1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191 |
- """
- A collection of utility functions and classes. Originally, many
- (but not all) were from the Python Cookbook -- hence the name cbook.
- This module is safe to import from anywhere within matplotlib;
- it imports matplotlib only at runtime.
- """
- import collections
- import collections.abc
- import contextlib
- import functools
- import glob
- import gzip
- import itertools
- import locale
- import numbers
- import operator
- import os
- from pathlib import Path
- import re
- import shlex
- import subprocess
- import sys
- import time
- import traceback
- import types
- import warnings
- import weakref
- from weakref import WeakMethod
- import numpy as np
- import matplotlib
- from .deprecation import (
- deprecated, warn_deprecated,
- _rename_parameter, _delete_parameter, _make_keyword_only,
- _suppress_matplotlib_deprecation_warning,
- MatplotlibDeprecationWarning, mplDeprecation)
- def _exception_printer(exc):
- traceback.print_exc()
- class _StrongRef:
- """
- Wrapper similar to a weakref, but keeping a strong reference to the object.
- """
- def __init__(self, obj):
- self._obj = obj
- def __call__(self):
- return self._obj
- def __eq__(self, other):
- return isinstance(other, _StrongRef) and self._obj == other._obj
- def __hash__(self):
- return hash(self._obj)
- class CallbackRegistry:
- """Handle registering and disconnecting for a set of signals and callbacks:
- >>> def oneat(x):
- ... print('eat', x)
- >>> def ondrink(x):
- ... print('drink', x)
- >>> from matplotlib.cbook import CallbackRegistry
- >>> callbacks = CallbackRegistry()
- >>> id_eat = callbacks.connect('eat', oneat)
- >>> id_drink = callbacks.connect('drink', ondrink)
- >>> callbacks.process('drink', 123)
- drink 123
- >>> callbacks.process('eat', 456)
- eat 456
- >>> callbacks.process('be merry', 456) # nothing will be called
- >>> callbacks.disconnect(id_eat)
- >>> callbacks.process('eat', 456) # nothing will be called
- In practice, one should always disconnect all callbacks when they are
- no longer needed to avoid dangling references (and thus memory leaks).
- However, real code in Matplotlib rarely does so, and due to its design,
- it is rather difficult to place this kind of code. To get around this,
- and prevent this class of memory leaks, we instead store weak references
- to bound methods only, so when the destination object needs to die, the
- CallbackRegistry won't keep it alive.
- Parameters
- ----------
- exception_handler : callable, optional
- If provided must have signature ::
- def handler(exc: Exception) -> None:
- If not None this function will be called with any `Exception`
- subclass raised by the callbacks in `CallbackRegistry.process`.
- The handler may either consume the exception or re-raise.
- The callable must be pickle-able.
- The default handler is ::
- def h(exc):
- traceback.print_exc()
- """
- # We maintain two mappings:
- # callbacks: signal -> {cid -> callback}
- # _func_cid_map: signal -> {callback -> cid}
- # (actually, callbacks are weakrefs to the actual callbacks).
- def __init__(self, exception_handler=_exception_printer):
- self.exception_handler = exception_handler
- self.callbacks = {}
- self._cid_gen = itertools.count()
- self._func_cid_map = {}
- # In general, callbacks may not be pickled; thus, we simply recreate an
- # empty dictionary at unpickling. In order to ensure that `__setstate__`
- # (which just defers to `__init__`) is called, `__getstate__` must
- # return a truthy value (for pickle protocol>=3, i.e. Py3, the
- # *actual* behavior is that `__setstate__` will be called as long as
- # `__getstate__` does not return `None`, but this is undocumented -- see
- # http://bugs.python.org/issue12290).
- def __getstate__(self):
- return {'exception_handler': self.exception_handler}
- def __setstate__(self, state):
- self.__init__(**state)
- def connect(self, s, func):
- """Register *func* to be called when signal *s* is generated.
- """
- self._func_cid_map.setdefault(s, {})
- try:
- proxy = WeakMethod(func, self._remove_proxy)
- except TypeError:
- proxy = _StrongRef(func)
- if proxy in self._func_cid_map[s]:
- return self._func_cid_map[s][proxy]
- cid = next(self._cid_gen)
- self._func_cid_map[s][proxy] = cid
- self.callbacks.setdefault(s, {})
- self.callbacks[s][cid] = proxy
- return cid
- # Keep a reference to sys.is_finalizing, as sys may have been cleared out
- # at that point.
- def _remove_proxy(self, proxy, *, _is_finalizing=sys.is_finalizing):
- if _is_finalizing():
- # Weakrefs can't be properly torn down at that point anymore.
- return
- for signal, proxies in list(self._func_cid_map.items()):
- try:
- del self.callbacks[signal][proxies[proxy]]
- except KeyError:
- pass
- if len(self.callbacks[signal]) == 0:
- del self.callbacks[signal]
- del self._func_cid_map[signal]
- def disconnect(self, cid):
- """Disconnect the callback registered with callback id *cid*.
- """
- for eventname, callbackd in list(self.callbacks.items()):
- try:
- del callbackd[cid]
- except KeyError:
- continue
- else:
- for signal, functions in list(self._func_cid_map.items()):
- for function, value in list(functions.items()):
- if value == cid:
- del functions[function]
- return
- def process(self, s, *args, **kwargs):
- """
- Process signal *s*.
- All of the functions registered to receive callbacks on *s* will be
- called with ``*args`` and ``**kwargs``.
- """
- for cid, ref in list(self.callbacks.get(s, {}).items()):
- func = ref()
- if func is not None:
- try:
- func(*args, **kwargs)
- # this does not capture KeyboardInterrupt, SystemExit,
- # and GeneratorExit
- except Exception as exc:
- if self.exception_handler is not None:
- self.exception_handler(exc)
- else:
- raise
- class silent_list(list):
- """
- A list with a short ``repr()``.
- This is meant to be used for a homogeneous list of artists, so that they
- don't cause long, meaningless output.
- Instead of ::
- [<matplotlib.lines.Line2D object at 0x7f5749fed3c8>,
- <matplotlib.lines.Line2D object at 0x7f5749fed4e0>,
- <matplotlib.lines.Line2D object at 0x7f5758016550>]
- one will get ::
- <a list of 3 Line2D objects>
- """
- def __init__(self, type, seq=None):
- self.type = type
- if seq is not None:
- self.extend(seq)
- def __repr__(self):
- return '<a list of %d %s objects>' % (len(self), self.type)
- __str__ = __repr__
- def __getstate__(self):
- # store a dictionary of this SilentList's state
- return {'type': self.type, 'seq': self[:]}
- def __setstate__(self, state):
- self.type = state['type']
- self.extend(state['seq'])
- class IgnoredKeywordWarning(UserWarning):
- """
- A class for issuing warnings about keyword arguments that will be ignored
- by Matplotlib.
- """
- pass
- def local_over_kwdict(local_var, kwargs, *keys):
- """
- Enforces the priority of a local variable over potentially conflicting
- argument(s) from a kwargs dict. The following possible output values are
- considered in order of priority::
- local_var > kwargs[keys[0]] > ... > kwargs[keys[-1]]
- The first of these whose value is not None will be returned. If all are
- None then None will be returned. Each key in keys will be removed from the
- kwargs dict in place.
- Parameters
- ----------
- local_var : any object
- The local variable (highest priority).
- kwargs : dict
- Dictionary of keyword arguments; modified in place.
- keys : str(s)
- Name(s) of keyword arguments to process, in descending order of
- priority.
- Returns
- -------
- out : any object
- Either local_var or one of kwargs[key] for key in keys.
- Raises
- ------
- IgnoredKeywordWarning
- For each key in keys that is removed from kwargs but not used as
- the output value.
- """
- out = local_var
- for key in keys:
- kwarg_val = kwargs.pop(key, None)
- if kwarg_val is not None:
- if out is None:
- out = kwarg_val
- else:
- _warn_external('"%s" keyword argument will be ignored' % key,
- IgnoredKeywordWarning)
- return out
- def strip_math(s):
- """
- Remove latex formatting from mathtext.
- Only handles fully math and fully non-math strings.
- """
- if len(s) >= 2 and s[0] == s[-1] == "$":
- s = s[1:-1]
- for tex, plain in [
- (r"\times", "x"), # Specifically for Formatter support.
- (r"\mathdefault", ""),
- (r"\rm", ""),
- (r"\cal", ""),
- (r"\tt", ""),
- (r"\it", ""),
- ("\\", ""),
- ("{", ""),
- ("}", ""),
- ]:
- s = s.replace(tex, plain)
- return s
- @deprecated('3.1', alternative='np.iterable')
- def iterable(obj):
- """return true if *obj* is iterable"""
- try:
- iter(obj)
- except TypeError:
- return False
- return True
- @deprecated("3.1", alternative="isinstance(..., collections.abc.Hashable)")
- def is_hashable(obj):
- """Returns true if *obj* can be hashed"""
- try:
- hash(obj)
- except TypeError:
- return False
- return True
- def is_writable_file_like(obj):
- """Return whether *obj* looks like a file object with a *write* method."""
- return callable(getattr(obj, 'write', None))
- def file_requires_unicode(x):
- """
- Return whether the given writable file-like object requires Unicode to be
- written to it.
- """
- try:
- x.write(b'')
- except TypeError:
- return True
- else:
- return False
- def to_filehandle(fname, flag='r', return_opened=False, encoding=None):
- """
- Convert a path to an open file handle or pass-through a file-like object.
- Consider using `open_file_cm` instead, as it allows one to properly close
- newly created file objects more easily.
- Parameters
- ----------
- fname : str or path-like or file-like object
- If `str` or `os.PathLike`, the file is opened using the flags specified
- by *flag* and *encoding*. If a file-like object, it is passed through.
- flag : str, default 'r'
- Passed as the *mode* argument to `open` when *fname* is `str` or
- `os.PathLike`; ignored if *fname* is file-like.
- return_opened : bool, default False
- If True, return both the file object and a boolean indicating whether
- this was a new file (that the caller needs to close). If False, return
- only the new file.
- encoding : str or None, default None
- Passed as the *mode* argument to `open` when *fname* is `str` or
- `os.PathLike`; ignored if *fname* is file-like.
- Returns
- -------
- fh : file-like
- opened : bool
- *opened* is only returned if *return_opened* is True.
- """
- if isinstance(fname, os.PathLike):
- fname = os.fspath(fname)
- if isinstance(fname, str):
- if fname.endswith('.gz'):
- # get rid of 'U' in flag for gzipped files.
- flag = flag.replace('U', '')
- fh = gzip.open(fname, flag)
- elif fname.endswith('.bz2'):
- # python may not be complied with bz2 support,
- # bury import until we need it
- import bz2
- # get rid of 'U' in flag for bz2 files
- flag = flag.replace('U', '')
- fh = bz2.BZ2File(fname, flag)
- else:
- fh = open(fname, flag, encoding=encoding)
- opened = True
- elif hasattr(fname, 'seek'):
- fh = fname
- opened = False
- else:
- raise ValueError('fname must be a PathLike or file handle')
- if return_opened:
- return fh, opened
- return fh
- @contextlib.contextmanager
- def open_file_cm(path_or_file, mode="r", encoding=None):
- r"""Pass through file objects and context-manage `.PathLike`\s."""
- fh, opened = to_filehandle(path_or_file, mode, True, encoding)
- if opened:
- with fh:
- yield fh
- else:
- yield fh
- def is_scalar_or_string(val):
- """Return whether the given object is a scalar or string like."""
- return isinstance(val, str) or not np.iterable(val)
- def get_sample_data(fname, asfileobj=True):
- """
- Return a sample data file. *fname* is a path relative to the
- `mpl-data/sample_data` directory. If *asfileobj* is `True`
- return a file object, otherwise just a file path.
- Sample data files are stored in the 'mpl-data/sample_data' directory within
- the Matplotlib package.
- If the filename ends in .gz, the file is implicitly ungzipped.
- """
- path = Path(matplotlib.get_data_path(), 'sample_data', fname)
- if asfileobj:
- suffix = path.suffix.lower()
- if suffix == '.gz':
- return gzip.open(path)
- elif suffix in ['.csv', '.xrc', '.txt']:
- return path.open('r')
- else:
- return path.open('rb')
- else:
- return str(path)
- def _get_data_path(*args):
- """
- Return the `Path` to a resource file provided by Matplotlib.
- ``*args`` specify a path relative to the base data path.
- """
- return Path(matplotlib.get_data_path(), *args)
- def flatten(seq, scalarp=is_scalar_or_string):
- """
- Return a generator of flattened nested containers.
- For example:
- >>> from matplotlib.cbook import flatten
- >>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]])
- >>> print(list(flatten(l)))
- ['John', 'Hunter', 1, 23, 42, 5, 23]
- By: Composite of Holger Krekel and Luther Blissett
- From: https://code.activestate.com/recipes/121294/
- and Recipe 1.12 in cookbook
- """
- for item in seq:
- if scalarp(item) or item is None:
- yield item
- else:
- yield from flatten(item, scalarp)
- @functools.lru_cache()
- def get_realpath_and_stat(path):
- realpath = os.path.realpath(path)
- stat = os.stat(realpath)
- stat_key = (stat.st_ino, stat.st_dev)
- return realpath, stat_key
- # A regular expression used to determine the amount of space to
- # remove. It looks for the first sequence of spaces immediately
- # following the first newline, or at the beginning of the string.
- _find_dedent_regex = re.compile(r"(?:(?:\n\r?)|^)( *)\S")
- # A cache to hold the regexs that actually remove the indent.
- _dedent_regex = {}
- @deprecated("3.1", alternative="inspect.cleandoc")
- def dedent(s):
- """
- Remove excess indentation from docstring *s*.
- Discards any leading blank lines, then removes up to n whitespace
- characters from each line, where n is the number of leading
- whitespace characters in the first line. It differs from
- textwrap.dedent in its deletion of leading blank lines and its use
- of the first non-blank line to determine the indentation.
- It is also faster in most cases.
- """
- # This implementation has a somewhat obtuse use of regular
- # expressions. However, this function accounted for almost 30% of
- # matplotlib startup time, so it is worthy of optimization at all
- # costs.
- if not s: # includes case of s is None
- return ''
- match = _find_dedent_regex.match(s)
- if match is None:
- return s
- # This is the number of spaces to remove from the left-hand side.
- nshift = match.end(1) - match.start(1)
- if nshift == 0:
- return s
- # Get a regex that will remove *up to* nshift spaces from the
- # beginning of each line. If it isn't in the cache, generate it.
- unindent = _dedent_regex.get(nshift, None)
- if unindent is None:
- unindent = re.compile("\n\r? {0,%d}" % nshift)
- _dedent_regex[nshift] = unindent
- result = unindent.sub("\n", s).strip()
- return result
- class maxdict(dict):
- """
- A dictionary with a maximum size.
- Notes
- -----
- This doesn't override all the relevant methods to constrain the size,
- just ``__setitem__``, so use with caution.
- """
- def __init__(self, maxsize):
- dict.__init__(self)
- self.maxsize = maxsize
- self._killkeys = []
- def __setitem__(self, k, v):
- if k not in self:
- if len(self) >= self.maxsize:
- del self[self._killkeys[0]]
- del self._killkeys[0]
- self._killkeys.append(k)
- dict.__setitem__(self, k, v)
- class Stack:
- """
- Stack of elements with a movable cursor.
- Mimics home/back/forward in a web browser.
- """
- def __init__(self, default=None):
- self.clear()
- self._default = default
- def __call__(self):
- """Return the current element, or None."""
- if not len(self._elements):
- return self._default
- else:
- return self._elements[self._pos]
- def __len__(self):
- return len(self._elements)
- def __getitem__(self, ind):
- return self._elements[ind]
- def forward(self):
- """Move the position forward and return the current element."""
- self._pos = min(self._pos + 1, len(self._elements) - 1)
- return self()
- def back(self):
- """Move the position back and return the current element."""
- if self._pos > 0:
- self._pos -= 1
- return self()
- def push(self, o):
- """
- Push *o* to the stack at current position. Discard all later elements.
- *o* is returned.
- """
- self._elements = self._elements[:self._pos + 1] + [o]
- self._pos = len(self._elements) - 1
- return self()
- def home(self):
- """
- Push the first element onto the top of the stack.
- The first element is returned.
- """
- if not len(self._elements):
- return
- self.push(self._elements[0])
- return self()
- def empty(self):
- """Return whether the stack is empty."""
- return len(self._elements) == 0
- def clear(self):
- """Empty the stack."""
- self._pos = -1
- self._elements = []
- def bubble(self, o):
- """
- Raise *o* to the top of the stack. *o* must be present in the stack.
- *o* is returned.
- """
- if o not in self._elements:
- raise ValueError('Unknown element o')
- old = self._elements[:]
- self.clear()
- bubbles = []
- for thiso in old:
- if thiso == o:
- bubbles.append(thiso)
- else:
- self.push(thiso)
- for _ in bubbles:
- self.push(o)
- return o
- def remove(self, o):
- """Remove *o* from the stack."""
- if o not in self._elements:
- raise ValueError('Unknown element o')
- old = self._elements[:]
- self.clear()
- for thiso in old:
- if thiso != o:
- self.push(thiso)
- def report_memory(i=0): # argument may go away
- """Return the memory consumed by the process."""
- def call(command, os_name):
- try:
- return subprocess.check_output(command)
- except subprocess.CalledProcessError:
- raise NotImplementedError(
- "report_memory works on %s only if "
- "the '%s' program is found" % (os_name, command[0])
- )
- pid = os.getpid()
- if sys.platform == 'sunos5':
- lines = call(['ps', '-p', '%d' % pid, '-o', 'osz'], 'Sun OS')
- mem = int(lines[-1].strip())
- elif sys.platform == 'linux':
- lines = call(['ps', '-p', '%d' % pid, '-o', 'rss,sz'], 'Linux')
- mem = int(lines[1].split()[1])
- elif sys.platform == 'darwin':
- lines = call(['ps', '-p', '%d' % pid, '-o', 'rss,vsz'], 'Mac OS')
- mem = int(lines[1].split()[0])
- elif sys.platform == 'win32':
- lines = call(["tasklist", "/nh", "/fi", "pid eq %d" % pid], 'Windows')
- mem = int(lines.strip().split()[-2].replace(',', ''))
- else:
- raise NotImplementedError(
- "We don't have a memory monitor for %s" % sys.platform)
- return mem
- _safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d'
- @deprecated("3.1")
- def safezip(*args):
- """make sure *args* are equal len before zipping"""
- Nx = len(args[0])
- for i, arg in enumerate(args[1:]):
- if len(arg) != Nx:
- raise ValueError(_safezip_msg % (Nx, i + 1, len(arg)))
- return list(zip(*args))
- def safe_masked_invalid(x, copy=False):
- x = np.array(x, subok=True, copy=copy)
- if not x.dtype.isnative:
- # Note that the argument to `byteswap` is 'inplace',
- # thus if we have already made a copy, do the byteswap in
- # place, else make a copy with the byte order swapped.
- # Be explicit that we are swapping the byte order of the dtype
- x = x.byteswap(copy).newbyteorder('S')
- try:
- xm = np.ma.masked_invalid(x, copy=False)
- xm.shrink_mask()
- except TypeError:
- return x
- return xm
- def print_cycles(objects, outstream=sys.stdout, show_progress=False):
- """
- Print loops of cyclic references in the given *objects*.
- It is often useful to pass in ``gc.garbage`` to find the cycles that are
- preventing some objects from being garbage collected.
- Parameters
- ----------
- objects
- A list of objects to find cycles in.
- outstream
- The stream for output.
- show_progress : bool
- If True, print the number of objects reached as they are found.
- """
- import gc
- def print_path(path):
- for i, step in enumerate(path):
- # next "wraps around"
- next = path[(i + 1) % len(path)]
- outstream.write(" %s -- " % type(step))
- if isinstance(step, dict):
- for key, val in step.items():
- if val is next:
- outstream.write("[{!r}]".format(key))
- break
- if key is next:
- outstream.write("[key] = {!r}".format(val))
- break
- elif isinstance(step, list):
- outstream.write("[%d]" % step.index(next))
- elif isinstance(step, tuple):
- outstream.write("( tuple )")
- else:
- outstream.write(repr(step))
- outstream.write(" ->\n")
- outstream.write("\n")
- def recurse(obj, start, all, current_path):
- if show_progress:
- outstream.write("%d\r" % len(all))
- all[id(obj)] = None
- referents = gc.get_referents(obj)
- for referent in referents:
- # If we've found our way back to the start, this is
- # a cycle, so print it out
- if referent is start:
- print_path(current_path)
- # Don't go back through the original list of objects, or
- # through temporary references to the object, since those
- # are just an artifact of the cycle detector itself.
- elif referent is objects or isinstance(referent, types.FrameType):
- continue
- # We haven't seen this object before, so recurse
- elif id(referent) not in all:
- recurse(referent, start, all, current_path + [obj])
- for obj in objects:
- outstream.write(f"Examining: {obj!r}\n")
- recurse(obj, obj, {}, [])
- class Grouper:
- """
- This class provides a lightweight way to group arbitrary objects
- together into disjoint sets when a full-blown graph data structure
- would be overkill.
- Objects can be joined using :meth:`join`, tested for connectedness
- using :meth:`joined`, and all disjoint sets can be retrieved by
- using the object as an iterator.
- The objects being joined must be hashable and weak-referenceable.
- For example:
- >>> from matplotlib.cbook import Grouper
- >>> class Foo:
- ... def __init__(self, s):
- ... self.s = s
- ... def __repr__(self):
- ... return self.s
- ...
- >>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef']
- >>> grp = Grouper()
- >>> grp.join(a, b)
- >>> grp.join(b, c)
- >>> grp.join(d, e)
- >>> sorted(map(tuple, grp))
- [(a, b, c), (d, e)]
- >>> grp.joined(a, b)
- True
- >>> grp.joined(a, c)
- True
- >>> grp.joined(a, d)
- False
- """
- def __init__(self, init=()):
- self._mapping = {weakref.ref(x): [weakref.ref(x)] for x in init}
- def __contains__(self, item):
- return weakref.ref(item) in self._mapping
- def clean(self):
- """Clean dead weak references from the dictionary."""
- mapping = self._mapping
- to_drop = [key for key in mapping if key() is None]
- for key in to_drop:
- val = mapping.pop(key)
- val.remove(key)
- def join(self, a, *args):
- """
- Join given arguments into the same set. Accepts one or more arguments.
- """
- mapping = self._mapping
- set_a = mapping.setdefault(weakref.ref(a), [weakref.ref(a)])
- for arg in args:
- set_b = mapping.get(weakref.ref(arg), [weakref.ref(arg)])
- if set_b is not set_a:
- if len(set_b) > len(set_a):
- set_a, set_b = set_b, set_a
- set_a.extend(set_b)
- for elem in set_b:
- mapping[elem] = set_a
- self.clean()
- def joined(self, a, b):
- """Return whether *a* and *b* are members of the same set."""
- self.clean()
- return (self._mapping.get(weakref.ref(a), object())
- is self._mapping.get(weakref.ref(b)))
- def remove(self, a):
- self.clean()
- set_a = self._mapping.pop(weakref.ref(a), None)
- if set_a:
- set_a.remove(weakref.ref(a))
- def __iter__(self):
- """
- Iterate over each of the disjoint sets as a list.
- The iterator is invalid if interleaved with calls to join().
- """
- self.clean()
- unique_groups = {id(group): group for group in self._mapping.values()}
- for group in unique_groups.values():
- yield [x() for x in group]
- def get_siblings(self, a):
- """Return all of the items joined with *a*, including itself."""
- self.clean()
- siblings = self._mapping.get(weakref.ref(a), [weakref.ref(a)])
- return [x() for x in siblings]
- def simple_linear_interpolation(a, steps):
- """
- Resample an array with ``steps - 1`` points between original point pairs.
- Along each column of *a*, ``(steps - 1)`` points are introduced between
- each original values; the values are linearly interpolated.
- Parameters
- ----------
- a : array, shape (n, ...)
- steps : int
- Returns
- -------
- array
- shape ``((n - 1) * steps + 1, ...)``
- """
- fps = a.reshape((len(a), -1))
- xp = np.arange(len(a)) * steps
- x = np.arange((len(a) - 1) * steps + 1)
- return (np.column_stack([np.interp(x, xp, fp) for fp in fps.T])
- .reshape((len(x),) + a.shape[1:]))
- def delete_masked_points(*args):
- """
- Find all masked and/or non-finite points in a set of arguments,
- and return the arguments with only the unmasked points remaining.
- Arguments can be in any of 5 categories:
- 1) 1-D masked arrays
- 2) 1-D ndarrays
- 3) ndarrays with more than one dimension
- 4) other non-string iterables
- 5) anything else
- The first argument must be in one of the first four categories;
- any argument with a length differing from that of the first
- argument (and hence anything in category 5) then will be
- passed through unchanged.
- Masks are obtained from all arguments of the correct length
- in categories 1, 2, and 4; a point is bad if masked in a masked
- array or if it is a nan or inf. No attempt is made to
- extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite`
- does not yield a Boolean array.
- All input arguments that are not passed unchanged are returned
- as ndarrays after removing the points or rows corresponding to
- masks in any of the arguments.
- A vastly simpler version of this function was originally
- written as a helper for Axes.scatter().
- """
- if not len(args):
- return ()
- if is_scalar_or_string(args[0]):
- raise ValueError("First argument must be a sequence")
- nrecs = len(args[0])
- margs = []
- seqlist = [False] * len(args)
- for i, x in enumerate(args):
- if not isinstance(x, str) and np.iterable(x) and len(x) == nrecs:
- seqlist[i] = True
- if isinstance(x, np.ma.MaskedArray):
- if x.ndim > 1:
- raise ValueError("Masked arrays must be 1-D")
- else:
- x = np.asarray(x)
- margs.append(x)
- masks = [] # list of masks that are True where good
- for i, x in enumerate(margs):
- if seqlist[i]:
- if x.ndim > 1:
- continue # Don't try to get nan locations unless 1-D.
- if isinstance(x, np.ma.MaskedArray):
- masks.append(~np.ma.getmaskarray(x)) # invert the mask
- xd = x.data
- else:
- xd = x
- try:
- mask = np.isfinite(xd)
- if isinstance(mask, np.ndarray):
- masks.append(mask)
- except Exception: # Fixme: put in tuple of possible exceptions?
- pass
- if len(masks):
- mask = np.logical_and.reduce(masks)
- igood = mask.nonzero()[0]
- if len(igood) < nrecs:
- for i, x in enumerate(margs):
- if seqlist[i]:
- margs[i] = x[igood]
- for i, x in enumerate(margs):
- if seqlist[i] and isinstance(x, np.ma.MaskedArray):
- margs[i] = x.filled()
- return margs
- def _combine_masks(*args):
- """
- Find all masked and/or non-finite points in a set of arguments,
- and return the arguments as masked arrays with a common mask.
- Arguments can be in any of 5 categories:
- 1) 1-D masked arrays
- 2) 1-D ndarrays
- 3) ndarrays with more than one dimension
- 4) other non-string iterables
- 5) anything else
- The first argument must be in one of the first four categories;
- any argument with a length differing from that of the first
- argument (and hence anything in category 5) then will be
- passed through unchanged.
- Masks are obtained from all arguments of the correct length
- in categories 1, 2, and 4; a point is bad if masked in a masked
- array or if it is a nan or inf. No attempt is made to
- extract a mask from categories 2 and 4 if :meth:`np.isfinite`
- does not yield a Boolean array. Category 3 is included to
- support RGB or RGBA ndarrays, which are assumed to have only
- valid values and which are passed through unchanged.
- All input arguments that are not passed unchanged are returned
- as masked arrays if any masked points are found, otherwise as
- ndarrays.
- """
- if not len(args):
- return ()
- if is_scalar_or_string(args[0]):
- raise ValueError("First argument must be a sequence")
- nrecs = len(args[0])
- margs = [] # Output args; some may be modified.
- seqlist = [False] * len(args) # Flags: True if output will be masked.
- masks = [] # List of masks.
- for i, x in enumerate(args):
- if is_scalar_or_string(x) or len(x) != nrecs:
- margs.append(x) # Leave it unmodified.
- else:
- if isinstance(x, np.ma.MaskedArray) and x.ndim > 1:
- raise ValueError("Masked arrays must be 1-D")
- x = np.asanyarray(x)
- if x.ndim == 1:
- x = safe_masked_invalid(x)
- seqlist[i] = True
- if np.ma.is_masked(x):
- masks.append(np.ma.getmaskarray(x))
- margs.append(x) # Possibly modified.
- if len(masks):
- mask = np.logical_or.reduce(masks)
- for i, x in enumerate(margs):
- if seqlist[i]:
- margs[i] = np.ma.array(x, mask=mask)
- return margs
- def boxplot_stats(X, whis=1.5, bootstrap=None, labels=None,
- autorange=False):
- r"""
- Returns list of dictionaries of statistics used to draw a series
- of box and whisker plots. The `Returns` section enumerates the
- required keys of the dictionary. Users can skip this function and
- pass a user-defined set of dictionaries to the new `axes.bxp` method
- instead of relying on Matplotlib to do the calculations.
- Parameters
- ----------
- X : array-like
- Data that will be represented in the boxplots. Should have 2 or
- fewer dimensions.
- whis : float or (float, float) (default = 1.5)
- The position of the whiskers.
- If a float, the lower whisker is at the lowest datum above
- ``Q1 - whis*(Q3-Q1)``, and the upper whisker at the highest datum below
- ``Q3 + whis*(Q3-Q1)``, where Q1 and Q3 are the first and third
- quartiles. The default value of ``whis = 1.5`` corresponds to Tukey's
- original definition of boxplots.
- If a pair of floats, they indicate the percentiles at which to draw the
- whiskers (e.g., (5, 95)). In particular, setting this to (0, 100)
- results in whiskers covering the whole range of the data. "range" is
- a deprecated synonym for (0, 100).
- In the edge case where ``Q1 == Q3``, *whis* is automatically set to
- (0, 100) (cover the whole range of the data) if *autorange* is True.
- Beyond the whiskers, data are considered outliers and are plotted as
- individual points.
- bootstrap : int, optional
- Number of times the confidence intervals around the median
- should be bootstrapped (percentile method).
- labels : array-like, optional
- Labels for each dataset. Length must be compatible with
- dimensions of *X*.
- autorange : bool, optional (False)
- When `True` and the data are distributed such that the 25th and 75th
- percentiles are equal, ``whis`` is set to (0, 100) such that the
- whisker ends are at the minimum and maximum of the data.
- Returns
- -------
- bxpstats : list of dict
- A list of dictionaries containing the results for each column
- of data. Keys of each dictionary are the following:
- ======== ===================================
- Key Value Description
- ======== ===================================
- label tick label for the boxplot
- mean arithmetic mean value
- med 50th percentile
- q1 first quartile (25th percentile)
- q3 third quartile (75th percentile)
- cilo lower notch around the median
- cihi upper notch around the median
- whislo end of the lower whisker
- whishi end of the upper whisker
- fliers outliers
- ======== ===================================
- Notes
- -----
- Non-bootstrapping approach to confidence interval uses Gaussian-
- based asymptotic approximation:
- .. math::
- \mathrm{med} \pm 1.57 \times \frac{\mathrm{iqr}}{\sqrt{N}}
- General approach from:
- McGill, R., Tukey, J.W., and Larsen, W.A. (1978) "Variations of
- Boxplots", The American Statistician, 32:12-16.
- """
- def _bootstrap_median(data, N=5000):
- # determine 95% confidence intervals of the median
- M = len(data)
- percentiles = [2.5, 97.5]
- bs_index = np.random.randint(M, size=(N, M))
- bsData = data[bs_index]
- estimate = np.median(bsData, axis=1, overwrite_input=True)
- CI = np.percentile(estimate, percentiles)
- return CI
- def _compute_conf_interval(data, med, iqr, bootstrap):
- if bootstrap is not None:
- # Do a bootstrap estimate of notch locations.
- # get conf. intervals around median
- CI = _bootstrap_median(data, N=bootstrap)
- notch_min = CI[0]
- notch_max = CI[1]
- else:
- N = len(data)
- notch_min = med - 1.57 * iqr / np.sqrt(N)
- notch_max = med + 1.57 * iqr / np.sqrt(N)
- return notch_min, notch_max
- # output is a list of dicts
- bxpstats = []
- # convert X to a list of lists
- X = _reshape_2D(X, "X")
- ncols = len(X)
- if labels is None:
- labels = itertools.repeat(None)
- elif len(labels) != ncols:
- raise ValueError("Dimensions of labels and X must be compatible")
- input_whis = whis
- for ii, (x, label) in enumerate(zip(X, labels)):
- # empty dict
- stats = {}
- if label is not None:
- stats['label'] = label
- # restore whis to the input values in case it got changed in the loop
- whis = input_whis
- # note tricksiness, append up here and then mutate below
- bxpstats.append(stats)
- # if empty, bail
- if len(x) == 0:
- stats['fliers'] = np.array([])
- stats['mean'] = np.nan
- stats['med'] = np.nan
- stats['q1'] = np.nan
- stats['q3'] = np.nan
- stats['cilo'] = np.nan
- stats['cihi'] = np.nan
- stats['whislo'] = np.nan
- stats['whishi'] = np.nan
- stats['med'] = np.nan
- continue
- # up-convert to an array, just to be safe
- x = np.asarray(x)
- # arithmetic mean
- stats['mean'] = np.mean(x)
- # medians and quartiles
- q1, med, q3 = np.percentile(x, [25, 50, 75])
- # interquartile range
- stats['iqr'] = q3 - q1
- if stats['iqr'] == 0 and autorange:
- whis = (0, 100)
- # conf. interval around median
- stats['cilo'], stats['cihi'] = _compute_conf_interval(
- x, med, stats['iqr'], bootstrap
- )
- # lowest/highest non-outliers
- if np.isscalar(whis):
- if np.isreal(whis):
- loval = q1 - whis * stats['iqr']
- hival = q3 + whis * stats['iqr']
- elif whis in ['range', 'limit', 'limits', 'min/max']:
- warn_deprecated(
- "3.2", message=f"Setting whis to {whis!r} is deprecated "
- "since %(since)s and support for it will be removed "
- "%(removal)s; set it to [0, 100] to achieve the same "
- "effect.")
- loval = np.min(x)
- hival = np.max(x)
- else:
- raise ValueError('whis must be a float or list of percentiles')
- else:
- loval, hival = np.percentile(x, whis)
- # get high extreme
- wiskhi = x[x <= hival]
- if len(wiskhi) == 0 or np.max(wiskhi) < q3:
- stats['whishi'] = q3
- else:
- stats['whishi'] = np.max(wiskhi)
- # get low extreme
- wisklo = x[x >= loval]
- if len(wisklo) == 0 or np.min(wisklo) > q1:
- stats['whislo'] = q1
- else:
- stats['whislo'] = np.min(wisklo)
- # compute a single array of outliers
- stats['fliers'] = np.hstack([
- x[x < stats['whislo']],
- x[x > stats['whishi']],
- ])
- # add in the remaining stats
- stats['q1'], stats['med'], stats['q3'] = q1, med, q3
- return bxpstats
- # The ls_mapper maps short codes for line style to their full name used by
- # backends; the reverse mapper is for mapping full names to short ones.
- ls_mapper = {'-': 'solid', '--': 'dashed', '-.': 'dashdot', ':': 'dotted'}
- ls_mapper_r = {v: k for k, v in ls_mapper.items()}
- def contiguous_regions(mask):
- """
- Return a list of (ind0, ind1) such that ``mask[ind0:ind1].all()`` is
- True and we cover all such regions.
- """
- mask = np.asarray(mask, dtype=bool)
- if not mask.size:
- return []
- # Find the indices of region changes, and correct offset
- idx, = np.nonzero(mask[:-1] != mask[1:])
- idx += 1
- # List operations are faster for moderately sized arrays
- idx = idx.tolist()
- # Add first and/or last index if needed
- if mask[0]:
- idx = [0] + idx
- if mask[-1]:
- idx.append(len(mask))
- return list(zip(idx[::2], idx[1::2]))
- def is_math_text(s):
- """
- Returns whether the string *s* contains math expressions.
- This is done by checking whether *s* contains an even number of
- non-escaped dollar signs.
- """
- s = str(s)
- dollar_count = s.count(r'$') - s.count(r'\$')
- even_dollars = (dollar_count > 0 and dollar_count % 2 == 0)
- return even_dollars
- def _to_unmasked_float_array(x):
- """
- Convert a sequence to a float array; if input was a masked array, masked
- values are converted to nans.
- """
- if hasattr(x, 'mask'):
- return np.ma.asarray(x, float).filled(np.nan)
- else:
- return np.asarray(x, float)
- def _check_1d(x):
- '''
- Converts a sequence of less than 1 dimension, to an array of 1
- dimension; leaves everything else untouched.
- '''
- if not hasattr(x, 'shape') or len(x.shape) < 1:
- return np.atleast_1d(x)
- else:
- try:
- # work around
- # https://github.com/pandas-dev/pandas/issues/27775 which
- # means the shape of multi-dimensional slicing is not as
- # expected. That this ever worked was an unintentional
- # quirk of pandas and will raise an exception in the
- # future. This slicing warns in pandas >= 1.0rc0 via
- # https://github.com/pandas-dev/pandas/pull/30588
- #
- # < 1.0rc0 : x[:, None].ndim == 1, no warning, custom type
- # >= 1.0rc1 : x[:, None].ndim == 2, warns, numpy array
- # future : x[:, None] -> raises
- #
- # This code should correctly identify and coerce to a
- # numpy array all pandas versions.
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings(
- "always",
- category=DeprecationWarning,
- message='Support for multi-dimensional indexing')
- ndim = x[:, None].ndim
- # we have definitely hit a pandas index or series object
- # cast to a numpy array.
- if len(w) > 0:
- return np.asanyarray(x)
- # We have likely hit a pandas object, or at least
- # something where 2D slicing does not result in a 2D
- # object.
- if ndim < 2:
- return np.atleast_1d(x)
- return x
- except (IndexError, TypeError):
- return np.atleast_1d(x)
- def _reshape_2D(X, name):
- """
- Use Fortran ordering to convert ndarrays and lists of iterables to lists of
- 1D arrays.
- Lists of iterables are converted by applying `np.asarray` to each of their
- elements. 1D ndarrays are returned in a singleton list containing them.
- 2D ndarrays are converted to the list of their *columns*.
- *name* is used to generate the error message for invalid inputs.
- """
- # Iterate over columns for ndarrays, over rows otherwise.
- X = np.atleast_1d(X.T if isinstance(X, np.ndarray) else np.asarray(X))
- if len(X) == 0:
- return [[]]
- elif X.ndim == 1 and np.ndim(X[0]) == 0:
- # 1D array of scalars: directly return it.
- return [X]
- elif X.ndim in [1, 2]:
- # 2D array, or 1D array of iterables: flatten them first.
- return [np.reshape(x, -1) for x in X]
- else:
- raise ValueError("{} must have 2 or fewer dimensions".format(name))
- def violin_stats(X, method, points=100, quantiles=None):
- """
- Returns a list of dictionaries of data which can be used to draw a series
- of violin plots.
- See the Returns section below to view the required keys of the dictionary.
- Users can skip this function and pass a user-defined set of dictionaries
- with the same keys to `~.axes.Axes.violinplot` instead of using Matplotlib
- to do the calculations. See the *Returns* section below for the keys
- that must be present in the dictionaries.
- Parameters
- ----------
- X : array-like
- Sample data that will be used to produce the gaussian kernel density
- estimates. Must have 2 or fewer dimensions.
- method : callable
- The method used to calculate the kernel density estimate for each
- column of data. When called via `method(v, coords)`, it should
- return a vector of the values of the KDE evaluated at the values
- specified in coords.
- points : int, default = 100
- Defines the number of points to evaluate each of the gaussian kernel
- density estimates at.
- quantiles : array-like, default = None
- Defines (if not None) a list of floats in interval [0, 1] for each
- column of data, which represents the quantiles that will be rendered
- for that column of data. Must have 2 or fewer dimensions. 1D array will
- be treated as a singleton list containing them.
- Returns
- -------
- vpstats : list of dict
- A list of dictionaries containing the results for each column of data.
- The dictionaries contain at least the following:
- - coords: A list of scalars containing the coordinates this particular
- kernel density estimate was evaluated at.
- - vals: A list of scalars containing the values of the kernel density
- estimate at each of the coordinates given in `coords`.
- - mean: The mean value for this column of data.
- - median: The median value for this column of data.
- - min: The minimum value for this column of data.
- - max: The maximum value for this column of data.
- - quantiles: The quantile values for this column of data.
- """
- # List of dictionaries describing each of the violins.
- vpstats = []
- # Want X to be a list of data sequences
- X = _reshape_2D(X, "X")
- # Want quantiles to be as the same shape as data sequences
- if quantiles is not None and len(quantiles) != 0:
- quantiles = _reshape_2D(quantiles, "quantiles")
- # Else, mock quantiles if is none or empty
- else:
- quantiles = [[]] * np.shape(X)[0]
- # quantiles should has the same size as dataset
- if np.shape(X)[:1] != np.shape(quantiles)[:1]:
- raise ValueError("List of violinplot statistics and quantiles values"
- " must have the same length")
- # Zip x and quantiles
- for (x, q) in zip(X, quantiles):
- # Dictionary of results for this distribution
- stats = {}
- # Calculate basic stats for the distribution
- min_val = np.min(x)
- max_val = np.max(x)
- quantile_val = np.percentile(x, 100 * q)
- # Evaluate the kernel density estimate
- coords = np.linspace(min_val, max_val, points)
- stats['vals'] = method(x, coords)
- stats['coords'] = coords
- # Store additional statistics for this distribution
- stats['mean'] = np.mean(x)
- stats['median'] = np.median(x)
- stats['min'] = min_val
- stats['max'] = max_val
- stats['quantiles'] = np.atleast_1d(quantile_val)
- # Append to output
- vpstats.append(stats)
- return vpstats
- def pts_to_prestep(x, *args):
- """
- Convert continuous line to pre-steps.
- Given a set of ``N`` points, convert to ``2N - 1`` points, which when
- connected linearly give a step function which changes values at the
- beginning of the intervals.
- Parameters
- ----------
- x : array
- The x location of the steps. May be empty.
- y1, ..., yp : array
- y arrays to be turned into steps; all must be the same length as ``x``.
- Returns
- -------
- out : array
- The x and y values converted to steps in the same order as the input;
- can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
- length ``N``, each of these arrays will be length ``2N + 1``. For
- ``N=0``, the length will be 0.
- Examples
- --------
- >>> x_s, y1_s, y2_s = pts_to_prestep(x, y1, y2)
- """
- steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0)))
- # In all `pts_to_*step` functions, only assign once using *x* and *args*,
- # as converting to an array may be expensive.
- steps[0, 0::2] = x
- steps[0, 1::2] = steps[0, 0:-2:2]
- steps[1:, 0::2] = args
- steps[1:, 1::2] = steps[1:, 2::2]
- return steps
- def pts_to_poststep(x, *args):
- """
- Convert continuous line to post-steps.
- Given a set of ``N`` points convert to ``2N + 1`` points, which when
- connected linearly give a step function which changes values at the end of
- the intervals.
- Parameters
- ----------
- x : array
- The x location of the steps. May be empty.
- y1, ..., yp : array
- y arrays to be turned into steps; all must be the same length as ``x``.
- Returns
- -------
- out : array
- The x and y values converted to steps in the same order as the input;
- can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
- length ``N``, each of these arrays will be length ``2N + 1``. For
- ``N=0``, the length will be 0.
- Examples
- --------
- >>> x_s, y1_s, y2_s = pts_to_poststep(x, y1, y2)
- """
- steps = np.zeros((1 + len(args), max(2 * len(x) - 1, 0)))
- steps[0, 0::2] = x
- steps[0, 1::2] = steps[0, 2::2]
- steps[1:, 0::2] = args
- steps[1:, 1::2] = steps[1:, 0:-2:2]
- return steps
- def pts_to_midstep(x, *args):
- """
- Convert continuous line to mid-steps.
- Given a set of ``N`` points convert to ``2N`` points which when connected
- linearly give a step function which changes values at the middle of the
- intervals.
- Parameters
- ----------
- x : array
- The x location of the steps. May be empty.
- y1, ..., yp : array
- y arrays to be turned into steps; all must be the same length as
- ``x``.
- Returns
- -------
- out : array
- The x and y values converted to steps in the same order as the input;
- can be unpacked as ``x_out, y1_out, ..., yp_out``. If the input is
- length ``N``, each of these arrays will be length ``2N``.
- Examples
- --------
- >>> x_s, y1_s, y2_s = pts_to_midstep(x, y1, y2)
- """
- steps = np.zeros((1 + len(args), 2 * len(x)))
- x = np.asanyarray(x)
- steps[0, 1:-1:2] = steps[0, 2::2] = (x[:-1] + x[1:]) / 2
- steps[0, :1] = x[:1] # Also works for zero-sized input.
- steps[0, -1:] = x[-1:]
- steps[1:, 0::2] = args
- steps[1:, 1::2] = steps[1:, 0::2]
- return steps
- STEP_LOOKUP_MAP = {'default': lambda x, y: (x, y),
- 'steps': pts_to_prestep,
- 'steps-pre': pts_to_prestep,
- 'steps-post': pts_to_poststep,
- 'steps-mid': pts_to_midstep}
- def index_of(y):
- """
- A helper function to create reasonable x values for the given *y*.
- This is used for plotting (x, y) if x values are not explicitly given.
- First try ``y.index`` (assuming *y* is a `pandas.Series`), if that
- fails, use ``range(len(y))``.
- This will be extended in the future to deal with more types of
- labeled data.
- Parameters
- ----------
- y : scalar or array-like
- Returns
- -------
- x, y : ndarray
- The x and y values to plot.
- """
- try:
- return y.index.values, y.values
- except AttributeError:
- y = _check_1d(y)
- return np.arange(y.shape[0], dtype=float), y
- def safe_first_element(obj):
- """
- Return the first element in *obj*.
- This is an type-independent way of obtaining the first element, supporting
- both index access and the iterator protocol.
- """
- if isinstance(obj, collections.abc.Iterator):
- # needed to accept `array.flat` as input.
- # np.flatiter reports as an instance of collections.Iterator
- # but can still be indexed via [].
- # This has the side effect of re-setting the iterator, but
- # that is acceptable.
- try:
- return obj[0]
- except TypeError:
- pass
- raise RuntimeError("matplotlib does not support generators "
- "as input")
- return next(iter(obj))
- def sanitize_sequence(data):
- """
- Convert dictview objects to list. Other inputs are returned unchanged.
- """
- return (list(data) if isinstance(data, collections.abc.MappingView)
- else data)
- def normalize_kwargs(kw, alias_mapping=None, required=(), forbidden=(),
- allowed=None):
- """
- Helper function to normalize kwarg inputs.
- The order they are resolved are:
- 1. aliasing
- 2. required
- 3. forbidden
- 4. allowed
- This order means that only the canonical names need appear in
- *allowed*, *forbidden*, *required*.
- Parameters
- ----------
- kw : dict
- A dict of keyword arguments.
- alias_mapping : dict or Artist subclass or Artist instance, optional
- A mapping between a canonical name to a list of
- aliases, in order of precedence from lowest to highest.
- If the canonical value is not in the list it is assumed to have
- the highest priority.
- If an Artist subclass or instance is passed, use its properties alias
- mapping.
- required : list of str, optional
- A list of keys that must be in *kws*.
- forbidden : list of str, optional
- A list of keys which may not be in *kw*.
- allowed : list of str, optional
- A list of allowed fields. If this not None, then raise if
- *kw* contains any keys not in the union of *required*
- and *allowed*. To allow only the required fields pass in
- an empty tuple ``allowed=()``.
- Raises
- ------
- TypeError
- To match what python raises if invalid args/kwargs are passed to
- a callable.
- """
- from matplotlib.artist import Artist
- # deal with default value of alias_mapping
- if alias_mapping is None:
- alias_mapping = dict()
- elif (isinstance(alias_mapping, type) and issubclass(alias_mapping, Artist)
- or isinstance(alias_mapping, Artist)):
- alias_mapping = getattr(alias_mapping, "_alias_map", {})
- # make a local so we can pop
- kw = dict(kw)
- # output dictionary
- ret = dict()
- # hit all alias mappings
- for canonical, alias_list in alias_mapping.items():
- # the alias lists are ordered from lowest to highest priority
- # so we know to use the last value in this list
- tmp = []
- seen = []
- for a in alias_list:
- try:
- tmp.append(kw.pop(a))
- seen.append(a)
- except KeyError:
- pass
- # if canonical is not in the alias_list assume highest priority
- if canonical not in alias_list:
- try:
- tmp.append(kw.pop(canonical))
- seen.append(canonical)
- except KeyError:
- pass
- # if we found anything in this set of aliases put it in the return
- # dict
- if tmp:
- ret[canonical] = tmp[-1]
- if len(tmp) > 1:
- warn_deprecated(
- "3.1", message=f"Saw kwargs {seen!r} which are all "
- f"aliases for {canonical!r}. Kept value from "
- f"{seen[-1]!r}. Passing multiple aliases for the same "
- f"property will raise a TypeError %(removal)s.")
- # at this point we know that all keys which are aliased are removed, update
- # the return dictionary from the cleaned local copy of the input
- ret.update(kw)
- fail_keys = [k for k in required if k not in ret]
- if fail_keys:
- raise TypeError("The required keys {keys!r} "
- "are not in kwargs".format(keys=fail_keys))
- fail_keys = [k for k in forbidden if k in ret]
- if fail_keys:
- raise TypeError("The forbidden keys {keys!r} "
- "are in kwargs".format(keys=fail_keys))
- if allowed is not None:
- allowed_set = {*required, *allowed}
- fail_keys = [k for k in ret if k not in allowed_set]
- if fail_keys:
- raise TypeError(
- "kwargs contains {keys!r} which are not in the required "
- "{req!r} or allowed {allow!r} keys".format(
- keys=fail_keys, req=required, allow=allowed))
- return ret
- @deprecated("3.1")
- def get_label(y, default_name):
- try:
- return y.name
- except AttributeError:
- return default_name
- _lockstr = """\
- LOCKERROR: matplotlib is trying to acquire the lock
- {!r}
- and has failed. This maybe due to any other process holding this
- lock. If you are sure no other matplotlib process is running try
- removing these folders and trying again.
- """
- @contextlib.contextmanager
- def _lock_path(path):
- """
- Context manager for locking a path.
- Usage::
- with _lock_path(path):
- ...
- Another thread or process that attempts to lock the same path will wait
- until this context manager is exited.
- The lock is implemented by creating a temporary file in the parent
- directory, so that directory must exist and be writable.
- """
- path = Path(path)
- lock_path = path.with_name(path.name + ".matplotlib-lock")
- retries = 50
- sleeptime = 0.1
- for _ in range(retries):
- try:
- with lock_path.open("xb"):
- break
- except FileExistsError:
- time.sleep(sleeptime)
- else:
- raise TimeoutError("""\
- Lock error: Matplotlib failed to acquire the following lock file:
- {}
- This maybe due to another process holding this lock file. If you are sure no
- other Matplotlib process is running, remove this file and try again.""".format(
- lock_path))
- try:
- yield
- finally:
- lock_path.unlink()
- def _topmost_artist(
- artists,
- _cached_max=functools.partial(max, key=operator.attrgetter("zorder"))):
- """Get the topmost artist of a list.
- In case of a tie, return the *last* of the tied artists, as it will be
- drawn on top of the others. `max` returns the first maximum in case of
- ties, so we need to iterate over the list in reverse order.
- """
- return _cached_max(reversed(artists))
- def _str_equal(obj, s):
- """Return whether *obj* is a string equal to string *s*.
- This helper solely exists to handle the case where *obj* is a numpy array,
- because in such cases, a naive ``obj == s`` would yield an array, which
- cannot be used in a boolean context.
- """
- return isinstance(obj, str) and obj == s
- def _str_lower_equal(obj, s):
- """Return whether *obj* is a string equal, when lowercased, to string *s*.
- This helper solely exists to handle the case where *obj* is a numpy array,
- because in such cases, a naive ``obj == s`` would yield an array, which
- cannot be used in a boolean context.
- """
- return isinstance(obj, str) and obj.lower() == s
- def _define_aliases(alias_d, cls=None):
- """Class decorator for defining property aliases.
- Use as ::
- @cbook._define_aliases({"property": ["alias", ...], ...})
- class C: ...
- For each property, if the corresponding ``get_property`` is defined in the
- class so far, an alias named ``get_alias`` will be defined; the same will
- be done for setters. If neither the getter nor the setter exists, an
- exception will be raised.
- The alias map is stored as the ``_alias_map`` attribute on the class and
- can be used by `~.normalize_kwargs` (which assumes that higher priority
- aliases come last).
- """
- if cls is None: # Return the actual class decorator.
- return functools.partial(_define_aliases, alias_d)
- def make_alias(name): # Enforce a closure over *name*.
- @functools.wraps(getattr(cls, name))
- def method(self, *args, **kwargs):
- return getattr(self, name)(*args, **kwargs)
- return method
- for prop, aliases in alias_d.items():
- exists = False
- for prefix in ["get_", "set_"]:
- if prefix + prop in vars(cls):
- exists = True
- for alias in aliases:
- method = make_alias(prefix + prop)
- method.__name__ = prefix + alias
- method.__doc__ = "Alias for `{}`.".format(prefix + prop)
- setattr(cls, prefix + alias, method)
- if not exists:
- raise ValueError(
- "Neither getter nor setter exists for {!r}".format(prop))
- if hasattr(cls, "_alias_map"):
- # Need to decide on conflict resolution policy.
- raise NotImplementedError("Parent class already defines aliases")
- cls._alias_map = alias_d
- return cls
- def _array_perimeter(arr):
- """
- Get the elements on the perimeter of ``arr``,
- Parameters
- ----------
- arr : ndarray, shape (M, N)
- The input array
- Returns
- -------
- perimeter : ndarray, shape (2*(M - 1) + 2*(N - 1),)
- The elements on the perimeter of the array::
- [arr[0, 0], ..., arr[0, -1], ..., arr[-1, -1], ..., arr[-1, 0], ...]
- Examples
- --------
- >>> i, j = np.ogrid[:3,:4]
- >>> a = i*10 + j
- >>> a
- array([[ 0, 1, 2, 3],
- [10, 11, 12, 13],
- [20, 21, 22, 23]])
- >>> _array_perimeter(a)
- array([ 0, 1, 2, 3, 13, 23, 22, 21, 20, 10])
- """
- # note we use Python's half-open ranges to avoid repeating
- # the corners
- forward = np.s_[0:-1] # [0 ... -1)
- backward = np.s_[-1:0:-1] # [-1 ... 0)
- return np.concatenate((
- arr[0, forward],
- arr[forward, -1],
- arr[-1, backward],
- arr[backward, 0],
- ))
- @contextlib.contextmanager
- def _setattr_cm(obj, **kwargs):
- """Temporarily set some attributes; restore original state at context exit.
- """
- sentinel = object()
- origs = [(attr, getattr(obj, attr, sentinel)) for attr in kwargs]
- try:
- for attr, val in kwargs.items():
- setattr(obj, attr, val)
- yield
- finally:
- for attr, orig in origs:
- if orig is sentinel:
- delattr(obj, attr)
- else:
- setattr(obj, attr, orig)
- def _warn_external(message, category=None):
- """
- `warnings.warn` wrapper that sets *stacklevel* to "outside Matplotlib".
- The original emitter of the warning can be obtained by patching this
- function back to `warnings.warn`, i.e. ``cbook._warn_external =
- warnings.warn`` (or ``functools.partial(warnings.warn, stacklevel=2)``,
- etc.).
- """
- frame = sys._getframe()
- for stacklevel in itertools.count(1): # lgtm[py/unused-loop-variable]
- if frame is None:
- # when called in embedded context may hit frame is None
- break
- if not re.match(r"\A(matplotlib|mpl_toolkits)(\Z|\.(?!tests\.))",
- # Work around sphinx-gallery not setting __name__.
- frame.f_globals.get("__name__", "")):
- break
- frame = frame.f_back
- warnings.warn(message, category, stacklevel)
- class _OrderedSet(collections.abc.MutableSet):
- def __init__(self):
- self._od = collections.OrderedDict()
- def __contains__(self, key):
- return key in self._od
- def __iter__(self):
- return iter(self._od)
- def __len__(self):
- return len(self._od)
- def add(self, key):
- self._od.pop(key, None)
- self._od[key] = None
- def discard(self, key):
- self._od.pop(key, None)
- # Agg's buffers are unmultiplied RGBA8888, which neither PyQt4 nor cairo
- # support; however, both do support premultiplied ARGB32.
- def _premultiplied_argb32_to_unmultiplied_rgba8888(buf):
- """
- Convert a premultiplied ARGB32 buffer to an unmultiplied RGBA8888 buffer.
- """
- rgba = np.take( # .take() ensures C-contiguity of the result.
- buf,
- [2, 1, 0, 3] if sys.byteorder == "little" else [1, 2, 3, 0], axis=2)
- rgb = rgba[..., :-1]
- alpha = rgba[..., -1]
- # Un-premultiply alpha. The formula is the same as in cairo-png.c.
- mask = alpha != 0
- for channel in np.rollaxis(rgb, -1):
- channel[mask] = (
- (channel[mask].astype(int) * 255 + alpha[mask] // 2)
- // alpha[mask])
- return rgba
- def _unmultiplied_rgba8888_to_premultiplied_argb32(rgba8888):
- """
- Convert an unmultiplied RGBA8888 buffer to a premultiplied ARGB32 buffer.
- """
- if sys.byteorder == "little":
- argb32 = np.take(rgba8888, [2, 1, 0, 3], axis=2)
- rgb24 = argb32[..., :-1]
- alpha8 = argb32[..., -1:]
- else:
- argb32 = np.take(rgba8888, [3, 0, 1, 2], axis=2)
- alpha8 = argb32[..., :1]
- rgb24 = argb32[..., 1:]
- # Only bother premultiplying when the alpha channel is not fully opaque,
- # as the cost is not negligible. The unsafe cast is needed to do the
- # multiplication in-place in an integer buffer.
- if alpha8.min() != 0xff:
- np.multiply(rgb24, alpha8 / 0xff, out=rgb24, casting="unsafe")
- return argb32
- def _pformat_subprocess(command):
- """Pretty-format a subprocess command for printing/logging purposes."""
- return (command if isinstance(command, str)
- else " ".join(shlex.quote(os.fspath(arg)) for arg in command))
- def _check_and_log_subprocess(command, logger, **kwargs):
- """
- Run *command*, returning its stdout output if it succeeds.
- If it fails (exits with nonzero return code), raise an exception whose text
- includes the failed command and captured stdout and stderr output.
- Regardless of the return code, the command is logged at DEBUG level on
- *logger*. In case of success, the output is likewise logged.
- """
- logger.debug('%s', _pformat_subprocess(command))
- proc = subprocess.run(
- command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs)
- if proc.returncode:
- raise RuntimeError(
- f"The command\n"
- f" {_pformat_subprocess(command)}\n"
- f"failed and generated the following output:\n"
- f"{proc.stdout.decode('utf-8')}\n"
- f"and the following error:\n"
- f"{proc.stderr.decode('utf-8')}")
- logger.debug("stdout:\n%s", proc.stdout)
- logger.debug("stderr:\n%s", proc.stderr)
- return proc.stdout
- # In the following _check_foo functions, the first parameter starts with an
- # underscore because it is intended to be positional-only (e.g., so that
- # `_check_isinstance([...], types=foo)` doesn't fail.
- def _check_isinstance(_types, **kwargs):
- """
- For each *key, value* pair in *kwargs*, check that *value* is an instance
- of one of *_types*; if not, raise an appropriate TypeError.
- As a special case, a ``None`` entry in *_types* is treated as NoneType.
- Examples
- --------
- >>> cbook._check_isinstance((SomeClass, None), arg=arg)
- """
- types = _types
- if isinstance(types, type) or types is None:
- types = (types,)
- none_allowed = None in types
- types = tuple(tp for tp in types if tp is not None)
- def type_name(tp):
- return (tp.__qualname__ if tp.__module__ == "builtins"
- else f"{tp.__module__}.{tp.__qualname__}")
- names = [*map(type_name, types)]
- if none_allowed:
- types = (*types, type(None))
- names.append("None")
- for k, v in kwargs.items():
- if not isinstance(v, types):
- raise TypeError(
- "{!r} must be an instance of {}, not a {}".format(
- k,
- ", ".join(names[:-1]) + " or " + names[-1]
- if len(names) > 1 else names[0],
- type_name(type(v))))
- def _check_in_list(_values, **kwargs):
- """
- For each *key, value* pair in *kwargs*, check that *value* is in *_values*;
- if not, raise an appropriate ValueError.
- Examples
- --------
- >>> cbook._check_in_list(["foo", "bar"], arg=arg, other_arg=other_arg)
- """
- values = _values
- for k, v in kwargs.items():
- if v not in values:
- raise ValueError(
- "{!r} is not a valid value for {}; supported values are {}"
- .format(v, k, ', '.join(map(repr, values))))
- def _check_getitem(_mapping, **kwargs):
- """
- *kwargs* must consist of a single *key, value* pair. If *key* is in
- *_mapping*, return ``_mapping[value]``; else, raise an appropriate
- ValueError.
- Examples
- --------
- >>> cbook._check_getitem({"foo": "bar"}, arg=arg)
- """
- mapping = _mapping
- if len(kwargs) != 1:
- raise ValueError("_check_getitem takes a single keyword argument")
- (k, v), = kwargs.items()
- try:
- return mapping[v]
- except KeyError:
- raise ValueError(
- "{!r} is not a valid value for {}; supported values are {}"
- .format(v, k, ', '.join(map(repr, mapping)))) from None
- class _classproperty:
- """
- Like `property`, but also triggers on access via the class, and it is the
- *class* that's passed as argument.
- Examples
- --------
- ::
- class C:
- @classproperty
- def foo(cls):
- return cls.__name__
- assert C.foo == "C"
- """
- def __init__(self, fget):
- self._fget = fget
- def __get__(self, instance, owner):
- return self._fget(owner)
|