Learn_Numpy.py 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts import options as opts
  3. from random import randint
  4. from pyecharts.charts import *
  5. from pyecharts.options.series_options import JsCode
  6. from pandas import DataFrame,read_csv
  7. import numpy as np
  8. import re
  9. from sklearn.model_selection import train_test_split
  10. from sklearn.linear_model import *
  11. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  12. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  13. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  14. GradientBoostingRegressor)
  15. from sklearn.metrics import accuracy_score
  16. from sklearn.feature_selection import *
  17. from sklearn.preprocessing import *
  18. from sklearn.impute import SimpleImputer
  19. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  20. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  21. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  22. from sklearn.neural_network import MLPClassifier,MLPRegressor
  23. from sklearn.manifold import TSNE
  24. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  25. from pyecharts.charts import *
  26. # import sklearn as sk
  27. #设置
  28. np.set_printoptions(threshold=np.inf)
  29. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  30. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  31. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  32. class Table(Table_Fisrt):
  33. def add(self, headers, rows, attributes = None):
  34. if len(rows) == 1:
  35. new_headers = ['数据类型','数据']
  36. new_rows = list(zip(headers,rows[0]))
  37. return super().add(new_headers,new_rows,attributes)
  38. else:
  39. return super().add(headers, rows, attributes)
  40. def make_list(first,end,num=35):
  41. n = num / (end - first)
  42. if n == 0: n = 1
  43. re = []
  44. n_first = first * n
  45. n_end = end * n
  46. while n_first <= n_end:
  47. cul = n_first / n
  48. re.append(round(cul,2))
  49. n_first += 1
  50. return re
  51. def list_filter(list_,num=70):
  52. #假设列表已经不重复
  53. if len(list_) <= num:return list_
  54. n = int(num / len(list_))
  55. re = list_[::n]
  56. return re
  57. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  58. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  59. # a-特征x,b-特征x-1,c-其他特征
  60. o_cList = []
  61. if len(x_means) == 1:
  62. n_ra = x_range[0]
  63. if Type[0] == 1:
  64. ra = make_list(n_ra[0], n_ra[1], 70)
  65. else:
  66. ra = n_ra
  67. a = np.array([i for i in ra]).reshape(-1,1)
  68. y_data = Predict_Func(a)[0].tolist()
  69. value = [[0 , float(a[i]), y_data[i]] for i in range(len(a))]
  70. c = (HeatMap()
  71. .add_xaxis(['None'])
  72. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  73. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  74. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  75. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  76. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data)) + 1,
  77. min_=int(min(y_data)),
  78. pos_right='3%')) # 显示
  79. )
  80. o_cList.append(c)
  81. return o_cList
  82. for i in range(len(x_means)):
  83. if i == 0:
  84. continue
  85. n_ra = x_range[i - 1]
  86. Type_ra = Type[i - 1]
  87. n_rb = x_range[i]
  88. Type_rb = Type[i]
  89. if Type_ra == 1:
  90. ra = make_list(n_ra[0],n_ra[1],70)
  91. else:
  92. ra = list_filter(n_ra)#可以接受最大为70
  93. if Type_rb == 1:
  94. rb = make_list(n_rb[0],n_rb[1],35)
  95. else:
  96. rb = list_filter(n_rb)#可以接受最大为70
  97. a = np.array([i for i in ra for _ in rb]).T
  98. b = np.array([i for _ in ra for i in rb]).T
  99. data = np.array([x_means for _ in ra for i in rb])
  100. data[:, i - 1] = a
  101. data[:, i] = b
  102. y_data = Predict_Func(data)[0].tolist()
  103. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  104. c = (HeatMap()
  105. .add_xaxis(np.unique(a))
  106. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  107. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  108. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  109. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  110. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  111. pos_right='3%'))#显示
  112. )
  113. o_cList.append(c)
  114. return o_cList
  115. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type):#绘制分类型预测图x-x热力图
  116. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  117. # a-特征x,b-特征x-1,c-其他特征
  118. #规定,i-1是x轴,a是x轴,x_1是x轴
  119. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  120. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  121. for i in class_dict:
  122. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':i})
  123. o_cList = []
  124. if len(x_means) == 1:
  125. n_ra = x_range[0]
  126. if Type[0] == 1:
  127. ra = make_list(n_ra[0], n_ra[1], 70)
  128. else:
  129. ra = n_ra
  130. a = np.array([i for i in ra]).reshape(-1,1)
  131. y_data = Predict_Func(a)[0].tolist()
  132. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  133. c = (HeatMap()
  134. .add_xaxis(['None'])
  135. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  136. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  137. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  138. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  139. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  140. min_=-1,
  141. is_piecewise=True, pieces=v_dict,
  142. orient='horizontal', pos_bottom='3%'))
  143. )
  144. o_cList.append(c)
  145. return o_cList
  146. for i in range(len(x_means)):
  147. if i == 0:
  148. continue
  149. n_ra = x_range[i-1]
  150. Type_ra = Type[i-1]
  151. n_rb = x_range[i]
  152. Type_rb = Type[i]
  153. print(f'{n_ra},{n_rb}')
  154. if Type_ra == 1:
  155. ra = make_list(n_ra[0],n_ra[1],70)
  156. else:
  157. ra = n_ra
  158. if Type_rb == 1:
  159. rb = make_list(n_rb[0],n_rb[1],35)
  160. else:
  161. rb = n_rb
  162. a = np.array([i for i in ra for _ in rb]).T
  163. b = np.array([i for _ in ra for i in rb]).T
  164. data = np.array([x_means for _ in ra for i in rb])
  165. data[:, i - 1] = a
  166. data[:, i] = b
  167. y_data = Predict_Func(data)[0].tolist()
  168. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  169. c = (HeatMap()
  170. .add_xaxis(np.unique(a))
  171. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  172. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  173. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  174. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  175. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  176. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  177. )
  178. o_cList.append(c)
  179. return o_cList
  180. def SeeTree(Dic):
  181. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  182. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  183. node_Dict = {}
  184. link_list = []
  185. with open(Dic, 'r') as f: # 貌似必须分开w和r
  186. for i in f:
  187. try:
  188. get = re.findall(node_re, i)[0]
  189. if get[0] != '':
  190. try:
  191. v = float(get[0])
  192. except:
  193. v = 0
  194. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  195. continue
  196. except:
  197. pass
  198. try:
  199. get = re.findall(link_re, i)[0]
  200. if get[0] != '' and get[1] != '':
  201. link_list.append((get[0], get[1]))
  202. except:
  203. pass
  204. father_list = [] # 已经有父亲的list
  205. for i in link_list:
  206. father = i[0] # 父节点
  207. son = i[1] # 子节点
  208. try:
  209. node_Dict[father]['children'].append(node_Dict[son])
  210. father_list.append(son)
  211. if int(son) == 0: print('F')
  212. except:
  213. pass
  214. father = list(set(node_Dict.keys()) - set(father_list))
  215. c = (
  216. Tree()
  217. .add("", [node_Dict[father[0]]], is_roam=True)
  218. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  219. toolbox_opts=opts.ToolboxOpts(is_show=True))
  220. )
  221. return c
  222. def make_Tab(heard,row):
  223. return Table().add(headers=heard, rows=row)
  224. def scatter(w_heard,w):
  225. c = (
  226. Scatter()
  227. .add_xaxis(w_heard)
  228. .add_yaxis('', w, **Label_Set)
  229. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  230. )
  231. return c
  232. def bar(w_heard,w):
  233. c = (
  234. Bar()
  235. .add_xaxis(w_heard)
  236. .add_yaxis('', abs(w).tolist(), **Label_Set)
  237. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  238. )
  239. return c
  240. def line(w_sum,w,b):
  241. x = np.arange(-5, 5, 1)
  242. c = (
  243. Line()
  244. .add_xaxis(x.tolist())
  245. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  246. )
  247. for i in range(len(w)):
  248. y = x * w[i] + b
  249. c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  250. return c
  251. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  252. y = y_trainData.tolist()
  253. x_data = x_trainData.T
  254. re = []
  255. for i in range(len(x_data)):
  256. x = x_data[i]
  257. p = int(x.max() - x.min()) / 5
  258. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  259. y_num = x_num * w[i] + (w[i] / w_sum) * b
  260. c = (
  261. Line()
  262. .add_xaxis(x_num.tolist())
  263. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  264. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  265. )
  266. t = (
  267. Scatter()
  268. .add_xaxis(x.tolist())
  269. .add_yaxis(f'{i}特征', y, **Label_Set)
  270. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  271. )
  272. t.overlap(c)
  273. re.append(t)
  274. return re
  275. def get_Color():
  276. # 随机颜色,雷达图默认非随机颜色
  277. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  278. color = '#'
  279. for a in rgb:
  280. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  281. return color
  282. def is_continuous(data:np.array,f:float=0.1):
  283. data = data.tolist()
  284. l = np.unique(data).tolist()
  285. try:
  286. re = len(l)/len(data)>=f or len(data) <= 3
  287. return re
  288. except:return False
  289. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  290. x_data = x_trainData.T
  291. if len(x_data) == 1:
  292. x_data = np.array([x_data,np.zeros(len(x_data[0]))])
  293. Cat = Categorical_Data()
  294. o_cList = []
  295. for i in range(len(x_data)):
  296. x1 = x_data[i] # x坐标
  297. x1_con = Cat(x1)
  298. if i == 0:continue
  299. x2 = x_data[i - 1] # y坐标
  300. x2_con = is_continuous(x2)
  301. o_c = None # 旧的C
  302. for n_class in class_:
  303. x_1 = x1[y == n_class].tolist()
  304. x_2 = x2[y == n_class]
  305. x_2_new = np.unique(x_2)
  306. x_2 = x2[y == n_class].tolist()
  307. #x与散点图不同,这里是纵坐标
  308. c = (Scatter()
  309. .add_xaxis(x_2)
  310. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  311. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  312. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  313. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True))
  314. )
  315. c.add_xaxis(x_2_new)
  316. if o_c == None:
  317. o_c = c
  318. else:
  319. o_c = o_c.overlap(c)
  320. o_cList.append(o_c)
  321. means,x_range,Type = Cat.get()
  322. return o_cList,means,x_range,Type
  323. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  324. x_data = x_trainData.T
  325. if len(x_data) == 1:
  326. x_data = np.array([x_data,np.zeros(len(x_data[0]))])
  327. o_cList = []
  328. means.append(0)
  329. means = np.array(means)
  330. for i in range(len(x_data)):
  331. if i == 0:continue
  332. x1_con = is_continuous(x_data[i])
  333. x2 = x_data[i - 1] # y坐标
  334. x2_con = is_continuous(x2)
  335. o_c = None # 旧的C
  336. for class_num in range(len(class_)):
  337. n_class = class_[class_num]
  338. x2_new = np.unique(x2[y == n_class])
  339. #x与散点图不同,这里是纵坐标
  340. #加入这个判断是为了解决sklearn历史遗留问题
  341. if len(class_) == 2:#二分类问题
  342. if class_num == 0:continue
  343. w = w_list[0]
  344. b = b_list[0]
  345. else:#多分类问题
  346. w = w_list[class_num]
  347. b = b_list[class_num]
  348. if x2_con:
  349. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  350. w = np.append(w, 0)
  351. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  352. c = (
  353. Line()
  354. .add_xaxis(x2_new)
  355. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  356. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  357. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  358. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True))
  359. )
  360. if o_c == None:
  361. o_c = c
  362. else:
  363. o_c = o_c.overlap(c)
  364. #下面不要接任何代码,因为上面会continue
  365. o_cList.append(o_c)
  366. return o_cList
  367. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  368. x_data = x_trainData.T
  369. if len(x_data) == 1:
  370. x_data = np.array([x_data,np.zeros(len(x_data[0]))])
  371. o_cList = []
  372. means.append(0)#确保mean[i+1]不会超出index
  373. means = np.array(means)
  374. w = np.append(w,0)
  375. for i in range(len(x_data)):
  376. x1 = x_data[i]
  377. x1_con = is_continuous(x1)
  378. if x1_con:
  379. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  380. x1_new = np.unique(x1)
  381. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  382. y_con = is_continuous(y_data)
  383. c = (
  384. Line()
  385. .add_xaxis(x1_new)
  386. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  387. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  388. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  389. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  390. )
  391. o_cList.append(c)
  392. return o_cList
  393. def regress_visualization(x_trainData,y):#y-x数据图
  394. x_data = x_trainData.T
  395. y_con = is_continuous(y)
  396. Cat = Categorical_Data()
  397. o_cList = []
  398. for i in range(len(x_data)):
  399. x1 = x_data[i] # x坐标
  400. x1_con = Cat(x1)
  401. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  402. c = (
  403. Scatter()
  404. .add_xaxis(x1)#研究表明,这个是横轴
  405. .add_yaxis('数据',y,**Label_Set)
  406. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  407. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  408. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True),
  409. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(y.max())+1, min_=int(y.min()),
  410. pos_right='3%'))
  411. )
  412. o_cList.append(c)
  413. means,x_range,Type = Cat.get()
  414. return o_cList,means,x_range,Type
  415. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  416. seeting = global_Set if data_name else global_Leg
  417. x_data = x_trainData.T
  418. if len(x_data) == 1:
  419. x_data = np.array([x_data,np.zeros(len(x_data[0]))])
  420. o_cList = []
  421. for i in range(len(x_data)):
  422. for a in range(len(x_data)):
  423. if a <= i: continue#重复内容,跳过
  424. x1 = x_data[i] # x坐标
  425. x1_con = is_continuous(x1)
  426. x2 = x_data[a] # y坐标
  427. x2_con = is_continuous(x2)
  428. x2_new = np.unique(x2)
  429. #x与散点图不同,这里是纵坐标
  430. c = (Scatter()
  431. .add_xaxis(x2)
  432. .add_yaxis(data_name, x1, **Label_Set)
  433. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  434. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  435. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True))
  436. )
  437. c.add_xaxis(x2_new)
  438. o_cList.append(c)
  439. return o_cList
  440. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  441. seeting = global_Set if data_name else global_Leg
  442. x_data = x_trainData.T
  443. if len(x_data) == 1:
  444. x_data = np.array([x_data,np.zeros(len(x_data[0]))])
  445. o_cList = []
  446. for i in range(len(x_data)):
  447. for a in range(len(x_data)):
  448. if a <= i: continue#重复内容,跳过
  449. x1 = x_data[i] # x坐标
  450. x1_con = is_continuous(x1)
  451. x2 = x_data[a] # y坐标
  452. x2_con = is_continuous(x2)
  453. x2_new = np.unique(x2)
  454. x1_list = x1.astype(np.str).tolist()
  455. for i in range(len(x1_list)):
  456. x1_list[i] = [x1_list[i],f'特征{i}']
  457. #x与散点图不同,这里是纵坐标
  458. c = (Scatter()
  459. .add_xaxis(x2)
  460. .add_yaxis(data_name, x1, **Label_Set)
  461. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  462. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  463. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  464. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",
  465. formatter=JsCode("function (params) {params.data[2];}")),)
  466. )
  467. c.add_xaxis(x2_new)
  468. o_cList.append(c)
  469. return o_cList
  470. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  471. seeting = global_Set if data_name else global_Leg
  472. x_data = x_trainData.T
  473. if len(x_data) == 1:
  474. x_data = np.array([x_data,np.zeros(len(x_data[0]))])
  475. o_cList = []
  476. for i in range(len(x_data)):
  477. for a in range(len(x_data)):
  478. if a <= i: continue#重复内容,跳过
  479. x1 = x_data[i] # x坐标
  480. x2 = x_data[a] # y坐标
  481. x2_new = np.unique(x2)
  482. #x与散点图不同,这里是纵坐标
  483. c = (Scatter()
  484. .add_xaxis(x2)
  485. .add_yaxis(data_name, x1, **Label_Set)
  486. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  487. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  488. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  489. )
  490. c.add_xaxis(x2_new)
  491. o_cList.append(c)
  492. return o_cList
  493. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  494. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  495. get_x = Feature_visualization(x_data,'原数据')#原来
  496. get_y = Feature_visualization(y_data,'转换数据')#转换
  497. for i in range(len(get_x)):
  498. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  499. return tab
  500. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  501. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  502. get_x = Feature_visualization(x_data,'原数据')#原来
  503. get_y = Feature_visualization(y_data,'转换数据')#转换
  504. for i in range(len(get_x)):
  505. try:
  506. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  507. except IndexError:pass
  508. try:
  509. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  510. except IndexError:pass
  511. return tab
  512. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  513. if type(y_data) is np.ndarray:
  514. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  515. for i in range(len(get_y)):
  516. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  517. return tab
  518. def make_bar(name, value,tab):#绘制柱状图
  519. c = (
  520. Bar()
  521. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  522. .add_yaxis(name, value, **Label_Set)
  523. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  524. )
  525. tab.add(c, name)
  526. def judging_Digits(num:(int,float)):#查看小数位数
  527. a = str(abs(num)).split('.')[0]
  528. if a == '':raise ValueError
  529. return len(a)
  530. class Learner:
  531. def __init__(self,*args,**kwargs):
  532. self.numpy_Dic = {}#name:numpy
  533. def Add_Form(self,data:np.array,name):
  534. name = f'{name}[{len(self.numpy_Dic)}]'
  535. self.numpy_Dic[name] = data
  536. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  537. type_ = np.str if str_must else np.float
  538. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  539. try:
  540. data = pf_data.to_numpy(dtype=type_)
  541. except ValueError:
  542. data = pf_data.to_numpy(dtype=np.str)
  543. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  544. self.Add_Form(data,name)
  545. return data
  546. def Add_Python(self, Text, sheet_name):
  547. name = {}
  548. name.update(globals().copy())
  549. name.update(locals().copy())
  550. exec(Text, name)
  551. exec('get = Creat()', name)
  552. if isinstance(name['get'], np.array): # 已经是DataFram
  553. get = name['get']
  554. else:
  555. try:
  556. get = np.array(name['get'])
  557. except:
  558. get = np.array([name['get']])
  559. self.Add_Form(get, sheet_name)
  560. return get
  561. def get_Form(self) -> dict:
  562. return self.numpy_Dic.copy()
  563. def get_Sheet(self,name) -> np.array:
  564. return self.numpy_Dic[name].copy()
  565. def to_CSV(self,Dic:str,name,sep) -> str:
  566. get = self.get_Sheet(name)
  567. np.savetxt(Dic, get, delimiter=sep)
  568. return Dic
  569. def to_Html_One(self,name,Dic=''):
  570. if Dic == '': Dic = f'{name}.html'
  571. get = self.get_Sheet(name)
  572. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  573. get = get.tolist()
  574. for i in range(len(get)):
  575. get[i] = [i+1] + get[i]
  576. headers = [i for i in range(len(get[0]))]
  577. table = Table()
  578. table.add(headers, get).set_global_opts(
  579. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  580. table.render(Dic)
  581. return Dic
  582. def to_Html(self, name, Dic='', type_=0):
  583. if Dic == '': Dic = f'{name}.html'
  584. # 把要画的sheet放到第一个
  585. Sheet_Dic = self.get_Form()
  586. del Sheet_Dic[name]
  587. Sheet_list = [name] + list(Sheet_Dic.keys())
  588. class TAB_F:
  589. def __init__(self, q):
  590. self.tab = q # 一个Tab
  591. def render(self, Dic):
  592. return self.tab.render(Dic)
  593. # 生成一个显示页面
  594. if type_ == 0:
  595. class TAB(TAB_F):
  596. def add(self, table, k, *f):
  597. self.tab.add(table, k)
  598. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  599. elif type_ == 1:
  600. class TAB(TAB_F):
  601. def add(self, table, *k):
  602. self.tab.add(table)
  603. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  604. else:
  605. class TAB(TAB_F):
  606. def add(self, table, *k):
  607. self.tab.add(table)
  608. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  609. # 迭代添加内容
  610. for name in Sheet_list:
  611. get = self.get_Sheet(name)
  612. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  613. get = get.tolist()
  614. for i in range(len(get)):
  615. get[i] = [i+1] + get[i]
  616. headers = [i for i in range(len(get[0]))]
  617. table = Table()
  618. table.add(headers, get).set_global_opts(
  619. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  620. tab.add(table, f'表格:{name}')
  621. tab.render(Dic)
  622. return Dic
  623. class Study_MachineBase:
  624. def __init__(self,*args,**kwargs):
  625. self.Model = None
  626. self.have_Fit = False
  627. self.x_trainData = None
  628. self.y_trainData = None
  629. #记录这两个是为了克隆
  630. def Accuracy(self,y_Predict,y_Really):
  631. return accuracy_score(y_Predict, y_Really)
  632. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  633. self.have_Fit = True
  634. y_data = y_data.ravel()
  635. self.x_trainData = x_data
  636. self.y_trainData = y_data
  637. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  638. self.Model.fit(x_data,y_data)
  639. train_score = self.Model.score(x_train,y_train)
  640. test_score = self.Model.score(x_test,y_test)
  641. return train_score,test_score
  642. def Score(self,x_data,y_data):
  643. Score = self.Model.score(x_data,y_data)
  644. return Score
  645. def Predict(self,x_data):
  646. y_Predict = self.Model.predict(x_data)
  647. return y_Predict,'预测'
  648. def Des(self,*args,**kwargs):
  649. return ()
  650. class prep_Base(Study_MachineBase):
  651. def __init__(self,*args,**kwargs):
  652. super(prep_Base, self).__init__(*args,**kwargs)
  653. self.Model = None
  654. def Fit(self, x_data,y_data, *args, **kwargs):
  655. if not self.have_Fit: # 不允许第二次训练
  656. self.x_trainData = x_data
  657. self.y_trainData = y_data
  658. self.Model.fit(x_data,y_data)
  659. return 'None', 'None'
  660. def Predict(self, x_data):
  661. self.x_trainData = x_data
  662. x_Predict = self.Model.transform(x_data)
  663. self.y_trainData = x_Predict
  664. return x_Predict,'特征工程'
  665. def Score(self, x_data, y_data):
  666. return 'None' # 没有score
  667. class Unsupervised(prep_Base):
  668. def Fit(self, x_data, *args, **kwargs):
  669. if not self.have_Fit: # 不允许第二次训练
  670. self.x_trainData = x_data
  671. self.y_trainData = None
  672. self.Model.fit(x_data)
  673. return 'None', 'None'
  674. class UnsupervisedModel(prep_Base):
  675. def Fit(self, x_data, *args, **kwargs):
  676. self.x_trainData = x_data
  677. self.y_trainData = None
  678. self.Model.fit(x_data)
  679. return 'None', 'None'
  680. class Line_Model(Study_MachineBase):
  681. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  682. super(Line_Model, self).__init__(*args,**kwargs)
  683. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  684. model]
  685. if model == 'Line':
  686. self.Model = Model()
  687. self.k = {}
  688. else:
  689. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  690. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  691. #记录这两个是为了克隆
  692. self.Alpha = args_use['alpha']
  693. self.max_iter = args_use['max_iter']
  694. self.Model_Name = model
  695. def Des(self,Dic,*args,**kwargs):
  696. tab = Tab()
  697. x_data = self.x_trainData
  698. y = self.y_trainData
  699. w_list = self.Model.coef_.tolist()
  700. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  701. b = self.Model.intercept_.tolist()
  702. get, x_means, x_range,Type = regress_visualization(x_data, y)
  703. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  704. for i in range(len(get)):
  705. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  706. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  707. for i in range(len(get)):
  708. tab.add(get[i], f'{i}预测热力图')
  709. tab.add(scatter(w_heard,w_list),'系数w散点图')
  710. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  711. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  712. data = [f'{i}' for i in x_means] + w_list + [b]
  713. if self.Model_Name != 'Line':
  714. columns += ['阿尔法','最大迭代次数']
  715. data += [self.Model.alpha,self.Model.max_iter]
  716. tab.add(make_Tab(columns,[data]), '数据表')
  717. save = Dic + r'/render.HTML'
  718. tab.render(save) # 生成HTML
  719. return save,
  720. class LogisticRegression_Model(Study_MachineBase):
  721. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  722. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  723. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  724. #记录这两个是为了克隆
  725. self.C = args_use['C']
  726. self.max_iter = args_use['max_iter']
  727. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  728. self.Model_Name = model
  729. def Des(self,Dic='render.html',*args,**kwargs):
  730. #获取数据
  731. w_array = self.Model.coef_
  732. w_list = w_array.tolist() # 变为表格
  733. b = self.Model.intercept_
  734. c = self.Model.C
  735. max_iter = self.Model.max_iter
  736. class_ = self.Model.classes_.tolist()
  737. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  738. tab = Tab()
  739. y = self.y_trainData
  740. x_data = self.x_trainData
  741. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  742. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  743. for i in range(len(get)):
  744. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  745. for i in range(len(w_list)):
  746. w = w_list[i]
  747. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  748. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  749. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  750. columns = class_heard + ['截距b','C','最大迭代数']
  751. data = class_ + [b,c,max_iter]
  752. c = Table().add(headers=columns, rows=[data])
  753. tab.add(c, '数据表')
  754. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  755. tab.add(c, '系数数据表')
  756. save = Dic + r'/render.HTML'
  757. tab.render(save) # 生成HTML
  758. return save,
  759. class Categorical_Data:#数据统计助手
  760. def __init__(self):
  761. self.x_means = []
  762. self.x_range = []
  763. self.Type = []
  764. def __call__(self,x1, *args, **kwargs):
  765. get = self.is_continuous(x1)
  766. return get
  767. def is_continuous(self,x1:np.array):
  768. try:
  769. x1_con = is_continuous(x1)
  770. if x1_con:
  771. self.x_means.append(np.mean(x1))
  772. self.add_Range(x1)
  773. else:
  774. raise Exception
  775. return x1_con
  776. except:#找出出现次数最多的元素
  777. new = np.unique(x1)#去除相同的元素
  778. count_list = []
  779. for i in new:
  780. count_list.append(np.sum(x1 == i))
  781. index = count_list.index(max(count_list))#找出最大值的索引
  782. self.x_means.append(x1[index])
  783. self.add_Range(x1,False)
  784. return False
  785. def add_Range(self,x1:np.array,range_=True):
  786. try:
  787. if not range_ : raise Exception
  788. min_ = int(x1.min()) - 1
  789. max_ = int(x1.max()) + 1
  790. #不需要复制列表
  791. self.x_range.append([min_,max_])
  792. self.Type.append(1)
  793. except:
  794. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  795. self.Type.append(2)
  796. def get(self):
  797. return self.x_means,self.x_range,self.Type
  798. class Knn_Model(Study_MachineBase):
  799. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  800. super(Knn_Model, self).__init__(*args,**kwargs)
  801. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  802. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  803. #记录这两个是为了克隆
  804. self.n_neighbors = args_use['n_neighbors']
  805. self.p = args_use['p']
  806. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  807. self.Model_Name = model
  808. def Des(self,Dic,*args,**kwargs):
  809. tab = Tab()
  810. y = self.y_trainData
  811. x_data = self.x_trainData
  812. if self.Model_Name == 'Knn_class':
  813. class_ = self.Model.classes_.tolist()
  814. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  815. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  816. for i in range(len(get)):
  817. tab.add(get[i],f'{i}训练数据散点图')
  818. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  819. for i in range(len(get)):
  820. tab.add(get[i], f'{i}预测热力图')
  821. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  822. data = class_ + [f'{i}' for i in x_means]
  823. c = Table().add(headers=heard, rows=[data])
  824. tab.add(c, '数据表')
  825. else:
  826. get, x_means, x_range,Type = regress_visualization(x_data, y)
  827. for i in range(len(get)):
  828. tab.add(get[i], f'{i}预测类型图')
  829. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  830. for i in range(len(get)):
  831. tab.add(get[i], f'{i}预测热力图')
  832. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  833. data = [f'{i}' for i in x_means]
  834. c = Table().add(headers=heard, rows=[data])
  835. tab.add(c, '数据表')
  836. save = Dic + r'/render.HTML'
  837. tab.render(save) # 生成HTML
  838. return save,
  839. class Tree_Model(Study_MachineBase):
  840. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  841. super(Tree_Model, self).__init__(*args,**kwargs)
  842. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  843. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  844. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  845. #记录这两个是为了克隆
  846. self.criterion = args_use['criterion']
  847. self.splitter = args_use['splitter']
  848. self.max_features = args_use['max_features']
  849. self.max_depth = args_use['max_depth']
  850. self.min_samples_split = args_use['min_samples_split']
  851. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  852. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  853. self.Model_Name = model
  854. def Des(self, Dic, *args, **kwargs):
  855. tab = Tab()
  856. importance = self.Model.feature_importances_.tolist()
  857. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  858. export_graphviz(self.Model, out_file=f)
  859. make_bar('特征重要性',importance,tab)
  860. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  861. y = self.y_trainData
  862. x_data = self.x_trainData
  863. if self.Model_Name == 'Tree_class':
  864. class_ = self.Model.classes_.tolist()
  865. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  866. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  867. for i in range(len(get)):
  868. tab.add(get[i],f'{i}训练数据散点图')
  869. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  870. for i in range(len(get)):
  871. tab.add(get[i], f'{i}预测热力图')
  872. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  873. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  874. else:
  875. get, x_means, x_range,Type = regress_visualization(x_data, y)
  876. for i in range(len(get)):
  877. tab.add(get[i], f'{i}预测类型图')
  878. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  879. for i in range(len(get)):
  880. tab.add(get[i], f'{i}预测热力图')
  881. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  882. [[f'{i}' for i in x_means] + importance]), '数据表')
  883. save = Dic + r'/render.HTML'
  884. tab.render(save) # 生成HTML
  885. return save,
  886. class Forest_Model(Study_MachineBase):
  887. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  888. super(Forest_Model, self).__init__(*args,**kwargs)
  889. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  890. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  891. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  892. #记录这两个是为了克隆
  893. self.n_estimators = args_use['n_Tree']
  894. self.criterion = args_use['criterion']
  895. self.max_features = args_use['max_features']
  896. self.max_depth = args_use['max_depth']
  897. self.min_samples_split = args_use['min_samples_split']
  898. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  899. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  900. self.Model_Name = model
  901. def Des(self, Dic, *args, **kwargs):
  902. tab = Tab()
  903. #多个决策树可视化
  904. for i in range(len(self.Model.estimators_)):
  905. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  906. export_graphviz(self.Model.estimators_[i], out_file=f)
  907. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  908. y = self.y_trainData
  909. x_data = self.x_trainData
  910. if self.Model_Name == 'Tree_class':
  911. class_ = self.Model.classes_.tolist()
  912. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  913. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  914. for i in range(len(get)):
  915. tab.add(get[i],f'{i}训练数据散点图')
  916. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  917. for i in range(len(get)):
  918. tab.add(get[i], f'{i}预测热力图')
  919. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  920. [class_ + [f'{i}' for i in x_means]]), '数据表')
  921. else:
  922. get, x_means, x_range,Type = regress_visualization(x_data, y)
  923. for i in range(len(get)):
  924. tab.add(get[i], f'{i}预测类型图')
  925. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  926. for i in range(len(get)):
  927. tab.add(get[i], f'{i}预测热力图')
  928. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  929. save = Dic + r'/render.HTML'
  930. tab.render(save) # 生成HTML
  931. return save,
  932. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  933. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  934. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  935. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  936. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  937. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  938. #记录这两个是为了克隆
  939. self.criterion = args_use['criterion']
  940. self.splitter = args_use['splitter']
  941. self.max_features = args_use['max_features']
  942. self.max_depth = args_use['max_depth']
  943. self.min_samples_split = args_use['min_samples_split']
  944. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  945. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  946. self.Model_Name = model
  947. def Des(self, Dic, *args, **kwargs):
  948. tab = Tab()
  949. #多个决策树可视化
  950. for a in range(len(self.Model.estimators_)):
  951. for i in range(len(self.Model.estimators_[a])):
  952. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  953. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  954. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  955. y = self.y_trainData
  956. x_data = self.x_trainData
  957. if self.Model_Name == 'Tree_class':
  958. class_ = self.Model.classes_.tolist()
  959. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  960. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  961. for i in range(len(get)):
  962. tab.add(get[i],f'{i}训练数据散点图')
  963. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  964. for i in range(len(get)):
  965. tab.add(get[i], f'{i}预测热力图')
  966. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  967. [class_ + [f'{i}' for i in x_means]]), '数据表')
  968. else:
  969. get, x_means, x_range,Type = regress_visualization(x_data, y)
  970. for i in range(len(get)):
  971. tab.add(get[i], f'{i}预测类型图')
  972. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  973. for i in range(len(get)):
  974. tab.add(get[i], f'{i}预测热力图')
  975. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  976. save = Dic + r'/render.HTML'
  977. tab.render(save) # 生成HTML
  978. return save,
  979. class SVC_Model(Study_MachineBase):
  980. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  981. super(SVC_Model, self).__init__(*args,**kwargs)
  982. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  983. #记录这两个是为了克隆
  984. self.C = args_use['C']
  985. self.gamma = args_use['gamma']
  986. self.kernel = args_use['kernel']
  987. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  988. self.Model_Name = model
  989. def Des(self, Dic, *args, **kwargs):
  990. tab = Tab()
  991. w_list = self.Model.coef_.tolist()
  992. b = self.Model.intercept_.tolist()
  993. class_ = self.Model.classes_.tolist()
  994. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  995. y = self.y_trainData
  996. x_data = self.x_trainData
  997. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  998. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  999. for i in range(len(get)):
  1000. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1001. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  1002. for i in range(len(get)):
  1003. tab.add(get[i], f'{i}预测热力图')
  1004. dic = {2:'离散',1:'连续'}
  1005. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  1006. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1007. save = Dic + r'/render.HTML'
  1008. tab.render(save) # 生成HTML
  1009. return save,
  1010. class SVR_Model(Study_MachineBase):
  1011. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1012. super(SVR_Model, self).__init__(*args,**kwargs)
  1013. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1014. #记录这两个是为了克隆
  1015. self.C = args_use['C']
  1016. self.gamma = args_use['gamma']
  1017. self.kernel = args_use['kernel']
  1018. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1019. self.Model_Name = model
  1020. def Des(self,Dic,*args,**kwargs):
  1021. tab = Tab()
  1022. x_data = self.x_trainData
  1023. y = self.y_trainData
  1024. try:
  1025. w_list = self.Model.coef_.tolist()#未必有这个属性
  1026. b = self.Model.intercept_.tolist()
  1027. U = True
  1028. except:
  1029. U = False
  1030. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1031. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1032. for i in range(len(get)):
  1033. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1034. else:tab.add(get[i], f'{i}预测类型图')
  1035. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1036. for i in range(len(get)):
  1037. tab.add(get[i], f'{i}预测热力图')
  1038. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1039. save = Dic + r'/render.HTML'
  1040. tab.render(save) # 生成HTML
  1041. return save,
  1042. class Variance_Model(Unsupervised):#无监督
  1043. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1044. super(Variance_Model, self).__init__(*args,**kwargs)
  1045. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  1046. #记录这两个是为了克隆
  1047. self.threshold = args_use['P']
  1048. self.k = {'threshold':args_use['P']}
  1049. self.Model_Name = model
  1050. def Des(self,Dic,*args,**kwargs):
  1051. tab = Tab()
  1052. var = self.Model.variances_#标准差
  1053. y_data = self.y_trainData
  1054. if type(y_data) is np.ndarray:
  1055. get = Feature_visualization(self.y_trainData)
  1056. for i in range(len(get)):
  1057. tab.add(get[i],f'[{i}]数据x-x散点图')
  1058. c = (
  1059. Bar()
  1060. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  1061. .add_yaxis('标准差', var.tolist(), **Label_Set)
  1062. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1063. )
  1064. tab.add(c,'数据标准差')
  1065. save = Dic + r'/render.HTML'
  1066. tab.render(save) # 生成HTML
  1067. return save,
  1068. class SelectKBest_Model(prep_Base):#无监督
  1069. def __init__(self, args_use, model, *args, **kwargs):
  1070. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  1071. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  1072. # 记录这两个是为了克隆
  1073. self.k_ = args_use['k']
  1074. self.score_func=args_use['score_func']
  1075. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  1076. self.Model_Name = model
  1077. def Des(self,Dic,*args,**kwargs):
  1078. tab = Tab()
  1079. score = self.Model.scores_.tolist()
  1080. support = self.Model.get_support()
  1081. y_data = self.y_trainData
  1082. x_data = self.x_trainData
  1083. if type(x_data) is np.ndarray:
  1084. get = Feature_visualization(x_data)
  1085. for i in range(len(get)):
  1086. tab.add(get[i],f'[{i}]数据x-x散点图')
  1087. if type(y_data) is np.ndarray:
  1088. get = Feature_visualization(y_data)
  1089. for i in range(len(get)):
  1090. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1091. Choose = []
  1092. UnChoose = []
  1093. for i in range(len(score)):
  1094. if support[i]:
  1095. Choose.append(score[i])
  1096. UnChoose.append(0)#占位
  1097. else:
  1098. UnChoose.append(score[i])
  1099. Choose.append(0)
  1100. c = (
  1101. Bar()
  1102. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1103. .add_yaxis('选中特征', Choose, **Label_Set)
  1104. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1105. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1106. )
  1107. tab.add(c,'单变量重要程度')
  1108. save = Dic + r'/render.HTML'
  1109. tab.render(save) # 生成HTML
  1110. return save,
  1111. class SelectFrom_Model(prep_Base):#无监督
  1112. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1113. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  1114. self.Model = Learner.Model
  1115. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  1116. self.max_features = args_use['k']
  1117. self.estimator=Learner.Model
  1118. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  1119. self.have_Fit = Learner.have_Fit
  1120. self.Model_Name = 'SelectFrom_Model'
  1121. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  1122. if not self.have_Fit: # 不允许第二次训练
  1123. self.Select_Model.fit(x_data, y_data)
  1124. return 'None', 'None'
  1125. return 'NONE','NONE'
  1126. def Predict(self, x_data):
  1127. try:
  1128. self.x_trainData = x_data
  1129. x_Predict = self.Select_Model.transform(x_data)
  1130. self.y_trainData = x_Predict
  1131. print(self.y_trainData)
  1132. print(self.x_trainData)
  1133. return x_Predict,'模型特征工程'
  1134. except:
  1135. return np.array([]),'无结果工程'
  1136. def Des(self,Dic,*args,**kwargs):
  1137. tab = Tab()
  1138. support = self.Select_Model.get_support()
  1139. y_data = self.y_trainData
  1140. x_data = self.x_trainData
  1141. if type(x_data) is np.ndarray:
  1142. get = Feature_visualization(x_data)
  1143. for i in range(len(get)):
  1144. tab.add(get[i],f'[{i}]数据x-x散点图')
  1145. if type(y_data) is np.ndarray:
  1146. get = Feature_visualization(y_data)
  1147. for i in range(len(get)):
  1148. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1149. def make_Bar(score):
  1150. Choose = []
  1151. UnChoose = []
  1152. for i in range(len(score)):
  1153. if support[i]:
  1154. Choose.append(abs(score[i]))
  1155. UnChoose.append(0) # 占位
  1156. else:
  1157. UnChoose.append(abs(score[i]))
  1158. Choose.append(0)
  1159. c = (
  1160. Bar()
  1161. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1162. .add_yaxis('选中特征', Choose, **Label_Set)
  1163. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1164. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1165. )
  1166. tab.add(c,'单变量重要程度')
  1167. try:
  1168. make_Bar(self.Model.coef_)
  1169. except:
  1170. try:
  1171. make_Bar(self.Model.feature_importances_)
  1172. except:pass
  1173. save = Dic + r'/render.HTML'
  1174. tab.render(save) # 生成HTML
  1175. return save,
  1176. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  1177. def __init__(self, args_use, model, *args, **kwargs):
  1178. super(Standardization_Model, self).__init__(*args, **kwargs)
  1179. self.Model = StandardScaler()
  1180. self.k = {}
  1181. self.Model_Name = 'StandardScaler'
  1182. def Des(self,Dic,*args,**kwargs):
  1183. tab = Tab()
  1184. y_data = self.y_trainData
  1185. x_data = self.x_trainData
  1186. var = self.Model.var_.tolist()
  1187. means = self.Model.mean_.tolist()
  1188. scale = self.Model.scale_.tolist()
  1189. Conversion_control(y_data,x_data,tab)
  1190. make_bar('标准差',var,tab)
  1191. make_bar('方差',means,tab)
  1192. make_bar('Scale',scale,tab)
  1193. save = Dic + r'/render.HTML'
  1194. tab.render(save) # 生成HTML
  1195. return save,
  1196. class MinMaxScaler_Model(Unsupervised):#离差标准化
  1197. def __init__(self, args_use, model, *args, **kwargs):
  1198. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  1199. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  1200. self.k = {}
  1201. self.Model_Name = 'MinMaxScaler'
  1202. def Des(self,Dic,*args,**kwargs):
  1203. tab = Tab()
  1204. y_data = self.y_trainData
  1205. x_data = self.x_trainData
  1206. scale = self.Model.scale_.tolist()
  1207. max_ = self.Model.data_max_.tolist()
  1208. min_ = self.Model.data_min_.tolist()
  1209. Conversion_control(y_data,x_data,tab)
  1210. make_bar('Scale',scale,tab)
  1211. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  1212. row=[max_ + min_]), '数据表格')
  1213. save = Dic + r'/render.HTML'
  1214. tab.render(save) # 生成HTML
  1215. return save,
  1216. class LogScaler_Model(prep_Base):#对数标准化
  1217. def __init__(self, args_use, model, *args, **kwargs):
  1218. super(LogScaler_Model, self).__init__(*args, **kwargs)
  1219. self.Model = None
  1220. self.k = {}
  1221. self.Model_Name = 'LogScaler'
  1222. def Fit(self, x_data, *args, **kwargs):
  1223. if not self.have_Fit: # 不允许第二次训练
  1224. self.max_logx = np.log(x_data.max())
  1225. return 'None', 'None'
  1226. def Predict(self, x_data):
  1227. try:
  1228. max_logx = self.max_logx
  1229. except:
  1230. self.have_Fit = False
  1231. self.Fit(x_data)
  1232. max_logx = self.max_logx
  1233. self.x_trainData = x_data.copy()
  1234. x_Predict = (np.log(x_data)/max_logx)
  1235. self.y_trainData = x_Predict.copy()
  1236. return x_Predict,'对数变换'
  1237. def Des(self,Dic,*args,**kwargs):
  1238. tab = Tab()
  1239. y_data = self.y_trainData
  1240. x_data = self.x_trainData
  1241. Conversion_control(y_data,x_data,tab)
  1242. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  1243. save = Dic + r'/render.HTML'
  1244. tab.render(save) # 生成HTML
  1245. return save,
  1246. class atanScaler_Model(prep_Base):#atan标准化
  1247. def __init__(self, args_use, model, *args, **kwargs):
  1248. super(atanScaler_Model, self).__init__(*args, **kwargs)
  1249. self.Model = None
  1250. self.k = {}
  1251. self.Model_Name = 'atanScaler'
  1252. def Fit(self, x_data, *args, **kwargs):
  1253. return 'None', 'None'
  1254. def Predict(self, x_data):
  1255. self.x_trainData = x_data.copy()
  1256. x_Predict = (np.arctan(x_data)*(2/np.pi))
  1257. self.y_trainData = x_Predict.copy()
  1258. return x_Predict,'atan变换'
  1259. def Des(self,Dic,*args,**kwargs):
  1260. tab = Tab()
  1261. y_data = self.y_trainData
  1262. x_data = self.x_trainData
  1263. Conversion_control(y_data,x_data,tab)
  1264. save = Dic + r'/render.HTML'
  1265. tab.render(save) # 生成HTML
  1266. return save,
  1267. class decimalScaler_Model(prep_Base):#小数定标准化
  1268. def __init__(self, args_use, model, *args, **kwargs):
  1269. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  1270. self.Model = None
  1271. self.k = {}
  1272. self.Model_Name = 'Decimal_normalization'
  1273. def Fit(self, x_data, *args, **kwargs):
  1274. if not self.have_Fit: # 不允许第二次训练
  1275. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  1276. return 'None', 'None'
  1277. def Predict(self, x_data):
  1278. self.x_trainData = x_data.copy()
  1279. try:
  1280. j = self.j
  1281. except:
  1282. self.have_Fit = False
  1283. self.Fit(x_data)
  1284. j = self.j
  1285. x_Predict = (x_data/(10**j))
  1286. self.y_trainData = x_Predict.copy()
  1287. return x_Predict,'小数定标标准化'
  1288. def Des(self,Dic,*args,**kwargs):
  1289. tab = Tab()
  1290. y_data = self.y_trainData
  1291. x_data = self.x_trainData
  1292. j = self.j
  1293. Conversion_control(y_data,x_data,tab)
  1294. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  1295. save = Dic + r'/render.HTML'
  1296. tab.render(save) # 生成HTML
  1297. return save,
  1298. class Mapzoom_Model(prep_Base):#映射标准化
  1299. def __init__(self, args_use, model, *args, **kwargs):
  1300. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  1301. self.Model = None
  1302. self.feature_range = args_use['feature_range']
  1303. self.k = {}
  1304. self.Model_Name = 'Decimal_normalization'
  1305. def Fit(self, x_data, *args, **kwargs):
  1306. if not self.have_Fit: # 不允许第二次训练
  1307. self.max = x_data.max()
  1308. self.min = x_data.min()
  1309. return 'None', 'None'
  1310. def Predict(self, x_data):
  1311. self.x_trainData = x_data.copy()
  1312. try:
  1313. max = self.max
  1314. min = self.min
  1315. except:
  1316. self.have_Fit = False
  1317. self.Fit(x_data)
  1318. max = self.max
  1319. min = self.min
  1320. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  1321. self.y_trainData = x_Predict.copy()
  1322. return x_Predict,'映射标准化'
  1323. def Des(self,Dic,*args,**kwargs):
  1324. tab = Tab()
  1325. y_data = self.y_trainData
  1326. x_data = self.x_trainData
  1327. max = self.max
  1328. min = self.min
  1329. Conversion_control(y_data,x_data,tab)
  1330. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1331. save = Dic + r'/render.HTML'
  1332. tab.render(save) # 生成HTML
  1333. return save,
  1334. class sigmodScaler_Model(prep_Base):#sigmod变换
  1335. def __init__(self, args_use, model, *args, **kwargs):
  1336. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  1337. self.Model = None
  1338. self.k = {}
  1339. self.Model_Name = 'sigmodScaler_Model'
  1340. def Fit(self, x_data, *args, **kwargs):
  1341. return 'None', 'None'
  1342. def Predict(self, x_data:np.array):
  1343. self.x_trainData = x_data.copy()
  1344. x_Predict = (1/(1+np.exp(-x_data)))
  1345. self.y_trainData = x_Predict.copy()
  1346. return x_Predict,'Sigmod变换'
  1347. def Des(self,Dic,*args,**kwargs):
  1348. tab = Tab()
  1349. y_data = self.y_trainData
  1350. x_data = self.x_trainData
  1351. Conversion_control(y_data,x_data,tab)
  1352. save = Dic + r'/render.HTML'
  1353. tab.render(save) # 生成HTML
  1354. return save,
  1355. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  1356. def __init__(self, args_use, model, *args, **kwargs):
  1357. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  1358. self.Model = None
  1359. self.feature_range = args_use['feature_range']
  1360. self.k = {}
  1361. self.Model_Name = 'Fuzzy_quantization'
  1362. def Fit(self, x_data, *args, **kwargs):
  1363. if not self.have_Fit: # 不允许第二次训练
  1364. self.max = x_data.max()
  1365. self.min = x_data.min()
  1366. return 'None', 'None'
  1367. def Predict(self, x_data,*args,**kwargs):
  1368. self.y_trainData = x_data.copy()
  1369. try:
  1370. max = self.max
  1371. min = self.min
  1372. except:
  1373. self.have_Fit = False
  1374. self.Fit(x_data)
  1375. max = self.max
  1376. min = self.min
  1377. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  1378. self.y_trainData = x_Predict.copy()
  1379. return x_Predict,'映射标准化'
  1380. def Des(self,Dic,*args,**kwargs):
  1381. tab = Tab()
  1382. y_data = self.y_trainData
  1383. x_data = self.x_trainData
  1384. max = self.max
  1385. min = self.min
  1386. Conversion_control(y_data,x_data,tab)
  1387. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1388. save = Dic + r'/render.HTML'
  1389. tab.render(save) # 生成HTML
  1390. return save,
  1391. class Regularization_Model(Unsupervised):#正则化
  1392. def __init__(self, args_use, model, *args, **kwargs):
  1393. super(Regularization_Model, self).__init__(*args, **kwargs)
  1394. self.Model = Normalizer(norm=args_use['norm'])
  1395. self.k = {'norm':args_use['norm']}
  1396. self.Model_Name = 'Regularization'
  1397. def Des(self,Dic,*args,**kwargs):
  1398. tab = Tab()
  1399. y_data = self.y_trainData
  1400. x_data = self.x_trainData
  1401. Conversion_control(y_data,x_data,tab)
  1402. save = Dic + r'/render.HTML'
  1403. tab.render(save) # 生成HTML
  1404. return save,
  1405. #离散数据
  1406. class Binarizer_Model(Unsupervised):#二值化
  1407. def __init__(self, args_use, model, *args, **kwargs):
  1408. super(Binarizer_Model, self).__init__(*args, **kwargs)
  1409. self.Model = Binarizer(threshold=args_use['threshold'])
  1410. self.k = {}
  1411. self.Model_Name = 'Binarizer'
  1412. def Des(self,Dic,*args,**kwargs):
  1413. tab = Tab()
  1414. y_data = self.y_trainData
  1415. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  1416. for i in range(len(get_y)):
  1417. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  1418. save = Dic + r'/render.HTML'
  1419. tab.render(save) # 生成HTML
  1420. return save,
  1421. class Discretization_Model(prep_Base):#n值离散
  1422. def __init__(self, args_use, model, *args, **kwargs):
  1423. super(Discretization_Model, self).__init__(*args, **kwargs)
  1424. self.Model = None
  1425. range_ = args_use['split_range']
  1426. if range_ == []:raise Exception
  1427. elif len(range_) == 1:range_.append(range_[0])
  1428. self.range = range_
  1429. self.k = {}
  1430. self.Model_Name = 'Discretization'
  1431. def Fit(self,*args,**kwargs):
  1432. return 'None','None'
  1433. def Predict(self,x_data):
  1434. self.x_trainData = x_data.copy()
  1435. x_Predict = x_data.copy()#复制
  1436. range_ = self.range
  1437. bool_list = []
  1438. max_ = len(range_) - 1
  1439. o_t = None
  1440. for i in range(len(range_)):
  1441. try:
  1442. t = float(range_[i])
  1443. except:continue
  1444. if o_t == None:#第一个参数
  1445. bool_list.append(x_Predict <= t)
  1446. else:
  1447. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  1448. if i == max_:
  1449. bool_list.append(t <= x_Predict)
  1450. o_t = t
  1451. for i in range(len(bool_list)):
  1452. x_Predict[bool_list[i]] = i
  1453. self.y_trainData = x_Predict.copy()
  1454. return x_Predict,f'{len(bool_list)}值离散化'
  1455. def Des(self, Dic, *args, **kwargs):
  1456. tab = Tab()
  1457. y_data = self.y_trainData
  1458. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1459. for i in range(len(get_y)):
  1460. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1461. save = Dic + r'/render.HTML'
  1462. tab.render(save) # 生成HTML
  1463. return save,
  1464. class Label_Model(prep_Base):#数字编码
  1465. def __init__(self, args_use, model, *args, **kwargs):
  1466. super(Label_Model, self).__init__(*args, **kwargs)
  1467. self.Model = []
  1468. self.k = {}
  1469. self.Model_Name = 'LabelEncoder'
  1470. def Fit(self,x_data,*args, **kwargs):
  1471. if not self.have_Fit: # 不允许第二次训练
  1472. if x_data.ndim == 1:x_data = np.array([x_data])
  1473. for i in range(x_data.shape[1]):
  1474. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  1475. return 'None', 'None'
  1476. def Predict(self, x_data):
  1477. x_Predict = x_data.copy()
  1478. if x_data.ndim == 1: x_data = np.array([x_data])
  1479. for i in range(x_data.shape[1]):
  1480. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  1481. self.y_trainData = x_Predict.copy()
  1482. return x_Predict,'数字编码'
  1483. def Des(self, Dic, *args, **kwargs):
  1484. tab = Tab()
  1485. y_data = self.y_trainData
  1486. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1487. for i in range(len(get_y)):
  1488. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1489. save = Dic + r'/render.HTML'
  1490. tab.render(save) # 生成HTML
  1491. return save,
  1492. class OneHotEncoder_Model(prep_Base):#独热编码
  1493. def __init__(self, args_use, model, *args, **kwargs):
  1494. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  1495. self.Model = []
  1496. self.ndim_up = args_use['ndim_up']
  1497. self.k = {}
  1498. self.Model_Name = 'OneHotEncoder'
  1499. def Fit(self,x_data,*args, **kwargs):
  1500. if not self.have_Fit: # 不允许第二次训练
  1501. if x_data.ndim == 1:x_data = [x_data]
  1502. for i in range(x_data.shape[1]):
  1503. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  1504. self.Model.append(OneHotEncoder().fit(data))#训练机器
  1505. return 'None', 'None'
  1506. def Predict(self, x_data):
  1507. self.x_trainData = x_data.copy()
  1508. x_new = []
  1509. for i in range(x_data.shape[1]):
  1510. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  1511. oneHot = self.Model[i].transform(data).toarray().tolist()
  1512. x_new.append(oneHot)#添加到列表中
  1513. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  1514. x_Predict = []
  1515. for i in range(x_new.shape[1]):
  1516. x_Predict.append(x_new[:,i])
  1517. x_Predict = np.array(x_Predict)#转换回array
  1518. if not self.ndim_up:#压缩操作
  1519. new_xPredict = []
  1520. for i in x_Predict:
  1521. new_list = []
  1522. list_ = i.tolist()
  1523. for a in list_:
  1524. new_list += a
  1525. new = np.array(new_list)
  1526. new_xPredict.append(new)
  1527. self.y_trainData = x_Predict.copy()
  1528. return np.array(new_xPredict),'独热编码'
  1529. #不保存y_trainData
  1530. return x_Predict,'独热编码'#不需要降维
  1531. def Des(self, Dic, *args, **kwargs):
  1532. tab = Tab()
  1533. y_data = self.y_trainData
  1534. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1535. for i in range(len(get_y)):
  1536. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1537. save = Dic + r'/render.HTML'
  1538. tab.render(save) # 生成HTML
  1539. return save,
  1540. class Missed_Model(Unsupervised):#缺失数据补充
  1541. def __init__(self, args_use, model, *args, **kwargs):
  1542. super(Missed_Model, self).__init__(*args, **kwargs)
  1543. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  1544. fill_value=args_use['fill_value'])
  1545. self.k = {}
  1546. self.Model_Name = 'Missed'
  1547. def Predict(self, x_data):
  1548. self.x_trainData = x_data.copy()
  1549. x_Predict = self.Model.transform(x_data)
  1550. self.y_trainData = x_Predict.copy()
  1551. return x_Predict,'填充缺失'
  1552. def Des(self,Dic,*args,**kwargs):
  1553. tab = Tab()
  1554. y_data = self.y_trainData
  1555. x_data = self.x_trainData
  1556. Conversion_control(y_data,x_data,tab)
  1557. save = Dic + r'/render.HTML'
  1558. tab.render(save) # 生成HTML
  1559. return save,
  1560. class PCA_Model(Unsupervised):
  1561. def __init__(self, args_use, model, *args, **kwargs):
  1562. super(PCA_Model, self).__init__(*args, **kwargs)
  1563. self.Model = PCA(n_components=args_use['n_components'])
  1564. self.n_components = args_use['n_components']
  1565. self.k = {'n_components':args_use['n_components']}
  1566. self.Model_Name = 'PCA'
  1567. def Predict(self, x_data):
  1568. self.x_trainData = x_data.copy()
  1569. x_Predict = self.Model.transform(x_data)
  1570. self.y_trainData = x_Predict.copy()
  1571. return x_Predict,'PCA'
  1572. def Des(self,Dic,*args,**kwargs):
  1573. tab = Tab()
  1574. y_data = self.y_trainData
  1575. x_data = self.x_trainData
  1576. Conversion_Separate_Format(y_data,tab)
  1577. save = Dic + r'/render.HTML'
  1578. tab.render(save) # 生成HTML
  1579. return save,
  1580. class RPCA_Model(Unsupervised):
  1581. def __init__(self, args_use, model, *args, **kwargs):
  1582. super(RPCA_Model, self).__init__(*args, **kwargs)
  1583. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  1584. self.n_components = args_use['n_components']
  1585. self.k = {'n_components': args_use['n_components']}
  1586. self.Model_Name = 'RPCA'
  1587. def Predict(self, x_data):
  1588. self.x_trainData = x_data.copy()
  1589. x_Predict = self.Model.transform(x_data)
  1590. self.y_trainData = x_Predict.copy()
  1591. return x_Predict,'RPCA'
  1592. def Des(self,Dic,*args,**kwargs):
  1593. tab = Tab()
  1594. y_data = self.y_trainData
  1595. x_data = self.x_trainData
  1596. Conversion_Separate_Format(y_data,tab)
  1597. save = Dic + r'/render.HTML'
  1598. tab.render(save) # 生成HTML
  1599. return save,
  1600. class KPCA_Model(Unsupervised):
  1601. def __init__(self, args_use, model, *args, **kwargs):
  1602. super(KPCA_Model, self).__init__(*args, **kwargs)
  1603. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  1604. self.n_components = args_use['n_components']
  1605. self.kernel = args_use['kernel']
  1606. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  1607. self.Model_Name = 'KPCA'
  1608. def Predict(self, x_data):
  1609. self.x_trainData = x_data.copy()
  1610. x_Predict = self.Model.transform(x_data)
  1611. self.y_trainData = x_Predict.copy()
  1612. return x_Predict,'KPCA'
  1613. def Des(self,Dic,*args,**kwargs):
  1614. tab = Tab()
  1615. y_data = self.y_trainData
  1616. x_data = self.x_trainData
  1617. Conversion_Separate_Format(y_data,tab)
  1618. save = Dic + r'/render.HTML'
  1619. tab.render(save) # 生成HTML
  1620. return save,
  1621. class LDA_Model(Unsupervised):
  1622. def __init__(self, args_use, model, *args, **kwargs):
  1623. super(LDA_Model, self).__init__(*args, **kwargs)
  1624. self.Model = LDA(n_components=args_use['n_components'])
  1625. self.n_components = args_use['n_components']
  1626. self.k = {'n_components': args_use['n_components']}
  1627. self.Model_Name = 'LDA'
  1628. def Predict(self, x_data):
  1629. self.x_trainData = x_data.copy()
  1630. x_Predict = self.Model.transform(x_data)
  1631. self.y_trainData = x_Predict.copy()
  1632. return x_Predict,'LDA'
  1633. def Des(self,Dic,*args,**kwargs):
  1634. tab = Tab()
  1635. y_data = self.y_trainData
  1636. x_data = self.x_trainData
  1637. Conversion_Separate_Format(y_data,tab)
  1638. save = Dic + r'/render.HTML'
  1639. tab.render(save) # 生成HTML
  1640. return save,
  1641. class NMF_Model(Unsupervised):
  1642. def __init__(self, args_use, model, *args, **kwargs):
  1643. super(NMF_Model, self).__init__(*args, **kwargs)
  1644. self.Model = NMF(n_components=args_use['n_components'])
  1645. self.n_components = args_use['n_components']
  1646. self.k = {'n_components':args_use['n_components']}
  1647. self.Model_Name = 'NFM'
  1648. def Predict(self, x_data):
  1649. self.x_trainData = x_data.copy()
  1650. x_Predict = self.Model.transform(x_data)
  1651. self.y_trainData = x_Predict.copy()
  1652. return x_Predict,'NMF'
  1653. def Des(self,Dic,*args,**kwargs):
  1654. tab = Tab()
  1655. y_data = self.y_trainData
  1656. x_data = self.x_trainData
  1657. Conversion_Separate_Format(y_data,tab)
  1658. save = Dic + r'/render.HTML'
  1659. tab.render(save) # 生成HTML
  1660. return save,
  1661. class TSNE_Model(Unsupervised):
  1662. def __init__(self, args_use, model, *args, **kwargs):
  1663. super(TSNE_Model, self).__init__(*args, **kwargs)
  1664. self.Model = TSNE(n_components=args_use['n_components'])
  1665. self.n_components = args_use['n_components']
  1666. self.k = {'n_components':args_use['n_components']}
  1667. self.Model_Name = 't-SNE'
  1668. def Fit(self,*args, **kwargs):
  1669. return 'None', 'None'
  1670. def Predict(self, x_data):
  1671. self.x_trainData = x_data.copy()
  1672. x_Predict = self.Model.fit_transform(x_data)
  1673. self.y_trainData = x_Predict.copy()
  1674. return x_Predict,'SNE'
  1675. def Des(self,Dic,*args,**kwargs):
  1676. tab = Tab()
  1677. y_data = self.y_trainData
  1678. x_data = self.x_trainData
  1679. Conversion_Separate_Format(y_data,tab)
  1680. save = Dic + r'/render.HTML'
  1681. tab.render(save) # 生成HTML
  1682. return save,
  1683. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  1684. def __init__(self,args_use,model,*args,**kwargs):
  1685. super(MLP_Model, self).__init__(*args,**kwargs)
  1686. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  1687. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  1688. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1689. #记录这两个是为了克隆
  1690. self.hidden_layer_sizes = args_use['hidden_size']
  1691. self.activation = args_use['activation']
  1692. self.max_iter = args_use['max_iter']
  1693. self.solver = args_use['solver']
  1694. self.alpha = args_use['alpha']
  1695. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  1696. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  1697. self.Model_Name = model
  1698. class kmeans_Model(UnsupervisedModel):
  1699. def __init__(self, args_use, model, *args, **kwargs):
  1700. super(kmeans_Model, self).__init__(*args, **kwargs)
  1701. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  1702. self.n_clusters = args_use['n_clusters']
  1703. self.k = {'n_clusters':args_use['n_clusters']}
  1704. self.Model_Name = 'k-means'
  1705. def Predict(self, x_data):
  1706. y_Predict = self.Model.predict(x_data)
  1707. return y_Predict,'k-means'
  1708. class Agglomerative_Model(UnsupervisedModel):
  1709. def __init__(self, args_use, model, *args, **kwargs):
  1710. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  1711. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  1712. self.n_clusters = args_use['n_clusters']
  1713. self.k = {'n_clusters':args_use['n_clusters']}
  1714. self.Model_Name = 'Agglomerative'
  1715. def Predict(self, x_data):
  1716. y_Predict = self.Model.fit_predict(x_data)
  1717. return y_Predict,'Agglomerative'
  1718. class DBSCAN_Model(UnsupervisedModel):
  1719. def __init__(self, args_use, model, *args, **kwargs):
  1720. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  1721. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  1722. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  1723. # min_samples
  1724. self.eps = args_use['eps']
  1725. self.min_samples = args_use['min_samples']
  1726. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  1727. self.Model_Name = 'DBSCAN'
  1728. def Predict(self, x_data):
  1729. y_Predict = self.Model.fit_predict(x_data)
  1730. return y_Predict,'DBSCAN'
  1731. class Machine_Learner(Learner):#数据处理者
  1732. def __init__(self,*args, **kwargs):
  1733. super().__init__(*args, **kwargs)
  1734. self.Learner = {}#记录机器
  1735. self.Learn_Dic = {'Line':Line_Model,
  1736. 'Ridge':Line_Model,
  1737. 'Lasso':Line_Model,
  1738. 'LogisticRegression':LogisticRegression_Model,
  1739. 'Knn_class':Knn_Model,
  1740. 'Knn': Knn_Model,
  1741. 'Tree_class': Tree_Model,
  1742. 'Tree': Tree_Model,
  1743. 'Forest':Forest_Model,
  1744. 'Forest_class': Forest_Model,
  1745. 'GradientTree_class':GradientTree_Model,
  1746. 'GradientTree': GradientTree_Model,
  1747. 'Variance':Variance_Model,
  1748. 'SelectKBest':SelectKBest_Model,
  1749. 'Z-Score':Standardization_Model,
  1750. 'MinMaxScaler':MinMaxScaler_Model,
  1751. 'LogScaler':LogScaler_Model,
  1752. 'atanScaler':atanScaler_Model,
  1753. 'decimalScaler':decimalScaler_Model,
  1754. 'sigmodScaler':sigmodScaler_Model,
  1755. 'Mapzoom':Mapzoom_Model,
  1756. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  1757. 'Regularization':Regularization_Model,
  1758. 'Binarizer':Binarizer_Model,
  1759. 'Discretization':Discretization_Model,
  1760. 'Label':Label_Model,
  1761. 'OneHotEncoder':OneHotEncoder_Model,
  1762. 'Missed':Missed_Model,
  1763. 'PCA':PCA_Model,
  1764. 'RPCA':RPCA_Model,
  1765. 'KPCA':KPCA_Model,
  1766. 'LDA':LDA_Model,
  1767. 'SVC':SVC_Model,
  1768. 'SVR':SVR_Model,
  1769. 'MLP':MLP_Model,
  1770. 'MLP_class': MLP_Model,
  1771. 'NMF':NMF_Model,
  1772. 't-SNE':TSNE_Model,
  1773. 'k-means':kmeans_Model,
  1774. 'Agglomerative':Agglomerative_Model,
  1775. 'DBSCAN':DBSCAN_Model,
  1776. }
  1777. self.Learner_Type = {}#记录机器的类型
  1778. def p_Args(self,Text,Type):#解析参数
  1779. args = {}
  1780. args_use = {}
  1781. #输入数据
  1782. exec(Text,args)
  1783. #处理数据
  1784. if Type in ('MLP','MLP_class'):
  1785. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  1786. else:
  1787. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  1788. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  1789. if Type in ('MLP','MLP_class'):
  1790. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  1791. else:
  1792. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  1793. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  1794. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  1795. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  1796. if Type in ('Tree','Forest','GradientTree'):
  1797. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  1798. else:
  1799. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  1800. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  1801. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  1802. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  1803. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  1804. args_use['P'] = float(args.get('min_samples_split', 0.8))
  1805. args_use['k'] = args.get('k',1)
  1806. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  1807. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  1808. get(args.get('score_func','f_classif'),f_classif))
  1809. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  1810. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  1811. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  1812. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  1813. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  1814. args_use['miss_value'] = args.get('miss_value',np.nan)
  1815. args_use['fill_method'] = args.get('fill_method','mean')
  1816. args_use['fill_value'] = args.get('fill_value',None)
  1817. args_use['n_components'] = args.get('n_components',1)
  1818. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  1819. args_use['n_Tree'] = args.get('n_Tree',100)
  1820. args_use['gamma'] = args.get('gamma',1)
  1821. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  1822. args_use['activation'] = str(args.get('activation','relu'))
  1823. args_use['solver'] = str(args.get('solver','adam'))
  1824. if Type in ('k-means',):
  1825. args_use['n_clusters'] = int(args.get('n_clusters',8))
  1826. else:
  1827. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  1828. args_use['eps'] = float(args.get('n_clusters', 0.5))
  1829. args_use['min_samples'] = int(args.get('n_clusters', 5))
  1830. return args_use
  1831. def Add_Learner(self,Learner,Text=''):
  1832. get = self.Learn_Dic[Learner]
  1833. name = f'Le[{len(self.Learner)}]{Learner}'
  1834. #参数调节
  1835. args_use = self.p_Args(Text,Learner)
  1836. #生成学习器
  1837. self.Learner[name] = get(model=Learner,args_use=args_use)
  1838. self.Learner_Type[name] = Learner
  1839. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  1840. model = self.get_Learner(Learner)
  1841. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  1842. #参数调节
  1843. args_use = self.p_Args(Text,'SelectFrom_Model')
  1844. #生成学习器
  1845. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  1846. self.Learner_Type[name] = 'SelectFrom_Model'
  1847. def Return_Learner(self):
  1848. return self.Learner.copy()
  1849. def get_Learner(self,name):
  1850. return self.Learner[name]
  1851. def get_Learner_Type(self,name):
  1852. return self.Learner_Type[name]
  1853. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  1854. x_data = self.get_Sheet(x_name)
  1855. y_data = self.get_Sheet(y_name)
  1856. model = self.get_Learner(Learner)
  1857. return model.Fit(x_data,y_data,split)
  1858. def Predict(self,x_name,Learner,Text='',**kwargs):
  1859. x_data = self.get_Sheet(x_name)
  1860. model = self.get_Learner(Learner)
  1861. y_data,name = model.Predict(x_data)
  1862. self.Add_Form(y_data,f'{x_name}:{name}')
  1863. return y_data
  1864. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  1865. model = self.get_Learner(Learner)
  1866. x = self.get_Sheet(name_x)
  1867. y = self.get_Sheet(name_y)
  1868. return model.Score(x,y)
  1869. def Show_Args(self,Learner,Dic):#显示参数
  1870. model = self.get_Learner(Learner)
  1871. return model.Des(Dic)
  1872. def Del_Leaner(self,Leaner):
  1873. del self.Learner[Leaner]
  1874. del self.Learner_Type[Leaner]