12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201 |
- from abc import ABCMeta, abstractmethod
- from random import randint
- import re
- from os import getcwd
- import os
- import logging
- import numpy as np
- from sklearn.feature_extraction import DictVectorizer
- from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
- from sklearn.linear_model import *
- from sklearn.model_selection import train_test_split
- from pyecharts.components import Table
- from pyecharts.globals import SymbolType
- from pyecharts.charts import *
- from pyecharts import options as opts
- import pandas as pd
- import pandas_profiling as pp
- from pyecharts.globals import CurrentConfig
- from pyecharts.globals import GeoType # 地图推荐使用GeoType而不是str
- from system import plugin_class_loading, get_path, basicConfig
- logging.basicConfig(**basicConfig)
- CurrentConfig.ONLINE_HOST = f"{getcwd()}{os.sep}assets{os.sep}"
- class FormBase(metaclass=ABCMeta):
- def __init__(self, *args, **kwargs):
- class Del:
- pass
- self.sheet_dict = {}
- self.clean_func = {}
- self.clean_func_code = {}
- self.DEL = Del()
- self.named_domain = {
- "pd": pd,
- "DEL": self.DEL,
- "re": re,
- "Sheet": self.sheet_dict,
- }
- self.all_render = {} # 存放所有的图
- @abstractmethod
- def add_sheet(self, data, name):
- pass
- @abstractmethod
- def get_column(self, name, only):
- pass
- @abstractmethod
- def get_index(self, name, only):
- pass
- @abstractmethod
- def get_sheet(self, name, all_row=None, all_colunm=None) -> pd.DataFrame:
- pass
- @plugin_class_loading(get_path(r"template/datascience"))
- class SheetIO(FormBase, metaclass=ABCMeta):
- def add_sheet(self, data, name=""):
- if name == "":
- name = f"Sheet[{len(self.sheet_dict)}]"
- else:
- name += f"_[{len(self.sheet_dict)}]"
- self.sheet_dict[name] = data
- return data
- def __add_sheet(self, data_dir, func, name="", index=True, **kwargs): # 新增表格的核心方式
- try:
- data = func(data_dir, **kwargs)
- except UnicodeDecodeError: # 找不到编码方式
- return False
- if not index:
- data.index = data.iloc[:, 0].tolist()
- data.drop(data.columns.values.tolist()[0], inplace=True, axis=1)
- return self.add_sheet(data, name)
- def add_csv(
- self, data_dir, name="", sep=",", encodeding="utf-8", str_=True, index=True
- ):
- if str_:
- k = {"dtype": "object"}
- else:
- k = {}
- return self.__add_sheet(
- data_dir, pd.read_csv, name, index, sep=sep, encoding=encodeding, **k
- )
- def add_python(self, python_file, sheet_name="") -> pd.DataFrame:
- name = {"Sheet": self.get_sheet}
- name.update(globals().copy())
- name.update(locals().copy())
- exec(python_file, name)
- exec("get = Creat()", name)
- if isinstance(name["get"], pd.DataFrame): # 已经是DataFram
- get = name["get"]
- elif isinstance(name["get"], np.array):
- if bool(name.get("downNdim", False)): # 执行降或升维操作
- a = name["get"]
- array = []
- for i in a:
- c = np.ravel(i, "C")
- array.append(c)
- get = pd.DataFrame(array)
- else:
- array = name["get"].tolist()
- get = pd.DataFrame(array)
- else:
- get = pd.DataFrame(name["get"])
- self.add_sheet(get, sheet_name)
- return get
- def add_html(self, data_dir, name="", encoding="utf-8", str_=True, index=True):
- if str_:
- k = {"dtype": "object"}
- else:
- k = {}
- return self.__add_sheet(
- data_dir, pd.read_html, name, index, encoding=encoding, **k
- )
- def get_sheet_list(self):
- return list(self.sheet_dict.keys()) # 返回列表
- def to_csv(self, name, save_dir, sep=","):
- if sep == "":
- sep = ","
- get = self.get_sheet(name)
- get.to_csv(save_dir, sep=sep, na_rep="")
- def get_sheet(self, name, all_row=None, all_colunm=None) -> pd.DataFrame:
- try:
- pd.set_option("display.max_rows", all_row)
- pd.set_option("display.max_columns", all_colunm)
- finally:
- return self.sheet_dict[name]
- def del_sheet(self, name):
- del self.sheet_dict[name]
- @plugin_class_loading(get_path(r"template/datascience"))
- class SheetRender(FormBase, metaclass=ABCMeta):
- def render_html_one(self, name, render_dir=""):
- if render_dir == "":
- render_dir = f"{name}.html"
- get = self.get_sheet(name)
- headers = [f"{name}"] + self.get_column(name, True).tolist()
- rows = []
- table = Table()
- for i in get.iterrows(): # 按行迭代
- q = i[1].tolist()
- rows.append([f"{i[0]}"] + q)
- table.add(headers, rows).set_global_opts(
- title_opts=opts.ComponentTitleOpts(
- title=f"表格:{name}", subtitle="CoTan~数据处理:查看表格"
- )
- )
- table.render(render_dir)
- return render_dir
- def render_html_all(self, name, tab_render_dir="", render_type=0):
- if tab_render_dir == "":
- tab_render_dir = f"{name}.html"
- # 把要画的sheet放到第一个
- sheet_dict = self.sheet_dict.copy()
- del sheet_dict[name]
- sheet_list = [name] + list(sheet_dict.keys())
- class TabNew:
- def __init__(self, original_tab):
- self.original_tab = original_tab # 一个Tab
- def render(self, render_dir):
- return self.original_tab.render(render_dir)
- # 生成一个显示页面
- if render_type == 0:
- class TabZero(TabNew):
- def add(self, render, k, *more):
- self.original_tab.add(render, k)
- tab = TabZero(Tab(page_title="CoTan:查看表格")) # 一个Tab
- elif render_type == 1:
- class TabOne(TabNew):
- def add(self, render, *more):
- self.original_tab.add(render)
- tab = TabOne(Page(page_title="CoTan:查看表格", layout=Page.DraggablePageLayout))
- else:
- class TabTwo(TabNew):
- def add(self, render, *more):
- self.original_tab.add(render)
- tab = TabTwo(Page(page_title="CoTan:查看表格", layout=Page.SimplePageLayout))
- # 迭代添加内容
- for name in sheet_list:
- try:
- get = self.get_sheet(name)
- headers = [f"{name}"] + self.get_column(name, True).tolist()
- rows = []
- table = Table()
- for i in get.iterrows(): # 按行迭代
- q = i[1].tolist()
- rows.append([f"{i[0]}"] + q)
- table.add(headers, rows).set_global_opts(
- title_opts=opts.ComponentTitleOpts(
- title=f"表格:{name}", subtitle="CoTan~数据处理:查看表格"
- )
- )
- tab.add(table, f"表格:{name}")
- finally:
- tab.render(tab_render_dir)
- return tab_render_dir
- @plugin_class_loading(get_path(r"template/datascience"))
- class SheetReport(FormBase, metaclass=ABCMeta):
- def describe(self, name, new=False): # 生成描述
- get = self.get_sheet(name)
- des = get.describe()
- if new:
- self.add_sheet(des, f"{name}_describe[{len(self.sheet_dict)}]")
- shape = get.shape
- dtype = get.dtypes
- n = get.ndim
- head = get.head()
- tail = get.tail(3)
- return (
- f"1)基本\n{des}\n\n2)形状:{shape}\n\n3)数据类型\n{dtype}\n\n4)数据维度:{n}\n\n5)头部数据\n{head}"
- f"\n\n6)尾部数据\n{tail}\n\n7)行名\n{get.index}\n\n8)列名\n{get.columns}"
- )
- @staticmethod
- def sheet_profile_report_core(sheet, save_dir):
- report = pp.ProfileReport(sheet)
- report.to_file(save_dir)
- def to_report(self, name, save_dir=""):
- if save_dir == "":
- save_dir = f"{name}.html"
- sheet = self.get_sheet(name)
- self.sheet_profile_report_core(sheet, save_dir)
- return save_dir
- @plugin_class_loading(get_path(r"template/datascience"))
- class Rename(FormBase, metaclass=ABCMeta):
- def number_naming(self, name, is_column, save):
- get = self.get_sheet(name).copy()
- if is_column: # 处理列名
- column = self.get_column(name, True)
- if save: # 保存原数据
- get.loc["column"] = column
- get.columns = [i for i in range(len(column))]
- else:
- row = self.get_index(name, True)
- if save:
- get.loc[:, "row"] = row
- get.index = [i for i in range(len(row))]
- self.add_sheet(get, f"{name}")
- return get
- def name_with_number(self, name, is_column, save):
- get = self.get_sheet(name).copy()
- if is_column: # 处理列名
- column = self.get_column(name, True)
- if save: # 保存原数据
- get.loc["column"] = column
- get.columns = [f"[{i}]{column[i]}" for i in range(len(column))]
- else:
- row = self.get_index(name, True)
- if save:
- get.loc[:, "row"] = row
- get.index = [f"[{i}]{row[i]}" for i in range(len(row))]
- self.add_sheet(get, f"{name}")
- return get
- def data_naming(self, name, is_column, save, **data_init):
- # Date_Init:start,end,freq 任意两样
- get = self.get_sheet(name)
- if is_column: # 处理列名
- column = self.get_column(name, True)
- if save: # 保存原数据
- get.loc["column"] = column
- data_init["periods"] = len(column)
- get.columns = pd.date_range(**data_init)
- else:
- row = self.get_index(name, True)
- if save:
- get.loc[:, "row"] = row
- data_init["periods"] = len(row)
- get.index = pd.date_range(**data_init)
- self.add_sheet(get, f"{name}")
- return get
- def time_naming(self, name, is_column, save, **time_init):
- # Date_Init:start,end,freq 任意两样
- get = self.get_sheet(name)
- if is_column: # 处理列名
- column = self.get_column(name, True)
- if save: # 保存原数据
- get.loc["column"] = column
- time_init["periods"] = len(column)
- get.columns = pd.timedelta_range(**time_init)
- else:
- row = self.get_index(name, True)
- if save:
- get.loc[:, "row"] = row
- time_init["periods"] = len(row)
- get.index = pd.timedelta_range(**time_init)
- self.add_sheet(get, f"{name}")
- return get
- @plugin_class_loading(get_path(r"template/datascience"))
- class Sorted(FormBase, metaclass=ABCMeta):
- def sorted_index(self, name, row: bool, new=False, a=True):
- get = self.get_sheet(name)
- if row: # row-行名排序
- sorted_sheet = get.sort_index(axis=0, ascending=a)
- else:
- sorted_sheet = get.sort_index(axis=1, ascending=a)
- if new:
- self.add_sheet(sorted_sheet, f"{name}:排序")
- return sorted_sheet
- def stored_value(self, name, collation, new=False):
- get = self.get_sheet(name)
- row = get.columns.values
- by = []
- ascending = []
- for i in collation:
- by.append(row[i[0]])
- ascending.append(i[1])
- if len(by) == 1:
- by = by[0]
- ascending = ascending[0]
- sorted_sheet = get.sort_values(by=by, ascending=ascending)
- if new:
- self.add_sheet(sorted_sheet, f"{name}:排序")
- return sorted_sheet
- @plugin_class_loading(get_path(r"template/datascience"))
- class RowColumn(Rename, Sorted, metaclass=ABCMeta):
- def get_column(self, name, only=False): # 列名
- get = self.get_sheet(name)
- if only:
- return_ = get.columns.values
- else:
- return_ = []
- loc_list = get.columns.values
- a = 0
- for i in loc_list:
- data = get[i].to_list()
- return_.append(f"[列号:{a}]{i} -> {data}")
- a += 1
- return return_
- def get_index(self, name, only=False):
- get = self.get_sheet(name)
- if only:
- values = get.index.values
- else:
- values = []
- loc_list = get.index.values
- a = 0
- for i in range(len(loc_list)):
- index_num = loc_list[i]
- data = get.iloc[i].to_list()
- values.append(f"[行号:{a}]{index_num} -> {data}")
- a += 1
- return values
- def replace_index(self, name, is_column, rename, save):
- get = self.get_sheet(name)
- if is_column:
- if save: # 保存原数据
- get.loc["column"] = self.get_column(name, True)
- new = get.rename(columns=rename)
- else:
- if save:
- get.loc[:, "row"] = self.get_index(name, True)
- new = get.rename(index=rename)
- self.add_sheet(new, f"{name}")
- return new
- def change_index(
- self,
- name: str,
- is_column: bool,
- iloc: int,
- save: bool = True,
- drop: bool = False,
- ):
- get = self.get_sheet(name).copy()
- if is_column: # 列名
- row = self.get_index(name, True) # 行数据
- t = row.tolist()[iloc]
- if save: # 保存原数据
- get.loc["column"] = self.get_column(name, True)
- # new_colums = get.loc[t].values
- get.columns = get.loc[t].values
- if drop:
- get.drop(t, axis=0, inplace=True) # 删除行
- else:
- column = self.get_column(name, True)
- t = column.tolist()[iloc]
- if save:
- get.loc[:, "row"] = self.get_index(name, True)
- get.index = get.loc[:, t].values # 调整
- if drop:
- get.drop(t, axis=1, inplace=True) # 删除行
- self.add_sheet(get, f"{name}")
- return get
- @plugin_class_loading(get_path(r"template/datascience"))
- class SheetSlice(FormBase, metaclass=ABCMeta):
- def get_slice(
- self, name, column, row, is_iloc=True, new=False
- ): # iloc(Row,Column) or loc
- get = self.get_sheet(name)
- if is_iloc:
- new_sheet = get.iloc[row, column]
- else:
- new_sheet = get.loc[row, column]
- if new:
- self.add_sheet(new_sheet, f"{name}:切片")
- return new_sheet
- def del_slice(self, name, column, row, new):
- new_sheet = self.get_sheet(name)
- column_list = new_sheet.columns.values
- for i in column:
- try:
- new_sheet = new_sheet.drop(column_list[int(i)], axis=1)
- except BaseException as e:
- logging.warning(str(e))
- row_list = new_sheet.index.values
- for i in row:
- try:
- new_sheet = new_sheet.drop(row_list[int(i)])
- except BaseException as e:
- logging.warning(str(e))
- if new:
- self.add_sheet(new_sheet, f"{name}:删减")
- return new_sheet
- @plugin_class_loading(get_path(r"template/datascience"))
- class DatacleaningFunc(FormBase, metaclass=ABCMeta):
- def add_clean_func(self, code):
- name = self.named_domain.copy()
- exec(code, name)
- func_dict = {
- "Done_Row": name.get("Done_Row", []),
- "Done_Column": name.get("Done_Column", []),
- "axis": name.get("axis", True),
- "check": name.get("check", lambda data, x, b, c, d, e: True),
- "done": name.get("done", lambda data, x, b, c, d, e: data),
- }
- title = (
- f"[{name.get('name', f'[{len(self.clean_func)}')}] Done_Row={func_dict['Done_Row']}_Done_Column="
- f"{func_dict['Done_Column']}_axis={func_dict['axis']}"
- )
- self.clean_func[title] = func_dict
- self.clean_func_code[title] = code
- def get_clean_func(self):
- return list(self.clean_func.keys())
- def del_clean_func(self, key):
- del self.clean_func[key]
- del self.clean_func_code[key]
- def del_all_clean_func(self):
- self.clean_func = {}
- self.clean_func_code = {}
- def get_clean_code(self, key):
- return self.clean_func_code[key]
- def data_clean(self, name):
- get = self.get_sheet(name).copy()
- for i in list(self.clean_func.values()):
- done_row = i["Done_Row"]
- done_column = i["Done_Column"]
- if not done_row:
- done_row = range(get.shape[0]) # shape=[行,列]#不需要回调
- if not done_column:
- done_column = range(get.shape[1]) # shape=[行,列]#不需要回调
- if i["axis"]:
- axis = 0
- else:
- axis = 1
- check = i["check"]
- done = i["done"]
- for row in done_row:
- for column in done_column:
- try:
- data = eval(
- f"get.iloc[{row},{column}]", {"get": get}
- ) # 第一个是行号,然后是列号
- column_data = eval(f"get.iloc[{row}]", {"get": get})
- row_data = eval(f"get.iloc[:,{column}]", {"get": get})
- if not check(
- data,
- row,
- column,
- get.copy(),
- column_data.copy(),
- row_data.copy(),
- ):
- d = done(
- data,
- row,
- column,
- get.copy(),
- column_data.copy(),
- row_data.copy(),
- )
- if d == self.DEL:
- if axis == 0: # 常规删除
- row_list = get.index.values
- get = get.drop(row_list[int(row)])
- else: # 常规删除
- columns_list = get.columns.values
- get = get.drop(columns_list[int(row)], axis=1)
- else:
- # 第一个是行名,然后是列名
- exec(f"get.iloc[{row},{column}] = {d}", {"get": get})
- except BaseException as e:
- logging.warning(str(e))
- self.add_sheet(get, f"{name}:清洗")
- return get
- @plugin_class_loading(get_path(r"template/datascience"))
- class SheetDtype(FormBase, metaclass=ABCMeta):
- def set_dtype(self, name, column, dtype, wrong):
- get = self.get_sheet(name).copy()
- for i in range(len(column)):
- try:
- column[i] = int(column[i])
- except BaseException as e:
- logging.warning(str(e))
- if dtype != "":
- func_dic = {
- "Num": pd.to_numeric,
- "Date": pd.to_datetime,
- "Time": pd.to_timedelta,
- }
- if column:
- get.iloc[:, column] = get.iloc[:, column].apply(
- func_dic.get(dtype, pd.to_numeric), errors=wrong
- )
- else:
- get = get.apply(func_dic.get(dtype, pd.to_numeric), errors=wrong)
- else:
- if column:
- get.iloc[:, column] = get.iloc[:, column].infer_objects()
- else:
- get = get.infer_objects()
- self.add_sheet(get, f"{name}")
- return get
- def as_dtype(self, name, column, dtype, wrong):
- get = self.get_sheet(name).copy()
- for i in range(len(column)):
- try:
- column[i] = int(column[i])
- except BaseException as e:
- logging.warning(str(e))
- func_dic = {
- "Int": int,
- "Float": float,
- "Str": str,
- "Date": pd.Timestamp,
- "TimeDelta": pd.Timedelta,
- }
- if column:
- get.iloc[:, column] = get.iloc[:, column].astype(
- func_dic.get(dtype, dtype), errors=wrong
- )
- else:
- get = get.astype(func_dic.get(dtype, dtype), errors=wrong)
- self.add_sheet(get, f"{name}")
- return get
- @plugin_class_loading(get_path(r"template/datascience"))
- class DataNan(FormBase, metaclass=ABCMeta):
- def is_nan(self, name):
- get = self.get_sheet(name)
- bool_nan = pd.isna(get)
- return bool_nan
- def del_nan(self, name, new):
- get = self.get_sheet(name)
- clean_sheet = get.dropna(axis=0)
- if new:
- self.add_sheet(clean_sheet, f"{name}:清洗")
- return clean_sheet
- @plugin_class_loading(get_path(r"template/datascience"))
- class BoolSheet(FormBase, metaclass=ABCMeta):
- def to_bool(self, name, exp, new=False):
- get = self.get_sheet(name)
- bool_sheet = eval(exp, {"S": get, "Sheet": get.iloc})
- if new:
- self.add_sheet(bool_sheet, f"{name}:布尔")
- return bool_sheet
- @plugin_class_loading(get_path(r"template/datascience"))
- class DataSample(FormBase, metaclass=ABCMeta):
- def sample(self, name, new):
- get = self.get_sheet(name)
- sample = get.sample(frac=1) # 返回比,默认按行打乱
- if new:
- self.add_sheet(sample, f"{name}:打乱")
- return sample
- @plugin_class_loading(get_path(r"template/datascience"))
- class DataTranspose(FormBase, metaclass=ABCMeta):
- def transpose(self, name, new=True):
- get = self.get_sheet(name)
- t = get.T.copy() # 复制一份,防止冲突
- if new:
- self.add_sheet(t, f"{name}.T")
- return t
- @plugin_class_loading(get_path(r"template/datascience"))
- class PlotBase(
- SheetRender,
- SheetReport,
- RowColumn,
- SheetSlice,
- DatacleaningFunc,
- SheetDtype,
- DataNan,
- BoolSheet,
- DataSample,
- DataTranspose,
- SheetIO,
- ):
- @staticmethod
- def parsing_parameters(text): # 解析文本参数
- args = {} # 解析到的参数
- exec(text, args)
- args_use = {
- "title": args.get("title", None),
- "vice_title": args.get("vice_title", "CoTan~数据处理:"),
- "show_Legend": bool(args.get("show_Legend", True)),
- "ori_Legend": args.get("ori_Legend", "horizontal"),
- "show_Visual_mapping": bool(args.get("show_Visual_mapping", True)),
- "is_color_Visual_mapping": bool(args.get("is_color_Visual_mapping", True)),
- "min_Visual_mapping": args.get("min_Visual_mapping", None),
- "max_Visual_mapping": args.get("max_Visual_mapping", None),
- "color_Visual_mapping": args.get("color_Visual_mapping", None),
- "size_Visual_mapping": args.get("size_Visual_mapping", None),
- "text_Visual_mapping": args.get("text_Visual_mapping", None),
- "is_Subsection": bool(args.get("is_Subsection", False)),
- "Subsection_list": args.get("Subsection_list", []),
- "ori_Visual": args.get("ori_Visual", "vertical"),
- "Tool_BOX": bool(args.get("Tool_BOX", True)),
- "Theme": args.get("Theme", "white"),
- "BG_Color": args.get("BG_Color", None),
- "width": args.get("width", "900px"),
- "heigh": (
- args.get("heigh", "500px")
- if not bool(args.get("Square", False))
- else args.get("width", "900px")
- ),
- "page_Title": args.get("page_Title", ""),
- "show_Animation": args.get("show_Animation", True),
- "show_Axis": bool(args.get("show_Axis", True)),
- "Axis_Zero": bool(args.get("Axis_Zero", False)),
- "show_Axis_Scale": bool(args.get("show_Axis_Scale", True)),
- "x_type": args.get("x_type", None),
- "y_type": args.get("y_type", None),
- "z_type": args.get("z_type", None),
- "make_Line": args.get("make_Line", []),
- "Datazoom": args.get("Datazoom", "N"),
- "show_Text": bool(args.get("show_Text", False)),
- "Size": args.get("Size", 10),
- "Symbol": args.get("Symbol", "circle"),
- "bar_Stacking": bool(args.get("bar_Stacking", False)),
- "EffectScatter": bool(args.get("EffectScatter", False)),
- "connect_None": bool(args.get("connect_None", False)),
- "Smooth_Line": bool(args.get("Smooth_Line", False)),
- "Area_chart": bool(args.get("Area_chart", False)),
- "paste_Y": bool(args.get("paste_Y", False)),
- "step_Line": bool(args.get("step_Line", False)),
- "size_PictorialBar": args.get("size_PictorialBar", None),
- "Polar_units": args.get("Polar_units", "100"),
- "More": bool(args.get("More", False)),
- "WordCould_Size": args.get("WordCould_Size", [20, 100]),
- "WordCould_Shape": args.get("WordCould_Shape", "circle"),
- "symbol_Graph": args.get("symbol_Graph", "circle"),
- "Repulsion": float(args.get("Repulsion", 8000)),
- "Area_radar": bool(args.get("Area_radar", True)),
- "HTML_Type": args.get("HTML_Type", 2),
- "Map": args.get("Map", "china"),
- "show_Map_Symbol": bool(args.get("show_Map_Symbol", False)),
- "Geo_Type": {
- "heatmap": GeoType.HEATMAP,
- "scatter": "scatter",
- "EFFECT": GeoType.EFFECT_SCATTER,
- }.get(args.get("Geo_Type", "heatmap"), GeoType.HEATMAP),
- "map_Type": args.get("map_Type", "2D"),
- "is_Dark": bool(args.get("is_Dark", False)),
- } # 真实的参数
- # 标题设置,global
- # 图例设置global
- # 视觉映射设置global
- # 工具箱设置global
- # Init设置global
- # 坐标轴设置,2D坐标图和3D坐标图
- # Mark设置 坐标图专属
- # Datazoom设置 坐标图专属
- # 显示文字设置
- # 统一化的设置
- # Bar设置
- # 散点图设置
- # 折线图设置
- return args_use
- @staticmethod
- def global_set(
- args_use, title, min_, max_, data_zoom=False, visual_mapping=True, axis=()
- ):
- k = {}
- # 标题设置
- if args_use["title"] is None:
- args_use["title"] = title
- k["title_opts"] = opts.TitleOpts(
- title=args_use["title"], subtitle=args_use["vice_title"]
- )
- # 图例设置
- if not args_use["show_Legend"]:
- k["legend_opts"] = opts.LegendOpts(is_show=False)
- else:
- k["legend_opts"] = opts.LegendOpts(
- type_="scroll", orient=args_use["ori_Legend"], pos_bottom="2%"
- ) # 移动到底部,避免和标题冲突
- # 视觉映射
- if not args_use["show_Visual_mapping"]:
- pass
- elif not visual_mapping:
- pass
- else:
- if args_use["min_Visual_mapping"] is not None:
- min_ = args_use["min_Visual_mapping"]
- if args_use["max_Visual_mapping"] is not None:
- max_ = args_use["max_Visual_mapping"]
- k["visualmap_opts"] = opts.VisualMapOpts(
- type_="color" if args_use["is_color_Visual_mapping"] else "size",
- max_=max_,
- min_=min_,
- range_color=args_use["color_Visual_mapping"],
- range_size=args_use["size_Visual_mapping"],
- range_text=args_use["text_Visual_mapping"],
- is_piecewise=args_use["is_Subsection"],
- pieces=args_use["Subsection_list"],
- orient=args_use["ori_Visual"],
- )
- k["toolbox_opts"] = opts.ToolboxOpts(is_show=args_use["Tool_BOX"])
- if data_zoom:
- if args_use["Datazoom"] == "all":
- k["datazoom_opts"] = [
- opts.DataZoomOpts(),
- opts.DataZoomOpts(orient="horizontal"),
- ]
- elif args_use["Datazoom"] == "horizontal":
- k["datazoom_opts"] = opts.DataZoomOpts(type_="inside")
- elif args_use["Datazoom"] == "vertical":
- opts.DataZoomOpts(orient="vertical")
- elif args_use["Datazoom"] == "inside_vertical":
- opts.DataZoomOpts(type_="inside", orient="vertical")
- elif args_use["Datazoom"] == "inside_vertical":
- opts.DataZoomOpts(type_="inside", orient="horizontal")
- # 坐标轴设定,输入设定的坐标轴即可
- def axis_seeting(args_use_, axis_="x"):
- axis_k = {}
- if args_use_[f"{axis_[0]}_type"] == "Display" or not args_use_["show_Axis"]:
- axis_k[f"{axis_[0]}axis_opts"] = opts.AxisOpts(is_show=False)
- else:
- axis_k[f"{axis_[0]}axis_opts"] = opts.AxisOpts(
- type_=args_use_[f"{axis_[0]}_type"],
- axisline_opts=opts.AxisLineOpts(is_on_zero=args_use_["Axis_Zero"]),
- axistick_opts=opts.AxisTickOpts(
- is_show=args_use_["show_Axis_Scale"]
- ),
- )
- return axis_k
- for i in axis:
- k.update(axis_seeting(args_use, i))
- return k
- @staticmethod
- def init_setting(args_use):
- k = {}
- # 设置标题
- if args_use["page_Title"] == "":
- title = "CoTan_数据处理"
- else:
- title = f"CoTan_数据处理:{args_use['page_Title']}"
- k["init_opts"] = opts.InitOpts(
- theme=args_use["Theme"],
- bg_color=args_use["BG_Color"],
- width=args_use["width"],
- height=args_use["heigh"],
- page_title=title,
- animation_opts=opts.AnimationOpts(animation=args_use["show_Animation"]),
- )
- return k
- @staticmethod
- def get_title(args_use):
- return f":{args_use['title']}"
- @staticmethod
- def mark(args_use):
- k = {}
- line = []
- for i in args_use["make_Line"]:
- if i[2] == "c" or i[0] in ("min", "max", "average"):
- line.append(opts.MarkLineItem(type_=i[0], name=i[1]))
- elif i[2] == "x":
- line.append(opts.MarkLineItem(x=i[0], name=i[1]))
- else:
- line.append(opts.MarkLineItem(y=i[0], name=i[1]))
- if not line:
- return k
- k["markline_opts"] = opts.MarkLineOpts(data=line)
- return k
- @staticmethod
- def yaxis_label(args_use, position="inside"):
- return {
- "label_opts": opts.LabelOpts(
- is_show=args_use["show_Text"], position=position
- )
- }
- @staticmethod
- def special_setting(args_use, type_): # 私人设定
- k = {}
- if type_ == "Bar": # 设置y的重叠
- if args_use["bar_Stacking"]:
- k = {"stack": "stack1"}
- elif type_ == "Scatter":
- k["Beautiful"] = args_use["EffectScatter"]
- k["symbol"] = args_use["Symbol"]
- k["symbol_size"] = args_use["Size"]
- elif type_ == "Line":
- k["is_connect_nones"] = args_use["connect_None"]
- # 平滑曲线或连接y轴
- k["is_smooth"] = (
- True if args_use["Smooth_Line"] or args_use["paste_Y"] else False
- )
- k["areastyle_opts"] = opts.AreaStyleOpts(
- opacity=0.5 if args_use["Area_chart"] else 0
- )
- if args_use["step_Line"]:
- del k["is_smooth"]
- k["is_step"] = True
- elif type_ == "PictorialBar":
- k["symbol_size"] = args_use["Size"]
- elif type_ == "Polar":
- return args_use["Polar_units"] # 回复的是单位制而不是设定
- elif type_ == "WordCloud":
- k["word_size_range"] = args_use["WordCould_Size"] # 放到x轴
- k["shape"] = args_use["Symbol"] # 放到x轴
- elif type_ == "Graph":
- k["symbol_Graph"] = args_use["Symbol"] # 放到x轴
- elif type_ == "Radar": # 雷达图
- k["areastyle_opts"] = opts.AreaStyleOpts(
- opacity=0.1 if args_use["Area_chart"] else 0
- )
- k["symbol"] = args_use["Symbol"] # 雷达图symbol
- return k
- @plugin_class_loading(get_path(r"template/datascience"))
- class Render(PlotBase):
- def render_all(self, text, render_dir) -> Page:
- args = self.parsing_parameters(text)
- if args["page_Title"] == "":
- title = "CoTan_数据处理"
- else:
- title = f"CoTan_数据处理:{args['page_Title']}"
- if args["HTML_Type"] == 1:
- page = Page(page_title=title, layout=Page.DraggablePageLayout)
- page.add(*self.all_render.values())
- elif args["HTML_Type"] == 2:
- page = Page(page_title=title, layout=Page.SimplePageLayout)
- page.add(*self.all_render.values())
- else:
- page = Tab(page_title=title)
- for i in self.all_render:
- page.add(self.all_render[i], i)
- page.render(render_dir)
- return render_dir
- def overlap(self, down, up):
- over_down = self.all_render[down]
- over_up = self.all_render[up]
- over_down.overlap(over_up)
- return over_down
- @staticmethod
- def get_random_color():
- # 随机颜色,雷达图默认非随机颜色
- rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
- color = "#"
- for a in rgb:
- # 转换为16进制,upper表示小写(规范化)
- color += str(hex(a))[-2:].replace("x", "0").upper()
- return color
- def get_all_render(self):
- return self.all_render.copy()
- def del_render(self, key):
- del self.all_render[key]
- def clean_render(self):
- self.all_render = {}
- def custom_graph(self, text):
- named_domain = {}
- named_domain.update(locals())
- named_domain.update(globals())
- exec(text, named_domain)
- exec("c = Page()", named_domain)
- self.all_render[f"自定义图[{len(self.all_render)}]"] = named_domain["c"]
- return named_domain["c"]
- @plugin_class_loading(get_path(r"template/datascience"))
- class AxisPlot(Render):
- def to_bar(self, name, text) -> Bar: # Bar:数据堆叠
- get = self.get_sheet(name)
- x = self.get_index(name, True).tolist()
- args = self.parsing_parameters(text)
- c = Bar(**self.init_setting(args)).add_xaxis(
- list(map(str, list(set(x))))
- ) # 转变为str类型
- y = []
- for i in get.iteritems(): # 按列迭代
- q = i[1].tolist() # 转换为列表
- try:
- c.add_yaxis(
- f"{name}_{i[0]}",
- q,
- **self.special_setting(args, "Bar"),
- **self.yaxis_label(args),
- color=self.get_random_color(),
- ) # i[0]是名字,i是tuple,其中i[1]是data
- # q不需要float,因为应多不同的type他会自动变更,但是y是用来比较大小
- y += list(map(int, q))
- except BaseException as e:
- logging.warning(str(e))
- if not y:
- args["show_Visual_mapping"] = False # 关闭视觉映射
- y = [0, 100]
- c.set_global_opts(
- **self.global_set(args, f"{name}柱状图", min(y), max(y), True, axis=["x", "y"])
- )
- c.set_series_opts(**self.mark(args))
- self.all_render[f"{name}柱状图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_line(self, name, text) -> Line: # 折线图:连接空数据、显示数值、平滑曲线、面积图以及紧贴Y轴
- get = self.get_sheet(name)
- x = self.get_index(name, True).tolist()
- args = self.parsing_parameters(text)
- c = Line(**self.init_setting(args)).add_xaxis(
- list(map(str, list(set(x))))
- ) # 转变为str类型
- y = []
- for i in get.iteritems(): # 按列迭代
- q = i[1].tolist() # 转换为列表
- try:
- c.add_yaxis(
- f"{name}_{i[0]}",
- q,
- **self.special_setting(args, "Line"),
- **self.yaxis_label(args),
- color=self.get_random_color(),
- ) # i[0]是名字,i是tuple,其中i[1]是data
- # q不需要float,因为应多不同的type他会自动变更,但是y是用来比较大小
- y += list(map(int, q))
- except BaseException as e:
- logging.warning(str(e))
- if not y:
- args["show_Visual_mapping"] = False # 关闭视觉映射
- y = [0, 100]
- c.set_global_opts(
- **self.global_set(args, f"{name}折线图", min(y), max(y), True, axis=["x", "y"])
- )
- c.set_series_opts(**self.mark(args))
- self.all_render[f"{name}折线图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_scatter(self, name, text) -> Scatter: # 散点图标记形状和大小、特效、标记线
- get = self.get_sheet(name)
- args = self.parsing_parameters(text)
- x = self.get_index(name, True).tolist()
- type_ = self.special_setting(args, "Scatter")
- if type_["Beautiful"]:
- func = EffectScatter
- else:
- func = Scatter
- del type_["Beautiful"]
- c = func(**self.init_setting(args)).add_xaxis(
- list(map(str, list(set(x))))
- ) # 转变为str类型
- y = []
- for i in get.iteritems(): # 按列迭代
- q = i[1].tolist() # 转换为列表
- try:
- c.add_yaxis(
- f"{name}_{i[0]}",
- q,
- **type_,
- **self.yaxis_label(args),
- color=self.get_random_color(),
- ) # i[0]是名字,i是tuple,其中i[1]是data
- # q不需要float,因为应多不同的type他会自动变更,但是y是用来比较大小
- y += list(map(int, q))
- except BaseException as e:
- logging.warning(str(e))
- if not y:
- args["show_Visual_mapping"] = False # 关闭视觉映射
- y = [0, 100]
- c.set_global_opts(
- **self.global_set(args, f"{name}散点图", min(y), max(y), True, axis=["x", "y"])
- )
- c.set_series_opts(**self.mark(args))
- self.all_render[f"{name}散点图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_pictorialbar(self, name, text) -> PictorialBar: # 象形柱状图:图形、剪裁图像、元素重复和间隔
- get = self.get_sheet(name)
- x = self.get_index(name, True).tolist()
- args = self.parsing_parameters(text)
- c = (
- PictorialBar(**self.init_setting(args))
- .add_xaxis(list(map(str, list(set(x))))) # 转变为str类型
- .reversal_axis()
- )
- y = []
- k = self.special_setting(args, "PictorialBar")
- for i in get.iteritems(): # 按列迭代
- q = i[1].tolist() # 转换为列表
- try:
- c.add_yaxis(
- f"{name}_{i[0]}",
- q,
- label_opts=opts.LabelOpts(is_show=False),
- symbol_repeat=True,
- is_symbol_clip=True,
- symbol=SymbolType.ROUND_RECT,
- **k,
- color=self.get_random_color(),
- )
- # q不需要float,因为应多不同的type他会自动变更,但是y是用来比较大小
- y += list(map(int, q))
- except BaseException as e:
- logging.warning(str(e))
- if not y:
- args["show_Visual_mapping"] = False # 关闭视觉映射
- y = [0, 100]
- c.set_global_opts(
- **self.global_set(
- args, f"{name}象形柱状图", min(y), max(y), True, axis=["x", "y"]
- )
- )
- c.set_series_opts(**self.mark(args))
- self.all_render[f"{name}[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_boxpolt(self, name, text) -> Boxplot:
- get = self.get_sheet(name)
- args = self.parsing_parameters(text)
- c = Boxplot(**self.init_setting(args)).add_xaxis([f"{name}"])
- y = []
- for i in get.iteritems(): # 按列迭代
- q = i[1].tolist() # 转换为列表
- try:
- c.add_yaxis(f"{name}_{i[0]}", [q], **self.yaxis_label(args))
- # q不需要float,因为应多不同的type他会自动变更,但是y是用来比较大小
- y += list(map(float, q))
- except BaseException as e:
- logging.warning(str(e))
- if not y:
- args["show_Visual_mapping"] = False # 关闭视觉映射
- y = [0, 100]
- c.set_global_opts(
- **self.global_set(args, f"{name}箱形图", min(y), max(y), True, axis=["x", "y"])
- )
- c.set_series_opts(**self.mark(args))
- self.all_render[f"{name}箱形图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_heatmap(self, name, text) -> HeatMap: # 显示数据
- get = self.get_sheet(name)
- x = self.get_column(name, True).tolist() # 图的x轴,下侧,列名
- y = self.get_index(name, True).tolist() # 图的y轴,左侧,行名
- value_list = []
- q = []
- for c in range(len(x)): # c-列,r-行
- for r in range(len(y)):
- try:
- v = float(eval(f"get.iloc[{r},{c}]", {"get": get})) # 先行后列
- except ValueError:
- continue
- q.append(v)
- value_list.append([c, r, v])
- args = self.parsing_parameters(text)
- try:
- max_, min_ = max(q), min(q)
- except TypeError:
- args["show_Visual_mapping"] = False # 关闭视觉映射
- max_, min_ = 0, 100
- c = (
- HeatMap(**self.init_setting(args))
- .add_xaxis(list(map(str, list(set(x))))) # 转变为str类型
- .add_yaxis(
- f"{name}", list(map(str, y)), value_list, **self.yaxis_label(args)
- )
- .set_global_opts(
- **self.global_set(args, f"{name}热力图", min_, max_, True, axis=["x", "y"])
- )
- .set_series_opts(**self.mark(args))
- )
- self.all_render[f"{name}热力图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- @plugin_class_loading(get_path(r"template/datascience"))
- class GeneralPlot(Render):
- def to_format_graph(self, name, text) -> Graph:
- get = self.get_sheet(name)
- y_name = self.get_index(name, True).tolist() # 拿行名
- nodes = []
- link = []
- for i in get.iterrows(): # 按行迭代
- q = i[1].tolist() # 转换为列表
- try:
- nodes.append(
- {"name": f"{i[0]}", "symbolSize": float(q[0]), "value": float(q[0])}
- )
- for a in q[1:]:
- n = str(a).split(":")
- try:
- link.append(
- {"source": f"{i[0]}", "target": n[0], "value": float(n[1])}
- )
- except BaseException as e:
- logging.warning(str(e))
- except BaseException as e:
- logging.warning(str(e))
- if not link:
- for i in nodes:
- for j in nodes:
- link.append(
- {
- "source": i.get("name"),
- "target": j.get("name"),
- "value": abs(i.get("value") - j.get("value")),
- }
- )
- args = self.parsing_parameters(text)
- c = (
- Graph(**self.init_setting(args))
- .add(
- f"{y_name[0]}",
- nodes,
- link,
- repulsion=args["Repulsion"],
- **self.yaxis_label(args),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}关系图", 0, 100, False, False)
- )
- )
- self.all_render[f"{name}关系图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_graph(self, name, text) -> Graph: # XY关系图,新的书写方式
- get = self.get_sheet(name)
- args = self.parsing_parameters(text)
- size = args["Size"] * 3
- # 生成节点信息
- y_name = self.get_index(name, True).tolist() # 拿行名
- x_name = self.get_column(name, True).tolist() # 拿列名
- nodes_list = list(set(y_name + x_name)) # 处理重复,作为nodes列表
- nodes = []
- for i in nodes_list:
- nodes.append({"name": f"{i}", "symbolSize": size})
- # 生成link信息
- link = [] # 记录连接的信息
- have = []
- for y in range(len(y_name)): # 按行迭代
- for x in range(len(x_name)):
- y_n = y_name[y] # 节点1
- x_n = x_name[x] # 节点2
- if y_n == x_n:
- continue
- if (y_n, x_n) in have or (x_n, y_n) in have:
- continue
- else:
- have.append((y_n, x_n))
- try:
- v = float(eval(f"get.iloc[{y},{x}]", {"get": get})) # 取得value
- link.append({"source": y_n, "target": x_n, "value": v})
- except BaseException as e:
- logging.warning(str(e))
- c = (
- Graph(**self.init_setting(args))
- .add(
- f"{y_name[0]}",
- nodes,
- link,
- repulsion=args["Repulsion"],
- **self.yaxis_label(args),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}关系图", 0, 100, False, False)
- )
- )
- self.all_render[f"{name}关系图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_sankey(self, name, text):
- get = self.get_sheet(name)
- args = self.parsing_parameters(text)
- # 生成节点信息
- y_name = self.get_index(name, True).tolist() # 拿行名
- x_name = self.get_column(name, True).tolist() # 拿列名
- nodes_list = list(set(y_name + x_name)) # 处理重复,作为nodes列表
- nodes = []
- source = {}
- target = {}
- for i in nodes_list:
- nodes.append({"name": f"{i}"})
- source[i] = set() # 记录该元素source边连接的节点
- target[i] = set() # 记录改元素target边连接的节点
- # 生成link信息
- link = [] # 记录连接的信息
- have = []
- for y in range(len(y_name)): # 按行迭代
- for x in range(len(x_name)):
- y_n = y_name[y] # 节点1
- x_n = x_name[x] # 节点2
- if y_n == x_n:
- continue # 是否相同
- if (y_n, x_n) in have or (x_n, y_n) in have:
- continue # 是否重复
- else:
- have.append((y_n, x_n))
- # 固定的,y在s而x在t,桑基图不可以绕环形,所以要做检查
- if source[y_n] & target[x_n] != set():
- continue
- try:
- v = float(eval(f"get.iloc[{y},{x}]", {"get": get})) # 取得value
- link.append({"source": y_n, "target": x_n, "value": v})
- target[y_n].add(x_n)
- source[x_n].add(y_n)
- except BaseException as e:
- logging.warning(str(e))
- c = (
- Sankey()
- .add(
- f"{name}",
- nodes,
- link,
- linestyle_opt=opts.LineStyleOpts(
- opacity=0.2, curve=0.5, color="source"
- ),
- label_opts=opts.LabelOpts(position="right"),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}桑基图", 0, 100, False, False)
- )
- )
- self.all_render[f"{name}桑基图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_parallel(self, name, text) -> Parallel:
- get = self.get_sheet(name)
- dim = []
- dim_list = self.get_index(name, True).tolist()
- for i in range(len(dim_list)):
- dim.append({"dim": i, "name": f"{dim_list[i]}"})
- args = self.parsing_parameters(text)
- c = (
- Parallel(**self.init_setting(args))
- .add_schema(dim)
- .set_global_opts(
- **self.global_set(args, f"{name}多轴图", 0, 100, False, False)
- )
- )
- for i in get.iteritems(): # 按列迭代
- q = i[1].tolist() # 转换为列表
- c.add(f"{i[0]}", [q], **self.yaxis_label(args))
- self.all_render[f"{name}多轴图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_pie(self, name, text) -> Pie:
- get = self.get_sheet(name)
- data = []
- for i in get.iterrows(): # 按行迭代
- try:
- data.append([f"{i[0]}", float(i[1].tolist()[0])])
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- c = (
- Pie(**self.init_setting(args))
- .add(f"{name}", data, **self.yaxis_label(args, "top"))
- .set_global_opts(**self.global_set(args, f"{name}饼图", 0, 100, False, False))
- .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
- )
- self.all_render[f"{name}饼图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_polar(self, name, text) -> Polar:
- get = self.get_sheet(name)
- data = []
- args = self.parsing_parameters(text)
- setting = self.special_setting(args, "Polar")
- if setting == "rad": # 弧度制
- convert = 0.0628
- elif setting == "360": # 角度制
- convert = 0.36
- else:
- convert = 1
- for i in get.iterrows(): # 按行迭代
- try:
- q = i[1].tolist()
- data.append((float(q[0]), float(q[1]) / convert))
- except BaseException as e:
- logging.warning(str(e))
- c = (
- Polar(**self.init_setting(args))
- .add(f"{name}", data, type_="scatter", **self.yaxis_label(args))
- .set_global_opts(
- **self.global_set(args, f"{name}极坐标图", 0, 100, False, False)
- )
- )
- self.all_render[f"{name}极坐标图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_radar(self, name, text) -> Radar:
- get = self.get_sheet(name)
- x = self.get_index(name, True).tolist()
- max_list = [[] for _ in range(len(x))] # 保存每个x栏目的最大值
- data = [] # y的组成数据,包括name和list
- x_list = [] # 保存x的数据
- for i in get.iteritems(): # 按列迭代计算每一项的abcd
- q = i[1].tolist()
- add = []
- for a in range(len(q)):
- try:
- f = float(q[a])
- max_list[a].append(f)
- add.append(f)
- except BaseException as e:
- logging.warning(str(e))
- data.append([f"{i[0]}", [add]]) # add是包含在一个list中的
- for i in range(len(max_list)): # 计算x_list
- x_list.append(opts.RadarIndicatorItem(name=x[i], max_=max(max_list[i])))
- args = self.parsing_parameters(text)
- c = (
- Radar(**self.init_setting(args))
- .add_schema(schema=x_list)
- .set_global_opts(
- **self.global_set(args, f"{name}雷达图", 0, 100, False, False)
- )
- )
- k = self.special_setting(args, "Radar")
- for i in data:
- c.add(
- *i, **self.yaxis_label(args), color=self.get_random_color(), **k
- ) # 对i解包,取得name和data 随机颜色
- self.all_render[f"{name}雷达图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_funnel(self, name, text) -> Funnel:
- get = self.get_sheet(name)
- y_name = self.get_index(name, True).tolist() # 拿行名
- value = []
- y = []
- for r in range(len(y_name)):
- try:
- v = float(eval(f"get.iloc[{r},0]", {"get": get}))
- except ValueError:
- continue
- value.append([f"{y_name[r]}", v])
- y.append(v)
- args = self.parsing_parameters(text)
- c = (
- Funnel(**self.init_setting(args))
- .add(f"{name}", value, **self.yaxis_label(args, "top"))
- .set_global_opts(
- **self.global_set(args, f"{name}漏斗图", min(y), max(y), True, False)
- )
- )
- self.all_render[f"{name}漏斗图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_calendar(self, name, text) -> Calendar:
- get = self.get_sheet(name)
- data = [[] for _ in self.get_column(name, True)]
- x_name = self.get_column(name, True).tolist()
- y = []
- for i in get.iterrows():
- date = str(i[0]) # 时间数据
- q = i[1].tolist()
- for a in range(len(q)):
- try:
- data[a].append([date, q[a]])
- y.append(float(q[a]))
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- if not y:
- y = [0, 100]
- args["show_Visual_mapping"] = False # 关闭视觉映射
- c = Calendar(**self.init_setting(args)).set_global_opts(
- **self.global_set(args, f"{name}日历图", min(y), max(y), True)
- )
- for i in range(len(x_name)):
- start_date = data[i][0][0]
- end_date = data[i][-1][0]
- c.add(
- str(x_name[i]),
- data[i],
- calendar_opts=opts.CalendarOpts(range_=[start_date, end_date]),
- **self.yaxis_label(args),
- )
- self.all_render[f"{name}日历图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_theme_river(self, name, text) -> ThemeRiver:
- get = self.get_sheet(name)
- data = []
- x_name = self.get_column(name, True).tolist()
- y = []
- for i in get.iterrows():
- date = str(i[0])
- q = i[1].tolist()
- for a in range(len(x_name)):
- try:
- data.append([date, q[a], x_name[a]])
- y.append(float(q[a]))
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- if not y:
- y = [0, 100]
- args["show_Visual_mapping"] = False # 关闭视觉映射
- c = (
- ThemeRiver(**self.init_setting(args))
- # 抑制大小
- .add(
- x_name,
- data,
- singleaxis_opts=opts.SingleAxisOpts(
- type_=args["x_type"], pos_bottom="10%"
- ),
- ).set_global_opts(
- **self.global_set(args, f"{name}河流图", min(y), max(y), True, False)
- )
- )
- self.all_render[f"{name}河流图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- @plugin_class_loading(get_path(r"template/datascience"))
- class RelationshipPlot(Render):
- def to_sunburst(self, name, text) -> Sunburst:
- get = self.get_sheet(name)
- def convert_data(iter_object, name_):
- k = {"name": name_, "children": []}
- v = 0
- for i in iter_object:
- content = iter_object[i]
- if isinstance(content, dict):
- new_c = convert_data(content, str(i))
- v += new_c["value"]
- k["children"].append(new_c)
- else:
- try:
- q = float(content)
- except ValueError:
- q = len(str(content))
- v += q
- k["children"].append({"name": f"{i}={content}", "value": q})
- k["value"] = v
- return k
- data = convert_data(get.to_dict(), name)["children"]
- args = self.parsing_parameters(text)
- c = (
- Sunburst()
- .add(
- series_name=f"{name}",
- data_pair=data,
- radius=[abs(args["Size"] - 10), "90%"],
- )
- .set_global_opts(
- **self.global_set(args, f"{name}旭日图", 0, 100, False, False)
- )
- .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}"))
- )
- self.all_render[f"{name}旭日图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_tree(self, name, text) -> Tree:
- get = self.get_sheet(name)
- def convert_data(iter_object, name_):
- k = {"name": name_, "children": []}
- for i in iter_object:
- content = iter_object[i]
- if isinstance(content, dict):
- new_children = convert_data(content, str(i))
- k["children"].append(new_children)
- else:
- k["children"].append(
- {"name": f"{i}", "children": [{"name": f"{content}"}]}
- )
- return k
- data = [convert_data(get.to_dict(), name)]
- args = self.parsing_parameters(text)
- c = (
- Tree()
- .add(f"{name}", data)
- .set_global_opts(
- **self.global_set(args, f"{name}树状图", 0, 100, False, False)
- )
- )
- self.all_render[f"{name}树状图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_tree_map(self, name, text) -> TreeMap:
- get = self.get_sheet(name)
- def convert_data(iter_object, name_):
- k = {"name": name_, "children": []}
- v = 0
- for i in iter_object:
- content = iter_object[i]
- if isinstance(content, dict):
- new_c = convert_data(content, str(i))
- v += new_c["value"]
- k["children"].append(new_c)
- else:
- try:
- q = float(content)
- except ValueError:
- q = len(str(content))
- v += q
- k["children"].append({"name": f"{i}={content}", "value": q})
- k["value"] = v
- return k
- data = convert_data(get.to_dict(), name)["children"]
- args = self.parsing_parameters(text)
- c = (
- TreeMap()
- .add(
- f"{name}",
- data,
- label_opts=opts.LabelOpts(is_show=True, position="inside"),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}矩形树图", 0, 100, False, False)
- )
- )
- self.all_render[f"{name}矩形树图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_scattergeo(self, name, text) -> Geo:
- get = self.get_sheet(name)
- column = self.get_column(name, True).tolist()
- data_type = ["scatter" for _ in column]
- data = [[] for _ in column]
- y = []
- for i in get.iterrows(): # 按行迭代
- map_ = str(i[0])
- q = i[1].tolist()
- for a in range(len(q)):
- try:
- v = float(q[a])
- y.append(v)
- except ValueError:
- v = str(q[a])
- try:
- if v[:5] == "[##S]":
- # 特效图
- v = float(v[5:])
- y.append(v)
- column.append(column[a])
- data_type.append(GeoType.EFFECT_SCATTER)
- data.append([])
- a = -1
- elif v[:5] == "[##H]":
- # 特效图
- v = float(v[5:])
- y.append(v)
- column.append(column[a])
- data_type.append(GeoType.HEATMAP)
- data.append([])
- a = -1
- else:
- assert False
- except (AssertionError, ValueError):
- data_type[a] = GeoType.LINES # 当前变为Line
- data[a].append((map_, v))
- args = self.parsing_parameters(text)
- args["show_Visual_mapping"] = True # 必须视觉映射
- if not y:
- y = [0, 100]
- if args["is_Dark"]:
- g = {
- "itemstyle_opts": opts.ItemStyleOpts(
- color="#323c48", border_color="#111"
- )
- }
- else:
- g = {}
- c = (
- Geo().add_schema(maptype=str(args["Map"]), **g)
- # 必须要有视觉映射(否则会显示奇怪的数据)
- .set_global_opts(
- **self.global_set(args, f"{name}Geo点地图", min(y), max(y), False)
- )
- )
- for i in range(len(data)):
- if data_type[i] != GeoType.LINES:
- ka = dict(
- symbol=args["Symbol"],
- symbol_size=args["Size"],
- color="#1E90FF" if args["is_Dark"] else "#0000FF",
- )
- else:
- ka = dict(
- symbol=SymbolType.ARROW,
- symbol_size=6,
- effect_opts=opts.EffectOpts(
- symbol=SymbolType.ARROW, symbol_size=6, color="blue"
- ),
- linestyle_opts=opts.LineStyleOpts(
- curve=0.2, color="#FFF8DC" if args["is_Dark"] else "#000000"
- ),
- )
- c.add(f"{column[i]}", data[i], type_=data_type[i], **ka)
- c.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 不显示数据,必须放在add后面生效
- self.all_render[
- f"{name}Geo点地图[{len(self.all_render)}]{self.get_title(args)}"
- ] = c
- return c
- @plugin_class_loading(get_path(r"template/datascience"))
- class GeographyPlot(Render):
- def to_map(self, name, text) -> Map:
- get = self.get_sheet(name)
- column = self.get_column(name, True).tolist()
- data = [[] for _ in column]
- y = []
- for i in get.iterrows(): # 按行迭代
- map_ = str(i[0])
- q = i[1].tolist()
- for a in range(len(q)):
- try:
- v = float(q[a])
- y.append(v)
- data[a].append((map_, v))
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- args["show_Visual_mapping"] = True # 必须视觉映射
- if not y:
- y = [0, 100]
- if args["map_Type"] == "GLOBE":
- func = MapGlobe
- else:
- func = Map
- c = func().set_global_opts(
- **self.global_set(args, f"{name}Map地图", min(y), max(y), False)
- ) # 必须要有视觉映射(否则会显示奇怪的数据)
- for i in range(len(data)):
- c.add(
- f"{column[i]}",
- data[i],
- str(args["Map"]),
- is_map_symbol_show=args["show_Map_Symbol"],
- symbol=args["Symbol"],
- **self.yaxis_label(args),
- )
- self.all_render[
- f"{name}Map地图[{len(self.all_render)}]{self.get_title(args)}"
- ] = c
- return c
- def to_geo(self, name, text) -> Geo:
- get = self.get_sheet(name)
- column = self.get_column(name, True).tolist()
- index = self.get_index(name, True).tolist()
- args = self.parsing_parameters(text)
- args["show_Visual_mapping"] = True # 必须视觉映射
- if args["is_Dark"]:
- g = {
- "itemstyle_opts": opts.ItemStyleOpts(
- color="#323c48", border_color="#111"
- )
- }
- else:
- g = {}
- c = Geo().add_schema(maptype=str(args["Map"]), **g)
- m = []
- for y in column: # 维度
- for x in index: # 精度
- value = get.loc[x, y]
- type_ = "scatter"
- try:
- v = float(value) # 数值
- type_ = args["Geo_Type"]
- except ValueError:
- try:
- q = str(value)
- v = float(value[5:])
- if q[:5] == "[##S]": # 点图
- type_ = GeoType.SCATTER
- elif q[:5] == "[##E]": # 带点特效
- type_ = GeoType.EFFECT_SCATTER
- else: # 画线
- v = q.split(";")
- c.add_coordinate(
- name=f"({v[0]},{v[1]})",
- longitude=float(v[0]),
- latitude=float(v[1]),
- )
- c.add_coordinate(
- name=f"({x},{y})", longitude=float(x), latitude=float(y)
- )
- c.add(
- f"{name}",
- [[f"({x},{y})", f"({v[0]},{v[1]})"]],
- type_=GeoType.LINES,
- effect_opts=opts.EffectOpts(
- symbol=SymbolType.ARROW, symbol_size=6, color="blue"
- ),
- linestyle_opts=opts.LineStyleOpts(
- curve=0.2,
- color="#FFF8DC" if args["is_Dark"] else "#000000",
- ),
- )
- c.add(
- f"{name}_XY",
- [[f"({x},{y})", 5], [f"({v[0]},{v[1]})", 5]],
- type_=GeoType.EFFECT_SCATTER,
- color="#1E90FF" if args["is_Dark"] else "#0000FF",
- )
- assert False # continue
- except (ValueError, TypeError, AssertionError):
- continue
- try:
- c.add_coordinate(
- name=f"({x},{y})", longitude=float(x), latitude=float(y)
- )
- c.add(
- f"{name}",
- [[f"({x},{y})", v]],
- type_=type_,
- symbol=args["Symbol"],
- symbol_size=args["Size"],
- )
- if type_ == GeoType.HEATMAP:
- c.add(
- f"{name}_XY",
- [[f"({x},{y})", v]],
- type_="scatter",
- color="#1E90FF" if args["is_Dark"] else "#0000FF",
- )
- m.append(v)
- except BaseException as e:
- logging.warning(str(e))
- if not m:
- m = [0, 100]
- c.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 不显示
- c.set_global_opts(
- **self.global_set(args, f"{name}Geo地图", min(m), max(m), False)
- )
- self.all_render[
- f"{name}Geo地图[{len(self.all_render)}]{self.get_title(args)}"
- ] = c
- return c
- @plugin_class_loading(get_path(r"template/datascience"))
- class WordPlot(Render):
- def to_word_cloud(self, name, text) -> WordCloud:
- get = self.get_sheet(name)
- data = []
- for i in get.iterrows(): # 按行迭代
- try:
- data.append([str(i[0]), float(i[1].tolist()[0])])
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- c = (
- WordCloud(**self.init_setting(args))
- .add(f"{name}", data, **self.special_setting(args, "WordCloud"))
- .set_global_opts(**self.global_set(args, f"{name}词云", 0, 100, False, False))
- )
- self.all_render[f"{name}词云[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_liquid(self, name, text) -> Liquid:
- get = self.get_sheet(name)
- data = str(get.iloc[0, 0])
- c = data.split(".")
- try:
- data = float(f"0.{c[1]}")
- except ValueError:
- data = float(f"0.{c[0]}")
- args = self.parsing_parameters(text)
- c = (
- Liquid(**self.init_setting(args))
- .add(f"{name}", [data, data])
- .set_global_opts(
- title_opts=opts.TitleOpts(title=f"{name}水球图", subtitle="CoTan~数据处理")
- )
- )
- self.all_render[f"{name}水球图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- def to_gauge(self, name, text) -> Gauge:
- get = self.get_sheet(name)
- data = float(get.iloc[0, 0])
- if data > 100:
- data = str(data / 100)
- c = data.split(".")
- try:
- data = float(f"0.{c[1]}") * 100
- except ValueError:
- data = float(f"0.{data}") * 100
- args = self.parsing_parameters(text)
- c = (
- Gauge(**self.init_setting(args))
- .add(f"{name}", [(f"{name}", data)])
- .set_global_opts(
- title_opts=opts.TitleOpts(title=f"{name}仪表图", subtitle="CoTan~数据处理")
- )
- )
- self.all_render[f"{name}仪表图[{len(self.all_render)}]{self.get_title(args)}"] = c
- return c
- @plugin_class_loading(get_path(r"template/datascience"))
- class SolidPlot(Render):
- def to_bar3d(self, name, text) -> Bar3D:
- get = self.get_sheet(name)
- x = self.get_column(name, True).tolist() # 图的x轴,下侧,列名
- y = self.get_index(name, True).tolist() # 图的y轴,左侧,行名
- value_list = []
- q = []
- for c in range(len(x)): # c-列,r-行
- for r in range(len(y)):
- try:
- v = eval(f"get.iloc[{r},{c}]", {"get": get}) # 先行后列
- value_list.append([c, r, v])
- q.append(float(v))
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- if not q:
- q = [0, 100]
- args["show_Visual_mapping"] = False # 关闭视觉映射
- c = (
- Bar3D(**self.init_setting(args))
- .add(
- f"{name}",
- value_list,
- xaxis3d_opts=opts.Axis3DOpts(list(map(str, x)), type_=args["x_type"]),
- yaxis3d_opts=opts.Axis3DOpts(list(map(str, y)), type_=args["y_type"]),
- zaxis3d_opts=opts.Axis3DOpts(type_=args["z_type"]),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}3D柱状图", min(q), max(q), True),
- )
- )
- if args["bar_Stacking"]:
- c.set_series_opts(**{"stack": "stack"}) # 层叠
- self.all_render[
- f"{name}3D柱状图[{len(self.all_render)}]{self.get_title(args)}"
- ] = c
- return c
- def to_scatter3d(self, name, text) -> Scatter3D:
- get = self.get_sheet(name)
- x = self.get_column(name, True).tolist() # 图的x轴,下侧,列名
- y = self.get_index(name, True).tolist() # 图的y轴,左侧,行名
- value_list = []
- q = []
- for c in range(len(x)): # c-列,r-行
- for r in range(len(y)):
- try:
- v = eval(f"get.iloc[{r},{c}]", {"get": get}) # 先行后列
- value_list.append([c, r, v])
- q.append(float(v))
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- if not q:
- q = [0, 100]
- args["show_Visual_mapping"] = False # 关闭视觉映射
- c = (
- Scatter3D(**self.init_setting(args))
- .add(
- f"{name}",
- value_list,
- xaxis3d_opts=opts.Axis3DOpts(list(map(str, x)), type_=args["x_type"]),
- yaxis3d_opts=opts.Axis3DOpts(list(map(str, y)), type_=args["y_type"]),
- zaxis3d_opts=opts.Axis3DOpts(type_=args["z_type"]),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}3D散点图", min(q), max(q), True)
- )
- )
- self.all_render[
- f"{name}3D散点图[{len(self.all_render)}]{self.get_title(args)}"
- ] = c
- return c
- def to_line3d(self, name, text) -> Line3D:
- get = self.get_sheet(name)
- x = self.get_column(name, True).tolist() # 图的x轴,下侧,列名
- y = self.get_index(name, True).tolist() # 图的y轴,左侧,行名
- value_list = []
- q = []
- for c in range(len(x)): # c-列,r-行
- for r in range(len(y)):
- try:
- v = eval(f"get.iloc[{r},{c}]", {"get": get}) # 先行后列
- value_list.append([c, r, v])
- q.append(float(v))
- except BaseException as e:
- logging.warning(str(e))
- args = self.parsing_parameters(text)
- if not q:
- q = [0, 100]
- args["show_Visual_mapping"] = False # 关闭视觉映射
- c = (
- Line3D(**self.init_setting(args))
- .add(
- f"{name}",
- value_list,
- xaxis3d_opts=opts.Axis3DOpts(list(map(str, x)), type_=args["x_type"]),
- yaxis3d_opts=opts.Axis3DOpts(list(map(str, y)), type_=args["y_type"]),
- zaxis3d_opts=opts.Axis3DOpts(type_=args["z_type"]),
- grid3d_opts=opts.Grid3DOpts(width=100, height=100, depth=100),
- )
- .set_global_opts(
- **self.global_set(args, f"{name}3D折线图", min(q), max(q), True)
- )
- )
- self.all_render[
- f"{name}3D折线图[{len(self.all_render)}]{self.get_title(args)}"
- ] = c
- return c
- class MachineLearnerBase(
- AxisPlot, GeneralPlot, RelationshipPlot, GeographyPlot, WordPlot, SolidPlot
- ):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.learner = {} # 记录机器
- self.learn_dict = {
- "Line": (LinearRegression, ()),
- "Ridge": (Ridge, ("alpha", "max_iter",)),
- "Lasso": (Lasso, ("alpha", "max_iter",)),
- "LogisticRegression": (LogisticRegression, ("C",)),
- "Knn": (KNeighborsClassifier, ("n_neighbors",)),
- "Knn_class": (KNeighborsRegressor, ("n_neighbors",)),
- }
- self.learner_type = {} # 记录机器的类型
- @staticmethod
- def parsing(parameters): # 解析参数
- args = {}
- args_use = {}
- # 输入数据
- exec(parameters, args)
- # 处理数据
- args_use["alpha"] = float(args.get("alpha", 1.0)) # L1和L2正则化用
- args_use["C"] = float(args.get("C", 1.0)) # L1和L2正则化用
- args_use["max_iter"] = int(args.get("max_iter", 1000)) # L1和L2正则化用
- args_use["n_neighbors"] = int(args.get("K_knn", 5)) # knn邻居数 (命名不同)
- args_use["nDim_2"] = bool(args.get("nDim_2", True)) # 数据是否降维
- return args_use
- def get_learner(self, name):
- return self.learner[name]
- def get_learner_type(self, name):
- return self.learner_type[name]
- @plugin_class_loading(get_path(r"template/datascience"))
- class VisualLearner(MachineLearnerBase):
- def visual_learner(self, learner, new=False): # 显示参数
- learner = self.get_learner(learner)
- learner_type = self.get_learner_type(learner)
- if learner_type in ("Ridge", "Lasso"):
- alpha = learner.alpha # 阿尔法
- w = learner.coef_.tolist() # w系数
- b = learner.intercept_ # 截距
- max_iter = learner.max_iter
- w_name = [f"权重:W[{i}]" for i in range(len(w))]
- index = ["阿尔法:Alpha"] + w_name + ["截距:b", "最大迭代数"]
- data = [alpha] + w + [b] + [max_iter]
- # 文档
- doc = (
- f"阿尔法:alpha = {alpha}\n\n权重:\nw = \n{pd.DataFrame(w)}\n\n截距:b = {b}\n\n最大迭代数:{max_iter}"
- f"\n\n\nEND"
- )
- data = pd.DataFrame(data, index=index)
- elif learner_type in ("Line",):
- w = learner.coef_.tolist() # w系数
- b = learner.intercept_
- index = [f"权重:W[{i}]" for i in range(len(w))] + ["截距:b"]
- data = w + [b] # 截距
- # 文档
- doc = f"权重:w = \n{pd.DataFrame(w)}\n\n截距:b = {b}\n\n\nEND"
- data = pd.DataFrame(data, index=index)
- elif learner_type in ("Knn",): # Knn_class
- classes = learner.classes_.tolist() # 分类
- n = learner.n_neighbors # 个数
- p = {1: "曼哈顿距离", 2: "欧几里得距离"}.get(learner.p)
- index = [f"类目[{i}]" for i in range(len(classes))] + ["邻居个数", "距离公式"]
- data = classes + [n, p]
- doc = f"分类类目:\n{pd.DataFrame(classes)}\n\n邻居个数:{n}\n\n计算距离的方式:{p}\n\n\nEND"
- data = pd.DataFrame(data, index=index)
- elif learner_type in ("Knn_class",):
- n = learner.n_neighbors # 个数
- p = {1: "曼哈顿距离", 2: "欧几里得距离"}.get(learner.p)
- index = ["邻居个数", "距离公式"]
- data = [n, p]
- doc = f"邻居个数:{n}\n\n计算距离的方式:{p}\n\n\nEND"
- data = pd.DataFrame(data, index=index)
- elif learner_type in ("LogisticRegression",):
- classes = learner.classes_.tolist() # 分类
- w = learner.coef_.tolist() # w系数
- b = learner.intercept_
- c = learner.C
- index = (
- [f"类目[{i}]" for i in range(len(classes))]
- + [f"权重:W[{j}][{i}]" for i in range(len(w)) for j in range(len(w[i]))]
- + [f"截距:b[{i}]" for i in range(len(b))]
- + ["C"]
- )
- data = classes + [j for i in w for j in i] + [i for i in b] + [c]
- doc = f"分类类目:\n{pd.DataFrame(classes)}\n\n权重:w = \n{pd.DataFrame(w)}\n\n截距:b = {b}\n\nC={c}\n\n\n"
- data = pd.DataFrame(data, index=index)
- else:
- return "", []
- if new:
- self.add_sheet(data, f"{learner}:属性")
- return doc, data
- @plugin_class_loading(get_path(r"template/datascience"))
- class Learner(MachineLearnerBase):
- def decision_tree_classifier(self, name): # 特征提取
- get = self.get_sheet(name)
- dver = DictVectorizer()
- get_dic = get.to_dict(orient="records")
- new = dver.fit_transform(get_dic).toarray()
- dec = pd.DataFrame(new, columns=dver.feature_names_)
- self.add_sheet(dec, f"{name}:特征")
- return dec
- def training_machine_core(
- self, name, learner, score_only=False, down_ndim=True, split=0.3, **kwargs
- ):
- get = self.get_sheet(name)
- x = get.to_numpy()
- y = self.get_index(name, True) # 获取y值(用index作为y)
- if down_ndim or x.ndim == 1: # 执行降维处理(也包括升维,ravel让一切变成一维度,包括数字)
- a = x
- x = []
- for i in a:
- try:
- c = i.np.ravel(a[i], "C")
- x.append(c)
- except ValueError:
- x.append(i)
- x = np.array(x)
- model = self.get_learner(learner)
- if not score_only: # 只计算得分,全部数据用于测试
- train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=split)
- model.fit(train_x, train_y)
- train_score = model.score(train_x, train_y)
- test_score = model.score(test_x, test_y)
- return train_score, test_score
- test_score = model.score(x, y)
- return 0, test_score
- def training_machine(self, name, learnner, parameters="", **kwargs):
- type_ = self.get_learner_type(learnner)
- args_use = self.parsing(parameters)
- if type_ in (
- "Line",
- "Ridge",
- "Lasso",
- "LogisticRegression",
- "Knn",
- "Knn_class",
- ):
- return self.training_machine_core(
- name, learnner, down_ndim=args_use["nDim_2"], **kwargs
- )
- def predict_simp(self, name, learner, down_ndim=True, **kwargs):
- get = self.get_sheet(name)
- column = self.get_column(name, True)
- x = get.to_numpy()
- if down_ndim or x.ndim == 1: # 执行降维处理(也包括升维,ravel让一切变成一维度,包括数字)
- a = x
- x = []
- for i in a:
- try:
- c = i.np.ravel(a[i], "C")
- x.append(c)
- except ValueError:
- x.append(i)
- x = np.array(x)
- model = self.get_learner(learner)
- answer = model.predict(x)
- data = pd.DataFrame(x, index=answer, columns=column)
- self.add_sheet(data, f"{name}:预测")
- return data
- def predict(self, name, learner, parameters="", **kwargs):
- type_ = self.get_learner_type(learner)
- args_use = self.parsing(parameters)
- if type_ in (
- "Line",
- "Ridge",
- "Lasso",
- "LogisticRegression",
- "Knn",
- "Knn_class",
- ):
- return self.predict_simp(
- name, learner, down_ndim=args_use["nDim_2"], **kwargs
- )
|