
- Nlev = len(self.levels)
- if linestyles is None:
- tlinestyles = ['solid'] * Nlev
- if self.monochrome:
- neg_ls = mpl.rcParams['contour.negative_linestyle']
- eps = - (self.zmax - self.zmin) * 1e-15
- for i, lev in enumerate(self.levels):
- if lev < eps:
- tlinestyles[i] = neg_ls
- else:
- if isinstance(linestyles, str):
- tlinestyles = [linestyles] * Nlev
- elif np.iterable(linestyles):
- tlinestyles = list(linestyles)
- if len(tlinestyles) < Nlev:
- nreps = int(np.ceil(Nlev / len(linestyles)))
- tlinestyles = tlinestyles * nreps
- if len(tlinestyles) > Nlev:
- tlinestyles = tlinestyles[:Nlev]
- else:
- raise ValueError("Unrecognized type for linestyles kwarg")
- return tlinestyles
- def get_alpha(self):
- """returns alpha to be applied to all ContourSet artists"""
- return self.alpha
- def set_alpha(self, alpha):
- """
- Set the alpha blending value for all ContourSet artists.
- *alpha* must be between 0 (transparent) and 1 (opaque).
- """
- self.alpha = alpha
- self.changed()
- def find_nearest_contour(self, x, y, indices=None, pixel=True):
- """
- Finds contour that is closest to a point. Defaults to
- measuring distance in pixels (screen space - useful for manual
- contour labeling), but this can be controlled via a keyword
- argument.
- Returns a tuple containing the contour, segment, index of
- segment, x & y of segment point and distance to minimum point.
- Optional keyword arguments:
- *indices*:
- Indexes of contour levels to consider when looking for
- nearest point. Defaults to using all levels.
- *pixel*:
- If *True*, measure distance in pixel space, if not, measure
- distance in axes space. Defaults to *True*.
- """
- # This function uses a method that is probably quite
- # inefficient based on converting each contour segment to
- # pixel coordinates and then comparing the given point to
- # those coordinates for each contour. This will probably be
- # quite slow for complex contours, but for normal use it works
- # sufficiently well that the time is not noticeable.
- # Nonetheless, improvements could probably be made.
- if indices is None:
- indices = list(range(len(self.levels)))
- dmin = np.inf
- conmin = None
- segmin = None
- xmin = None
- ymin = None
- point = np.array([x, y])
- for icon in indices:
- con = self.collections[icon]
- trans = con.get_transform()
- paths = con.get_paths()
- for segNum, linepath in enumerate(paths):
- lc = linepath.vertices
- # transfer all data points to screen coordinates if desired
- if pixel:
- lc = trans.transform(lc)
- d, xc, leg = _find_closest_point_on_path(lc, point)
- if d < dmin:
- dmin = d
- conmin = icon
- segmin = segNum
- imin = leg[1]
- xmin = xc[0]
- ymin = xc[1]
- return (conmin, segmin, imin, xmin, ymin, dmin)
- class QuadContourSet(ContourSet):
- """
- Create and store a set of contour lines or filled regions.
- User-callable method: `~axes.Axes.clabel`
- Attributes
- ----------
- ax
- The axes object in which the contours are drawn.
- collections
- A silent_list of LineCollections or PolyCollections.
- levels
- Contour levels.
- layers
- Same as levels for line contours; half-way between
- levels for filled contours. See :meth:`_process_colors` method.
- """
- def _process_args(self, *args, **kwargs):
- """
- Process args and kwargs.
- """
- if isinstance(args[0], QuadContourSet):
- if self.levels is None:
- self.levels = args[0].levels
- self.zmin = args[0].zmin
- self.zmax = args[0].zmax
- self._corner_mask = args[0]._corner_mask
- contour_generator = args[0]._contour_generator
- self._mins = args[0]._mins
- self._maxs = args[0]._maxs
- else:
- import matplotlib._contour as _contour
- self._corner_mask = kwargs.pop('corner_mask', None)
- if self._corner_mask is None:
- self._corner_mask = mpl.rcParams['contour.corner_mask']
- x, y, z = self._contour_args(args, kwargs)
- _mask = ma.getmask(z)
- if _mask is ma.nomask or not _mask.any():
- _mask = None
- contour_generator = _contour.QuadContourGenerator(
- x, y, z.filled(), _mask, self._corner_mask, self.nchunk)
- t = self.get_transform()
- # if the transform is not trans data, and some part of it
- # contains transData, transform the xs and ys to data coordinates
- if (t != self.ax.transData and
- any(t.contains_branch_seperately(self.ax.transData))):
- trans_to_data = t - self.ax.transData
- pts = (np.vstack([x.flat, y.flat]).T)
- transformed_pts = trans_to_data.transform(pts)
- x = transformed_pts[..., 0]
- y = transformed_pts[..., 1]
- self._mins = [ma.min(x), ma.min(y)]
- self._maxs = [ma.max(x), ma.max(y)]
- self._contour_generator = contour_generator
- return kwargs
- def _get_allsegs_and_allkinds(self):
- """Compute ``allsegs`` and ``allkinds`` using C extension."""
- allsegs = []
- if self.filled:
- lowers, uppers = self._get_lowers_and_uppers()
- allkinds = []
- for level, level_upper in zip(lowers, uppers):
- vertices, kinds = \
- self._contour_generator.create_filled_contour(
- level, level_upper)
- allsegs.append(vertices)
- allkinds.append(kinds)
- else:
- allkinds = None
- for level in self.levels:
- vertices = self._contour_generator.create_contour(level)
- allsegs.append(vertices)
- return allsegs, allkinds
- def _contour_args(self, args, kwargs):
- if self.filled:
- fn = 'contourf'
- else:
- fn = 'contour'
- Nargs = len(args)
- if Nargs <= 2:
- z = ma.asarray(args[0], dtype=np.float64)
- x, y = self._initialize_x_y(z)
- args = args[1:]
- elif Nargs <= 4:
- x, y, z = self._check_xyz(args[:3], kwargs)
- args = args[3:]
- else:
- raise TypeError("Too many arguments to %s; see help(%s)" %
- (fn, fn))
- z = ma.masked_invalid(z, copy=False)
- self.zmax = float(z.max())
- self.zmin = float(z.min())
- if self.logscale and self.zmin <= 0:
- z = ma.masked_where(z <= 0, z)
- cbook._warn_external('Log scale: values of z <= 0 have been '
- 'masked')
- self.zmin = float(z.min())
- self._contour_level_args(z, args)
- return (x, y, z)
- def _check_xyz(self, args, kwargs):
- """
- Check that the shapes of the input arrays match; if x and y are 1D,
- convert them to 2D using meshgrid.
- """
- x, y = args[:2]
- kwargs = self.ax._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
- x = self.ax.convert_xunits(x)
- y = self.ax.convert_yunits(y)
- x = np.asarray(x, dtype=np.float64)
- y = np.asarray(y, dtype=np.float64)
- z = ma.asarray(args[2], dtype=np.float64)
- if z.ndim != 2:
- raise TypeError(f"Input z must be 2D, not {z.ndim}D")
- if z.shape[0] < 2 or z.shape[1] < 2:
- raise TypeError(f"Input z must be at least a (2, 2) shaped array, "
- f"but has shape {z.shape}")
- Ny, Nx = z.shape
- if x.ndim != y.ndim:
- raise TypeError(f"Number of dimensions of x ({x.ndim}) and y "
- f"({y.ndim}) do not match")
- if x.ndim == 1:
- nx, = x.shape
- ny, = y.shape
- if nx != Nx:
- raise TypeError(f"Length of x ({nx}) must match number of "
- f"columns in z ({Nx})")
- if ny != Ny:
- raise TypeError(f"Length of y ({ny}) must match number of "
- f"rows in z ({Ny})")
- x, y = np.meshgrid(x, y)
- elif x.ndim == 2:
- if x.shape != z.shape:
- raise TypeError(
- f"Shapes of x {x.shape} and z {z.shape} do not match")
- if y.shape != z.shape:
- raise TypeError(
- f"Shapes of y {y.shape} and z {z.shape} do not match")
- else:
- raise TypeError(f"Inputs x and y must be 1D or 2D, not {x.ndim}D")
- return x, y, z
- def _initialize_x_y(self, z):
- """
- Return X, Y arrays such that contour(Z) will match imshow(Z)
- if origin is not None.
- The center of pixel Z[i, j] depends on origin:
- if origin is None, x = j, y = i;
- if origin is 'lower', x = j + 0.5, y = i + 0.5;
- if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5
- If extent is not None, x and y will be scaled to match,
- as in imshow.
- If origin is None and extent is not None, then extent
- will give the minimum and maximum values of x and y.
- """
- if z.ndim != 2:
- raise TypeError(f"Input z must be 2D, not {z.ndim}D")
- elif z.shape[0] < 2 or z.shape[1] < 2:
- raise TypeError(f"Input z must be at least a (2, 2) shaped array, "
- f"but has shape {z.shape}")
- else:
- Ny, Nx = z.shape
- if self.origin is None: # Not for image-matching.
- if self.extent is None:
- return np.meshgrid(np.arange(Nx), np.arange(Ny))
- else:
- x0, x1, y0, y1 = self.extent
- x = np.linspace(x0, x1, Nx)
- y = np.linspace(y0, y1, Ny)
- return np.meshgrid(x, y)
- # Match image behavior:
- if self.extent is None:
- x0, x1, y0, y1 = (0, Nx, 0, Ny)
- else:
- x0, x1, y0, y1 = self.extent
- dx = (x1 - x0) / Nx
- dy = (y1 - y0) / Ny
- x = x0 + (np.arange(Nx) + 0.5) * dx
- y = y0 + (np.arange(Ny) + 0.5) * dy
- if self.origin == 'upper':
- y = y[::-1]
- return np.meshgrid(x, y)
- _contour_doc = """
- Plot contours.
- Call signature::
- contour([X, Y,] Z, [levels], **kwargs)
- `.contour` and `.contourf` draw contour lines and filled contours,
- respectively. Except as noted, function signatures and return values
- are the same for both versions.
- Parameters
- ----------
- X, Y : array-like, optional
- The coordinates of the values in *Z*.
- *X* and *Y* must both be 2-D with the same shape as *Z* (e.g.
- created via `numpy.meshgrid`), or they must both be 1-D such
- that ``len(X) == M`` is the number of columns in *Z* and
- ``len(Y) == N`` is the number of rows in *Z*.
- If not given, they are assumed to be integer indices, i.e.
- ``X = range(M)``, ``Y = range(N)``.
- Z : array-like(N, M)
- The height values over which the contour is drawn.
- levels : int or array-like, optional
- Determines the number and positions of the contour lines / regions.
- If an int *n*, use *n* data intervals; i.e. draw *n+1* contour
- lines. The level heights are automatically chosen.
- If array-like, draw contour lines at the specified levels.
- The values must be in increasing order.
- Returns
- -------
- c : `~.contour.QuadContourSet`
- Other Parameters
- ----------------
- corner_mask : bool, optional
- Enable/disable corner masking, which only has an effect if *Z* is
- a masked array. If ``False``, any quad touching a masked point is
- masked out. If ``True``, only the triangular corners of quads
- nearest those points are always masked out, other triangular
- corners comprising three unmasked points are contoured as usual.
- Defaults to :rc:`contour.corner_mask`.
- colors : color string or sequence of colors, optional
- The colors of the levels, i.e. the lines for `.contour` and the
- areas for `.contourf`.
- The sequence is cycled for the levels in ascending order. If the
- sequence is shorter than the number of levels, it's repeated.
- As a shortcut, single color strings may be used in place of
- one-element lists, i.e. ``'red'`` instead of ``['red']`` to color
- all levels with the same color. This shortcut does only work for
- color strings, not for other ways of specifying colors.
- By default (value *None*), the colormap specified by *cmap*
- will be used.
- alpha : float, optional
- The alpha blending value, between 0 (transparent) and 1 (opaque).
- cmap : str or `.Colormap`, optional
- A `.Colormap` instance or registered colormap name. The colormap
- maps the level values to colors.
- Defaults to :rc:`image.cmap`.
- If both *colors* and *cmap* are given, an error is raised.
- norm : `~matplotlib.colors.Normalize`, optional
- If a colormap is used, the `.Normalize` instance scales the level
- values to the canonical colormap range [0, 1] for mapping to
- colors. If not given, the default linear scaling is used.
- vmin, vmax : float, optional
- If not *None*, either or both of these values will be supplied to
- the `.Normalize` instance, overriding the default color scaling
- based on *levels*.
- origin : {*None*, 'upper', 'lower', 'image'}, optional
- Determines the orientation and exact position of *Z* by specifying
- the position of ``Z[0, 0]``. This is only relevant, if *X*, *Y*
- are not given.
- - *None*: ``Z[0, 0]`` is at X=0, Y=0 in the lower left corner.
- - 'lower': ``Z[0, 0]`` is at X=0.5, Y=0.5 in the lower left corner.
- - 'upper': ``Z[0, 0]`` is at X=N+0.5, Y=0.5 in the upper left
- corner.
- - 'image': Use the value from :rc:`image.origin`.
- extent : (x0, x1, y0, y1), optional
- If *origin* is not *None*, then *extent* is interpreted as in
- `.imshow`: it gives the outer pixel boundaries. In this case, the
- position of Z[0, 0] is the center of the pixel, not a corner. If
- *origin* is *None*, then (*x0*, *y0*) is the position of Z[0, 0],
- and (*x1*, *y1*) is the position of Z[-1,-1].
- This argument is ignored if *X* and *Y* are specified in the call
- to contour.
- locator : ticker.Locator subclass, optional
- The locator is used to determine the contour levels if they
- are not given explicitly via *levels*.
- Defaults to `~.ticker.MaxNLocator`.
- extend : {'neither', 'both', 'min', 'max'}, optional, default: \
- 'neither'
- Determines the ``contourf``-coloring of values that are outside the
- *levels* range.
- If 'neither', values outside the *levels* range are not colored.
- If 'min', 'max' or 'both', color the values below, above or below
- and above the *levels* range.
- Values below ``min(levels)`` and above ``max(levels)`` are mapped
- to the under/over values of the `.Colormap`. Note, that most
- colormaps do not have dedicated colors for these by default, so
- that the over and under values are the edge values of the colormap.
- You may want to set these values explicitly using
- `.Colormap.set_under` and `.Colormap.set_over`.
- .. note::
- An exising `.QuadContourSet` does not get notified if
- properties of its colormap are changed. Therefore, an explicit
- call `.QuadContourSet.changed()` is needed after modifying the
- colormap. The explicit call can be left out, if a colorbar is
- assigned to the `.QuadContourSet` because it internally calls
- `.QuadContourSet.changed()`.
- Example::
- x = np.arange(1, 10)
- y = x.reshape(-1, 1)
- h = x * y
- cs = plt.contourf(h, levels=[10, 30, 50],
- colors=['#808080', '#A0A0A0', '#C0C0C0'], extend='both')
- cs.cmap.set_over('red')
- cs.cmap.set_under('blue')
- cs.changed()
- xunits, yunits : registered units, optional
- Override axis units by specifying an instance of a
- :class:`matplotlib.units.ConversionInterface`.
- antialiased : bool, optional
- Enable antialiasing, overriding the defaults. For
- filled contours, the default is *True*. For line contours,
- it is taken from :rc:`lines.antialiased`.
- nchunk : int >= 0, optional
- If 0, no subdivision of the domain. Specify a positive integer to
- divide the domain into subdomains of *nchunk* by *nchunk* quads.
- Chunking reduces the maximum length of polygons generated by the
- contouring algorithm which reduces the rendering workload passed
- on to the backend and also requires slightly less RAM. It can
- however introduce rendering artifacts at chunk boundaries depending
- on the backend, the *antialiased* flag and value of *alpha*.
- linewidths : float or sequence of float, optional
- *Only applies to* `.contour`.
- The line width of the contour lines.
- If a number, all levels will be plotted with this linewidth.
- If a sequence, the levels in ascending order will be plotted with
- the linewidths in the order specified.
- Defaults to :rc:`lines.linewidth`.
- linestyles : {*None*, 'solid', 'dashed', 'dashdot', 'dotted'}, optional
- *Only applies to* `.contour`.
- If *linestyles* is *None*, the default is 'solid' unless the lines
- are monochrome. In that case, negative contours will take their
- linestyle from :rc:`contour.negative_linestyle` setting.
- *linestyles* can also be an iterable of the above strings
- specifying a set of linestyles to be used. If this
- iterable is shorter than the number of contour levels
- it will be repeated as necessary.
- hatches : List[str], optional
- *Only applies to* `.contourf`.
- A list of cross hatch patterns to use on the filled areas.
- If None, no hatching will be added to the contour.
- Hatching is supported in the PostScript, PDF, SVG and Agg
- backends only.
- Notes
- -----
- 1. `.contourf` differs from the MATLAB version in that it does not draw
- the polygon edges. To draw edges, add line contours with calls to
- `.contour`.
- 2. `.contourf` fills intervals that are closed at the top; that is, for
- boundaries *z1* and *z2*, the filled region is::
- z1 < Z <= z2
- except for the lowest interval, which is closed on both sides (i.e.
- it includes the lowest value).
- """
|