"""Plotting functions for visualizing distributions.""" import numpy as np from scipy import stats import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.transforms as tx from matplotlib.collections import LineCollection import warnings try: import statsmodels.nonparametric.api as smnp _has_statsmodels = True except ImportError: _has_statsmodels = False from .utils import iqr, _kde_support, remove_na from .palettes import color_palette, light_palette, dark_palette, blend_palette __all__ = ["distplot", "kdeplot", "rugplot"] def _freedman_diaconis_bins(a): """Calculate number of hist bins using Freedman-Diaconis rule.""" # From https://stats.stackexchange.com/questions/798/ a = np.asarray(a) if len(a) < 2: return 1 h = 2 * iqr(a) / (len(a) ** (1 / 3)) # fall back to sqrt(a) bins if iqr is 0 if h == 0: return int(np.sqrt(a.size)) else: return int(np.ceil((a.max() - a.min()) / h)) def distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None): """Flexibly plot a univariate distribution of observations. This function combines the matplotlib ``hist`` function (with automatic calculation of a good default bin size) with the seaborn :func:`kdeplot` and :func:`rugplot` functions. It can also fit ``scipy.stats`` distributions and plot the estimated PDF over the data. Parameters ---------- a : Series, 1d-array, or list. Observed data. If this is a Series object with a ``name`` attribute, the name will be used to label the data axis. bins : argument for matplotlib hist(), or None, optional Specification of hist bins. If unspecified, as reference rule is used that tries to find a useful default. hist : bool, optional Whether to plot a (normed) histogram. kde : bool, optional Whether to plot a gaussian kernel density estimate. rug : bool, optional Whether to draw a rugplot on the support axis. fit : random variable object, optional An object with `fit` method, returning a tuple that can be passed to a `pdf` method a positional arguments following a grid of values to evaluate the pdf on. hist_kws : dict, optional Keyword arguments for :meth:`matplotlib.axes.Axes.hist`. kde_kws : dict, optional Keyword arguments for :func:`kdeplot`. rug_kws : dict, optional Keyword arguments for :func:`rugplot`. color : matplotlib color, optional Color to plot everything but the fitted curve in. vertical : bool, optional If True, observed values are on y-axis. norm_hist : bool, optional If True, the histogram height shows a density rather than a count. This is implied if a KDE or fitted density is plotted. axlabel : string, False, or None, optional Name for the support axis label. If None, will try to get it from a.name if False, do not set a label. label : string, optional Legend label for the relevant component of the plot. ax : matplotlib axis, optional If provided, plot on this axis. Returns ------- ax : matplotlib Axes Returns the Axes object with the plot for further tweaking. See Also -------- kdeplot : Show a univariate or bivariate distribution with a kernel density estimate. rugplot : Draw small vertical lines to show each observation in a distribution. Examples -------- Show a default plot with a kernel density estimate and histogram with bin size determined automatically with a reference rule: .. plot:: :context: close-figs >>> import seaborn as sns, numpy as np >>> sns.set(); np.random.seed(0) >>> x = np.random.randn(100) >>> ax = sns.distplot(x) Use Pandas objects to get an informative axis label: .. plot:: :context: close-figs >>> import pandas as pd >>> x = pd.Series(x, name="x variable") >>> ax = sns.distplot(x) Plot the distribution with a kernel density estimate and rug plot: .. plot:: :context: close-figs >>> ax = sns.distplot(x, rug=True, hist=False) Plot the distribution with a histogram and maximum likelihood gaussian distribution fit: .. plot:: :context: close-figs >>> from scipy.stats import norm >>> ax = sns.distplot(x, fit=norm, kde=False) Plot the distribution on the vertical axis: .. plot:: :context: close-figs >>> ax = sns.distplot(x, vertical=True) Change the color of all the plot elements: .. plot:: :context: close-figs >>> sns.set_color_codes() >>> ax = sns.distplot(x, color="y") Pass specific parameters to the underlying plot functions: .. plot:: :context: close-figs >>> ax = sns.distplot(x, rug=True, rug_kws={"color": "g"}, ... kde_kws={"color": "k", "lw": 3, "label": "KDE"}, ... hist_kws={"histtype": "step", "linewidth": 3, ... "alpha": 1, "color": "g"}) """ if ax is None: ax = plt.gca() # Intelligently label the support axis label_ax = bool(axlabel) if axlabel is None and hasattr(a, "name"): axlabel = a.name if axlabel is not None: label_ax = True # Make a a 1-d float array a = np.asarray(a, np.float) if a.ndim > 1: a = a.squeeze() # Drop null values from array a = remove_na(a) # Decide if the hist is normed norm_hist = norm_hist or kde or (fit is not None) # Handle dictionary defaults hist_kws = {} if hist_kws is None else hist_kws.copy() kde_kws = {} if kde_kws is None else kde_kws.copy() rug_kws = {} if rug_kws is None else rug_kws.copy() fit_kws = {} if fit_kws is None else fit_kws.copy() # Get the color from the current color cycle if color is None: if vertical: line, = ax.plot(0, a.mean()) else: line, = ax.plot(a.mean(), 0) color = line.get_color() line.remove() # Plug the label into the right kwarg dictionary if label is not None: if hist: hist_kws["label"] = label elif kde: kde_kws["label"] = label elif rug: rug_kws["label"] = label elif fit: fit_kws["label"] = label if hist: if bins is None: bins = min(_freedman_diaconis_bins(a), 50) hist_kws.setdefault("alpha", 0.4) hist_kws.setdefault("density", norm_hist) orientation = "horizontal" if vertical else "vertical" hist_color = hist_kws.pop("color", color) ax.hist(a, bins, orientation=orientation, color=hist_color, **hist_kws) if hist_color != color: hist_kws["color"] = hist_color if kde: kde_color = kde_kws.pop("color", color) kdeplot(a, vertical=vertical, ax=ax, color=kde_color, **kde_kws) if kde_color != color: kde_kws["color"] = kde_color if rug: rug_color = rug_kws.pop("color", color) axis = "y" if vertical else "x" rugplot(a, axis=axis, ax=ax, color=rug_color, **rug_kws) if rug_color != color: rug_kws["color"] = rug_color if fit is not None: def pdf(x): return fit.pdf(x, *params) fit_color = fit_kws.pop("color", "#282828") gridsize = fit_kws.pop("gridsize", 200) cut = fit_kws.pop("cut", 3) clip = fit_kws.pop("clip", (-np.inf, np.inf)) bw = stats.gaussian_kde(a).scotts_factor() * a.std(ddof=1) x = _kde_support(a, bw, gridsize, cut, clip) params = fit.fit(a) y = pdf(x) if vertical: x, y = y, x ax.plot(x, y, color=fit_color, **fit_kws) if fit_color != "#282828": fit_kws["color"] = fit_color if label_ax: if vertical: ax.set_ylabel(axlabel) else: ax.set_xlabel(axlabel) return ax def _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, legend, ax, cumulative=False, **kwargs): """Plot a univariate kernel density estimate on one of the axes.""" # Sort out the clipping if clip is None: clip = (-np.inf, np.inf) # Preprocess the data data = remove_na(data) # Calculate the KDE if np.nan_to_num(data.var()) == 0: # Don't try to compute KDE on singular data msg = "Data must have variance to compute a kernel density estimate." warnings.warn(msg, UserWarning) x, y = np.array([]), np.array([]) elif _has_statsmodels: # Prefer using statsmodels for kernel flexibility x, y = _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip, cumulative=cumulative) else: # Fall back to scipy if missing statsmodels if kernel != "gau": kernel = "gau" msg = "Kernel other than `gau` requires statsmodels." warnings.warn(msg, UserWarning) if cumulative: raise ImportError("Cumulative distributions are currently " "only implemented in statsmodels. " "Please install statsmodels.") x, y = _scipy_univariate_kde(data, bw, gridsize, cut, clip) # Make sure the density is nonnegative y = np.amax(np.c_[np.zeros_like(y), y], axis=1) # Flip the data if the plot should be on the y axis if vertical: x, y = y, x # Check if a label was specified in the call label = kwargs.pop("label", None) # Otherwise check if the data object has a name if label is None and hasattr(data, "name"): label = data.name # Decide if we're going to add a legend legend = label is not None and legend label = "_nolegend_" if label is None else label # Use the active color cycle to find the plot color facecolor = kwargs.pop("facecolor", None) line, = ax.plot(x, y, **kwargs) color = line.get_color() line.remove() kwargs.pop("color", None) facecolor = color if facecolor is None else facecolor # Draw the KDE plot and, optionally, shade ax.plot(x, y, color=color, label=label, **kwargs) shade_kws = dict( facecolor=facecolor, alpha=kwargs.get("alpha", 0.25), clip_on=kwargs.get("clip_on", True), zorder=kwargs.get("zorder", 1), ) if shade: if vertical: ax.fill_betweenx(y, 0, x, **shade_kws) else: ax.fill_between(x, 0, y, **shade_kws) # Set the density axis minimum to 0 if vertical: ax.set_xlim(0, auto=None) else: ax.set_ylim(0, auto=None) # Draw the legend here handles, labels = ax.get_legend_handles_labels() if legend and handles: ax.legend(loc="best") return ax def _statsmodels_univariate_kde(data, kernel, bw, gridsize, cut, clip, cumulative=False): """Compute a univariate kernel density estimate using statsmodels.""" fft = kernel == "gau" kde = smnp.KDEUnivariate(data) try: kde.fit(kernel, bw, fft, gridsize=gridsize, cut=cut, clip=clip) except RuntimeError as err: # GH#1990 if stats.iqr(data) > 0: raise err msg = "Default bandwidth for data is 0; skipping density estimation." warnings.warn(msg, UserWarning) return np.array([]), np.array([]) if cumulative: grid, y = kde.support, kde.cdf else: grid, y = kde.support, kde.density return grid, y def _scipy_univariate_kde(data, bw, gridsize, cut, clip): """Compute a univariate kernel density estimate using scipy.""" kde = stats.gaussian_kde(data, bw_method=bw) if isinstance(bw, str): bw = "scotts" if bw == "scott" else bw bw = getattr(kde, "%s_factor" % bw)() * np.std(data) grid = _kde_support(data, bw, gridsize, cut, clip) y = kde(grid) return grid, y def _bivariate_kdeplot(x, y, filled, fill_lowest, kernel, bw, gridsize, cut, clip, axlabel, cbar, cbar_ax, cbar_kws, ax, **kwargs): """Plot a joint KDE estimate as a bivariate contour plot.""" # Determine the clipping if clip is None: clip = [(-np.inf, np.inf), (-np.inf, np.inf)] elif np.ndim(clip) == 1: clip = [clip, clip] # Calculate the KDE if _has_statsmodels: xx, yy, z = _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip) else: xx, yy, z = _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip) # Plot the contours n_levels = kwargs.pop("n_levels", 10) scout, = ax.plot([], []) default_color = scout.get_color() scout.remove() cmap = kwargs.pop("cmap", None) color = kwargs.pop("color", None) if cmap is None and "colors" not in kwargs: if color is None: color = default_color if filled: cmap = light_palette(color, as_cmap=True) else: cmap = dark_palette(color, as_cmap=True) if isinstance(cmap, str): if cmap.endswith("_d"): pal = ["#333333"] pal.extend(color_palette(cmap.replace("_d", "_r"), 2)) cmap = blend_palette(pal, as_cmap=True) else: cmap = mpl.cm.get_cmap(cmap) label = kwargs.pop("label", None) kwargs["cmap"] = cmap contour_func = ax.contourf if filled else ax.contour cset = contour_func(xx, yy, z, n_levels, **kwargs) if filled and not fill_lowest: cset.collections[0].set_alpha(0) kwargs["n_levels"] = n_levels if cbar: cbar_kws = {} if cbar_kws is None else cbar_kws ax.figure.colorbar(cset, cbar_ax, ax, **cbar_kws) # Label the axes if hasattr(x, "name") and axlabel: ax.set_xlabel(x.name) if hasattr(y, "name") and axlabel: ax.set_ylabel(y.name) if label is not None: legend_color = cmap(.95) if color is None else color if filled: ax.fill_between([], [], color=legend_color, label=label) else: ax.plot([], [], color=legend_color, label=label) return ax def _statsmodels_bivariate_kde(x, y, bw, gridsize, cut, clip): """Compute a bivariate kde using statsmodels.""" if isinstance(bw, str): bw_func = getattr(smnp.bandwidths, "bw_" + bw) x_bw = bw_func(x) y_bw = bw_func(y) bw = [x_bw, y_bw] elif np.isscalar(bw): bw = [bw, bw] if isinstance(x, pd.Series): x = x.values if isinstance(y, pd.Series): y = y.values kde = smnp.KDEMultivariate([x, y], "cc", bw) x_support = _kde_support(x, kde.bw[0], gridsize, cut, clip[0]) y_support = _kde_support(y, kde.bw[1], gridsize, cut, clip[1]) xx, yy = np.meshgrid(x_support, y_support) z = kde.pdf([xx.ravel(), yy.ravel()]).reshape(xx.shape) return xx, yy, z def _scipy_bivariate_kde(x, y, bw, gridsize, cut, clip): """Compute a bivariate kde using scipy.""" data = np.c_[x, y] kde = stats.gaussian_kde(data.T, bw_method=bw) data_std = data.std(axis=0, ddof=1) if isinstance(bw, str): bw = "scotts" if bw == "scott" else bw bw_x = getattr(kde, "%s_factor" % bw)() * data_std[0] bw_y = getattr(kde, "%s_factor" % bw)() * data_std[1] elif np.isscalar(bw): bw_x, bw_y = bw, bw else: msg = ("Cannot specify a different bandwidth for each dimension " "with the scipy backend. You should install statsmodels.") raise ValueError(msg) x_support = _kde_support(data[:, 0], bw_x, gridsize, cut, clip[0]) y_support = _kde_support(data[:, 1], bw_y, gridsize, cut, clip[1]) xx, yy = np.meshgrid(x_support, y_support) z = kde([xx.ravel(), yy.ravel()]).reshape(xx.shape) return xx, yy, z def kdeplot(data, data2=None, shade=False, vertical=False, kernel="gau", bw="scott", gridsize=100, cut=3, clip=None, legend=True, cumulative=False, shade_lowest=True, cbar=False, cbar_ax=None, cbar_kws=None, ax=None, **kwargs): """Fit and plot a univariate or bivariate kernel density estimate. Parameters ---------- data : 1d array-like Input data. data2: 1d array-like, optional Second input data. If present, a bivariate KDE will be estimated. shade : bool, optional If True, shade in the area under the KDE curve (or draw with filled contours when data is bivariate). vertical : bool, optional If True, density is on x-axis. kernel : {'gau' | 'cos' | 'biw' | 'epa' | 'tri' | 'triw' }, optional Code for shape of kernel to fit with. Bivariate KDE can only use gaussian kernel. bw : {'scott' | 'silverman' | scalar | pair of scalars }, optional Name of reference method to determine kernel size, scalar factor, or scalar for each dimension of the bivariate plot. Note that the underlying computational libraries have different interperetations for this parameter: ``statsmodels`` uses it directly, but ``scipy`` treats it as a scaling factor for the standard deviation of the data. gridsize : int, optional Number of discrete points in the evaluation grid. cut : scalar, optional Draw the estimate to cut * bw from the extreme data points. clip : pair of scalars, or pair of pair of scalars, optional Lower and upper bounds for datapoints used to fit KDE. Can provide a pair of (low, high) bounds for bivariate plots. legend : bool, optional If True, add a legend or label the axes when possible. cumulative : bool, optional If True, draw the cumulative distribution estimated by the kde. shade_lowest : bool, optional If True, shade the lowest contour of a bivariate KDE plot. Not relevant when drawing a univariate plot or when ``shade=False``. Setting this to ``False`` can be useful when you want multiple densities on the same Axes. cbar : bool, optional If True and drawing a bivariate KDE plot, add a colorbar. cbar_ax : matplotlib axes, optional Existing axes to draw the colorbar onto, otherwise space is taken from the main axes. cbar_kws : dict, optional Keyword arguments for ``fig.colorbar()``. ax : matplotlib axes, optional Axes to plot on, otherwise uses current axes. kwargs : key, value pairings Other keyword arguments are passed to ``plt.plot()`` or ``plt.contour{f}`` depending on whether a univariate or bivariate plot is being drawn. Returns ------- ax : matplotlib Axes Axes with plot. See Also -------- distplot: Flexibly plot a univariate distribution of observations. jointplot: Plot a joint dataset with bivariate and marginal distributions. Examples -------- Plot a basic univariate density: .. plot:: :context: close-figs >>> import numpy as np; np.random.seed(10) >>> import seaborn as sns; sns.set(color_codes=True) >>> mean, cov = [0, 2], [(1, .5), (.5, 1)] >>> x, y = np.random.multivariate_normal(mean, cov, size=50).T >>> ax = sns.kdeplot(x) Shade under the density curve and use a different color: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, shade=True, color="r") Plot a bivariate density: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, y) Use filled contours: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, y, shade=True) Use more contour levels and a different color palette: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, y, n_levels=30, cmap="Purples_d") Use a narrower bandwith: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, bw=.15) Plot the density on the vertical axis: .. plot:: :context: close-figs >>> ax = sns.kdeplot(y, vertical=True) Limit the density curve within the range of the data: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, cut=0) Add a colorbar for the contours: .. plot:: :context: close-figs >>> ax = sns.kdeplot(x, y, cbar=True) Plot two shaded bivariate densities: .. plot:: :context: close-figs >>> iris = sns.load_dataset("iris") >>> setosa = iris.loc[iris.species == "setosa"] >>> virginica = iris.loc[iris.species == "virginica"] >>> ax = sns.kdeplot(setosa.sepal_width, setosa.sepal_length, ... cmap="Reds", shade=True, shade_lowest=False) >>> ax = sns.kdeplot(virginica.sepal_width, virginica.sepal_length, ... cmap="Blues", shade=True, shade_lowest=False) """ if ax is None: ax = plt.gca() if isinstance(data, list): data = np.asarray(data) if len(data) == 0: return ax data = data.astype(np.float64) if data2 is not None: if isinstance(data2, list): data2 = np.asarray(data2) data2 = data2.astype(np.float64) warn = False bivariate = False if isinstance(data, np.ndarray) and np.ndim(data) > 1: warn = True bivariate = True x, y = data.T elif isinstance(data, pd.DataFrame) and np.ndim(data) > 1: warn = True bivariate = True x = data.iloc[:, 0].values y = data.iloc[:, 1].values elif data2 is not None: bivariate = True x = data y = data2 if warn: warn_msg = ("Passing a 2D dataset for a bivariate plot is deprecated " "in favor of kdeplot(x, y), and it will cause an error in " "future versions. Please update your code.") warnings.warn(warn_msg, UserWarning) if bivariate and cumulative: raise TypeError("Cumulative distribution plots are not" "supported for bivariate distributions.") if bivariate: ax = _bivariate_kdeplot(x, y, shade, shade_lowest, kernel, bw, gridsize, cut, clip, legend, cbar, cbar_ax, cbar_kws, ax, **kwargs) else: ax = _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, legend, ax, cumulative=cumulative, **kwargs) return ax def rugplot(a, height=.05, axis="x", ax=None, **kwargs): """Plot datapoints in an array as sticks on an axis. Parameters ---------- a : vector 1D array of observations. height : scalar, optional Height of ticks as proportion of the axis. axis : {'x' | 'y'}, optional Axis to draw rugplot on. ax : matplotlib axes, optional Axes to draw plot into; otherwise grabs current axes. kwargs : key, value pairings Other keyword arguments are passed to ``LineCollection``. Returns ------- ax : matplotlib axes The Axes object with the plot on it. """ if ax is None: ax = plt.gca() a = np.asarray(a) vertical = kwargs.pop("vertical", axis == "y") alias_map = dict(linewidth="lw", linestyle="ls", color="c") for attr, alias in alias_map.items(): if alias in kwargs: kwargs[attr] = kwargs.pop(alias) kwargs.setdefault("linewidth", 1) if vertical: trans = tx.blended_transform_factory(ax.transAxes, ax.transData) xy_pairs = np.column_stack([np.tile([0, height], len(a)), np.repeat(a, 2)]) else: trans = tx.blended_transform_factory(ax.transData, ax.transAxes) xy_pairs = np.column_stack([np.repeat(a, 2), np.tile([0, height], len(a))]) line_segs = xy_pairs.reshape([len(a), 2, 2]) ax.add_collection(LineCollection(line_segs, transform=trans, **kwargs)) ax.autoscale_view(scalex=not vertical, scaley=vertical) return ax