123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298 |
- import joblib
- import re
- import tarfile
- from abc import ABCMeta, abstractmethod
- from os import getcwd, mkdir
- from os.path import split as path_split, splitext, basename, exists
- import os
- import logging
- from sklearn.svm import SVC, SVR # SVC是svm分类,SVR是svm回归
- from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
- from sklearn.manifold import TSNE
- from sklearn.neural_network import MLPClassifier, MLPRegressor
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as Lda
- from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA, NMF
- from sklearn.impute import SimpleImputer
- from sklearn.preprocessing import *
- from sklearn.feature_selection import *
- from sklearn.metrics import *
- from sklearn.ensemble import (
- RandomForestClassifier,
- RandomForestRegressor,
- GradientBoostingClassifier,
- GradientBoostingRegressor,
- )
- import numpy as np
- import matplotlib.pyplot as plt
- from pandas import DataFrame, read_csv
- from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz
- from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
- from sklearn.linear_model import *
- from sklearn.model_selection import train_test_split
- from scipy.fftpack import fft, ifft # 快速傅里叶变换
- from scipy import optimize
- from scipy.cluster.hierarchy import dendrogram, ward
- from pyecharts.components import Table as TableFisrt # 绘制表格
- from pyecharts.options.series_options import JsCode
- from pyecharts.charts import Tab as tab_First
- from pyecharts.charts import *
- from pyecharts import options as opts
- from pyecharts.components import Image
- from pyecharts.globals import CurrentConfig
- from system import plugin_class_loading, get_path, plugin_func_loading, basicConfig
- logging.basicConfig(**basicConfig)
- CurrentConfig.ONLINE_HOST = f"{getcwd()}{os.sep}assets{os.sep}"
- # 设置
- np.set_printoptions(threshold=np.inf)
- global_setting = dict(
- toolbox_opts=opts.ToolboxOpts(is_show=True),
- legend_opts=opts.LegendOpts(pos_bottom="3%", type_="scroll"),
- )
- global_not_legend = dict(
- toolbox_opts=opts.ToolboxOpts(is_show=True),
- legend_opts=opts.LegendOpts(is_show=False),
- )
- label_setting = dict(label_opts=opts.LabelOpts(is_show=False))
- more_global = False # 是否使用全部特征绘图
- all_global = True # 是否导出charts
- csv_global = True # 是否导出CSV
- clf_global = True # 是否导出模型
- tar_global = True # 是否打包tar
- new_dir_global = True # 是否新建目录
- class LearnBase(metaclass=ABCMeta):
- def __init__(self, *args, **kwargs):
- self.numpy_dict = {} # name:numpy
- self.fucn_add() # 制作Func_Dic
- def fucn_add(self):
- self.func_dict = {
- "abs": lambda x, y: np.abs(x),
- "sqrt": lambda x, y: np.sqrt(x),
- "pow": lambda x, y: x ** y,
- "loge": lambda x, y: np.log(x),
- "log10": lambda x, y: np.log10(x),
- "ceil": lambda x, y: np.ceil(x),
- "floor": lambda x, y: np.floor(x),
- "rint": lambda x, y: np.rint(x),
- "sin": lambda x, y: np.sin(x),
- "cos": lambda x, y: np.cos(x),
- "tan": lambda x, y: np.tan(x),
- "tanh": lambda x, y: np.tanh(x),
- "sinh": lambda x, y: np.sinh(x),
- "cosh": lambda x, y: np.cosh(x),
- "asin": lambda x, y: np.arcsin(x),
- "acos": lambda x, y: np.arccos(x),
- "atan": lambda x, y: np.arctan(x),
- "atanh": lambda x, y: np.arctanh(x),
- "asinh": lambda x, y: np.arcsinh(x),
- "acosh": lambda x, y: np.arccosh(x),
- "add": lambda x, y: x + y, # 矩阵或元素
- "sub": lambda x, y: x - y, # 矩阵或元素
- "mul": lambda x, y: np.multiply(x, y), # 元素级别
- "matmul": lambda x, y: np.matmul(x, y), # 矩阵
- "dot": lambda x, y: np.dot(x, y), # 矩阵
- "div": lambda x, y: x / y,
- "div_floor": lambda x, y: np.floor_divide(x, y),
- "power": lambda x, y: np.power(x, y), # 元素级
- }
- def get_form(self) -> dict:
- return self.numpy_dict.copy()
- def get_sheet(self, name) -> np.ndarray:
- return self.numpy_dict[name].copy()
- @abstractmethod
- def add_form(self, data, name):
- pass
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LearnerIO(LearnBase):
- def add_form(self, data: np.array, name):
- name = f"{name}[{len(self.numpy_dict)}]"
- self.numpy_dict[name] = data
- def del_sheet(self, name):
- del self.numpy_dict[name]
- def read_csv(
- self,
- file_dir,
- name,
- encoding="utf-8",
- str_must=False,
- sep=","):
- dtype = np.str if str_must else np.float
- dataframe = read_csv(
- file_dir,
- encoding=encoding,
- delimiter=sep,
- header=None)
- try:
- data = dataframe.to_numpy(dtype=dtype)
- except ValueError:
- data = dataframe.to_numpy(dtype=np.str)
- if data.ndim == 1:
- data = np.expand_dims(data, axis=1)
- self.add_form(data, name)
- return data
- def add_python(self, python_file, sheet_name):
- name = {}
- name.update(globals().copy())
- name.update(locals().copy())
- exec(python_file, name)
- exec("get = Creat()", name)
- if isinstance(name["get"], np.array):
- get = name["get"]
- else:
- get = np.array(name["get"])
- self.add_form(get, sheet_name)
- return get
- def to_csv(self, save_dir: str, name, sep) -> str:
- get: np.ndarray = self.get_sheet(name)
- np.savetxt(save_dir, get, delimiter=sep)
- return save_dir
- def to_html_one(self, name, html_dir=""):
- if html_dir == "":
- html_dir = f"{name}.html"
- get: np.ndarray = self.get_sheet(name)
- if get.ndim == 1:
- get = np.expand_dims(get, axis=1)
- get: list = get.tolist()
- for i in range(len(get)):
- get[i] = [i + 1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = TableFisrt()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(
- title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"
- )
- )
- table.render(html_dir)
- return html_dir
- def to_html(self, name, html_dir="", html_type=0):
- if html_dir == "":
- html_dir = f"{name}.html"
- # 把要画的sheet放到第一个
- sheet_dict = self.get_form()
- del sheet_dict[name]
- sheet_list = [name] + list(sheet_dict.keys())
- class TabBase:
- def __init__(self, q):
- self.tab = q # 一个Tab
- def render(self, render_dir):
- return self.tab.render(render_dir)
- # 生成一个显示页面
- if html_type == 0:
- class NewTab(TabBase):
- def add(self, table_, k, *f):
- self.tab.add(table_, k)
- tab = NewTab(tab_First(page_title="CoTan:查看表格")) # 一个Tab
- elif html_type == 1:
- class NewTab(TabBase):
- def add(self, table_, *k):
- self.tab.add(table_)
- tab = NewTab(
- Page(
- page_title="CoTan:查看表格",
- layout=Page.DraggablePageLayout))
- else:
- class NewTab(TabBase):
- def add(self, table_, *k):
- self.tab.add(table_)
- tab = NewTab(
- Page(
- page_title="CoTan:查看表格",
- layout=Page.SimplePageLayout))
- # 迭代添加内容
- for name in sheet_list:
- get: np.ndarray = self.get_sheet(name)
- if get.ndim == 1:
- get = np.expand_dims(get, axis=1)
- get: list = get.tolist()
- for i in range(len(get)):
- get[i] = [i + 1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = TableFisrt()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(
- title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"
- )
- )
- tab.add(table, f"表格:{name}")
- tab.render(html_dir)
- return html_dir
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LearnerMerge(LearnBase, metaclass=ABCMeta):
- def merge(self, name, axis=0): # aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
- sheet_list = []
- for i in name:
- sheet_list.append(self.get_sheet(i))
- get = {0: np.hstack, 1: np.vstack, 2: np.dstack}[axis](sheet_list)
- self.add_form(np.array(get), f"{name[0]}合成")
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LearnerSplit(LearnBase, metaclass=ABCMeta):
- def split(self, name, split=2, axis=0): # aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
- sheet = self.get_sheet(name)
- get = {0: np.hsplit, 1: np.vsplit, 2: np.dsplit}[axis](sheet, split)
- for i in get:
- self.add_form(i, f"{name[0]}分割")
- def two_split(self, name, split, axis): # 二分切割(0-横向,1-纵向)
- sheet = self.get_sheet(name)
- try:
- split = float(eval(split))
- if split < 1:
- split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
- else:
- assert False
- except (ValueError, AssertionError):
- split = int(split)
- if axis == 0:
- self.add_form(sheet[:, split:], f"{name[0]}分割")
- self.add_form(sheet[:, :split], f"{name[0]}分割")
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LearnerDimensions(LearnBase, metaclass=ABCMeta):
- @staticmethod
- def deep(sheet: np.ndarray):
- return sheet.ravel()
- @staticmethod
- def down_ndim(sheet: np.ndarray): # 横向
- down_list = []
- for i in sheet:
- down_list.append(i.ravel())
- return np.array(down_list)
- @staticmethod
- def longitudinal_down_ndim(sheet: np.ndarray): # 纵向
- down_list = []
- for i in range(len(sheet[0])):
- down_list.append(sheet[:, i].ravel())
- return np.array(down_list).T
- def reval(self, name, axis): # axis:0-横向,1-纵向(带.T),2-深度
- sheet = self.get_sheet(name)
- self.add_form(
- {0: self.down_ndim, 1: self.longitudinal_down_ndim, 2: self.deep}[axis](
- sheet
- ).copy(),
- f"{name}伸展",
- )
- def del_ndim(self, name): # 删除无用维度
- sheet = self.get_sheet(name)
- self.add_form(np.squeeze(sheet), f"{name}降维")
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LearnerShape(LearnBase, metaclass=ABCMeta):
- def transpose(self, name, func: list):
- sheet = self.get_sheet(name)
- if sheet.ndim <= 2:
- self.add_form(sheet.transpose().copy(), f"{name}.T")
- else:
- self.add_form(np.transpose(sheet, func).copy(), f"{name}.T")
- def reshape(self, name, shape: list):
- sheet = self.get_sheet(name)
- self.add_form(sheet.reshape(shape).copy(), f"{name}.r")
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class Calculation(LearnBase, metaclass=ABCMeta):
- def calculation_matrix(self, data, data_type, func):
- if 1 not in data_type:
- raise Exception
- func = self.func_dict.get(func, lambda x, y: x)
- args_data = []
- for i in range(len(data)):
- if data_type[i] == 0:
- args_data.append(data[i])
- else:
- args_data.append(self.get_sheet(data[i]))
- get = func(*args_data)
- self.add_form(get, f"{func}({data[0]},{data[1]})")
- return get
- class Machinebase(metaclass=ABCMeta): # 学习器的基类
- def __init__(self, *args, **kwargs):
- self.model = None
- self.have_fit = False
- self.have_predict = False
- self.x_traindata = None
- self.y_traindata = None
- # 有监督学习专有的testData
- self.x_testdata = None
- self.y_testdata = None
- # 记录这两个是为了克隆
- @abstractmethod
- def fit_model(self, x_data, y_data, split, increment, kwargs):
- pass
- @abstractmethod
- def score(self, x_data, y_data):
- pass
- @abstractmethod
- def class_score(self, save_dir, x_data, y_really):
- pass
- @staticmethod
- def _accuracy(y_predict, y_really): # 准确率
- return accuracy_score(y_really, y_predict)
- @staticmethod
- def _macro(y_predict, y_really, func_num=0):
- func = [recall_score, precision_score, f1_score] # 召回率,精确率和f1
- class_ = np.unique(y_really).tolist()
- result = func[func_num](y_really, y_predict, class_, average=None)
- return result, class_
- @staticmethod
- def _confusion_matrix(y_predict, y_really): # 混淆矩阵
- class_ = np.unique(y_really).tolist()
- return confusion_matrix(y_really, y_predict), class_
- @staticmethod
- def _kappa_score(y_predict, y_really):
- return cohen_kappa_score(y_really, y_predict)
- @abstractmethod
- def regression_score(self, save_dir, x_data, y_really):
- pass
- @abstractmethod
- def clusters_score(self, save_dir, x_data, args):
- pass
- @staticmethod
- def _mse(y_predict, y_really): # 均方误差
- return mean_squared_error(y_really, y_predict)
- @staticmethod
- def _mae(y_predict, y_really): # 中值绝对误差
- return median_absolute_error(y_really, y_predict)
- @staticmethod
- def _r2_score(y_predict, y_really): # 中值绝对误差
- return r2_score(y_really, y_predict)
- def _rmse(self, y_predict, y_really): # 中值绝对误差
- return self._mse(y_predict, y_really) ** 0.5
- @staticmethod
- def _coefficient_clustering(x_data, y_predict):
- means_score = silhouette_score(x_data, y_predict)
- outline_score = silhouette_samples(x_data, y_predict)
- return means_score, outline_score
- @abstractmethod
- def predict(self, x_data, args, kwargs):
- pass
- @abstractmethod
- def data_visualization(self, save_dir, args, kwargs):
- pass
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class StudyMachinebase(Machinebase):
- def fit_model(self, x_data, y_data, split=0.3, increment=True, **kwargs):
- y_data = y_data.ravel()
- try:
- assert self.x_traindata is not None or not increment
- self.x_traindata = np.vstack((x_data, self.x_traindata))
- self.y_traindata = np.vstack((y_data, self.y_traindata))
- except (AssertionError, ValueError):
- self.x_traindata = x_data.copy()
- self.y_traindata = y_data.copy()
- x_train, x_test, y_train, y_test = train_test_split(
- x_data, y_data, test_size=split
- )
- try: # 增量式训练
- assert increment
- self.model.partial_fit(x_data, y_data)
- except (AssertionError, AttributeError):
- self.model.fit(self.x_traindata, self.y_traindata)
- train_score = self.model.score(x_train, y_train)
- test_score = self.model.score(x_test, y_test)
- self.have_fit = True
- return train_score, test_score
- def score(self, x_data, y_data):
- score = self.model.score(x_data, y_data)
- return score
- def class_score(self, save_dir, x_data: np.ndarray, y_really: np.ndarray):
- y_really: np.ndarray = y_really.ravel()
- y_predict: np.ndarray = self.predict(x_data)[0]
- accuracy = self._accuracy(y_predict, y_really)
- recall, class_list = self._macro(y_predict, y_really, 0)
- precision, class_list = self._macro(y_predict, y_really, 1)
- f1, class_list = self._macro(y_predict, y_really, 2)
- confusion_matrix_, class_list = self._confusion_matrix(
- y_predict, y_really)
- kappa = self._kappa_score(y_predict, y_really)
- class_list: list
- tab = Tab()
- def gauge_base(name: str, value_: float) -> Gauge:
- c = (
- Gauge()
- .add("", [(name, round(value_ * 100, 2))], min_=0, max_=100)
- .set_global_opts(title_opts=opts.TitleOpts(title=name))
- )
- return c
- tab.add(gauge_base("准确率", accuracy), "准确率")
- tab.add(gauge_base("kappa", kappa), "kappa")
- def bar_base(name, value_) -> Bar:
- c = (
- Bar()
- .add_xaxis(class_list)
- .add_yaxis(name, value_, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title=name), **global_setting
- )
- )
- return c
- tab.add(bar_base("精确率", precision.tolist()), "精确率")
- tab.add(bar_base("召回率", recall.tolist()), "召回率")
- tab.add(bar_base("F1", f1.tolist()), "F1")
- def heatmap_base(name, value_, max_, min_, show) -> HeatMap:
- c = (
- HeatMap()
- .add_xaxis(class_list)
- .add_yaxis(
- name,
- class_list,
- value_,
- label_opts=opts.LabelOpts(is_show=show, position="inside"),
- )
- .set_global_opts(
- title_opts=opts.TitleOpts(title=name),
- **global_setting,
- visualmap_opts=opts.VisualMapOpts(
- max_=max_, min_=min_, pos_right="3%"
- ),
- )
- )
- return c
- value = [
- [class_list[i], class_list[j], float(confusion_matrix_[i, j])]
- for i in range(len(class_list))
- for j in range(len(class_list))
- ]
- tab.add(
- heatmap_base(
- "混淆矩阵",
- value,
- float(confusion_matrix_.max()),
- float(confusion_matrix_.min()),
- len(class_list) < 7,
- ),
- "混淆矩阵",
- )
- Statistics.des_to_csv(
- save_dir,
- "混淆矩阵",
- confusion_matrix_,
- class_list,
- class_list)
- Statistics.des_to_csv(
- save_dir, "评分", [
- precision, recall, f1], class_list, [
- "精确率", "召回率", "F1"])
- save = save_dir + rf"{os.sep}分类模型评估.HTML"
- tab.render(save)
- return save,
- def regression_score(
- self,
- save_dir,
- x_data: np.ndarray,
- y_really: np.ndarray):
- y_really = y_really.ravel()
- y_predict = self.predict(x_data)[0]
- tab = Tab()
- mse = self._mse(y_predict, y_really)
- mae = self._mae(y_predict, y_really)
- r2_score_ = self._r2_score(y_predict, y_really)
- rmse = self._rmse(y_predict, y_really)
- tab.add(MakePyecharts.make_tab(["MSE", "MAE", "RMSE", "r2_Score"], [
- [mse, mae, rmse, r2_score_]]), "评估数据", )
- save = save_dir + rf"{os.sep}回归模型评估.HTML"
- tab.render(save)
- return save,
- def clusters_score(self, save_dir, x_data: np.ndarray, *args):
- y_predict = self.predict(x_data)[0]
- tab = Tab()
- coefficient, coefficient_array = self._coefficient_clustering(
- x_data, y_predict)
- def gauge_base(name: str, value: float) -> Gauge:
- c = (
- Gauge()
- .add(
- "",
- [(name, round(value * 100, 2))],
- min_=0,
- max_=10 ** (DataOperations.judging_digits(value * 100)),
- )
- .set_global_opts(title_opts=opts.TitleOpts(title=name))
- )
- return c
- def bar_base(name, value, xaxis) -> Bar:
- c = (
- Bar()
- .add_xaxis(xaxis)
- .add_yaxis(name, value, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title=name), **global_setting
- )
- )
- return c
- tab.add(gauge_base("平均轮廓系数", coefficient), "平均轮廓系数")
- def bar_(coefficient_array_, name="数据轮廓系数"):
- xaxis = [f"数据{i}" for i in range(len(coefficient_array_))]
- value = coefficient_array_.tolist()
- tab.add(bar_base(name, value, xaxis), name)
- n = 20
- if len(coefficient_array) <= n:
- bar_(coefficient_array)
- elif len(coefficient_array) <= n ** 2:
- a = 0
- while a <= len(coefficient_array):
- b = a + n
- if b >= len(coefficient_array):
- b = len(coefficient_array) + 1
- cofe_array = coefficient_array[a:b]
- bar_(cofe_array, f"{a}-{b}数据轮廓系数")
- a += n
- else:
- split = np.hsplit(coefficient_array, n)
- a = 0
- for cofe_array in split:
- bar_(cofe_array, f"{a}%-{a + n}%数据轮廓系数")
- a += n
- save = save_dir + rf"{os.sep}聚类模型评估.HTML"
- tab.render(save)
- return save,
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- y_predict = self.model.predict(x_data, )
- self.y_testdata = y_predict.copy()
- self.have_predict = True
- return y_predict, "预测"
- def data_visualization(self, save_dir, *args, **kwargs):
- return save_dir,
- class PrepBase(StudyMachinebase): # 不允许第二次训练
- def __init__(self, *args, **kwargs):
- super(PrepBase, self).__init__(*args, **kwargs)
- self.model = None
- def fit_model(self, x_data, y_data, increment=True, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- y_data = y_data.ravel()
- try:
- assert self.x_traindata is not None or not increment
- self.x_traindata = np.vstack((x_data, self.x_traindata))
- self.y_traindata = np.vstack((y_data, self.y_traindata))
- except (AssertionError, ValueError):
- self.x_traindata = x_data.copy()
- self.y_traindata = y_data.copy()
- try: # 增量式训练
- assert increment
- self.model.partial_fit(x_data, y_data)
- except (AssertionError, AttributeError):
- self.model.fit(self.x_traindata, self.y_traindata)
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "特征工程"
- def score(self, x_data, y_data):
- return "None" # 没有score
- class Unsupervised(PrepBase): # 无监督,不允许第二次训练
- def fit_model(self, x_data, increment=True, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- self.y_traindata = None
- try:
- assert self.x_traindata is not None or not increment
- self.x_traindata = np.vstack((x_data, self.x_traindata))
- except (AssertionError, ValueError):
- self.x_traindata = x_data.copy()
- try: # 增量式训练
- assert increment
- self.model.partial_fit(x_data)
- except (AssertionError, AttributeError):
- self.model.fit(self.x_traindata, self.y_traindata)
- self.have_fit = True
- return "None", "None"
- class UnsupervisedModel(PrepBase): # 无监督
- def fit_model(self, x_data, increment=True, *args, **kwargs):
- self.y_traindata = None
- try:
- assert self.x_traindata is not None or not increment
- self.x_traindata = np.vstack((x_data, self.x_traindata))
- except (AssertionError, ValueError):
- self.x_traindata = x_data.copy()
- try: # 增量式训练
- if not increment:
- raise Exception
- self.model.partial_fit(x_data)
- except (AssertionError, AttributeError):
- self.model.fit(self.x_traindata, self.y_traindata)
- self.have_fit = True
- return "None", "None"
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class ToPyebase(StudyMachinebase):
- def __init__(self, model, *args, **kwargs):
- super(ToPyebase, self).__init__(*args, **kwargs)
- self.model = None
- # 记录这两个是为了克隆
- self.k = {}
- self.model_Name = model
- def fit_model(self, x_data, y_data, *args, **kwargs):
- self.x_traindata = x_data.copy()
- self.y_traindata = y_data.ravel().copy()
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.have_predict = True
- return np.array([]), "请使用训练"
- def score(self, x_data, y_data):
- return "None" # 没有score
- class DataAnalysis(ToPyebase): # 数据分析
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- data = self.x_traindata
- def cumulative_calculation(tab_data, func, name, render_tab):
- sum_list = []
- for i in range(len(tab_data)): # 按行迭代数据
- sum_list.append([])
- for a in range(len(tab_data[i])):
- s = DataOperations.num_str(func(tab_data[: i + 1, a]), 8)
- sum_list[-1].append(s)
- Statistics.des_to_csv(save_dir, f"{name}", sum_list)
- render_tab.add(MakePyecharts.make_tab(
- [f"[{i}]" for i in range(len(sum_list[0]))], sum_list), f"{name}", )
- def geometric_mean(x):
- return np.power(np.prod(x), 1 / len(x)) # 几何平均数
- def square_mean(x):
- return np.sqrt(np.sum(np.power(x, 2)) / len(x)) # 平方平均数
- def harmonic_mean(x):
- return len(x) / np.sum(np.power(x, -1)) # 调和平均数
- cumulative_calculation(data, np.sum, "累计求和", tab)
- cumulative_calculation(data, np.var, "累计方差", tab)
- cumulative_calculation(data, np.std, "累计标准差", tab)
- cumulative_calculation(data, np.mean, "累计算术平均值", tab)
- cumulative_calculation(data, geometric_mean, "累计几何平均值", tab)
- cumulative_calculation(data, square_mean, "累计平方平均值", tab)
- cumulative_calculation(data, harmonic_mean, "累计调和平均值", tab)
- cumulative_calculation(data, np.median, "累计中位数", tab)
- cumulative_calculation(data, np.max, "累计最大值", tab)
- cumulative_calculation(data, np.min, "累计最小值", tab)
- save = save_dir + rf"{os.sep}数据分析.HTML"
- tab.render(save) # 生成HTML
- return save,
- class Corr(ToPyebase): # 相关性和协方差
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- data = DataFrame(self.x_traindata)
- corr: np.ndarray = data.corr().to_numpy() # 相关性
- cov: np.ndarray = data.cov().to_numpy() # 协方差
- def heat_map(data_, name: str, max_, min_):
- x = [f"特征[{i}]" for i in range(len(data_))]
- y = [f"特征[{i}]" for i in range(len(data_[0]))]
- value = [
- (f"特征[{i}]", f"特征[{j}]", float(data_[i][j]))
- for i in range(len(data_))
- for j in range(len(data_[i]))
- ]
- c = (
- HeatMap()
- .add_xaxis(x)
- # 如果特征太多则不显示标签
- .add_yaxis(
- f"数据",
- y,
- value,
- label_opts=opts.LabelOpts(
- is_show=True if len(x) <= 10 else False, position="inside"
- ),
- )
- .set_global_opts(
- title_opts=opts.TitleOpts(title="矩阵热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"
- ), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True, max_=max_, min_=min_, pos_right="3%"
- ),
- ) # 显示
- )
- tab.add(c, name)
- heat_map(corr, "相关性热力图", 1, -1)
- heat_map(cov, "协方差热力图", float(cov.max()), float(cov.min()))
- Statistics.des_to_csv(save_dir, f"相关性矩阵", corr)
- Statistics.des_to_csv(save_dir, f"协方差矩阵", cov)
- save = save_dir + rf"{os.sep}数据相关性.HTML"
- tab.render(save) # 生成HTML
- return save,
- class ViewData(ToPyebase): # 绘制预测型热力图
- def __init__(
- self, args_use, learner, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(ViewData, self).__init__(args_use, learner, *args, **kwargs)
- self.model = learner.Model
- self.Select_Model = None
- self.have_fit = learner.have_Fit
- self.model_Name = "Select_Model"
- self.learner = learner
- self.learner_name = learner.Model_Name
- def fit_model(self, *args, **kwargs):
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, add_func=None, *args, **kwargs):
- x_traindata = self.learner.x_traindata
- y_traindata = self.learner.y_traindata
- x_name = self.learner_name
- if x_traindata is not None:
- add_func(x_traindata, f"{x_name}:x训练数据")
- try:
- x_testdata = self.x_testdata
- if x_testdata is not None:
- add_func(x_testdata, f"{x_name}:x测试数据")
- except BaseException as e:
- logging.warning(str(e))
- try:
- y_testdata = self.y_testdata.copy()
- if y_testdata is not None:
- add_func(y_testdata, f"{x_name}:y测试数据")
- except BaseException as e:
- logging.warning(str(e))
- self.have_fit = True
- if y_traindata is None:
- return np.array([]), "y训练数据"
- return y_traindata, "y训练数据"
- def data_visualization(self, save_dir, *args, **kwargs):
- return save_dir,
- class MatrixScatter(ToPyebase): # 矩阵散点图
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- data = self.x_traindata
- if data.ndim <= 2: # 维度为2
- c = (
- Scatter()
- .add_xaxis([f"{i}" for i in range(data.shape[1])])
- .set_global_opts(
- title_opts=opts.TitleOpts(title=f"矩阵散点图"), **global_not_legend
- )
- )
- if data.ndim == 2:
- for num in range(len(data)):
- i = data[num]
- c.add_yaxis(f"{num}", [[f"{num}", x]
- for x in i], color="#FFFFFF")
- else:
- c.add_yaxis(f"0", [[0, x] for x in data], color="#FFFFFF")
- c.set_series_opts(
- label_opts=opts.LabelOpts(
- is_show=True,
- color="#000000",
- position="inside",
- formatter=JsCode("function(params){return params.data[2];}"),
- ))
- elif data.ndim == 3:
- c = Scatter3D().set_global_opts(
- title_opts=opts.TitleOpts(title=f"矩阵散点图"), **global_not_legend
- )
- for num in range(len(data)):
- i = data[num]
- for s_num in range(len(i)):
- s = i[s_num]
- y_data = [[num, s_num, x, float(s[x])]
- for x in range(len(s))]
- c.add(
- f"{num}",
- y_data,
- zaxis3d_opts=opts.Axis3DOpts(
- type_="category"))
- c.set_series_opts(
- label_opts=opts.LabelOpts(
- is_show=True,
- color="#000000",
- position="inside",
- formatter=JsCode("function(params){return params.data[3];}"),
- ))
- else:
- c = Scatter()
- tab.add(c, "矩阵散点图")
- save = save_dir + rf"{os.sep}矩阵散点图.HTML"
- tab.render(save) # 生成HTML
- return save,
- class ClusterTree(ToPyebase): # 聚类树状图
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata
- linkage_array = ward(x_data) # self.y_traindata是结果
- dendrogram(linkage_array)
- plt.savefig(save_dir + rf"{os.sep}Cluster_graph.png")
- image = Image()
- image.add(
- src=save_dir +
- rf"{os.sep}Cluster_graph.png",
- ).set_global_opts(
- title_opts=opts.ComponentTitleOpts(
- title="聚类树状图"))
- tab.add(image, "聚类树状图")
- save = save_dir + rf"{os.sep}聚类树状图.HTML"
- tab.render(save) # 生成HTML
- return save,
- class ClassBar(ToPyebase): # 类型柱状图
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data: np.ndarray = self.x_traindata.transpose()
- y_data: np.ndarray = self.y_traindata
- class_: list = np.unique(y_data).tolist() # 类型
- class_list = []
- for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
- class_list.append(y_data == n_class)
- for num_i in range(len(x_data)): # 迭代每一个特征
- i = x_data[num_i]
- i_con = Statistics.is_continuous(i)
- if i_con and len(i) >= 11:
- # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
- c_list = [[0] * 10 for _ in class_list]
- start = i.min()
- end = i.max()
- n = (end - start) / 10 # 生成10条柱子
- x_axis = [] # x轴
- iter_num = 0 # 迭代到第n个
- while iter_num <= 9: # 把每个特征分为10类进行迭代
- # x_axis添加数据
- x_axis.append(
- f"({iter_num})[{round(start, 2)}-"
- f"{round((start + n) if (start + n) <= end or not iter_num == 9 else end, 2)}]")
- try:
- assert not iter_num == 9 # 执行到第10次时,直接获取剩下的所有
- s = (start <= i) == (i < end) # 布尔索引
- except (AssertionError, IndexError): # 因为start + n有超出end的风险
- s = (start <= i) == (i <= end) # 布尔索引
- # n_data = i[s] # 取得现在的特征数据
- for num in range(len(class_list)): # 根据类别进行迭代
- # 取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
- now_class: list = class_list[num]
- # 切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
- bool_class = now_class[s].ravel()
- # 用len计数 c_list = [[class1的数据],[class2的数据],[]]
- c_list[num][iter_num] = int(np.sum(bool_class))
- iter_num += 1
- start += n
- else:
- iter_np = np.unique(i)
- # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
- c_list = [[0] * len(iter_np) for _ in class_list]
- x_axis = [] # 添加x轴数据
- for i_num in range(len(iter_np)): # 迭代每一个i(不重复)
- i_data = iter_np[i_num]
- # n_data= i[i == i_data]#取得现在特征数据
- x_axis.append(f"[{i_data}]")
- for num in range(len(class_list)): # 根据类别进行迭代
- now_class = class_list[num] # 取得class_list的布尔数组
- # 切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
- bool_class = now_class[i == i_data]
- # 用sum计数(bool) c_list = [[class1的数据],[class2的数据],[]]
- c_list[num][i_num] = np.sum(bool_class)
- c = (
- Bar()
- .add_xaxis(x_axis)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="类型-特征统计柱状图"),
- **global_setting,
- xaxis_opts=opts.AxisOpts(type_="category"),
- yaxis_opts=opts.AxisOpts(type_="value"),
- )
- )
- y_axis = []
- for i in range(len(c_list)):
- y_axis.append(f"{class_[i]}")
- c.add_yaxis(f"{class_[i]}", c_list[i], **label_setting)
- Statistics.des_to_csv(
- save_dir,
- f"类型-[{num_i}]特征统计柱状图",
- c_list,
- x_axis,
- y_axis)
- tab.add(c, f"类型-[{num_i}]特征统计柱状图")
- # 未完成
- save = save_dir + rf"{os.sep}特征统计.HTML"
- tab.render(save) # 生成HTML
- return save,
- class NumpyHeatMap(ToPyebase): # Numpy矩阵绘制热力图
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- data = self.x_traindata
- x = [f"横[{i}]" for i in range(len(data))]
- y = [f"纵[{i}]" for i in range(len(data[0]))]
- value = [
- (f"横[{i}]", f"纵[{j}]", float(data[i][j]))
- for i in range(len(data))
- for j in range(len(data[i]))
- ]
- c = (
- HeatMap()
- .add_xaxis(x)
- .add_yaxis(f"数据", y, value, **label_setting) # value的第一个数值是x
- .set_global_opts(
- title_opts=opts.TitleOpts(title="矩阵热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=float(data.max()),
- min_=float(data.min()),
- pos_right="3%",
- ),
- ) # 显示
- )
- tab.add(c, "矩阵热力图")
- tab.add(
- MakePyecharts.make_tab(
- x,
- data.transpose().tolist()),
- f"矩阵热力图:表格")
- save = save_dir + rf"{os.sep}矩阵热力图.HTML"
- tab.render(save) # 生成HTML
- return save,
- class PredictiveHeatmapBase(ToPyebase): # 绘制预测型热力图
- def __init__(
- self, args_use, learner, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(
- PredictiveHeatmapBase,
- self).__init__(
- args_use,
- learner,
- *
- args,
- **kwargs)
- self.model = learner.Model
- self.select_model = None
- self.have_fit = learner.have_Fit
- self.model_Name = "Select_Model"
- self.learner = learner
- self.x_traindata = learner.x_traindata.copy()
- self.y_traindata = learner.y_traindata.copy()
- self.means = []
- def fit_model(self, x_data, *args, **kwargs):
- try:
- self.means = x_data.ravel()
- except BaseException as e:
- logging.warning(str(e))
- self.have_fit = True
- return "None", "None"
- def data_visualization(
- self,
- save_dir,
- decision_boundary_func=None,
- prediction_boundary_func=None,
- *args,
- **kwargs,
- ):
- tab = Tab()
- y = self.y_traindata
- x_data = self.x_traindata
- try: # 如果没有class
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- # 获取数据
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- # 可使用自带的means,并且nan表示跳过
- for i in range(min([len(x_means), len(self.means)])):
- try:
- g = self.means[i]
- if g == np.nan:
- raise Exception
- x_means[i] = g
- except BaseException as e:
- logging.warning(str(e))
- get = decision_boundary_func(
- x_range, x_means, self.learner.predict, class_, data_type
- )
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- except AttributeError:
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- get = prediction_boundary_func(
- x_range, x_means, self.learner.predict, data_type
- )
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- heard = [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- save = save_dir + rf"{os.sep}预测热力图.HTML"
- tab.render(save) # 生成HTML
- return save,
- class PredictiveHeatmap(PredictiveHeatmapBase): # 绘制预测型热力图
- def data_visualization(self, save_dir, *args, **kwargs):
- return super().data_visualization(
- save_dir, Boundary.decision_boundary, Boundary.prediction_boundary
- )
- class PredictiveHeatmapMore(PredictiveHeatmapBase): # 绘制预测型热力图_More
- def data_visualization(self, save_dir, *args, **kwargs):
- return super().data_visualization(
- save_dir,
- Boundary.decision_boundary_more,
- Boundary.prediction_boundary_more)
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class NearFeatureScatterClassMore(ToPyebase):
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata
- y = self.y_traindata
- class_ = np.unique(y).ravel().tolist()
- class_heard = [f"簇[{i}]" for i in range(len(class_))]
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization_more_no_center(
- x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- save = save_dir + rf"{os.sep}数据特征散点图(分类).HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class NearFeatureScatterMore(ToPyebase):
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata
- x_means = Statistics.quick_stats(x_data).get()[0]
- get_y = TrainingVisualization.training_visualization_no_class_more(
- x_data, "数据散点图") # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f"[{i}]数据x-x散点图")
- heard = [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- save = save_dir + rf"{os.sep}数据特征散点图.HTML"
- tab.render(save) # 生成HTML
- return save,
- class NearFeatureScatterClass(ToPyebase): # 临近特征散点图:分类数据
- def data_visualization(self, save_dir, *args, **kwargs):
- # 获取数据
- class_ = np.unique(self.y_traindata).ravel().tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- tab = Tab()
- y = self.y_traindata
- x_data = self.x_traindata
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}临近特征散点图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- save = save_dir + rf"{os.sep}临近数据特征散点图(分类).HTML"
- tab.render(save) # 生成HTML
- return save,
- class NearFeatureScatter(ToPyebase): # 临近特征散点图:连续数据
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata.transpose()
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization_no_class(
- x_data)
- for i in range(len(get)):
- tab.add(get[i], f"{i}临近特征散点图")
- columns = [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = [f"{i}" for i in x_means]
- tab.add(MakePyecharts.make_tab(columns, [data]), "数据表")
- save = save_dir + rf"{os.sep}临近数据特征散点图.HTML"
- tab.render(save) # 生成HTML
- return save,
- class FeatureScatterYX(ToPyebase): # y-x图
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata
- y = self.y_traindata
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}特征x-y散点图")
- columns = [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = [f"{i}" for i in x_means]
- tab.add(MakePyecharts.make_tab(columns, [data]), "数据表")
- save = save_dir + rf"{os.sep}特征y-x图像.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LineModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(LineModel, self).__init__(*args, **kwargs)
- all_model = {
- "Line": LinearRegression,
- "Ridge": Ridge,
- "Lasso": Lasso}[model]
- if model == "Line":
- self.model = all_model()
- self.k = {}
- else:
- self.model = all_model(
- alpha=args_use["alpha"], max_iter=args_use["max_iter"]
- )
- self.k = {
- "alpha": args_use["alpha"],
- "max_iter": args_use["max_iter"]}
- # 记录这两个是为了克隆
- self.Alpha = args_use["alpha"]
- self.max_iter = args_use["max_iter"]
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata
- y = self.y_traindata
- w_list = self.model.coef_.tolist()
- w_heard = [f"系数w[{i}]" for i in range(len(w_list))]
- b = self.model.intercept_.tolist()
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- get_line = Curve.regress_w(x_data, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_line[i]), f"{i}预测类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.coefficient_scatter_plot(
- w_heard, w_list), "系数w散点图")
- tab.add(
- MakePyecharts.coefficient_bar_plot(
- w_heard,
- self.model.coef_),
- "系数柱状图")
- columns = [
- f"普适预测第{i}特征" for i in range(
- len(x_means))] + w_heard + ["截距b"]
- data = [f"{i}" for i in x_means] + w_list + [b]
- if self.model_Name != "Line":
- columns += ["阿尔法", "最大迭代次数"]
- data += [self.model.alpha, self.model.max_iter]
- tab.add(MakePyecharts.make_tab(columns, [data]), "数据表")
- Statistics.des_to_csv(
- save_dir,
- "系数表",
- [w_list + [b]],
- [f"系数W[{i}]" for i in range(len(w_list))] + ["截距"],
- )
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}线性回归模型.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LogisticregressionModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(LogisticregressionModel, self).__init__(*args, **kwargs)
- self.model = LogisticRegression(
- C=args_use["C"], max_iter=args_use["max_iter"])
- # 记录这两个是为了克隆
- self.C = args_use["C"]
- self.max_iter = args_use["max_iter"]
- self.k = {"C": args_use["C"], "max_iter": args_use["max_iter"]}
- self.model_Name = model
- def data_visualization(self, save_dir="render.html", *args, **kwargs):
- # 获取数据
- w_array = self.model.coef_
- w_list = w_array.tolist() # 变为表格
- b = self.model.intercept_
- c = self.model.C
- max_iter = self.model.max_iter
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- tab = Tab()
- y = self.y_traindata
- x_data = self.x_traindata
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- get_line = Curve.training_w(
- x_data, class_, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_line[i]), f"{i}决策边界散点图")
- for i in range(len(w_list)):
- w = w_list[i]
- w_heard = [f"系数w[{i},{j}]" for j in range(len(w))]
- tab.add(
- MakePyecharts.coefficient_scatter_plot(
- w_heard, w), f"系数w[{i}]散点图")
- tab.add(
- MakePyecharts.coefficient_bar_plot(
- w_heard,
- w_array[i]),
- f"系数w[{i}]柱状图")
- columns = class_heard + \
- [f"截距{i}" for i in range(len(b))] + ["C", "最大迭代数"]
- data = class_ + b.tolist() + [c, max_iter]
- c = Table().add(headers=columns, rows=[data])
- tab.add(c, "数据表")
- c = Table().add(
- headers=[f"系数W[{i}]" for i in range(len(w_list[0]))], rows=w_list
- )
- tab.add(c, "系数数据表")
- c = Table().add(
- headers=[f"普适预测第{i}特征" for i in range(len(x_means))],
- rows=[[f"{i}" for i in x_means]],
- )
- tab.add(c, "普适预测数据表")
- Statistics.des_to_csv(save_dir, "系数表", w_list, [
- f"系数W[{i}]" for i in range(len(w_list[0]))])
- Statistics.des_to_csv(
- save_dir, "截距表", [b], [
- f"截距{i}" for i in range(
- len(b))])
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}逻辑回归.HTML"
- tab.render(save) # 生成HTML
- return save,
- class CategoricalData: # 数据统计助手
- def __init__(self):
- self.x_means = []
- self.x_range = []
- self.data_type = []
- def __call__(self, x1, *args, **kwargs):
- get = self.is_continuous(x1)
- return get
- def is_continuous(self, x1: np.array):
- try:
- x1_con = Statistics.is_continuous(x1)
- if x1_con:
- self.x_means.append(np.mean(x1))
- self.add_range(x1)
- else:
- assert False
- return x1_con
- except TypeError: # 找出出现次数最多的元素
- new = np.unique(x1) # 去除相同的元素
- count_list = []
- for i in new:
- count_list.append(np.sum(x1 == i))
- index = count_list.index(max(count_list)) # 找出最大值的索引
- self.x_means.append(x1[index])
- self.add_range(x1, False)
- return False
- def add_range(self, x1: np.array, range_=True):
- try:
- assert range_
- min_ = int(x1.min()) - 1
- max_ = int(x1.max()) + 1
- # 不需要复制列表
- self.x_range.append([min_, max_])
- self.data_type.append(1)
- except AssertionError:
- self.x_range.append(list(set(x1.tolist()))) # 去除多余元素
- self.data_type.append(2)
- def get(self):
- return self.x_means, self.x_range, self.data_type
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class KnnModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(KnnModel, self).__init__(*args, **kwargs)
- all_model = {
- "Knn_class": KNeighborsClassifier,
- "Knn": KNeighborsRegressor}[model]
- self.model = all_model(
- p=args_use["p"],
- n_neighbors=args_use["n_neighbors"])
- # 记录这两个是为了克隆
- self.n_neighbors = args_use["n_neighbors"]
- self.p = args_use["p"]
- self.k = {"n_neighbors": args_use["n_neighbors"], "p": args_use["p"]}
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y = self.y_traindata
- x_data = self.x_traindata
- y_test = self.y_testdata
- x_test = self.x_testdata
- if self.model_Name == "Knn_class":
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- if y_test is not None:
- get = TrainingVisualization.training_visualization(
- x_test, class_, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f"{i}测试数据散点图")
- get = Boundary.decision_boundary(
- x_range, x_means, self.predict, class_, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- else:
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = TrainingVisualization.regress_visualization(x_test, y_test)[
- 0]
- for i in range(len(get)):
- tab.add(get[i], f"{i}测试数据类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- heard = [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}K.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class TreeModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(TreeModel, self).__init__(*args, **kwargs)
- all_model = {
- "Tree_class": DecisionTreeClassifier,
- "Tree": DecisionTreeRegressor,
- }[model]
- self.model = all_model(
- criterion=args_use["criterion"],
- splitter=args_use["splitter"],
- max_features=args_use["max_features"],
- max_depth=args_use["max_depth"],
- min_samples_split=args_use["min_samples_split"],
- )
- # 记录这两个是为了克隆
- self.criterion = args_use["criterion"]
- self.splitter = args_use["splitter"]
- self.max_features = args_use["max_features"]
- self.max_depth = args_use["max_depth"]
- self.min_samples_split = args_use["min_samples_split"]
- self.k = {
- "criterion": args_use["criterion"],
- "splitter": args_use["splitter"],
- "max_features": args_use["max_features"],
- "max_depth": args_use["max_depth"],
- "min_samples_split": args_use["min_samples_split"],
- }
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- importance = self.model.feature_importances_.tolist()
- with open(save_dir + fr"{os.sep}Tree_Gra.dot", "w") as f:
- export_graphviz(self.model, out_file=f)
- MakePyecharts.make_bar("特征重要性", importance, tab)
- Statistics.des_to_csv(
- save_dir,
- "特征重要性",
- [importance],
- [f"[{i}]特征" for i in range(len(importance))],
- )
- tab.add(
- TreePlot.see_tree(
- save_dir +
- fr"{os.sep}Tree_Gra.dot"),
- "决策树可视化")
- y = self.y_traindata
- x_data = self.x_traindata
- y_test = self.y_testdata
- x_test = self.x_testdata
- if self.model_Name == "Tree_class":
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = TrainingVisualization.training_visualization(
- x_test, class_, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f"{i}测试数据散点图")
- get = Boundary.decision_boundary(
- x_range, x_means, self.predict, class_, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- class_heard
- + [f"普适预测第{i}特征" for i in range(len(x_means))]
- + [f"特征{i}重要性" for i in range(len(importance))],
- [class_ + [f"{i}" for i in x_means] + importance],
- ),
- "数据表",
- )
- else:
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = TrainingVisualization.regress_visualization(x_test, y_test)[
- 0]
- for i in range(len(get)):
- tab.add(get[i], f"{i}测试数据类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- [f"普适预测第{i}特征" for i in range(len(x_means))]
- + [f"特征{i}重要性" for i in range(len(importance))],
- [[f"{i}" for i in x_means] + importance],
- ),
- "数据表",
- )
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}决策树.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class ForestModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(ForestModel, self).__init__(*args, **kwargs)
- model = {
- "Forest_class": RandomForestClassifier,
- "Forest": RandomForestRegressor,
- }[model]
- self.model = model(
- n_estimators=args_use["n_Tree"],
- criterion=args_use["criterion"],
- max_features=args_use["max_features"],
- max_depth=args_use["max_depth"],
- min_samples_split=args_use["min_samples_split"],
- )
- # 记录这两个是为了克隆
- self.n_estimators = args_use["n_Tree"]
- self.criterion = args_use["criterion"]
- self.max_features = args_use["max_features"]
- self.max_depth = args_use["max_depth"]
- self.min_samples_split = args_use["min_samples_split"]
- self.k = {
- "n_estimators": args_use["n_Tree"],
- "criterion": args_use["criterion"],
- "max_features": args_use["max_features"],
- "max_depth": args_use["max_depth"],
- "min_samples_split": args_use["min_samples_split"],
- }
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- # 多个决策树可视化
- for i in range(len(self.model.estimators_)):
- with open(save_dir + rf"{os.sep}Tree_Gra[{i}].dot", "w") as f:
- export_graphviz(self.model.estimators_[i], out_file=f)
- tab.add(
- TreePlot.see_tree(
- save_dir +
- rf"{os.sep}Tree_Gra[{i}].dot"),
- f"[{i}]决策树可视化")
- y = self.y_traindata
- x_data = self.x_traindata
- if self.model_Name == "Forest_class":
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = Boundary.decision_boundary(
- x_range, x_means, self.predict, class_, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))],
- [class_ + [f"{i}" for i in x_means]],
- ),
- "数据表",
- )
- else:
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- [[f"{i}" for i in x_means]],
- ),
- "数据表",
- )
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}随机森林.HTML"
- tab.render(save) # 生成HTML
- return save,
- class GradienttreeModel(StudyMachinebase): # 继承Tree_Model主要是继承Des
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(
- GradienttreeModel,
- self).__init__(
- *args,
- **kwargs) # 不需要执行Tree_Model的初始化
- model = {
- "GradientTree_class": GradientBoostingClassifier,
- "GradientTree": GradientBoostingRegressor,
- }[model]
- self.model = model(
- n_estimators=args_use["n_Tree"],
- max_features=args_use["max_features"],
- max_depth=args_use["max_depth"],
- min_samples_split=args_use["min_samples_split"],
- )
- # 记录这两个是为了克隆
- self.criterion = args_use["criterion"]
- self.splitter = args_use["splitter"]
- self.max_features = args_use["max_features"]
- self.max_depth = args_use["max_depth"]
- self.min_samples_split = args_use["min_samples_split"]
- self.k = {
- "criterion": args_use["criterion"],
- "splitter": args_use["splitter"],
- "max_features": args_use["max_features"],
- "max_depth": args_use["max_depth"],
- "min_samples_split": args_use["min_samples_split"],
- }
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- # 多个决策树可视化
- for a in range(len(self.model.estimators_)):
- for i in range(len(self.model.estimators_[a])):
- with open(save_dir + rf"{os.sep}Tree_Gra[{a},{i}].dot", "w") as f:
- export_graphviz(self.model.estimators_[a][i], out_file=f)
- tab.add(
- TreePlot.see_tree(
- save_dir +
- rf"{os.sep}Tree_Gra[{a},{i}].dot"),
- f"[{a},{i}]决策树可视化")
- y = self.y_traindata
- x_data = self.x_traindata
- if self.model_Name == "Tree_class":
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = Boundary.decision_boundary(
- x_range, x_means, self.predict, class_, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))],
- [class_ + [f"{i}" for i in x_means]],
- ),
- "数据表",
- )
- else:
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- [[f"{i}" for i in x_means]],
- ),
- "数据表",
- )
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}梯度提升回归树.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class SvcModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SvcModel, self).__init__(*args, **kwargs)
- self.model = SVC(
- C=args_use["C"], gamma=args_use["gamma"], kernel=args_use["kernel"]
- )
- # 记录这两个是为了克隆
- self.C = args_use["C"]
- self.gamma = args_use["gamma"]
- self.kernel = args_use["kernel"]
- self.k = {
- "C": args_use["C"],
- "gamma": args_use["gamma"],
- "kernel": args_use["kernel"],
- }
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- try:
- w_list = self.model.coef_.tolist() # 未必有这个属性
- b = self.model.intercept_.tolist()
- except AttributeError:
- w_list = [] # 未必有这个属性
- b = []
- class_ = self.model.classes_.tolist()
- class_heard = [f"类别[{i}]" for i in range(len(class_))]
- y = self.y_traindata
- x_data = self.x_traindata
- get, x_means, x_range, data_type = TrainingVisualization.training_visualization(
- x_data, class_, y)
- if w_list:
- get_line: list = Curve.training_w(
- x_data, class_, y, w_list, b, x_means.copy())
- else:
- get_line = []
- for i in range(len(get)):
- if get_line:
- tab.add(get[i].overlap(get_line[i]), f"{i}决策边界散点图")
- else:
- tab.add(get[i], f"{i}决策边界散点图")
- get = Boundary.decision_boundary(
- x_range,
- x_means,
- self.predict,
- class_,
- data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- dic = {2: "离散", 1: "连续"}
- tab.add(MakePyecharts.make_tab(class_heard +
- [f"普适预测第{i}特征:{dic[data_type[i]]}" for i in range(len(x_means))],
- [class_ + [f"{i}" for i in x_means]], ), "数据表", )
- if w_list:
- Statistics.des_to_csv(save_dir, "系数表", w_list, [
- f"系数W[{i}]" for i in range(len(w_list[0]))])
- if w_list:
- Statistics.des_to_csv(
- save_dir, "截距表", [b], [
- f"截距{i}" for i in range(
- len(b))])
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}支持向量机分类.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class SvrModel(StudyMachinebase):
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SvrModel, self).__init__(*args, **kwargs)
- self.model = SVR(
- C=args_use["C"], gamma=args_use["gamma"], kernel=args_use["kernel"]
- )
- # 记录这两个是为了克隆
- self.C = args_use["C"]
- self.gamma = args_use["gamma"]
- self.kernel = args_use["kernel"]
- self.k = {
- "C": args_use["C"],
- "gamma": args_use["gamma"],
- "kernel": args_use["kernel"],
- }
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_traindata
- y = self.y_traindata
- try:
- w_list = self.model.coef_.tolist() # 未必有这个属性
- b = self.model.intercept_.tolist()
- except AttributeError:
- w_list = [] # 未必有这个属性
- b = []
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- if w_list:
- get_line = Curve.regress_w(x_data, w_list, b, x_means.copy())
- else:
- get_line = []
- for i in range(len(get)):
- if get_line:
- tab.add(get[i].overlap(get_line[i]), f"{i}预测类型图")
- else:
- tab.add(get[i], f"{i}预测类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- if w_list:
- Statistics.des_to_csv(save_dir, "系数表", w_list, [
- f"系数W[{i}]" for i in range(len(w_list[0]))])
- if w_list:
- Statistics.des_to_csv(
- save_dir, "截距表", [b], [
- f"截距{i}" for i in range(
- len(b))])
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- tab.add(
- MakePyecharts.make_tab(
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- [[f"{i}" for i in x_means]],
- ),
- "数据表",
- )
- save = save_dir + rf"{os.sep}支持向量机回归.HTML"
- tab.render(save) # 生成HTML
- return save,
- class VarianceModel(Unsupervised): # 无监督
- def __init__(
- self, args_use, model, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(VarianceModel, self).__init__(*args, **kwargs)
- self.model = VarianceThreshold(
- threshold=(args_use["P"] * (1 - args_use["P"])))
- # 记录这两个是为了克隆
- self.threshold = args_use["P"]
- self.k = {"threshold": args_use["P"]}
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- var = self.model.variances_ # 标准差
- y_data = self.y_testdata
- if isinstance(y_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- self.y_testdata)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]数据x-x散点图")
- c = (
- Bar()
- .add_xaxis([f"[{i}]特征" for i in range(len(var))])
- .add_yaxis("标准差", var.tolist(), **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="系数w柱状图"), **global_setting
- )
- )
- tab.add(c, "数据标准差")
- save = save_dir + rf"{os.sep}方差特征选择.HTML"
- tab.render(save) # 生成HTML
- return save,
- class SelectkbestModel(PrepBase): # 有监督
- def __init__(self, args_use, model, *args, **kwargs):
- super(SelectkbestModel, self).__init__(*args, **kwargs)
- self.model = SelectKBest(
- k=args_use["k"],
- score_func=args_use["score_func"])
- # 记录这两个是为了克隆
- self.k_ = args_use["k"]
- self.score_func = args_use["score_func"]
- self.k = {"k": args_use["k"], "score_func": args_use["score_func"]}
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- score = self.model.scores_.tolist()
- support: np.ndarray = self.model.get_support()
- y_data = self.y_traindata
- x_data = self.x_traindata
- if isinstance(x_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- x_data)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]训练数据x-x散点图")
- if isinstance(y_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- y_data)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]保留训练数据x-x散点图")
- y_data = self.y_testdata
- x_data = self.x_testdata
- if isinstance(x_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- x_data)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]数据x-x散点图")
- if isinstance(y_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- y_data)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]保留数据x-x散点图")
- choose = []
- un_choose = []
- for i in range(len(score)):
- if support[i]:
- choose.append(score[i])
- un_choose.append(0) # 占位
- else:
- un_choose.append(score[i])
- choose.append(0)
- c = (
- Bar()
- .add_xaxis([f"[{i}]特征" for i in range(len(score))])
- .add_yaxis("选中特征", choose, **label_setting)
- .add_yaxis("抛弃特征", un_choose, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="系数w柱状图"), **global_setting
- )
- )
- tab.add(c, "单变量重要程度")
- save = save_dir + rf"{os.sep}单一变量特征选择.HTML"
- tab.render(save) # 生成HTML
- return save,
- class SelectFromModel(PrepBase): # 有监督
- def __init__(
- self, args_use, learner, *args, **kwargs
- ): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SelectFromModel, self).__init__(*args, **kwargs)
- self.model = learner.Model
- self.Select_Model = SelectFromModel(
- estimator=learner.Model,
- max_features=args_use["k"],
- prefit=learner.have_Fit)
- self.max_features = args_use["k"]
- self.estimator = learner.Model
- self.k = {
- "max_features": args_use["k"],
- "estimator": learner.Model,
- "have_Fit": learner.have_Fit,
- }
- self.have_fit = learner.have_Fit
- self.model_Name = "SelectFrom_Model"
- self.learner = learner
- def fit_model(self, x_data, y_data, split=0.3, *args, **kwargs):
- y_data = y_data.ravel()
- if not self.have_fit: # 不允许第二次训练
- self.Select_Model.fit(x_data, y_data)
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- try:
- self.x_testdata = x_data.copy()
- x_predict = self.Select_Model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "模型特征工程"
- except BaseException as e:
- logging.debug(str(e))
- self.have_predict = True
- return np.array([]), "无结果工程"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- support: np.ndarray = self.Select_Model.get_support()
- y_data = self.y_testdata
- x_data = self.x_testdata
- if isinstance(x_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- x_data)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]数据x-x散点图")
- if isinstance(y_data, np.ndarray):
- get = TrainingVisualization.training_visualization_no_class_more(
- y_data)
- for i in range(len(get)):
- tab.add(get[i], f"[{i}]保留数据x-x散点图")
- def make_bar_(score):
- choose = []
- un_choose = []
- for i in range(len(score)):
- if support[i]:
- choose.append(abs(score[i]))
- un_choose.append(0) # 占位
- else:
- un_choose.append(abs(score[i]))
- choose.append(0)
- c = (
- Bar()
- .add_xaxis([f"[{i}]特征" for i in range(len(score))])
- .add_yaxis("选中特征", choose, **label_setting)
- .add_yaxis("抛弃特征", un_choose, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="系数w柱状图"), **global_setting
- )
- )
- tab.add(c, "单变量重要程度")
- try:
- make_bar_(self.model.coef_)
- except AttributeError:
- try:
- make_bar_(self.model.feature_importances_)
- except BaseException as e:
- logging.warning(str(e))
- save = save_dir + rf"{os.sep}模型特征选择.HTML"
- tab.render(save) # 生成HTML
- return save,
- class StandardizationModel(Unsupervised): # z-score标准化 无监督
- def __init__(self, *args, **kwargs):
- super(StandardizationModel, self).__init__(*args, **kwargs)
- self.model = StandardScaler()
- self.k = {}
- self.model_Name = "StandardScaler"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- var = self.model.var_.tolist()
- means = self.model.mean_.tolist()
- scale_ = self.model.scale_.tolist()
- MultiMap.conversion_control(y_data, x_data, tab)
- MakePyecharts.make_bar("标准差", var, tab)
- MakePyecharts.make_bar("方差", means, tab)
- MakePyecharts.make_bar("Scale", scale_, tab)
- save = save_dir + rf"{os.sep}z-score标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class MinmaxscalerModel(Unsupervised): # 离差标准化
- def __init__(self, args_use, *args, **kwargs):
- super(MinmaxscalerModel, self).__init__(*args, **kwargs)
- self.model = MinMaxScaler(feature_range=args_use["feature_range"])
- self.k = {}
- self.model_Name = "MinMaxScaler"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- scale_ = self.model.scale_.tolist()
- max_ = self.model.data_max_.tolist()
- min_ = self.model.data_min_.tolist()
- MultiMap.conversion_control(y_data, x_data, tab)
- MakePyecharts.make_bar("Scale", scale_, tab)
- tab.add(
- MakePyecharts.make_tab(
- heard=[f"[{i}]特征最大值" for i in range(len(max_))]
- + [f"[{i}]特征最小值" for i in range(len(min_))],
- row=[max_ + min_],
- ),
- "数据表格",
- )
- save = save_dir + rf"{os.sep}离差标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class LogscalerModel(PrepBase): # 对数标准化
- def __init__(self, *args, **kwargs):
- super(LogscalerModel, self).__init__(*args, **kwargs)
- self.model = None
- self.k = {}
- self.model_Name = "LogScaler"
- def fit_model(self, x_data, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- self.max_logx = np.log(x_data.max())
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- try:
- max_logx = self.max_logx
- except AttributeError:
- self.have_fit = False
- self.fit_model(x_data)
- max_logx = self.max_logx
- self.x_testdata = x_data.copy()
- x_predict = np.log(x_data) / max_logx
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "对数变换"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- MultiMap.conversion_control(y_data, x_data, tab)
- tab.add(MakePyecharts.make_tab(heard=["最大对数值(自然对数)"],
- row=[[str(self.max_logx)]]), "数据表格")
- save = save_dir + rf"{os.sep}对数标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class AtanscalerModel(PrepBase): # atan标准化
- def __init__(self, *args, **kwargs):
- super(AtanscalerModel, self).__init__(*args, **kwargs)
- self.model = None
- self.k = {}
- self.model_Name = "atanScaler"
- def fit_model(self, x_data, *args, **kwargs):
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = np.arctan(x_data) * (2 / np.pi)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "atan变换"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- MultiMap.conversion_control(y_data, x_data, tab)
- save = save_dir + rf"{os.sep}反正切函数标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class DecimalscalerModel(PrepBase): # 小数定标准化
- def __init__(self, *args, **kwargs):
- super(DecimalscalerModel, self).__init__(*args, **kwargs)
- self.model = None
- self.k = {}
- self.model_Name = "Decimal_normalization"
- def fit_model(self, x_data, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- self.j = max([DataOperations.judging_digits(x_data.max()),
- DataOperations.judging_digits(x_data.min())])
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- try:
- j = self.j
- except AttributeError:
- self.have_fit = False
- self.fit_model(x_data)
- j = self.j
- x_predict = x_data / (10 ** j)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "小数定标标准化"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- j = self.j
- MultiMap.conversion_control(y_data, x_data, tab)
- tab.add(MakePyecharts.make_tab(heard=["小数位数:j"], row=[[j]]), "数据表格")
- save = save_dir + rf"{os.sep}小数定标标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class MapzoomModel(PrepBase): # 映射标准化
- def __init__(self, args_use, *args, **kwargs):
- super(MapzoomModel, self).__init__(*args, **kwargs)
- self.model = None
- self.feature_range = args_use["feature_range"]
- self.k = {}
- self.model_Name = "Decimal_normalization"
- def fit_model(self, x_data, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- self.max_ = x_data.max()
- self.min_ = x_data.min()
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- try:
- max_ = self.max_
- min_ = self.min_
- except AttributeError:
- self.have_fit = False
- self.fit_model(x_data)
- max_ = self.max_
- min_ = self.min_
- x_predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (
- max_ - min_
- )
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "映射标准化"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- max_ = self.max_
- min_ = self.min_
- MultiMap.conversion_control(y_data, x_data, tab)
- tab.add(MakePyecharts.make_tab(
- heard=["最大值", "最小值"], row=[[max_, min_]]), "数据表格")
- save = save_dir + rf"{os.sep}映射标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class SigmodscalerModel(PrepBase): # sigmod变换
- def __init__(self, *args, **kwargs):
- super(SigmodscalerModel, self).__init__(*args, **kwargs)
- self.model = None
- self.k = {}
- self.model_Name = "sigmodScaler_Model"
- def fit_model(self, x_data, *args, **kwargs):
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data: np.array, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = 1 / (1 + np.exp(-x_data))
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "Sigmod变换"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- MultiMap.conversion_control(y_data, x_data, tab)
- save = save_dir + rf"{os.sep}Sigmoid变换.HTML"
- tab.render(save) # 生成HTML
- return save,
- class FuzzyQuantizationModel(PrepBase): # 模糊量化标准化
- def __init__(self, args_use, *args, **kwargs):
- super(FuzzyQuantizationModel, self).__init__(*args, **kwargs)
- self.model = None
- self.feature_range = args_use["feature_range"]
- self.k = {}
- self.model_Name = "Fuzzy_quantization"
- def fit_model(self, x_data, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- self.max_ = x_data.max()
- self.max_ = x_data.min()
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- try:
- max_ = self.max_
- min_ = self.max_
- except AttributeError:
- self.have_fit = False
- self.fit_model(x_data)
- max_ = self.max_
- min_ = self.max_
- x_predict = 1 / 2 + (1 / 2) * np.sin(
- np.pi / (max_ - min_) * (x_data - (max_ - min_) / 2)
- )
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "模糊量化标准化"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_traindata
- x_data = self.x_traindata
- max_ = self.max_
- min_ = self.max_
- MultiMap.conversion_control(y_data, x_data, tab)
- tab.add(MakePyecharts.make_tab(
- heard=["最大值", "最小值"], row=[[max_, min_]]), "数据表格")
- save = save_dir + rf"{os.sep}模糊量化标准化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class RegularizationModel(Unsupervised): # 正则化
- def __init__(self, args_use, *args, **kwargs):
- super(RegularizationModel, self).__init__(*args, **kwargs)
- self.model = Normalizer(norm=args_use["norm"])
- self.k = {"norm": args_use["norm"]}
- self.model_Name = "Regularization"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata.copy()
- x_data = self.x_testdata.copy()
- MultiMap.conversion_control(y_data, x_data, tab)
- save = save_dir + rf"{os.sep}正则化.HTML"
- tab.render(save) # 生成HTML
- return save,
- # 离散数据
- class BinarizerModel(Unsupervised): # 二值化
- def __init__(self, args_use, *args, **kwargs):
- super(BinarizerModel, self).__init__(*args, **kwargs)
- self.model = Binarizer(threshold=args_use["threshold"])
- self.k = {}
- self.model_Name = "Binarizer"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- get_y = TrainingVisualization.discrete_training_visualization_no_class_more(
- y_data, "转换数据") # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f"[{i}]数据x-x离散散点图")
- heard = [f"特征:{i}" for i in range(len(x_data[0]))]
- tab.add(MakePyecharts.make_tab(heard, x_data.tolist()), f"原数据")
- tab.add(MakePyecharts.make_tab(heard, y_data.tolist()), f"编码数据")
- tab.add(
- MakePyecharts.make_tab(
- heard, np.dstack(
- (x_data, y_data)).tolist()), f"合成[原数据,编码]数据")
- save = save_dir + rf"{os.sep}二值离散化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class DiscretizationModel(PrepBase): # n值离散
- def __init__(self, args_use, *args, **kwargs):
- super(DiscretizationModel, self).__init__(*args, **kwargs)
- self.model = None
- range_ = args_use["split_range"]
- if not range_:
- raise Exception
- elif len(range_) == 1:
- range_.append(range_[0])
- self.range = range_
- self.k = {}
- self.model_Name = "Discretization"
- def fit_model(self, *args, **kwargs):
- # t值在模型创建时已经保存
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = x_data.copy() # 复制
- range_ = self.range
- bool_list = []
- max_ = len(range_) - 1
- o_t = None
- for i in range(len(range_)):
- try:
- t = float(range_[i])
- except ValueError:
- continue
- if o_t is None: # 第一个参数
- bool_list.append(x_predict <= t)
- else:
- bool_list.append((o_t <= x_predict) == (x_predict < t))
- if i == max_:
- bool_list.append(t <= x_predict)
- o_t = t
- for i in range(len(bool_list)):
- x_predict[bool_list[i]] = i
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, f"{len(bool_list)}值离散化"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- get_y = TrainingVisualization.discrete_training_visualization_no_class_more(
- y_data, "转换数据") # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f"[{i}]数据x-x离散散点图")
- heard = [f"特征:{i}" for i in range(len(x_data[0]))]
- tab.add(MakePyecharts.make_tab(heard, x_data.tolist()), f"原数据")
- tab.add(MakePyecharts.make_tab(heard, y_data.tolist()), f"编码数据")
- tab.add(
- MakePyecharts.make_tab(
- heard, np.dstack(
- (x_data, y_data)).tolist()), f"合成[原数据,编码]数据")
- save = save_dir + rf"{os.sep}多值离散化.HTML"
- tab.render(save) # 生成HTML
- return save,
- class LabelModel(PrepBase): # 数字编码
- def __init__(self, *args, **kwargs):
- super(LabelModel, self).__init__(*args, **kwargs)
- self.model = []
- self.k = {}
- self.model_Name = "LabelEncoder"
- def fit_model(self, x_data, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- self.model = []
- if x_data.ndim == 1:
- x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- self.model.append(
- LabelEncoder().fit(np.ravel(x_data[:, i]))
- ) # 训练机器(每个特征一个学习器)
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = x_data.copy()
- if x_data.ndim == 1:
- x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- x_predict[:, i] = self.model[i].transform(x_data[:, i])
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "数字编码"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_testdata
- y_data = self.y_testdata
- get_y = TrainingVisualization.discrete_training_visualization_no_class_more(
- y_data, "转换数据") # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f"[{i}]数据x-x离散散点图")
- heard = [f"特征:{i}" for i in range(len(x_data[0]))]
- tab.add(MakePyecharts.make_tab(heard, x_data.tolist()), f"原数据")
- tab.add(MakePyecharts.make_tab(heard, y_data.tolist()), f"编码数据")
- tab.add(
- MakePyecharts.make_tab(
- heard, np.dstack(
- (x_data, y_data)).tolist()), f"合成[原数据,编码]数据")
- save = save_dir + rf"{os.sep}数字编码.HTML"
- tab.render(save) # 生成HTML
- return save,
- class OneHotEncoderModel(PrepBase): # 独热编码
- def __init__(self, args_use, *args, **kwargs):
- super(OneHotEncoderModel, self).__init__(*args, **kwargs)
- self.model = []
- self.ndim_up = args_use["ndim_up"]
- self.k = {}
- self.model_Name = "OneHotEncoder"
- self.OneHot_Data = None # 三维独热编码
- def fit_model(self, x_data, *args, **kwargs):
- if not self.have_predict: # 不允许第二次训练
- if x_data.ndim == 1:
- x_data = [x_data]
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
- self.model.append(OneHotEncoder().fit(data)) # 训练机器
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_new = []
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
- one_hot = self.model[i].transform(data).toarray().tolist()
- x_new.append(one_hot) # 添加到列表中
- # 新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
- x_new = np.array(x_new)
- x_predict = []
- for i in range(x_new.shape[1]):
- x_predict.append(x_new[:, i])
- x_predict = np.array(x_predict) # 转换回array
- self.OneHot_Data = x_predict.copy() # 保存未降维数据
- if not self.ndim_up: # 压缩操作
- new_x_predict = []
- for i in x_predict:
- new_list = []
- list_ = i.tolist()
- for a in list_:
- new_list += a
- new = np.array(new_list)
- new_x_predict.append(new)
- self.y_testdata = np.array(new_x_predict)
- return self.y_testdata.copy(), "独热编码"
- self.y_testdata = self.OneHot_Data
- self.have_predict = True
- return x_predict, "独热编码"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- oh_data = self.OneHot_Data
- if not self.ndim_up:
- get_y = TrainingVisualization.discrete_training_visualization_no_class_more(
- y_data, "转换数据") # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f"[{i}]数据x-x离散散点图")
- heard = [f"特征:{i}" for i in range(len(x_data[0]))]
- tab.add(MakePyecharts.make_tab(heard, x_data.tolist()), f"原数据")
- tab.add(MakePyecharts.make_tab(heard, oh_data.tolist()), f"编码数据")
- tab.add(
- MakePyecharts.make_tab(
- heard, np.dstack(
- (oh_data, x_data)).tolist()), f"合成[原数据,编码]数据")
- tab.add(MakePyecharts.make_tab([f"编码:{i}" for i in range(
- len(y_data[0]))], y_data.tolist()), f"数据")
- save = save_dir + rf"{os.sep}独热编码.HTML"
- tab.render(save) # 生成HTML
- return save,
- class MissedModel(Unsupervised): # 缺失数据补充
- def __init__(self, args_use, *args, **kwargs):
- super(MissedModel, self).__init__(*args, **kwargs)
- self.model = SimpleImputer(
- missing_values=args_use["miss_value"],
- strategy=args_use["fill_method"],
- fill_value=args_use["fill_value"],
- )
- self.k = {}
- self.model_Name = "Missed"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "填充缺失"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- statistics = self.model.statistics_.tolist()
- MultiMap.conversion_control(y_data, x_data, tab)
- tab.add(MakePyecharts.make_tab([f"特征[{i}]" for i in range(
- len(statistics))], [statistics]), "填充值")
- save = save_dir + rf"{os.sep}缺失数据填充.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class PcaModel(Unsupervised):
- def __init__(self, args_use, *args, **kwargs):
- super(PcaModel, self).__init__(*args, **kwargs)
- self.model = PCA(
- n_components=args_use["n_components"], whiten=args_use["white_PCA"]
- )
- self.whiten = args_use["white_PCA"]
- self.n_components = args_use["n_components"]
- self.k = {
- "n_components": args_use["n_components"],
- "whiten": args_use["white_PCA"],
- }
- self.model_Name = "PCA"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "PCA"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- importance = self.model.components_.tolist()
- var = self.model.explained_variance_.tolist() # 方量差
- MultiMap.conversion_separate_format(y_data, tab)
- x_data = [f"第{i + 1}主成分" for i in range(len(importance))] # 主成分
- y_data = [f"特征[{i}]" for i in range(len(importance[0]))] # 主成分
- value = [
- (f"第{i + 1}主成分", f"特征[{j}]", importance[i][j])
- for i in range(len(importance))
- for j in range(len(importance[i]))
- ]
- c = (
- HeatMap()
- .add_xaxis(x_data)
- .add_yaxis(f"", y_data, value, **label_setting) # value的第一个数值是x
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=int(self.model.components_.max()) + 1,
- min_=int(self.model.components_.min()),
- pos_right="3%",
- ),
- ) # 显示
- )
- tab.add(c, "成分热力图")
- c = (
- Bar()
- .add_xaxis([f"第[{i}]主成分" for i in range(len(var))])
- .add_yaxis("方量差", var, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="方量差柱状图"), **global_setting
- )
- )
- Statistics.des_to_csv(
- save_dir,
- "成分重要性",
- importance,
- [x_data],
- [y_data])
- Statistics.des_to_csv(
- save_dir, "方量差", [var], [
- f"第[{i}]主成分" for i in range(
- len(var))])
- tab.add(c, "方量差柱状图")
- save = save_dir + rf"{os.sep}主成分分析.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class RpcaModel(Unsupervised):
- def __init__(self, args_use, *args, **kwargs):
- super(RpcaModel, self).__init__(*args, **kwargs)
- self.model = IncrementalPCA(
- n_components=args_use["n_components"], whiten=args_use["white_PCA"]
- )
- self.n_components = args_use["n_components"]
- self.whiten = args_use["white_PCA"]
- self.k = {
- "n_components": args_use["n_components"],
- "whiten": args_use["white_PCA"],
- }
- self.model_Name = "RPCA"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "RPCA"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_traindata
- importance = self.model.components_.tolist()
- var = self.model.explained_variance_.tolist() # 方量差
- MultiMap.conversion_separate_format(y_data, tab)
- x_data = [f"第{i + 1}主成分" for i in range(len(importance))] # 主成分
- y_data = [f"特征[{i}]" for i in range(len(importance[0]))] # 主成分
- value = [
- (f"第{i + 1}主成分", f"特征[{j}]", importance[i][j])
- for i in range(len(importance))
- for j in range(len(importance[i]))
- ]
- c = (
- HeatMap()
- .add_xaxis(x_data)
- .add_yaxis(f"", y_data, value, **label_setting) # value的第一个数值是x
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=int(self.model.components_.max()) + 1,
- min_=int(self.model.components_.min()),
- pos_right="3%",
- ),
- ) # 显示
- )
- tab.add(c, "成分热力图")
- c = (
- Bar()
- .add_xaxis([f"第[{i}]主成分" for i in range(len(var))])
- .add_yaxis("放量差", var, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="方量差柱状图"), **global_setting
- )
- )
- tab.add(c, "方量差柱状图")
- Statistics.des_to_csv(
- save_dir,
- "成分重要性",
- importance,
- [x_data],
- [y_data])
- Statistics.des_to_csv(
- save_dir, "方量差", [var], [
- f"第[{i}]主成分" for i in range(
- len(var))])
- save = save_dir + rf"{os.sep}RPCA(主成分分析).HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class KpcaModel(Unsupervised):
- def __init__(self, args_use, *args, **kwargs):
- super(KpcaModel, self).__init__(*args, **kwargs)
- self.model = KernelPCA(
- n_components=args_use["n_components"], kernel=args_use["kernel"]
- )
- self.n_components = args_use["n_components"]
- self.kernel = args_use["kernel"]
- self.k = {
- "n_components": args_use["n_components"],
- "kernel": args_use["kernel"],
- }
- self.model_Name = "KPCA"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "KPCA"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- MultiMap.conversion_separate_format(y_data, tab)
- save = save_dir + rf"{os.sep}KPCA(主成分分析).HTML"
- tab.render(save) # 生成HTML
- return save,
- class LdaModel(PrepBase): # 有监督学习
- def __init__(self, args_use, *args, **kwargs):
- super(LdaModel, self).__init__(*args, **kwargs)
- self.model = Lda(n_components=args_use["n_components"])
- self.n_components = args_use["n_components"]
- self.k = {"n_components": args_use["n_components"]}
- self.model_Name = "LDA"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "LDA"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_testdata
- y_data = self.y_testdata
- MultiMap.conversion_separate_format(y_data, tab)
- w_list = self.model.coef_.tolist() # 变为表格
- b = self.model.intercept_
- tab = Tab()
- x_means = Statistics.quick_stats(x_data).get()[0]
- # 回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据)
- get = Curve.regress_w(x_data, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get[i]), f"类别:{i}LDA映射曲线")
- save = save_dir + rf"{os.sep}render.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class NmfModel(Unsupervised):
- def __init__(self, args_use, *args, **kwargs):
- super(NmfModel, self).__init__(*args, **kwargs)
- self.model = NMF(n_components=args_use["n_components"])
- self.n_components = args_use["n_components"]
- self.k = {"n_components": args_use["n_components"]}
- self.model_Name = "NFM"
- self.h_testdata = None
- # x_traindata保存的是W,h_traindata和y_traindata是后来数据
- def predict(self, x_data, x_name="", add_func=None, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.transform(x_data)
- self.y_testdata = x_predict.copy()
- self.h_testdata = self.model.components_
- if add_func is not None and x_name != "":
- add_func(self.h_testdata, f"{x_name}:V->NMF[H]")
- self.have_predict = True
- return x_predict, "V->NMF[W]"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- x_data = self.x_testdata
- h_data = self.h_testdata
- MultiMap.conversion_separate_wh(y_data, h_data, tab)
- wh_data = np.matmul(y_data, h_data)
- difference_data = x_data - wh_data
- def make_heat_map(data, name, data_max, data_min):
- x = [f"数据[{i}]" for i in range(len(data))] # 主成分
- y = [f"特征[{i}]" for i in range(len(data[0]))] # 主成分
- value = [
- (f"数据[{i}]", f"特征[{j}]", float(data[i][j]))
- for i in range(len(data))
- for j in range(len(data[i]))
- ]
- c = (
- HeatMap()
- .add_xaxis(x)
- .add_yaxis(f"数据", y, value, **label_setting) # value的第一个数值是x
- .set_global_opts(
- title_opts=opts.TitleOpts(title="原始数据热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"
- ), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True, max_=data_max, min_=data_min, pos_right="3%"
- ),
- ) # 显示
- )
- tab.add(c, name)
- max_ = (max(int(x_data.max()), int(wh_data.max()),
- int(difference_data.max())) + 1)
- min_ = min(int(x_data.min()), int(wh_data.min()),
- int(difference_data.min()))
- make_heat_map(x_data, "原始数据热力图", max_, min_)
- make_heat_map(wh_data, "W * H数据热力图", max_, min_)
- make_heat_map(difference_data, "数据差热力图", max_, min_)
- Statistics.des_to_csv(save_dir, "权重矩阵", y_data)
- Statistics.des_to_csv(save_dir, "系数矩阵", h_data)
- Statistics.des_to_csv(save_dir, "系数*权重矩阵", wh_data)
- save = save_dir + rf"{os.sep}非负矩阵分解.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class TsneModel(Unsupervised):
- def __init__(self, args_use, *args, **kwargs):
- super(TsneModel, self).__init__(*args, **kwargs)
- self.model = TSNE(n_components=args_use["n_components"])
- self.n_components = args_use["n_components"]
- self.k = {"n_components": args_use["n_components"]}
- self.model_Name = "t-SNE"
- def fit_model(self, *args, **kwargs):
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- x_predict = self.model.fit_transform(x_data)
- self.y_testdata = x_predict.copy()
- self.have_predict = True
- return x_predict, "SNE"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y_data = self.y_testdata
- MultiMap.conversion_separate_format(y_data, tab)
- save = save_dir + rf"{os.sep}T-SNE.HTML"
- tab.render(save) # 生成HTML
- return save,
- class MlpModel(StudyMachinebase): # 神经网络(多层感知机),有监督学习
- def __init__(self, args_use, model, *args, **kwargs):
- super(MlpModel, self).__init__(*args, **kwargs)
- all_model = {"MLP": MLPRegressor, "MLP_class": MLPClassifier}[model]
- self.model = all_model(
- hidden_layer_sizes=args_use["hidden_size"],
- activation=args_use["activation"],
- solver=args_use["solver"],
- alpha=args_use["alpha"],
- max_iter=args_use["max_iter"],
- )
- # 记录这两个是为了克隆
- self.hidden_layer_sizes = args_use["hidden_size"]
- self.activation = args_use["activation"]
- self.max_iter = args_use["max_iter"]
- self.solver = args_use["solver"]
- self.alpha = args_use["alpha"]
- self.k = {
- "hidden_layer_sizes": args_use["hidden_size"],
- "activation": args_use["activation"],
- "max_iter": args_use["max_iter"],
- "solver": args_use["solver"],
- "alpha": args_use["alpha"],
- }
- self.model_Name = model
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- x_data = self.x_testdata
- y_data = self.y_testdata
- coefs = self.model.coefs_
- class_ = self.model.classes_
- n_layers_ = self.model.n_layers_
- def make_heat_map(data_, name):
- x = [f"特征(节点)[{i}]" for i in range(len(data_))]
- y = [f"节点[{i}]" for i in range(len(data_[0]))]
- value = [
- (f"特征(节点)[{i}]", f"节点[{j}]", float(data_[i][j]))
- for i in range(len(data_))
- for j in range(len(data_[i]))
- ]
- c = (
- HeatMap()
- .add_xaxis(x)
- .add_yaxis(f"数据", y, value, **label_setting) # value的第一个数值是x
- .set_global_opts(
- title_opts=opts.TitleOpts(title=name),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"
- ), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=float(data_.max()),
- min_=float(data_.min()),
- pos_right="3%",
- ),
- ) # 显示
- )
- tab.add(c, name)
- tab.add(
- MakePyecharts.make_tab(
- x,
- data_.transpose().tolist()),
- f"{name}:表格")
- Statistics.des_to_csv(
- save_dir,
- f"{name}:表格",
- data_.transpose().tolist(),
- x,
- y)
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y_data)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- heard = ["神经网络层数"]
- data = [n_layers_]
- for i in range(len(coefs)):
- make_heat_map(coefs[i], f"{i}层权重矩阵")
- heard.append(f"第{i}层节点数")
- data.append(len(coefs[i][0]))
- if self.model_Name == "MLP_class":
- heard += [f"[{i}]类型" for i in range(len(class_))]
- data += class_.tolist()
- tab.add(MakePyecharts.make_tab(heard, [data]), "数据表")
- save = save_dir + rf"{os.sep}多层感知机.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class KmeansModel(UnsupervisedModel):
- def __init__(self, args_use, *args, **kwargs):
- super(KmeansModel, self).__init__(*args, **kwargs)
- self.model = KMeans(n_clusters=args_use["n_clusters"])
- self.class_ = []
- self.n_clusters = args_use["n_clusters"]
- self.k = {"n_clusters": args_use["n_clusters"]}
- self.model_Name = "k-means"
- def fit_model(self, x_data, *args, **kwargs):
- return_ = super().fit_model(x_data, *args, **kwargs)
- self.class_ = list(set(self.model.labels_.tolist()))
- self.have_fit = True
- return return_
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- y_predict = self.model.predict(x_data)
- self.y_testdata = y_predict.copy()
- self.have_predict = True
- return y_predict, "k-means"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y = self.y_testdata
- x_data = self.x_testdata
- class_ = self.class_
- center = self.model.cluster_centers_
- class_heard = [f"簇[{i}]" for i in range(len(class_))]
- func = (
- TrainingVisualization.training_visualization_more
- if more_global
- else TrainingVisualization.training_visualization_center
- )
- get, x_means, x_range, data_type = func(x_data, class_, y, center)
- for i in range(len(get)):
- tab.add(get[i], f"{i}数据散点图")
- get = Boundary.decision_boundary(
- x_range,
- x_means,
- self.predict,
- class_,
- data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}k-means聚类.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class AgglomerativeModel(UnsupervisedModel):
- def __init__(self, args_use, *args, **kwargs):
- super(AgglomerativeModel, self).__init__(*args, **kwargs)
- self.model = AgglomerativeClustering(
- n_clusters=args_use["n_clusters"]
- ) # 默认为2,不同于k-means
- self.class_ = []
- self.n_clusters = args_use["n_clusters"]
- self.k = {"n_clusters": args_use["n_clusters"]}
- self.model_Name = "Agglomerative"
- def fit_model(self, x_data, *args, **kwargs):
- return_ = super().fit_model(x_data, *args, **kwargs)
- self.class_ = list(set(self.model.labels_.tolist()))
- self.have_fit = True
- return return_
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- y_predict = self.model.fit_predict(x_data)
- self.y_traindata = y_predict.copy()
- self.have_predict = True
- return y_predict, "Agglomerative"
- def data_visualization(self, save_dir, *args, **kwargs):
- tab = Tab()
- y = self.y_testdata
- x_data = self.x_testdata
- class_ = self.class_
- class_heard = [f"簇[{i}]" for i in range(len(class_))]
- func = (
- TrainingVisualization.training_visualization_more_no_center
- if more_global
- else TrainingVisualization.training_visualization
- )
- get, x_means, x_range, data_type = func(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- get = Boundary.decision_boundary(
- x_range,
- x_means,
- self.predict,
- class_,
- data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- linkage_array = ward(self.x_traindata) # self.y_traindata是结果
- dendrogram(linkage_array)
- plt.savefig(save_dir + rf"{os.sep}Cluster_graph.png")
- image = Image()
- image.add(
- src=save_dir +
- rf"{os.sep}Cluster_graph.png",
- ).set_global_opts(
- title_opts=opts.ComponentTitleOpts(
- title="聚类树状图"))
- tab.add(image, "聚类树状图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}层次聚类.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class DbscanModel(UnsupervisedModel):
- def __init__(self, args_use, *args, **kwargs):
- super(DbscanModel, self).__init__(*args, **kwargs)
- self.model = DBSCAN(
- eps=args_use["eps"],
- min_samples=args_use["min_samples"])
- # eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
- # min_samples
- self.eps = args_use["eps"]
- self.min_samples = args_use["min_samples"]
- self.k = {
- "min_samples": args_use["min_samples"],
- "eps": args_use["eps"]}
- self.class_ = []
- self.model_Name = "DBSCAN"
- def fit_model(self, x_data, *args, **kwargs):
- return_ = super().fit_model(x_data, *args, **kwargs)
- self.class_ = list(set(self.model.labels_.tolist()))
- self.have_fit = True
- return return_
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- y_predict = self.model.fit_predict(x_data)
- self.y_testdata = y_predict.copy()
- self.have_predict = True
- return y_predict, "DBSCAN"
- def data_visualization(self, save_dir, *args, **kwargs):
- # DBSCAN没有预测的必要
- tab = Tab()
- y = self.y_testdata.copy()
- x_data = self.x_testdata.copy()
- class_ = self.class_
- class_heard = [f"簇[{i}]" for i in range(len(class_))]
- func = (
- TrainingVisualization.training_visualization_more_no_center
- if more_global
- else TrainingVisualization.training_visualization
- )
- get, x_means, x_range, data_type = func(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}训练数据散点图")
- heard = class_heard + [f"普适预测第{i}特征" for i in range(len(x_means))]
- data = class_ + [f"{i}" for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, "数据表")
- Statistics.des_to_csv(
- save_dir,
- "预测表",
- [[f"{i}" for i in x_means]],
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- )
- save = save_dir + rf"{os.sep}密度聚类.HTML"
- tab.render(save) # 生成HTML
- return save,
- class FastFourier(StudyMachinebase): # 快速傅里叶变换
- def __init__(self, *args, **kwargs):
- super(FastFourier, self).__init__(*args, **kwargs)
- self.model = None
- self.fourier = None # fft复数
- self.frequency = None # 频率range
- self.angular_Frequency = None # 角频率range
- self.phase = None # 相位range
- self.breadth = None # 震幅range
- self.sample_size = None # 样本数
- def fit_model(self, y_data, *args, **kwargs):
- y_data = y_data.ravel() # 扯平为一维数组
- try:
- assert self.y_traindata is not None
- self.y_traindata = np.hstack((y_data, self.x_traindata))
- except (AssertionError, ValueError):
- self.y_traindata = y_data.copy()
- fourier = fft(y_data)
- self.sample_size = len(y_data)
- self.frequency = np.linspace(0, 1, self.sample_size) # 频率N_range
- self.angular_Frequency = self.frequency / (np.pi * 2) # 角频率w
- self.phase = np.angle(fourier)
- self.breadth = np.abs(fourier)
- self.fourier = fourier
- self.have_fit = True
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- return np.array([]), ""
- def data_visualization(self, save_dir, *args, **kwargs):
- # DBSCAN没有预测的必要
- tab = Tab()
- y = self.y_traindata.copy()
- n = self.sample_size
- phase = self.phase # 相位range
- breadth = self.breadth # 震幅range
- normalization_breadth = breadth / n
- def line(name, value, s=slice(0, None)) -> Line:
- c = (
- Line()
- .add_xaxis(self.frequency[s].tolist())
- .add_yaxis(
- "",
- value,
- **label_setting,
- symbol="none" if self.sample_size >= 500 else None,
- )
- .set_global_opts(
- title_opts=opts.TitleOpts(title=name),
- **global_not_legend,
- xaxis_opts=opts.AxisOpts(type_="value"),
- yaxis_opts=opts.AxisOpts(type_="value"),
- )
- )
- return c
- tab.add(line("原始数据", y.tolist()), "原始数据")
- tab.add(line("双边振幅谱", breadth.tolist()), "双边振幅谱")
- tab.add(
- line(
- "双边振幅谱(归一化)",
- normalization_breadth.tolist()),
- "双边振幅谱(归一化)")
- tab.add(
- line("单边相位谱", breadth[: int(n / 2)].tolist(), slice(0, int(n / 2))), "单边相位谱"
- )
- tab.add(
- line(
- "单边相位谱(归一化)",
- normalization_breadth[: int(n / 2)].tolist(),
- slice(0, int(n / 2)),
- ),
- "单边相位谱(归一化)",
- )
- tab.add(line("双边相位谱", phase.tolist()), "双边相位谱")
- tab.add(
- line("单边相位谱", phase[: int(n / 2)].tolist(), slice(0, int(n / 2))), "单边相位谱"
- )
- tab.add(
- MakePyecharts.make_tab(
- self.frequency.tolist(), [
- breadth.tolist()]), "双边振幅谱")
- tab.add(
- MakePyecharts.make_tab(
- self.frequency.tolist(), [
- phase.tolist()]), "双边相位谱")
- tab.add(
- MakePyecharts.make_tab(
- self.frequency.tolist(), [
- self.fourier.tolist()]), "快速傅里叶变换")
- save = save_dir + rf"{os.sep}快速傅里叶.HTML"
- tab.render(save) # 生成HTML
- return save,
- class ReverseFastFourier(StudyMachinebase): # 快速傅里叶变换
- def __init__(self, *args, **kwargs):
- super(ReverseFastFourier, self).__init__(*args, **kwargs)
- self.model = None
- self.sample_size = None
- self.y_testdata_real = None
- self.phase = None
- self.breadth = None
- def fit_model(self, y_data, *args, **kwargs):
- return "None", "None"
- def predict(self, x_data, x_name="", add_func=None, *args, **kwargs):
- self.x_testdata = x_data.ravel().astype(np.complex_)
- fourier = ifft(self.x_testdata)
- self.y_testdata = fourier.copy()
- self.y_testdata_real = np.real(fourier)
- self.sample_size = len(self.y_testdata_real)
- self.phase = np.angle(self.x_testdata)
- self.breadth = np.abs(self.x_testdata)
- add_func(self.y_testdata_real.copy(), f"{x_name}:逆向快速傅里叶变换[实数]")
- return fourier, "逆向快速傅里叶变换"
- def data_visualization(self, save_dir, *args, **kwargs):
- # DBSCAN没有预测的必要
- tab = Tab()
- y = self.y_testdata_real.copy()
- y_data = self.y_testdata.copy()
- n = self.sample_size
- range_n: list = np.linspace(0, 1, n).tolist()
- phase = self.phase # 相位range
- breadth = self.breadth # 震幅range
- def line(name, value, s=slice(0, None)) -> Line:
- c = (
- Line().add_xaxis(
- range_n[s]).add_yaxis(
- "",
- value,
- **label_setting,
- symbol="none" if n >= 500 else None).set_global_opts(
- title_opts=opts.TitleOpts(
- title=name),
- **global_not_legend,
- xaxis_opts=opts.AxisOpts(
- type_="value"),
- yaxis_opts=opts.AxisOpts(
- type_="value"),
- ))
- return c
- tab.add(line("逆向傅里叶变换", y.tolist()), "逆向傅里叶变换[实数]")
- tab.add(
- MakePyecharts.make_tab(
- range_n, [
- y_data.tolist()]), "逆向傅里叶变换数据")
- tab.add(MakePyecharts.make_tab(range_n, [y.tolist()]), "逆向傅里叶变换数据[实数]")
- tab.add(line("双边振幅谱", breadth.tolist()), "双边振幅谱")
- tab.add(
- line("单边相位谱", breadth[: int(n / 2)].tolist(), slice(0, int(n / 2))), "单边相位谱"
- )
- tab.add(line("双边相位谱", phase.tolist()), "双边相位谱")
- tab.add(
- line("单边相位谱", phase[: int(n / 2)].tolist(), slice(0, int(n / 2))), "单边相位谱"
- )
- save = save_dir + rf"{os.sep}快速傅里叶.HTML"
- tab.render(save) # 生成HTML
- return save,
- class ReverseFastFourierTwonumpy(ReverseFastFourier): # 2快速傅里叶变换
- def fit_model(
- self,
- x_data,
- y_data=None,
- x_name="",
- add_func=None,
- *args,
- **kwargs):
- r = np.multiply(np.cos(x_data), y_data)
- j = np.multiply(np.sin(x_data), y_data) * 1j
- super(ReverseFastFourierTwonumpy, self).predict(
- r + j, x_name=x_name, add_func=add_func, *args, **kwargs
- )
- return "None", "None"
- class CurveFitting(StudyMachinebase): # 曲线拟合
- def __init__(self, name, str_, model, *args, **kwargs):
- super(CurveFitting, self).__init__(*args, **kwargs)
- def ndim_down(data: np.ndarray):
- if data.ndim == 1:
- return data
- new_data = []
- for i in data:
- new_data.append(np.sum(i))
- return np.array(new_data)
- named_domain = {"np": np, "Func": model, "ndimDown": ndim_down}
- protection_func = f"""
- @plugin_func_loading(get_path(r'template/machinelearning'))
- def FUNC({",".join(model.__code__.co_varnames)}):
- answer = Func({",".join(model.__code__.co_varnames)})
- return ndimDown(answer)
- """
- exec(protection_func, named_domain)
- self.func = named_domain["FUNC"]
- self.fit_data = None
- self.name = name
- self.func_str = str_
- def fit_model(
- self,
- x_data: np.ndarray,
- y_data: np.ndarray,
- *args,
- **kwargs):
- y_data = y_data.ravel()
- x_data = x_data.astype(np.float64)
- try:
- assert self.x_traindata is not None
- self.x_traindata = np.vstack((x_data, self.x_traindata))
- self.y_traindata = np.vstack((y_data, self.y_traindata))
- except (AssertionError, ValueError):
- self.x_traindata = x_data.copy()
- self.y_traindata = y_data.copy()
- self.fit_data = optimize.curve_fit(
- self.func, self.x_traindata, self.y_traindata
- )
- self.model = self.fit_data[0].copy()
- return "None", "None"
- def predict(self, x_data, *args, **kwargs):
- self.x_testdata = x_data.copy()
- predict = self.func(x_data, *self.model)
- y_predict = []
- for i in predict:
- y_predict.append(np.sum(i))
- y_predict = np.array(y_predict)
- self.y_testdata = y_predict.copy()
- self.have_predict = True
- return y_predict, self.name
- def data_visualization(self, save_dir, *args, **kwargs):
- # DBSCAN没有预测的必要
- tab = Tab()
- y = self.y_testdata.copy()
- x_data = self.x_testdata.copy()
- get, x_means, x_range, data_type = TrainingVisualization.regress_visualization(
- x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测类型图")
- get = Boundary.prediction_boundary(
- x_range, x_means, self.predict, data_type)
- for i in range(len(get)):
- tab.add(get[i], f"{i}预测热力图")
- tab.add(
- MakePyecharts.make_tab(
- [f"普适预测第{i}特征" for i in range(len(x_means))],
- [[f"{i}" for i in x_means]],
- ),
- "普适预测特征数据",
- )
- tab.add(
- MakePyecharts.make_tab(
- [f"参数[{i}]" for i in range(len(self.model))],
- [[f"{i}" for i in self.model]],
- ),
- "拟合参数",
- )
- save = save_dir + rf"{os.sep}曲线拟合.HTML"
- tab.render(save) # 生成HTML
- return save,
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class Tab(tab_First):
- def __init__(self, *args, **kwargs):
- super(Tab, self).__init__(*args, **kwargs)
- self.element = {} # 记录tab组成元素 name:charts
- def add(self, chart, tab_name):
- self.element[tab_name] = chart
- return super(Tab, self).add(chart, tab_name)
- def render(
- self,
- path: str = "render.html",
- template_name: str = "simple_tab.html",
- *args,
- **kwargs,
- ) -> str:
- if all_global:
- render_dir = path_split(path)[0]
- for i in self.element:
- self.element[i].render(render_dir + os.sep + i + ".html")
- return super(Tab, self).render(path, template_name, *args, **kwargs)
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class Table(TableFisrt):
- def __init__(self, *args, **kwargs):
- super(Table, self).__init__(*args, **kwargs)
- self.HEADERS = []
- self.ROWS = [[]]
- def add(self, headers, rows, attributes=None):
- if len(rows) == 1:
- new_headers = ["数据类型", "数据"]
- new_rows = list(zip(headers, rows[0]))
- self.HEADERS = new_headers
- self.ROWS = new_rows
- return super().add(new_headers, new_rows, attributes)
- else:
- self.HEADERS = headers
- self.ROWS = rows
- return super().add(headers, rows, attributes)
- def render(self, path="render.html", *args, **kwargs, ) -> str:
- if csv_global:
- save_dir, name = path_split(path)
- name = splitext(name)[0]
- try:
- DataFrame(self.ROWS, columns=self.HEADERS).to_csv(
- save_dir + os.sep + name + ".csv"
- )
- except BaseException as e:
- logging.warning(str(e))
- return super().render(path, *args, **kwargs)
- class DataOperations:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def judging_digits(num: (int, float)): # 查看小数位数
- a = str(abs(num)).split(".")[0]
- if a == "":
- raise ValueError
- return len(a)
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def num_str(num, accuracy):
- num = str(round(float(num), accuracy))
- if len(num.replace(".", "")) == accuracy:
- return num
- n = num.split(".")
- if len(n) == 0: # 无小数
- return num + "." + "0" * (accuracy - len(num))
- else:
- return num + "0" * (accuracy - len(num) + 1) # len(num)多算了一位小数点
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def make_list(first, end, num=35):
- n = num / (end - first)
- if n == 0:
- n = 1
- return_ = []
- n_first = first * n
- n_end = end * n
- while n_first <= n_end:
- cul = n_first / n
- return_.append(round(cul, 2))
- n_first += 1
- return return_
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def list_filter(original_list, num=70):
- if len(original_list) <= num:
- return original_list
- n = int(num / len(original_list))
- return_ = original_list[::n]
- return return_
- class Boundary:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def prediction_boundary(x_range, x_means, predict_func, data_type): # 绘制回归型x-x热力图
- # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
- # a-特征x,b-特征x-1,c-其他特征
- render_list = []
- if len(x_means) == 1:
- return render_list
- for i in range(len(x_means)):
- for j in range(len(x_means)):
- if j <= i:
- continue
- a_range = x_range[j]
- a_type = data_type[j]
- b_range = x_range[i]
- b_type = data_type[i]
- if a_type == 1:
- a_list = DataOperations.make_list(
- a_range[0], a_range[1], 70)
- else:
- a_list = DataOperations.list_filter(a_range) # 可以接受最大为70
- if b_type == 1:
- b_list = DataOperations.make_list(
- b_range[0], b_range[1], 35)
- else:
- b_list = DataOperations.list_filter(b_range) # 可以接受最大为70
- a = np.array([i for i in a_list for _ in b_list]).T
- b = np.array([i for _ in a_list for i in b_list]).T
- data = np.array([x_means for _ in a_list for i in b_list])
- data[:, j] = a
- data[:, i] = b
- y_data = predict_func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), y_data[i]]
- for i in range(len(a))]
- c = (
- HeatMap()
- .add_xaxis(np.unique(a))
- # value的第一个数值是x
- .add_yaxis(f"数据", np.unique(b), value, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"
- ), # 'category'
- xaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=int(max(y_data)) + 1,
- min_=int(min(y_data)),
- pos_right="3%",
- ),
- ) # 显示
- )
- render_list.append(c)
- return render_list
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # 回归型x-x热力图(more)
- def prediction_boundary_more(x_range, x_means, predict_func, data_type):
- # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
- # a-特征x,b-特征x-1,c-其他特征
- render_list = []
- if len(x_means) == 1:
- return render_list
- for i in range(len(x_means)):
- if i == 0:
- continue
- a_range = x_range[i - 1]
- a_type = data_type[i - 1]
- b_range = x_range[i]
- b_type = data_type[i]
- if a_type == 1:
- a_list = DataOperations.make_list(a_range[0], a_range[1], 70)
- else:
- a_list = DataOperations.list_filter(a_range) # 可以接受最大为70
- if b_type == 1:
- b_list = DataOperations.make_list(b_range[0], b_range[1], 35)
- else:
- b_list = DataOperations.list_filter(b_range) # 可以接受最大为70
- a = np.array([i for i in a_list for _ in b_list]).T
- b = np.array([i for _ in a_list for i in b_list]).T
- data = np.array([x_means for _ in a_list for i in b_list])
- data[:, i - 1] = a
- data[:, i] = b
- y_data = predict_func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), y_data[i]]
- for i in range(len(a))]
- c = (
- HeatMap()
- .add_xaxis(np.unique(a))
- # value的第一个数值是x
- .add_yaxis(f"数据", np.unique(b), value, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=int(max(y_data)) + 1,
- min_=int(min(y_data)),
- pos_right="3%",
- ),
- ) # 显示
- )
- render_list.append(c)
- return render_list
- @staticmethod
- def decision_boundary(
- x_range, x_means, predict_func, class_list, data_type, no_unknow=False
- ): # 绘制分类型预测图x-x热力图
- # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
- # a-特征x,b-特征x-1,c-其他特征
- # 规定,i-1是x轴,a是x轴,x_1是x轴
- class_dict = dict(zip(class_list, [i for i in range(len(class_list))]))
- if not no_unknow:
- map_dict = [{"min": -1.5, "max": -0.5, "label": "未知"}] # 分段显示
- else:
- map_dict = []
- for i in class_dict:
- map_dict.append(
- {"min": class_dict[i] - 0.5, "max": class_dict[i] + 0.5, "label": str(i)}
- )
- render_list = []
- if len(x_means) == 1:
- a_range = x_range[0]
- if data_type[0] == 1:
- a_list = DataOperations.make_list(a_range[0], a_range[1], 70)
- else:
- a_list = a_range
- a = np.array([i for i in a_list]).reshape(-1, 1)
- y_data = predict_func(a)[0].tolist()
- value = [[0, float(a[i]), class_dict.get(y_data[i], -1)]
- for i in range(len(a))]
- c = (
- HeatMap()
- .add_xaxis(["None"])
- # value的第一个数值是x
- .add_yaxis(f"数据", np.unique(a), value, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=max(class_dict.values()),
- min_=-1,
- is_piecewise=True,
- pieces=map_dict,
- orient="horizontal",
- pos_bottom="3%",
- ),
- )
- )
- render_list.append(c)
- return render_list
- # 如果x_means长度不等于1则执行下面
- for i in range(len(x_means)):
- if i == 0:
- continue
- a_range = x_range[i - 1]
- a_type = data_type[i - 1]
- b_range = x_range[i]
- b_type = data_type[i]
- if a_type == 1:
- a_list = DataOperations.make_list(a_range[0], a_range[1], 70)
- else:
- a_list = a_range
- if b_type == 1:
- rb = DataOperations.make_list(b_range[0], b_range[1], 35)
- else:
- rb = b_range
- a = np.array([i for i in a_list for _ in rb]).T
- b = np.array([i for _ in a_list for i in rb]).T
- data = np.array([x_means for _ in a_list for i in rb])
- data[:, i - 1] = a
- data[:, i] = b
- y_data = predict_func(data)[0].tolist()
- value = [
- [float(a[i]), float(b[i]), class_dict.get(y_data[i], -1)]
- for i in range(len(a))
- ]
- c = (
- HeatMap()
- .add_xaxis(np.unique(a))
- # value的第一个数值是x
- .add_yaxis(f"数据", np.unique(b), value, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=max(class_dict.values()),
- min_=-1,
- is_piecewise=True,
- pieces=map_dict,
- orient="horizontal",
- pos_bottom="3%",
- ),
- )
- )
- render_list.append(c)
- return render_list
- @staticmethod
- def decision_boundary_more(
- x_range, x_means, predict_func, class_list, data_type, no_unknow=False
- ): # 分类型x-x热力图(more)
- # r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
- # a-特征x,b-特征x-1,c-其他特征
- # 规定,i-1是x轴,a是x轴,x_1是x轴
- class_dict = dict(zip(class_list, [i for i in range(len(class_list))]))
- if not no_unknow:
- map_dict = [{"min": -1.5, "max": -0.5, "label": "未知"}] # 分段显示
- else:
- map_dict = []
- for i in class_dict:
- map_dict.append(
- {"min": class_dict[i] - 0.5, "max": class_dict[i] + 0.5, "label": str(i)}
- )
- render_list = []
- if len(x_means) == 1:
- return Boundary.decision_boundary(
- x_range, x_means, predict_func, class_list, data_type, no_unknow)
- # 如果x_means长度不等于1则执行下面
- for i in range(len(x_means)):
- for j in range(len(x_means)):
- if j <= i:
- continue
- a_range = x_range[j]
- a_type = data_type[j]
- b_range = x_range[i]
- b_type = data_type[i]
- if a_type == 1:
- a_range = DataOperations.make_list(
- a_range[0], a_range[1], 70)
- else:
- a_range = a_range
- if b_type == 1:
- b_range = DataOperations.make_list(
- b_range[0], b_range[1], 35)
- else:
- b_range = b_range
- a = np.array([i for i in a_range for _ in b_range]).T
- b = np.array([i for _ in a_range for i in b_range]).T
- data = np.array([x_means for _ in a_range for i in b_range])
- data[:, j] = a
- data[:, i] = b
- y_data = predict_func(data)[0].tolist()
- value = [
- [float(a[i]), float(b[i]), class_dict.get(y_data[i], -1)]
- for i in range(len(a))
- ]
- c = (
- HeatMap()
- .add_xaxis(np.unique(a))
- # value的第一个数值是x
- .add_yaxis(f"数据", np.unique(b), value, **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测热力图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"
- ), # 'category'
- xaxis_opts=opts.AxisOpts(
- is_scale=True, type_="category"),
- visualmap_opts=opts.VisualMapOpts(
- is_show=True,
- max_=max(class_dict.values()),
- min_=-1,
- is_piecewise=True,
- pieces=map_dict,
- orient="horizontal",
- pos_bottom="3%",
- ),
- )
- )
- render_list.append(c)
- return render_list
- class TreePlot:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def see_tree(tree_file_dir):
- node_regex = re.compile(r'^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
- link_regex = re.compile("^([0-9]+) -> ([0-9]+) (.*);$") # 匹配节点正则表达式
- node_dict = {}
- link_list = []
- with open(tree_file_dir, "r") as f: # 貌似必须分开w和r
- for i in f:
- try:
- regex_result = re.findall(node_regex, i)[0]
- if regex_result[0] != "":
- try:
- v = float(regex_result[0])
- except ValueError:
- v = 0
- node_dict[regex_result[0]] = {
- "name": regex_result[1].replace("\\n", "\n"),
- "value": v,
- "children": [],
- }
- continue
- except BaseException as e:
- logging.warning(str(e))
- try:
- regex_result = re.findall(link_regex, i)[0]
- if regex_result[0] != "" and regex_result[1] != "":
- link_list.append((regex_result[0], regex_result[1]))
- except BaseException as e:
- logging.warning(str(e))
- father_list = [] # 已经有父亲的list
- for i in link_list:
- father = i[0] # 父节点
- son = i[1] # 子节点
- try:
- node_dict[father]["children"].append(node_dict[son])
- father_list.append(son)
- except BaseException as e:
- logging.warning(str(e))
- father = list(set(node_dict.keys()) - set(father_list))
- c = (
- Tree()
- .add("", [node_dict[father[0]]], is_roam=True)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="决策树可视化"),
- toolbox_opts=opts.ToolboxOpts(is_show=True),
- )
- )
- return c
- class MakePyecharts:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def make_tab(heard, row):
- return Table().add(headers=heard, rows=row)
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def coefficient_scatter_plot(w_heard, w):
- c = (
- Scatter() .add_xaxis(w_heard) .add_yaxis(
- "", w, **label_setting) .set_global_opts(
- title_opts=opts.TitleOpts(
- title="系数w散点图"), **global_setting))
- return c
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def coefficient_bar_plot(w_heard, w):
- c = (
- Bar() .add_xaxis(w_heard) .add_yaxis(
- "",
- abs(w).tolist(),
- **label_setting) .set_global_opts(
- title_opts=opts.TitleOpts(
- title="系数w柱状图"),
- **global_setting))
- return c
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def make_bar(name, value, tab): # 绘制柱状图
- c = (
- Bar()
- .add_xaxis([f"[{i}]特征" for i in range(len(value))])
- .add_yaxis(name, value, **label_setting)
- .set_global_opts(title_opts=opts.TitleOpts(title="系数w柱状图"), **global_setting)
- )
- tab.add(c, name)
- class TrainingVisualization:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # 无中心训练数据散点图(聚类)(more)
- def training_visualization_more_no_center(x_data, class_list, y_data):
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- statistics_assistant = Statistics.quick_stats(x_data)
- render_list = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i:
- continue
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- base_render = None # 旧的C
- for class_num in range(len(class_list)):
- now_class = class_list[class_num]
- plot_x1 = x1[y_data == now_class].tolist()
- plot_x2 = x2[y_data == now_class]
- axis_x2 = np.unique(plot_x2)
- plot_x2 = x2[y_data == now_class].tolist()
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter() .add_xaxis(plot_x2) .add_yaxis(
- f"{now_class}",
- plot_x1,
- **label_setting) .set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"[{a}-{i}]训练数据散点图"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True,
- ),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True,
- ),
- ))
- c.add_xaxis(axis_x2)
- if base_render is None:
- base_render = c
- else:
- base_render = base_render.overlap(c)
- render_list.append(base_render)
- means, x_range, data_type = statistics_assistant.get()
- return render_list, means, x_range, data_type
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # 有中心训练数据散点图(more)
- def training_visualization_more(x_data, class_list, y_data, center):
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- statistics_assistant = Statistics.quick_stats(x_data)
- render_list = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i:
- continue
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- base_render = None # 旧的C
- for class_num in range(len(class_list)):
- now_class = class_list[class_num]
- plot_x1 = x1[y_data == now_class].tolist()
- plot_x2 = x2[y_data == now_class]
- axis_x2 = np.unique(plot_x2)
- plot_x2 = x2[y_data == now_class].tolist()
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter() .add_xaxis(plot_x2) .add_yaxis(
- f"{now_class}",
- plot_x1,
- **label_setting) .set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"[{a}-{i}]训练数据散点图"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True,
- ),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True,
- ),
- ))
- c.add_xaxis(axis_x2)
- # 添加簇中心
- try:
- center_x2 = [center[class_num][a]]
- except IndexError:
- center_x2 = [0]
- b = (
- Scatter() .add_xaxis(center_x2) .add_yaxis(
- f"[{now_class}]中心",
- [
- center[class_num][i]],
- **label_setting,
- symbol="triangle",
- ) .set_global_opts(
- title_opts=opts.TitleOpts(
- title="簇中心"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True,
- ),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True,
- ),
- ))
- c.overlap(b)
- if base_render is None:
- base_render = c
- else:
- base_render = base_render.overlap(c)
- render_list.append(base_render)
- means, x_range, data_type = statistics_assistant.get()
- return render_list, means, x_range, data_type
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # 有中心训练数据散点图
- def training_visualization_center(x_data, class_data, y_data, center):
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- statistics_assistant = Statistics.quick_stats(x_data)
- render_list = []
- for i in range(len(x_data)):
- if i == 0:
- continue
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[i - 1] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- base_render = None # 旧的C
- for class_num in range(len(class_data)):
- n_class = class_data[class_num]
- x_1 = x1[y_data == n_class].tolist()
- x_2 = x2[y_data == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y_data == n_class].tolist()
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter().add_xaxis(x_2).add_yaxis(
- f"{n_class}",
- x_1,
- **label_setting).set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"[{i - 1}-{i}]训练数据散点图"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- ))
- c.add_xaxis(x_2_new)
- # 添加簇中心
- try:
- center_x_2 = [center[class_num][i - 1]]
- except IndexError:
- center_x_2 = [0]
- b = (
- Scatter().add_xaxis(center_x_2).add_yaxis(
- f"[{n_class}]中心",
- [
- center[class_num][i]],
- **label_setting,
- symbol="triangle",
- ).set_global_opts(
- title_opts=opts.TitleOpts(
- title="簇中心"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- ))
- c.overlap(b)
- if base_render is None:
- base_render = c
- else:
- base_render = base_render.overlap(c)
- render_list.append(base_render)
- means, x_range, data_type = statistics_assistant.get()
- return render_list, means, x_range, data_type
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def training_visualization(x_data, class_, y_data): # 无中心训练数据散点图(聚类、分类)
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- statistics_assistant = Statistics.quick_stats(x_data)
- render_list = []
- for i in range(len(x_data)):
- if i == 0:
- continue
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[i - 1] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- render_list = [] # 旧的C
- base_render = None
- for now_class in class_:
- plot_x1 = x1[y_data == now_class].tolist()
- plot_x2 = x2[y_data == now_class]
- axis_x2 = np.unique(plot_x2)
- plot_x2 = x2[y_data == now_class].tolist()
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter().add_xaxis(plot_x2).add_yaxis(
- f"{now_class}",
- plot_x1,
- **label_setting).set_global_opts(
- title_opts=opts.TitleOpts(
- title="训练数据散点图"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- ))
- c.add_xaxis(axis_x2)
- if base_render is None:
- base_render = c
- else:
- base_render = base_render.overlap(c)
- render_list.append(base_render)
- means, x_range, data_type = statistics_assistant.get()
- return render_list, means, x_range, data_type
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def training_visualization_no_class(x_data): # 绘制无分类x-x分类
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- statistics_assistant = Statistics.quick_stats(x_data)
- render_list = []
- for i in range(len(x_data)):
- if i == 0:
- continue
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[i - 1] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- x2_only = np.unique(x2)
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter().add_xaxis(x2).add_yaxis(
- "",
- x1.tolist(),
- **label_setting).set_global_opts(
- title_opts=opts.TitleOpts(
- title="训练数据散点图"),
- **global_not_legend,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- ))
- c.add_xaxis(x2_only)
- render_list.append(c)
- means, x_range, data_type = statistics_assistant.get()
- return render_list, means, x_range, data_type
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # 绘制无分类x-x数据图(more)
- def training_visualization_no_class_more(x_data, data_name=""):
- seeting = global_setting if data_name else global_not_legend
- x_data = x_data.transpose()
- only = False
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- only = True
- render_list = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i:
- continue # 重复内容,跳过
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- x2_only = np.unique(x2)
- if only:
- x2_is_continuous = False
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter().add_xaxis(x2).add_yaxis(
- data_name,
- x1,
- **label_setting).set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"[{i}-{a}]数据散点图"),
- **seeting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- ))
- c.add_xaxis(x2_only)
- render_list.append(c)
- return render_list
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # x-x数据图
- def training_visualization_no_class_more_format(x_data, data_name=""):
- seeting = global_setting if data_name else global_not_legend
- x_data = x_data.transpose()
- only = False
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- only = True
- render_list = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i:
- continue # 重复内容,跳过(a读取的是i后面的)
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- x2_only = np.unique(x2)
- x1_list = x1.astype(np.str).tolist()
- for j in range(len(x1_list)):
- x1_list[j] = [x1_list[j], f"特征{j}"]
- if only:
- x2_is_continuous = False
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter().add_xaxis(x2).add_yaxis(
- data_name,
- x1_list,
- **label_setting).set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"[{i}-{a}]数据散点图"),
- **seeting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- tooltip_opts=opts.TooltipOpts(
- is_show=True,
- axis_pointer_type="cross",
- formatter="{c}"),
- ))
- c.add_xaxis(x2_only)
- render_list.append(c)
- return render_list
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- # 必定离散x-x数据图
- def discrete_training_visualization_no_class_more(x_data, data_name=""):
- seeting = global_setting if data_name else global_not_legend
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- render_list = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i:
- continue # 重复内容,跳过
- x1 = x_data[i] # x坐标
- x2 = x_data[a] # y坐标
- x2_only = np.unique(x2)
- # x与散点图不同,这里是纵坐标
- c = (
- Scatter() .add_xaxis(x2) .add_yaxis(
- data_name,
- x1,
- **label_setting) .set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"[{i}-{a}]数据散点图"),
- **seeting,
- yaxis_opts=opts.AxisOpts(
- type_="category",
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="category",
- is_scale=True),
- ))
- c.add_xaxis(x2_only)
- render_list.append(c)
- return render_list
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def regress_visualization(x_data, y_data): # 绘制回归散点图
- x_data = x_data.transpose()
- y_is_continuous = Statistics.is_continuous(y_data)
- statistics_assistant = Statistics.quick_stats(x_data)
- render_list = []
- try:
- visualmap_opts = opts.VisualMapOpts(
- is_show=True,
- max_=int(y_data.max()) + 1,
- min_=int(y_data.min()),
- pos_right="3%",
- )
- except ValueError:
- visualmap_opts = None
- y_is_continuous = False
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_is_continuous = Statistics.is_continuous(x1)
- # 不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
- if not y_is_continuous and x1_is_continuous:
- y_is_continuous, x1_is_continuous = x1_is_continuous, y_is_continuous
- x1, y_data = y_data, x1
- c = (
- Scatter()
- .add_xaxis(x1.tolist()) # 研究表明,这个是横轴
- .add_yaxis("数据", y_data.tolist(), **label_setting)
- .set_global_opts(
- title_opts=opts.TitleOpts(title="预测类型图"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if y_is_continuous else "category", is_scale=True
- ),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category", is_scale=True
- ),
- visualmap_opts=visualmap_opts,
- )
- )
- c.add_xaxis(np.unique(x1))
- render_list.append(c)
- means, x_range, data_type = statistics_assistant.get()
- return render_list, means, x_range, data_type
- class Curve:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def training_w(
- x_data, class_list, y_data, w_list, b_list, x_means: list
- ): # 绘制分类决策边界
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- render_list = []
- x_means.append(0)
- x_means = np.array(x_means)
- for i in range(len(x_data)):
- if i == 0:
- continue
- x1_is_continuous = Statistics.is_continuous(x_data[i])
- x2 = x_data[i - 1] # y坐标
- x2_is_continuous = Statistics.is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_list)):
- n_class = class_list[class_num]
- x2_only = np.unique(x2[y_data == n_class])
- # x与散点图不同,这里是纵坐标
- # 加入这个判断是为了解决sklearn历史遗留问题
- if len(class_list) == 2: # 二分类问题
- if class_num == 0:
- continue
- w = w_list[0]
- b = b_list[0]
- else: # 多分类问题
- w = w_list[class_num]
- b = b_list[class_num]
- if x2_is_continuous:
- try:
- x2_only = np.array(
- DataOperations.make_list(
- x2_only.min(), x2_only.max(), 5))
- except ValueError: # x2_only为[],不需要画了
- continue
- # 此处的y_data和上面撞名,更改为y_data_
- w = np.append(w, 0)
- # 根据公式 分类=wo*x0 + w1*x1 + w2*x2....+b,其中当分类=0,根据x0和x1画出一条线表示决策边界
- y_data_ = (
- -(x2_only * w[i - 1]) / w[i]
- + b
- + (x_means[: i - 1] * w[: i - 1]).sum()
- + (x_means[i + 1:] * w[i + 1:]).sum()
- ) # 假设除了两个特征意外,其余特征均为means列表的数值,这里的y_data其实
- c = (
- Line().add_xaxis(x2_only).add_yaxis(
- f"决策边界:{n_class}=>[{i}]",
- y_data_.tolist(),
- is_smooth=True,
- **label_setting,
- ).set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"系数w曲线"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else "category", # 此处y_data其实就是x_1
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x2_is_continuous else "category",
- is_scale=True),
- ))
- if o_c is None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- # 下面不要接任何代码,因为上面会continue
- render_list.append(o_c)
- return render_list
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def regress_w(x_data, w_data: np.array, intercept_b, x_means: list): # 绘制回归曲线
- x_data = x_data.transpose()
- if len(x_data) == 1:
- x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
- render_list = []
- x_means.append(0) # 确保mean[i+1]不会超出index
- x_means = np.array(x_means)
- w_data = np.append(w_data, 0)
- for i in range(len(x_data)):
- x1 = x_data[i]
- x1_is_continuous = Statistics.is_continuous(x1)
- if x1_is_continuous:
- x1 = np.array(DataOperations.make_list(x1.min(), x1.max(), 5))
- x1_only = np.unique(x1)
- # 假设除了两个特征意外,其余特征均为means列表的数值
- y_data = (
- x1_only * w_data[i]
- + intercept_b
- + (x_means[:i] * w_data[:i]).sum()
- + (x_means[i + 1:] * w_data[i + 1:]).sum()
- )
- y_is_continuous = Statistics.is_continuous(y_data)
- c = (
- Line().add_xaxis(x1_only).add_yaxis(
- f"拟合结果=>[{i}]",
- y_data.tolist(),
- is_smooth=True,
- **label_setting).set_global_opts(
- title_opts=opts.TitleOpts(
- title=f"系数w曲线"),
- **global_setting,
- yaxis_opts=opts.AxisOpts(
- type_="value" if y_is_continuous else None,
- is_scale=True),
- xaxis_opts=opts.AxisOpts(
- type_="value" if x1_is_continuous else None,
- is_scale=True),
- ))
- render_list.append(c)
- return render_list
- class MultiMap:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def conversion_control(y_data, x_data, tab): # 合并两x-x图
- if isinstance(x_data, np.ndarray) and isinstance(y_data, np.ndarray):
- get_x = TrainingVisualization.training_visualization_no_class_more(
- x_data, "原数据") # 原来
- get_y = TrainingVisualization.training_visualization_no_class_more(
- y_data, "转换数据") # 转换
- for i in range(len(get_x)):
- tab.add(get_x[i].overlap(get_y[i]), f"[{i}]数据x-x散点图")
- return tab
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def conversion_separate(y_data, x_data, tab): # 并列显示两x-x图
- if isinstance(x_data, np.ndarray) and isinstance(y_data, np.ndarray):
- get_x = TrainingVisualization.training_visualization_no_class_more(
- x_data, "原数据") # 原来
- get_y = TrainingVisualization.training_visualization_no_class_more(
- y_data, "转换数据") # 转换
- for i in range(len(get_x)):
- try:
- tab.add(get_x[i], f"[{i}]数据x-x散点图")
- except IndexError:
- pass
- try:
- tab.add(get_y[i], f"[{i}]变维数据x-x散点图")
- except IndexError:
- pass
- return tab
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def conversion_separate_format(y_data, tab): # 并列显示两x-x图
- if isinstance(y_data, np.ndarray):
- get_y = TrainingVisualization.training_visualization_no_class_more_format(
- y_data, "转换数据") # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f"[{i}]变维数据x-x散点图")
- return tab
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def conversion_separate_wh(w_array, h_array, tab): # 并列显示两x-x图
- if isinstance(w_array, np.ndarray) and isinstance(w_array, np.ndarray):
- get_x = TrainingVisualization.training_visualization_no_class_more_format(
- w_array, "W矩阵数据") # 原来
- get_y = TrainingVisualization.training_visualization_no_class_more(
- h_array.transpose(), "H矩阵数据") # 转换(先转T,再转T变回原样,W*H是横对列)
- for i in range(len(get_x)):
- try:
- tab.add(get_x[i], f"[{i}]W矩阵x-x散点图")
- except IndexError:
- pass
- try:
- tab.add(get_y[i], f"[{i}]H.T矩阵x-x散点图")
- except IndexError:
- pass
- return tab
- class Statistics:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def is_continuous(data: np.ndarray, f: float = 0.1):
- l: list = np.unique(data).tolist()
- return len(l) / len(data) >= f or len(data) <= 3
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def quick_stats(x_data):
- statistics_assistant = CategoricalData()
- print(x_data)
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- statistics_assistant(x1)
- return statistics_assistant
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def des_to_csv(save_dir, name, data, columns=None, row=None):
- save_dir = save_dir + os.sep + name + ".csv"
- DataFrame(data, columns=columns, index=row).to_csv(
- save_dir,
- header=False if columns is None else True,
- index=False if row is None else True,
- )
- return data
- class Packing:
- @staticmethod
- @plugin_func_loading(get_path(r"template/machinelearning"))
- def pack(output_filename, source_dir):
- with tarfile.open(output_filename, "w:gz") as tar:
- tar.add(source_dir, arcname=basename(source_dir))
- return output_filename
- class MachineLearnerInit(
- LearnerIO,
- Calculation,
- LearnerMerge,
- LearnerSplit,
- LearnerDimensions,
- LearnerShape,
- metaclass=ABCMeta):
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.learner = {} # 记录机器
- self.learn_dict = {
- "Line": LineModel,
- "Ridge": LineModel,
- "Lasso": LineModel,
- "LogisticRegression": LogisticregressionModel,
- "Knn_class": KnnModel,
- "Knn": KnnModel,
- "Tree_class": TreeModel,
- "Tree": TreeModel,
- "Forest": ForestModel,
- "Forest_class": ForestModel,
- "GradientTree_class": GradienttreeModel,
- "GradientTree": GradienttreeModel,
- "Variance": VarianceModel,
- "SelectKBest": SelectkbestModel,
- "Z-Score": StandardizationModel,
- "MinMaxScaler": MinmaxscalerModel,
- "LogScaler": LogscalerModel,
- "atanScaler": AtanscalerModel,
- "decimalScaler": DecimalscalerModel,
- "sigmodScaler": SigmodscalerModel,
- "Mapzoom": MapzoomModel,
- "Fuzzy_quantization": FuzzyQuantizationModel,
- "Regularization": RegularizationModel,
- "Binarizer": BinarizerModel,
- "Discretization": DiscretizationModel,
- "Label": LabelModel,
- "OneHotEncoder": OneHotEncoderModel,
- "Missed": MissedModel,
- "PCA": PcaModel,
- "RPCA": RpcaModel,
- "KPCA": KpcaModel,
- "LDA": LdaModel,
- "SVC": SvcModel,
- "SVR": SvrModel,
- "MLP": MlpModel,
- "MLP_class": MlpModel,
- "NMF": NmfModel,
- "t-SNE": TsneModel,
- "k-means": KmeansModel,
- "Agglomerative": AgglomerativeModel,
- "DBSCAN": DbscanModel,
- "ClassBar": ClassBar,
- "FeatureScatter": NearFeatureScatter,
- "FeatureScatterClass": NearFeatureScatterClass,
- "FeatureScatter_all": NearFeatureScatterMore,
- "FeatureScatterClass_all": NearFeatureScatterClassMore,
- "HeatMap": NumpyHeatMap,
- "FeatureY-X": FeatureScatterYX,
- "ClusterTree": ClusterTree,
- "MatrixScatter": MatrixScatter,
- "Correlation": Corr,
- "Statistics": DataAnalysis,
- "Fast_Fourier": FastFourier,
- "Reverse_Fast_Fourier": ReverseFastFourier,
- "[2]Reverse_Fast_Fourier": ReverseFastFourierTwonumpy,
- }
- self.data_type = {} # 记录机器的类型
- @staticmethod
- def learner_parameters(parameters, data_type): # 解析参数
- original_parameter = {}
- target_parameter = {}
- # 输入数据
- exec(parameters, original_parameter)
- # 处理数据
- if data_type in ("MLP", "MLP_class"):
- target_parameter["alpha"] = float(
- original_parameter.get("alpha", 0.0001)
- ) # MLP正则化用
- else:
- target_parameter["alpha"] = float(
- original_parameter.get("alpha", 1.0)
- ) # L1和L2正则化用
- target_parameter["C"] = float(
- original_parameter.get(
- "C", 1.0)) # L1和L2正则化用
- if data_type in ("MLP", "MLP_class"):
- target_parameter["max_iter"] = int(
- original_parameter.get("max_iter", 200)
- ) # L1和L2正则化用
- else:
- target_parameter["max_iter"] = int(
- original_parameter.get("max_iter", 1000)
- ) # L1和L2正则化用
- target_parameter["n_neighbors"] = int(
- original_parameter.get("K_knn", 5)
- ) # knn邻居数 (命名不同)
- target_parameter["p"] = int(original_parameter.get("p", 2)) # 距离计算方式
- target_parameter["nDim_2"] = bool(
- original_parameter.get("nDim_2", True)
- ) # 数据是否降维
- if data_type in ("Tree", "Forest", "GradientTree"):
- target_parameter["criterion"] = (
- "mse" if bool(
- original_parameter.get(
- "is_MSE",
- True)) else "mae") # 是否使用基尼不纯度
- else:
- target_parameter["criterion"] = (
- "gini" if bool(
- original_parameter.get(
- "is_Gini",
- True)) else "entropy") # 是否使用基尼不纯度
- target_parameter["splitter"] = (
- "random" if bool(
- original_parameter.get(
- "is_random",
- False)) else "best") # 决策树节点是否随机选用最优
- target_parameter["max_features"] = original_parameter.get(
- "max_features", None
- ) # 选用最多特征数
- target_parameter["max_depth"] = original_parameter.get(
- "max_depth", None
- ) # 最大深度
- target_parameter["min_samples_split"] = int(
- original_parameter.get("min_samples_split", 2)
- ) # 是否继续划分(容易造成过拟合)
- target_parameter["P"] = float(
- original_parameter.get(
- "min_samples_split", 0.8))
- target_parameter["k"] = original_parameter.get("k", 1)
- target_parameter["score_func"] = {
- "chi2": chi2,
- "f_classif": f_classif,
- "mutual_info_classif": mutual_info_classif,
- "f_regression": f_regression,
- "mutual_info_regression": mutual_info_regression,
- }.get(original_parameter.get("score_func", "f_classif"), f_classif)
- target_parameter["feature_range"] = tuple(
- original_parameter.get("feature_range", (0, 1))
- )
- target_parameter["norm"] = original_parameter.get(
- "norm", "l2") # 正则化的方式L1或者L2
- target_parameter["threshold"] = float(
- original_parameter.get("threshold", 0.0)
- ) # 二值化特征
- target_parameter["split_range"] = list(
- original_parameter.get("split_range", [0])
- ) # 二值化特征
- target_parameter["ndim_up"] = bool(
- original_parameter.get("ndim_up", False))
- target_parameter["miss_value"] = original_parameter.get(
- "miss_value", np.nan)
- target_parameter["fill_method"] = original_parameter.get(
- "fill_method", "mean")
- target_parameter["fill_value"] = original_parameter.get(
- "fill_value", None)
- target_parameter["n_components"] = original_parameter.get(
- "n_components", 1)
- target_parameter["kernel"] = original_parameter.get(
- "kernel", "rbf" if data_type in ("SVR", "SVC") else "linear"
- )
- target_parameter["n_Tree"] = original_parameter.get("n_Tree", 100)
- target_parameter["gamma"] = original_parameter.get("gamma", 1)
- target_parameter["hidden_size"] = tuple(
- original_parameter.get("hidden_size", (100,))
- )
- target_parameter["activation"] = str(
- original_parameter.get("activation", "relu")
- )
- target_parameter["solver"] = str(
- original_parameter.get("solver", "adam"))
- if data_type in ("k-means",):
- target_parameter["n_clusters"] = int(
- original_parameter.get("n_clusters", 8)
- )
- else:
- target_parameter["n_clusters"] = int(
- original_parameter.get("n_clusters", 2)
- )
- target_parameter["eps"] = float(
- original_parameter.get(
- "n_clusters", 0.5))
- target_parameter["min_samples"] = int(
- original_parameter.get("n_clusters", 5))
- target_parameter["white_PCA"] = bool(
- original_parameter.get("white_PCA", False))
- return target_parameter
- def get_learner(self, name):
- return self.learner[name]
- def get_learner_type(self, name):
- return self.data_type[name]
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class MachineLearnerAdd(MachineLearnerInit, metaclass=ABCMeta):
- def add_learner(self, learner_str, parameters=""):
- get = self.learn_dict[learner_str]
- name = f"Le[{len(self.learner)}]{learner_str}"
- # 参数调节
- args_use = self.learner_parameters(parameters, learner_str)
- # 生成学习器
- self.learner[name] = get(model=learner_str, args_use=args_use)
- self.data_type[name] = learner_str
- def add_learner_from_python(self, learner, name):
- name = f"Le[{len(self.learner)}]{name}"
- # 生成学习器
- self.learner[name] = learner
- self.data_type[name] = 'from_python'
- def add_curve_fitting(self, learner):
- named_domain = {}
- exec(learner, named_domain)
- name = f'Le[{len(self.learner)}]{named_domain.get("name", "SELF")}'
- func = named_domain.get("f", lambda x, k, b: k * x + b)
- self.learner[name] = CurveFitting(name, learner, func)
- self.data_type[name] = "Curve_fitting"
- def add_select_from_model(self, learner, parameters=""):
- model = self.get_learner(learner)
- name = f"Le[{len(self.learner)}]SelectFrom_Model:{learner}"
- # 参数调节
- args_use = self.learner_parameters(parameters, "SelectFrom_Model")
- # 生成学习器
- self.learner[name] = SelectFromModel(
- learner=model, args_use=args_use, Dic=self.learn_dict
- )
- self.data_type[name] = "SelectFrom_Model"
- def add_predictive_heat_map(self, learner, parameters=""):
- model = self.get_learner(learner)
- name = f"Le[{len(self.learner)}]Predictive_HeatMap:{learner}"
- # 生成学习器
- args_use = self.learner_parameters(parameters, "Predictive_HeatMap")
- self.learner[name] = PredictiveHeatmap(
- learner=model, args_use=args_use)
- self.data_type[name] = "Predictive_HeatMap"
- def add_predictive_heat_map_more(self, learner, parameters=""):
- model = self.get_learner(learner)
- name = f"Le[{len(self.learner)}]Predictive_HeatMap_More:{learner}"
- # 生成学习器
- args_use = self.learner_parameters(
- parameters, "Predictive_HeatMap_More")
- self.learner[name] = PredictiveHeatmapMore(
- learner=model, args_use=args_use)
- self.data_type[name] = "Predictive_HeatMap_More"
- def add_view_data(self, learner, parameters=""):
- model = self.get_learner(learner)
- name = f"Le[{len(self.learner)}]View_data:{learner}"
- # 生成学习器
- args_use = self.learner_parameters(parameters, "View_data")
- self.learner[name] = ViewData(learner=model, args_use=args_use)
- self.data_type[name] = "View_data"
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class MachineLearnerScore(MachineLearnerInit, metaclass=ABCMeta):
- def score(self, name_x, name_y, learner): # Score_Only表示仅评分 Fit_Simp 是普遍类操作
- model = self.get_learner(learner)
- x = self.get_sheet(name_x)
- y = self.get_sheet(name_y)
- return model.score(x, y)
- def model_evaluation(self, learner, save_dir, name_x, name_y, func=0): # 显示参数
- x = self.get_sheet(name_x)
- y = self.get_sheet(name_y)
- if new_dir_global:
- dic = save_dir + f"{os.sep}{learner}分类评分[CoTan]"
- new_dic = dic
- a = 0
- while exists(new_dic): # 直到他不存在 —— False
- new_dic = dic + f"[{a}]"
- a += 1
- mkdir(new_dic)
- else:
- new_dic = save_dir
- model = self.get_learner(learner)
- # 打包
- func = [
- model.class_score,
- model.regression_score,
- model.clusters_score][func]
- save = func(new_dic, x, y)[0]
- if tar_global:
- Packing.pack(f"{new_dic}.tar.gz", new_dic)
- return save, new_dic
- def model_visualization(self, learner, save_dir): # 显示参数
- if new_dir_global:
- dic = save_dir + f"{os.sep}{learner}数据[CoTan]"
- new_dic = dic
- a = 0
- while exists(new_dic): # 直到他不存在 —— False
- new_dic = dic + f"[{a}]"
- a += 1
- mkdir(new_dic)
- else:
- new_dic = save_dir
- model = self.get_learner(learner)
- if (not (model.model is None) or not (
- model.model is list)) and clf_global:
- joblib.dump(model.model, new_dic + f"{os.sep}MODEL.model") # 保存模型
- # 打包
- save = model.data_visualization(new_dic)[0]
- if tar_global:
- Packing.pack(f"{new_dic}.tar.gz", new_dic)
- return save, new_dic
- @plugin_class_loading(get_path(r"template/machinelearning"))
- class LearnerActions(MachineLearnerInit, metaclass=ABCMeta):
- def fit_model(self, x_name, y_name, learner, split=0.3, *args, **kwargs):
- x_data = self.get_sheet(x_name)
- y_data = self.get_sheet(y_name)
- model = self.get_learner(learner)
- return model.fit_model(
- x_data, y_data, split=split, x_name=x_name, add_func=self.add_form
- )
- def predict(self, x_name, learner, **kwargs):
- x_data = self.get_sheet(x_name)
- model = self.get_learner(learner)
- y_data, name = model.predict(
- x_data, x_name=x_name, add_func=self.add_form)
- self.add_form(y_data, f"{x_name}:{name}")
- return y_data
- def set_global(
- more=more_global,
- all_=all_global,
- csv=csv_global,
- clf=clf_global,
- tar=tar_global,
- new=new_dir_global,
- ):
- global more_global, all_global, csv_global, clf_global, tar_global, new_dir_global
- more_global = more # 是否使用全部特征绘图
- all_global = all_ # 是否导出charts
- csv_global = csv # 是否导出CSV
- clf_global = clf # 是否导出模型
- tar_global = tar # 是否打包tar
- new_dir_global = new # 是否新建目录
|