Learn_Numpy.py 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571
  1. from pyecharts.components import Table #绘制表格
  2. from pyecharts import options as opts
  3. from random import randint
  4. from pyecharts.charts import *
  5. from pandas import DataFrame,read_csv
  6. import numpy as np
  7. import re
  8. from sklearn.model_selection import train_test_split
  9. from sklearn.linear_model import *
  10. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  11. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  12. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  13. GradientBoostingRegressor)
  14. from sklearn.metrics import accuracy_score
  15. from sklearn.feature_selection import *
  16. from sklearn.preprocessing import *
  17. from sklearn.impute import SimpleImputer
  18. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  19. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  20. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  21. from sklearn.neural_network import MLPClassifier,MLPRegressor
  22. from sklearn.manifold import TSNE
  23. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  24. from pyecharts.charts import *
  25. # import sklearn as sk
  26. #设置
  27. np.set_printoptions(threshold=np.inf)
  28. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  29. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  30. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  31. class Learner:
  32. def __init__(self,*args,**kwargs):
  33. self.numpy_Dic = {}#name:numpy
  34. def Add_Form(self,data:np.array,name):
  35. name = f'{name}[{len(self.numpy_Dic)}]'
  36. self.numpy_Dic[name] = data
  37. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  38. type_ = np.str if str_must else np.float
  39. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  40. try:
  41. data = pf_data.to_numpy(dtype=type_)
  42. except ValueError:
  43. data = pf_data.to_numpy(dtype=np.str)
  44. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  45. self.Add_Form(data,name)
  46. return data
  47. def Add_Python(self, Text, sheet_name):
  48. name = {}
  49. name.update(globals().copy())
  50. name.update(locals().copy())
  51. exec(Text, name)
  52. exec('get = Creat()', name)
  53. if isinstance(name['get'], np.array): # 已经是DataFram
  54. get = name['get']
  55. else:
  56. try:
  57. get = np.array(name['get'])
  58. except:
  59. get = np.array([name['get']])
  60. self.Add_Form(get, sheet_name)
  61. return get
  62. def get_Form(self) -> dict:
  63. return self.numpy_Dic.copy()
  64. def get_Sheet(self,name) -> np.array:
  65. return self.numpy_Dic[name].copy()
  66. def to_CSV(self,Dic:str,name,sep) -> str:
  67. get = self.get_Sheet(name)
  68. np.savetxt(Dic, get, delimiter=sep)
  69. return Dic
  70. def to_Html_One(self,name,Dic=''):
  71. if Dic == '': Dic = f'{name}.html'
  72. get = self.get_Sheet(name)
  73. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  74. get = get.tolist()
  75. for i in range(len(get)):
  76. get[i] = [i+1] + get[i]
  77. headers = [i for i in range(len(get[0]))]
  78. table = Table()
  79. table.add(headers, get).set_global_opts(
  80. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  81. table.render(Dic)
  82. return Dic
  83. def to_Html(self, name, Dic='', type_=0):
  84. if Dic == '': Dic = f'{name}.html'
  85. # 把要画的sheet放到第一个
  86. Sheet_Dic = self.get_Form()
  87. del Sheet_Dic[name]
  88. Sheet_list = [name] + list(Sheet_Dic.keys())
  89. class TAB_F:
  90. def __init__(self, q):
  91. self.tab = q # 一个Tab
  92. def render(self, Dic):
  93. return self.tab.render(Dic)
  94. # 生成一个显示页面
  95. if type_ == 0:
  96. class TAB(TAB_F):
  97. def add(self, table, k, *f):
  98. self.tab.add(table, k)
  99. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  100. elif type_ == 1:
  101. class TAB(TAB_F):
  102. def add(self, table, *k):
  103. self.tab.add(table)
  104. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  105. else:
  106. class TAB(TAB_F):
  107. def add(self, table, *k):
  108. self.tab.add(table)
  109. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  110. # 迭代添加内容
  111. for name in Sheet_list:
  112. get = self.get_Sheet(name)
  113. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  114. get = get.tolist()
  115. for i in range(len(get)):
  116. get[i] = [i+1] + get[i]
  117. headers = [i for i in range(len(get[0]))]
  118. table = Table()
  119. table.add(headers, get).set_global_opts(
  120. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  121. tab.add(table, f'表格:{name}')
  122. tab.render(Dic)
  123. return Dic
  124. class Study_MachineBase:
  125. def __init__(self,*args,**kwargs):
  126. self.Model = None
  127. self.have_Fit = False
  128. self.x_trainData = None
  129. self.y_trainData = None
  130. #记录这两个是为了克隆
  131. def Accuracy(self,y_Predict,y_Really):
  132. return accuracy_score(y_Predict, y_Really)
  133. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  134. self.have_Fit = True
  135. y_data = y_data.ravel()
  136. self.x_trainData = x_data
  137. self.y_trainData = y_data
  138. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  139. self.Model.fit(x_data,y_data)
  140. train_score = self.Model.score(x_train,y_train)
  141. test_score = self.Model.score(x_test,y_test)
  142. return train_score,test_score
  143. def Score(self,x_data,y_data):
  144. Score = self.Model.score(x_data,y_data)
  145. return Score
  146. def Predict(self,x_data):
  147. y_Predict = self.Model.predict(x_data)
  148. return y_Predict,'预测'
  149. def Des(self,*args,**kwargs):
  150. return ()
  151. class prep_Base(Study_MachineBase):
  152. def __init__(self,*args,**kwargs):
  153. super(prep_Base, self).__init__(*args,**kwargs)
  154. self.Model = None
  155. def Fit(self, x_data,y_data, *args, **kwargs):
  156. if not self.have_Fit: # 不允许第二次训练
  157. self.x_trainData = x_data
  158. self.y_train = y_data
  159. self.Model.fit(x_data,y_data)
  160. return 'None', 'None'
  161. def Predict(self, x_data):
  162. self.x_trainData = x_data
  163. self.y_train = y_data
  164. x_Predict = self.Model.transform(x_data)
  165. return x_Predict,'特征工程'
  166. def Score(self, x_data, y_data):
  167. return 'None' # 没有score
  168. class Unsupervised(prep_Base):
  169. def Fit(self, x_data, *args, **kwargs):
  170. if not self.have_Fit: # 不允许第二次训练
  171. self.x_trainData = x_data
  172. self.y_train = None
  173. self.Model.fit(x_data)
  174. return 'None', 'None'
  175. class UnsupervisedModel(prep_Base):
  176. def Fit(self, x_data, *args, **kwargs):
  177. self.x_trainData = x_data
  178. self.y_train = None
  179. self.Model.fit(x_data)
  180. return 'None', 'None'
  181. def scatter(w_heard,w):
  182. c = (
  183. Scatter()
  184. .add_xaxis(w_heard)
  185. .add_yaxis('', w, **Label_Set)
  186. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  187. )
  188. return c
  189. def bar(w_heard,w):
  190. c = (
  191. Bar()
  192. .add_xaxis(w_heard)
  193. .add_yaxis('', abs(w).tolist(), **Label_Set)
  194. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  195. )
  196. return c
  197. def line(w_sum,w,b):
  198. x = np.arange(-5, 5, 1)
  199. c = (
  200. Line()
  201. .add_xaxis(x.tolist())
  202. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  203. )
  204. for i in range(len(w)):
  205. y = x * w[i] + b
  206. c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  207. return c
  208. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  209. y = y_trainData.tolist()
  210. x_data = x_trainData.T
  211. re = []
  212. for i in range(len(x_data)):
  213. x = x_data[i]
  214. p = int(x.max() - x.min()) / 5
  215. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  216. y_num = x_num * w[i] + (w[i] / w_sum) * b
  217. c = (
  218. Line()
  219. .add_xaxis(x_num.tolist())
  220. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  221. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  222. )
  223. b = (
  224. Scatter()
  225. .add_xaxis(x.tolist())
  226. .add_yaxis(f'{i}特征', y, **Label_Set)
  227. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  228. )
  229. b.overlap(c)
  230. re.append(b)
  231. return re
  232. class Line_Model(Study_MachineBase):
  233. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  234. super(Line_Model, self).__init__(*args,**kwargs)
  235. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  236. model]
  237. if model == 'Line':
  238. self.Model = Model()
  239. self.k = {}
  240. else:
  241. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  242. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  243. #记录这两个是为了克隆
  244. self.Alpha = args_use['alpha']
  245. self.max_iter = args_use['max_iter']
  246. self.Model_Name = model
  247. def Des(self,Dic='render.html',*args,**kwargs):
  248. #获取数据
  249. w = self.Model.coef_.tolist()#变为表格
  250. w_sum = self.Model.coef_.sum()
  251. w_heard = [f'系数w[{i}]' for i in range(len(w))]
  252. b = self.Model.intercept_
  253. tab = Tab()
  254. tab.add(scatter(w_heard,w),'系数w散点图')
  255. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  256. tab.add(line(w_sum,w,b), '系数w曲线')
  257. re = see_Line(self.x_trainData,self.y_trainData,w,w_sum,b)
  258. for i in range(len(re)):
  259. tab.add(re[i], f'{i}预测分类类表')
  260. columns = w_heard + ['截距b']
  261. data = w + [b]
  262. if self.Model_Name != 'Line':
  263. columns += ['阿尔法','最大迭代次数']
  264. data += [self.Model.alpha,self.Model.max_iter]
  265. c = Table().add(headers=columns,rows=[data])
  266. tab.add(c, '数据表')
  267. save = Dic + r'/render.HTML'
  268. tab.render(save)#生成HTML
  269. return save,
  270. class LogisticRegression_Model(Study_MachineBase):
  271. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  272. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  273. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  274. #记录这两个是为了克隆
  275. self.C = args_use['C']
  276. self.max_iter = args_use['max_iter']
  277. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  278. self.Model_Name = model
  279. def Des(self,Dic='render.html',*args,**kwargs):
  280. #获取数据
  281. w_array = self.Model.coef_
  282. w_list = w_array.tolist() # 变为表格
  283. b = self.Model.intercept_
  284. c = self.Model.C
  285. max_iter = self.Model.max_iter
  286. class_ = self.Model.classes_.tolist()
  287. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  288. tab = Tab()
  289. y = self.y_trainData
  290. x_data = self.x_trainData
  291. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  292. for i in range(len(get)):
  293. tab.add(get[i], f'{i}决策边界')
  294. for i in range(len(w_list)):
  295. w = w_list[i]
  296. w_sum = self.Model.coef_.sum()
  297. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  298. tab.add(scatter(w_heard, w), '系数w散点图')
  299. tab.add(bar(w_heard, w_array[i]), '系数柱状图')
  300. tab.add(line(w_sum, w, b), '系数w曲线')
  301. columns = class_heard + ['截距b','C','最大迭代数']
  302. data = class_ + [b,c,max_iter]
  303. c = Table().add(headers=columns, rows=[data])
  304. tab.add(c, '数据表')
  305. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  306. tab.add(c, '系数数据表')
  307. save = Dic + r'/render.HTML'
  308. tab.render(save) # 生成HTML
  309. return save,
  310. def get_Color():
  311. # 随机颜色,雷达图默认非随机颜色
  312. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  313. color = '#'
  314. for a in rgb:
  315. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  316. return color
  317. def is_continuous(data:np.array,f:float=0.1):
  318. data = data.tolist()
  319. l = list(set(data))
  320. re = len(l)/len(data)>=f or len(data) <= 3
  321. return re
  322. class Categorical_Data:#数据统计助手
  323. def __init__(self):
  324. self.x_means = []
  325. self.x_range = []
  326. self.Type = []
  327. def __call__(self,x1, *args, **kwargs):
  328. get = self.is_continuous(x1)
  329. return get
  330. def is_continuous(self,x1:np.array):
  331. try:
  332. x1_con = is_continuous(x1)
  333. if x1_con:
  334. self.x_means.append(np.mean(x1))
  335. self.add_Range(x1)
  336. else:
  337. raise Exception
  338. return x1_con
  339. except:#找出出现次数最多的元素
  340. new = np.unique(x1)#去除相同的元素
  341. count_list = []
  342. for i in new:
  343. count_list.append(np.sum(x1 == i))
  344. index = count_list.index(max(count_list))#找出最大值的索引
  345. self.x_means.append(x1[index])
  346. self.add_Range(x1,False)
  347. return False
  348. def add_Range(self,x1:np.array,range_=True):
  349. try:
  350. if not range_ : raise Exception
  351. min_ = int(x1.min()) - 1
  352. max_ = int(x1.max()) + 1
  353. #不需要复制列表
  354. self.x_range.append([min_,max_])
  355. self.Type.append(1)
  356. except:
  357. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  358. self.Type.append(2)
  359. def get(self):
  360. return self.x_means,self.x_range,self.Type
  361. def Training_visualization(x_trainData,class_,y):
  362. x_data = x_trainData.T
  363. Cat = Categorical_Data()
  364. o_cList = []
  365. for i in range(len(x_data)):
  366. x1 = x_data[i] # x坐标
  367. x1_con = Cat(x1)
  368. if i == 0:continue
  369. x2 = x_data[i - 1] # y坐标
  370. x2_con = is_continuous(x2)
  371. o_c = None # 旧的C
  372. for n_class in class_:
  373. x_1 = x1[y == n_class].tolist()
  374. x_2 = x2[y == n_class]
  375. x_2_new = np.unique(x_2)
  376. x_2 = x2[y == n_class].tolist()
  377. #x与散点图不同,这里是纵坐标
  378. c = (Scatter()
  379. .add_xaxis(x_2)
  380. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  381. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  382. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else None,is_scale=True),
  383. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  384. )
  385. c.add_xaxis(x_2_new)
  386. if o_c == None:
  387. o_c = c
  388. else:
  389. o_c = o_c.overlap(c)
  390. o_cList.append(o_c)
  391. means,x_range,Type = Cat.get()
  392. return o_cList,means,x_range,Type
  393. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):
  394. x_data = x_trainData.T
  395. o_cList = []
  396. means.append(0)
  397. means = np.array(means)
  398. for i in range(len(x_data)):
  399. if i == 0:continue
  400. x1_con = is_continuous(x_data[i])
  401. x2 = x_data[i - 1] # y坐标
  402. x2_con = is_continuous(x2)
  403. o_c = None # 旧的C
  404. for class_num in range(len(class_)):
  405. n_class = class_[class_num]
  406. x_2_new = np.unique(x2[y == n_class])
  407. #x与散点图不同,这里是纵坐标
  408. if len(class_) == 2:#二分类问题
  409. if class_num == 0:continue
  410. w = w_list[0]
  411. b = b_list[0]
  412. y_data = -(x_2_new * w[i - 1]) / w[i] + b + means[:i-1].sum() + means[i+1:].sum()#假设除了两个特征意外,其余特征均为means列表的数值
  413. c = (
  414. Line()
  415. .add_xaxis(x_2_new)
  416. .add_yaxis(f"系数w[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  417. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  418. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else None,is_scale=True),
  419. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  420. )
  421. if o_c == None:
  422. o_c = c
  423. else:
  424. o_c = o_c.overlap(c)
  425. o_cList.append(o_c)
  426. return o_cList
  427. def regress_visualization(x_trainData,y):
  428. x_data = x_trainData.T
  429. Cat = Categorical_Data()
  430. o_cList = []
  431. for i in range(len(x_data)):
  432. x1 = x_data[i] # x坐标
  433. Cat(x1)
  434. if i == 0:continue
  435. x2 = x_data[i - 1] # y坐标
  436. value = [[x1[i],x2[i],y[i]] for i in range(len(x1))]
  437. value = sorted(value,key=lambda y:y[1])
  438. value = sorted(value,key=lambda y:y[0])#两次排序
  439. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  440. c = (
  441. HeatMap()
  442. .add_xaxis(np.unique(x1))#研究表明,这个是横轴
  443. .add_yaxis('数据',np.unique(x2),value)
  444. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),visualmap_opts=opts.VisualMapOpts(is_show = True,
  445. max_=y.max(),min_=y.min(),pos_right='3%'),
  446. **global_Leg,yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  447. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'))
  448. )
  449. o_cList.append(c)
  450. means,x_range,Type = Cat.get()
  451. return o_cList,means,x_range,Type
  452. class Knn_Model(Study_MachineBase):
  453. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  454. super(Knn_Model, self).__init__(*args,**kwargs)
  455. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  456. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  457. #记录这两个是为了克隆
  458. self.n_neighbors = args_use['n_neighbors']
  459. self.p = args_use['p']
  460. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  461. self.Model_Name = model
  462. def Des(self,Dic,*args,**kwargs):
  463. tab = Tab()
  464. y = self.y_trainData
  465. x_data = self.x_trainData
  466. if self.Model_Name == 'Knn_class':
  467. class_ = self.Model.classes_.tolist()
  468. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  469. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  470. for i in range(len(get)):
  471. tab.add(get[i],f'{i}训练数据散点图')
  472. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  473. for i in range(len(get)):
  474. tab.add(get[i], f'{i}预测热力图')
  475. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  476. data = class_ + [f'{i}' for i in x_means]
  477. c = Table().add(headers=heard, rows=[data])
  478. tab.add(c, '数据表')
  479. else:
  480. get, x_means, x_range,Type = regress_visualization(x_data, y)
  481. for i in range(len(get)):
  482. tab.add(get[i], f'{i}预测类型图')
  483. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  484. for i in range(len(get)):
  485. tab.add(get[i], f'{i}预测热力图')
  486. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  487. data = [f'{i}' for i in x_means]
  488. c = Table().add(headers=heard, rows=[data])
  489. tab.add(c, '数据表')
  490. save = Dic + r'/render.HTML'
  491. tab.render(save) # 生成HTML
  492. return save,
  493. def make_list(first,end,num=35):
  494. n = num / (end - first)
  495. if n == 0: n = 1
  496. re = []
  497. n_first = first * n
  498. n_end = end * n
  499. while n_first < n_end:
  500. cul = n_first / n
  501. re.append(round(cul,2))
  502. n_first += 1
  503. print(len(re))
  504. return re
  505. def list_filter(list_,num=70):
  506. #假设列表已经不重复
  507. if len(list_) <= num:return list_
  508. n = int(num / len(list_))
  509. re = list_[::n]
  510. return re
  511. def Prediction_boundary(x_range,x_means,Predict_Func,Type):
  512. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类
  513. # a-特征x,b-特征x-1,c-其他特征
  514. o_cList = []
  515. print('FFFX')
  516. for i in range(len(x_means)):
  517. if i == 0:
  518. continue
  519. n_ra = x_range[i - 1]
  520. Type_ra = Type[i - 1]
  521. n_rb = x_range[i]
  522. Type_rb = Type[i]
  523. if Type_ra == 1:
  524. ra = make_list(n_ra[0],n_ra[1],70)
  525. else:
  526. ra = list_filter(n_ra)#可以接受最大为70
  527. if Type_rb == 1:
  528. rb = make_list(n_rb[0],n_rb[1],35)
  529. else:
  530. rb = list_filter(n_rb)#可以接受最大为70
  531. a = np.array([i for i in ra for _ in rb]).T
  532. b = np.array([i for _ in ra for i in rb]).T
  533. data = np.array([x_means for _ in ra for i in rb])
  534. data[:, i - 1] = a
  535. data[:, i] = b
  536. y_data = Predict_Func(data)[0].tolist()
  537. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  538. c = (HeatMap()
  539. .add_xaxis(np.unique(a))
  540. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  541. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  542. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  543. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  544. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  545. pos_right='3%'))#显示
  546. )
  547. o_cList.append(c)
  548. return o_cList
  549. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type):
  550. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  551. # a-特征x,b-特征x-1,c-其他特征
  552. #规定,i-1是x轴,a是x轴,x_1是x轴
  553. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  554. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  555. for i in class_dict:
  556. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':i})
  557. o_cList = []
  558. for i in range(len(x_means)):
  559. if i == 0:
  560. continue
  561. n_ra = x_range[i-1]
  562. Type_ra = Type[i-1]
  563. n_rb = x_range[i]
  564. Type_rb = Type[i]
  565. print(f'{n_ra},{n_rb}')
  566. if Type_ra == 1:
  567. ra = make_list(n_ra[0],n_ra[1],70)
  568. else:
  569. ra = n_ra
  570. if Type_rb == 1:
  571. rb = make_list(n_rb[0],n_rb[1],35)
  572. else:
  573. rb = n_rb
  574. a = np.array([i for i in ra for _ in rb]).T
  575. b = np.array([i for _ in ra for i in rb]).T
  576. data = np.array([x_means for _ in ra for i in rb])
  577. data[:, i - 1] = a
  578. data[:, i] = b
  579. y_data = Predict_Func(data)[0].tolist()
  580. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  581. c = (HeatMap()
  582. .add_xaxis(np.unique(a))
  583. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  584. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  585. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  586. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  587. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  588. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  589. )
  590. o_cList.append(c)
  591. return o_cList
  592. def SeeTree(Dic):
  593. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  594. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  595. node_Dict = {}
  596. link_list = []
  597. with open(Dic, 'r') as f: # 貌似必须分开w和r
  598. for i in f:
  599. try:
  600. get = re.findall(node_re, i)[0]
  601. if get[0] != '':
  602. try:
  603. v = float(get[0])
  604. except:
  605. v = 0
  606. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  607. continue
  608. except:
  609. pass
  610. try:
  611. get = re.findall(link_re, i)[0]
  612. if get[0] != '' and get[1] != '':
  613. link_list.append((get[0], get[1]))
  614. except:
  615. pass
  616. father_list = [] # 已经有父亲的list
  617. for i in link_list:
  618. father = i[0] # 父节点
  619. son = i[1] # 子节点
  620. try:
  621. node_Dict[father]['children'].append(node_Dict[son])
  622. father_list.append(son)
  623. if int(son) == 0: print('F')
  624. except:
  625. pass
  626. father = list(set(node_Dict.keys()) - set(father_list))
  627. c = (
  628. Tree()
  629. .add("", [node_Dict[father[0]]], is_roam=True)
  630. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  631. toolbox_opts=opts.ToolboxOpts(is_show=True))
  632. )
  633. return c
  634. def make_Tab(heard,row):
  635. return Table().add(headers=heard, rows=row)
  636. class Tree_Model(Study_MachineBase):
  637. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  638. super(Tree_Model, self).__init__(*args,**kwargs)
  639. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  640. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  641. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  642. #记录这两个是为了克隆
  643. self.criterion = args_use['criterion']
  644. self.splitter = args_use['splitter']
  645. self.max_features = args_use['max_features']
  646. self.max_depth = args_use['max_depth']
  647. self.min_samples_split = args_use['min_samples_split']
  648. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  649. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  650. self.Model_Name = model
  651. def Des(self, Dic, *args, **kwargs):
  652. tab = Tab()
  653. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  654. export_graphviz(self.Model, out_file=f)
  655. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  656. y = self.y_trainData
  657. x_data = self.x_trainData
  658. if self.Model_Name == 'Tree_class':
  659. class_ = self.Model.classes_.tolist()
  660. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  661. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  662. for i in range(len(get)):
  663. tab.add(get[i],f'{i}训练数据散点图')
  664. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  665. for i in range(len(get)):
  666. tab.add(get[i], f'{i}预测热力图')
  667. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  668. [class_ + [f'{i}' for i in x_means]]), '数据表')
  669. else:
  670. get, x_means, x_range,Type = regress_visualization(x_data, y)
  671. for i in range(len(get)):
  672. tab.add(get[i], f'{i}预测类型图')
  673. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  674. for i in range(len(get)):
  675. tab.add(get[i], f'{i}预测热力图')
  676. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  677. save = Dic + r'/render.HTML'
  678. tab.render(save) # 生成HTML
  679. return save,
  680. class Forest_Model(Study_MachineBase):
  681. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  682. super(Forest_Model, self).__init__(*args,**kwargs)
  683. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  684. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  685. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  686. #记录这两个是为了克隆
  687. self.n_estimators = args_use['n_Tree']
  688. self.criterion = args_use['criterion']
  689. self.max_features = args_use['max_features']
  690. self.max_depth = args_use['max_depth']
  691. self.min_samples_split = args_use['min_samples_split']
  692. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  693. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  694. self.Model_Name = model
  695. def Des(self, Dic, *args, **kwargs):
  696. tab = Tab()
  697. #多个决策树可视化
  698. for i in range(len(self.Model.estimators_)):
  699. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  700. export_graphviz(self.Model.estimators_[i], out_file=f)
  701. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  702. y = self.y_trainData
  703. x_data = self.x_trainData
  704. if self.Model_Name == 'Tree_class':
  705. class_ = self.Model.classes_.tolist()
  706. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  707. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  708. for i in range(len(get)):
  709. tab.add(get[i],f'{i}训练数据散点图')
  710. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  711. for i in range(len(get)):
  712. tab.add(get[i], f'{i}预测热力图')
  713. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  714. [class_ + [f'{i}' for i in x_means]]), '数据表')
  715. else:
  716. get, x_means, x_range,Type = regress_visualization(x_data, y)
  717. for i in range(len(get)):
  718. tab.add(get[i], f'{i}预测类型图')
  719. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  720. for i in range(len(get)):
  721. tab.add(get[i], f'{i}预测热力图')
  722. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  723. save = Dic + r'/render.HTML'
  724. tab.render(save) # 生成HTML
  725. return save,
  726. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  727. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  728. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  729. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  730. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  731. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  732. #记录这两个是为了克隆
  733. self.criterion = args_use['criterion']
  734. self.splitter = args_use['splitter']
  735. self.max_features = args_use['max_features']
  736. self.max_depth = args_use['max_depth']
  737. self.min_samples_split = args_use['min_samples_split']
  738. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  739. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  740. self.Model_Name = model
  741. def Des(self, Dic, *args, **kwargs):
  742. tab = Tab()
  743. #多个决策树可视化
  744. for a in range(len(self.Model.estimators_)):
  745. for i in range(len(self.Model.estimators_[a])):
  746. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  747. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  748. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  749. y = self.y_trainData
  750. x_data = self.x_trainData
  751. if self.Model_Name == 'Tree_class':
  752. class_ = self.Model.classes_.tolist()
  753. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  754. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  755. for i in range(len(get)):
  756. tab.add(get[i],f'{i}训练数据散点图')
  757. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  758. for i in range(len(get)):
  759. tab.add(get[i], f'{i}预测热力图')
  760. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  761. [class_ + [f'{i}' for i in x_means]]), '数据表')
  762. else:
  763. get, x_means, x_range,Type = regress_visualization(x_data, y)
  764. for i in range(len(get)):
  765. tab.add(get[i], f'{i}预测类型图')
  766. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  767. for i in range(len(get)):
  768. tab.add(get[i], f'{i}预测热力图')
  769. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  770. save = Dic + r'/render.HTML'
  771. tab.render(save) # 生成HTML
  772. return save,
  773. class SVC_Model(Study_MachineBase):
  774. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  775. super(SVC_Model, self).__init__(*args,**kwargs)
  776. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  777. #记录这两个是为了克隆
  778. self.C = args_use['C']
  779. self.gamma = args_use['gamma']
  780. self.kernel = args_use['kernel']
  781. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  782. self.Model_Name = model
  783. def Des(self, Dic, *args, **kwargs):
  784. tab = Tab()
  785. w_list = self.Model.coef_.tolist()
  786. b = self.Model.intercept_.tolist()
  787. class_ = self.Model.classes_.tolist()
  788. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  789. y = self.y_trainData
  790. x_data = self.x_trainData
  791. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  792. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  793. for i in range(len(get)):
  794. tab.add(get[i].overlap(get_Line[i]), f'{i}数据散点图')
  795. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  796. for i in range(len(get)):
  797. tab.add(get[i], f'{i}预测热力图')
  798. dic = {2:'离散',1:'连续'}
  799. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  800. [class_ + [f'{i}' for i in x_means]]), '数据表')
  801. save = Dic + r'/render.HTML'
  802. tab.render(save) # 生成HTML
  803. return save,
  804. class SVR_Model(Study_MachineBase):
  805. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  806. super(SVR_Model, self).__init__(*args,**kwargs)
  807. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  808. #记录这两个是为了克隆
  809. self.C = args_use['C']
  810. self.gamma = args_use['gamma']
  811. self.kernel = args_use['kernel']
  812. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  813. self.Model_Name = model
  814. def Des(self,Dic,*args,**kwargs):
  815. tab = Tab()
  816. x_data = self.x_trainData
  817. y = self.y_trainData
  818. get, x_means, x_range,Type = regress_visualization(x_data, y)
  819. for i in range(len(get)):
  820. tab.add(get[i], f'{i}预测类型图')
  821. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  822. for i in range(len(get)):
  823. tab.add(get[i], f'{i}预测热力图')
  824. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  825. save = Dic + r'/render.HTML'
  826. tab.render(save) # 生成HTML
  827. return save,
  828. class Variance_Model(Unsupervised):#无监督
  829. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  830. super(Variance_Model, self).__init__(*args,**kwargs)
  831. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  832. #记录这两个是为了克隆
  833. self.threshold = args_use['P']
  834. self.k = {'threshold':args_use['P']}
  835. self.Model_Name = model
  836. def Des(self,Dic,*args,**kwargs):
  837. pass
  838. class SelectKBest_Model(prep_Base):#有监督
  839. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  840. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  841. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  842. # 记录这两个是为了克隆
  843. self.k_ = args_use['k']
  844. self.score_func=args_use['score_func']
  845. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  846. self.Model_Name = model
  847. class SelectFrom_Model(prep_Base):#有监督
  848. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  849. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  850. self.Model = Learner.Model
  851. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  852. self.max_features = args_use['k']
  853. self.estimator=Learner.Model
  854. self.k = {'max_features':args_use['k'],'estimator':Learner.Model}
  855. self.Model_Name = 'SelectFrom_Model'
  856. def Predict(self, x_data):
  857. try:
  858. x_Predict = self.Select_Model.transform(x_data)
  859. return x_Predict,'模型特征工程'
  860. except:
  861. return np.array([]),'无结果工程'
  862. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  863. def __init__(self, args_use, model, *args, **kwargs):
  864. super(Standardization_Model, self).__init__(*args, **kwargs)
  865. self.Model = StandardScaler()
  866. self.k = {}
  867. self.Model_Name = 'StandardScaler'
  868. class MinMaxScaler_Model(Unsupervised):#离差标准化
  869. def __init__(self, args_use, model, *args, **kwargs):
  870. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  871. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  872. self.k = {}
  873. self.Model_Name = 'MinMaxScaler'
  874. class LogScaler_Model(prep_Base):#对数标准化
  875. def __init__(self, args_use, model, *args, **kwargs):
  876. super(LogScaler_Model, self).__init__(*args, **kwargs)
  877. self.Model = None
  878. self.k = {}
  879. self.Model_Name = 'LogScaler'
  880. def Fit(self, x_data, *args, **kwargs):
  881. if not self.have_Fit: # 不允许第二次训练
  882. self.max_logx = np.log(x_data.max())
  883. return 'None', 'None'
  884. def Predict(self, x_data):
  885. try:
  886. max_logx = self.max_logx
  887. except:
  888. self.have_Fit = False
  889. self.Fit(x_data)
  890. max_logx = self.max_logx
  891. x_Predict = (np.log(x_data)/max_logx)
  892. return x_Predict,'对数变换'
  893. class atanScaler_Model(prep_Base):#atan标准化
  894. def __init__(self, args_use, model, *args, **kwargs):
  895. super(atanScaler_Model, self).__init__(*args, **kwargs)
  896. self.Model = None
  897. self.k = {}
  898. self.Model_Name = 'atanScaler'
  899. def Fit(self, x_data, *args, **kwargs):
  900. return 'None', 'None'
  901. def Predict(self, x_data):
  902. x_Predict = (np.arctan(x_data)*(2/np.pi))
  903. return x_Predict,'atan变换'
  904. class decimalScaler_Model(prep_Base):#小数定标准化
  905. def __init__(self, args_use, model, *args, **kwargs):
  906. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  907. self.Model = None
  908. self.k = {}
  909. self.Model_Name = 'Decimal_normalization'
  910. def Fit(self, x_data, *args, **kwargs):
  911. if not self.have_Fit: # 不允许第二次训练
  912. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  913. return 'None', 'None'
  914. def Predict(self, x_data):
  915. try:
  916. j = self.j
  917. except:
  918. self.have_Fit = False
  919. self.Fit(x_data)
  920. j = self.j
  921. x_Predict = (x_data/(10**j))
  922. return x_Predict,'小数定标标准化'
  923. class Mapzoom_Model(prep_Base):#映射标准化
  924. def __init__(self, args_use, model, *args, **kwargs):
  925. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  926. self.Model = None
  927. self.feature_range = args_use['feature_range']
  928. self.k = {}
  929. self.Model_Name = 'Decimal_normalization'
  930. def Fit(self, x_data, *args, **kwargs):
  931. if not self.have_Fit: # 不允许第二次训练
  932. self.max = x_data.max()
  933. self.min = x_data.min()
  934. return 'None', 'None'
  935. def Predict(self, x_data):
  936. try:
  937. max = self.max
  938. min = self.min
  939. except:
  940. self.have_Fit = False
  941. self.Fit(x_data)
  942. max = self.max
  943. min = self.min
  944. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  945. return x_Predict,'映射标准化'
  946. class sigmodScaler_Model(prep_Base):#sigmod变换
  947. def __init__(self, args_use, model, *args, **kwargs):
  948. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  949. self.Model = None
  950. self.k = {}
  951. self.Model_Name = 'sigmodScaler_Model'
  952. def Fit(self, x_data, *args, **kwargs):
  953. return 'None', 'None'
  954. def Predict(self, x_data:np.array):
  955. x_Predict = (1/(1+np.exp(-x_data)))
  956. return x_Predict,'Sigmod变换'
  957. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  958. def __init__(self, args_use, model, *args, **kwargs):
  959. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  960. self.Model = None
  961. self.feature_range = args_use['feature_range']
  962. self.k = {}
  963. self.Model_Name = 'Fuzzy_quantization'
  964. def Fit(self, x_data, *args, **kwargs):
  965. if not self.have_Fit: # 不允许第二次训练
  966. self.max = x_data.max()
  967. self.min = x_data.min()
  968. return 'None', 'None'
  969. def Predict(self, x_data,*args,**kwargs):
  970. try:
  971. max = self.max
  972. min = self.min
  973. except:
  974. self.have_Fit = False
  975. self.Fit(x_data)
  976. max = self.max
  977. min = self.min
  978. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  979. return x_Predict,'映射标准化'
  980. class Regularization_Model(Unsupervised):#正则化
  981. def __init__(self, args_use, model, *args, **kwargs):
  982. super(Regularization_Model, self).__init__(*args, **kwargs)
  983. self.Model = Normalizer(norm=args_use['norm'])
  984. self.k = {'norm':args_use['norm']}
  985. self.Model_Name = 'Regularization'
  986. class Binarizer_Model(Unsupervised):#二值化
  987. def __init__(self, args_use, model, *args, **kwargs):
  988. super(Binarizer_Model, self).__init__(*args, **kwargs)
  989. self.Model = Binarizer(threshold=args_use['threshold'])
  990. self.k = {}
  991. self.Model_Name = 'Binarizer'
  992. class Discretization_Model(prep_Base):#n值离散
  993. def __init__(self, args_use, model, *args, **kwargs):
  994. super(Discretization_Model, self).__init__(*args, **kwargs)
  995. self.Model = None
  996. range_ = args_use['split_range']
  997. if range_ == []:raise Exception
  998. elif len(range_) == 1:range_.append(range_[0])
  999. self.range = range_
  1000. self.k = {}
  1001. self.Model_Name = 'Discretization'
  1002. def Fit(self,*args,**kwargs):
  1003. return 'None','None'
  1004. def Predict(self,x_data):
  1005. x_Predict = x_data.copy()#复制
  1006. range_ = self.range
  1007. bool_list = []
  1008. max_ = len(range_) - 1
  1009. o_t = None
  1010. for i in range(len(range_)):
  1011. try:
  1012. t = float(range_[i])
  1013. except:continue
  1014. if o_t == None:#第一个参数
  1015. bool_list.append(x_Predict <= t)
  1016. else:
  1017. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  1018. if i == max_:
  1019. bool_list.append(t <= x_Predict)
  1020. o_t = t
  1021. for i in range(len(bool_list)):
  1022. x_Predict[bool_list[i]] = i
  1023. return x_Predict,f'{len(bool_list)}值离散化'
  1024. class Label_Model(prep_Base):#数字编码
  1025. def __init__(self, args_use, model, *args, **kwargs):
  1026. super(Label_Model, self).__init__(*args, **kwargs)
  1027. self.Model = []
  1028. self.k = {}
  1029. self.Model_Name = 'LabelEncoder'
  1030. def Fit(self,x_data,*args, **kwargs):
  1031. if not self.have_Fit: # 不允许第二次训练
  1032. if x_data.ndim == 1:x_data = np.array([x_data])
  1033. for i in range(x_data.shape[1]):
  1034. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  1035. return 'None', 'None'
  1036. def Predict(self, x_data):
  1037. x_Predict = x_data.copy()
  1038. if x_data.ndim == 1: x_data = np.array([x_data])
  1039. for i in range(x_data.shape[1]):
  1040. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  1041. return x_Predict,'数字编码'
  1042. class OneHotEncoder_Model(prep_Base):#独热编码
  1043. def __init__(self, args_use, model, *args, **kwargs):
  1044. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  1045. self.Model = []
  1046. self.ndim_up = args_use['ndim_up']
  1047. self.k = {}
  1048. self.Model_Name = 'OneHotEncoder'
  1049. def Fit(self,x_data,*args, **kwargs):
  1050. if not self.have_Fit: # 不允许第二次训练
  1051. if x_data.ndim == 1:x_data = [x_data]
  1052. for i in range(x_data.shape[1]):
  1053. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  1054. self.Model.append(OneHotEncoder().fit(data))#训练机器
  1055. return 'None', 'None'
  1056. def Predict(self, x_data):
  1057. x_new = []
  1058. for i in range(x_data.shape[1]):
  1059. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  1060. oneHot = self.Model[i].transform(data).toarray().tolist()
  1061. print(len(oneHot),oneHot)
  1062. x_new.append(oneHot)#添加到列表中
  1063. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  1064. x_Predict = []
  1065. for i in range(x_new.shape[1]):
  1066. x_Predict.append(x_new[:,i])
  1067. x_Predict = np.array(x_Predict)#转换回array
  1068. if not self.ndim_up:#需要降维操作
  1069. print('Q')
  1070. new_xPredict = []
  1071. for i in x_Predict:
  1072. new_list = []
  1073. list_ = i.tolist()
  1074. for a in list_:
  1075. new_list += a
  1076. new = np.array(new_list)
  1077. new_xPredict.append(new)
  1078. return np.array(new_xPredict),'独热编码'
  1079. return x_Predict,'独热编码'#不需要降维
  1080. class Missed_Model(Unsupervised):#缺失数据补充
  1081. def __init__(self, args_use, model, *args, **kwargs):
  1082. super(Missed_Model, self).__init__(*args, **kwargs)
  1083. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  1084. fill_value=args_use['fill_value'])
  1085. self.k = {}
  1086. self.Model_Name = 'Missed'
  1087. def Predict(self, x_data):
  1088. x_Predict = self.Model.transform(x_data)
  1089. return x_Predict,'填充缺失'
  1090. class PCA_Model(Unsupervised):
  1091. def __init__(self, args_use, model, *args, **kwargs):
  1092. super(PCA_Model, self).__init__(*args, **kwargs)
  1093. self.Model = PCA(n_components=args_use['n_components'])
  1094. self.n_components = args_use['n_components']
  1095. self.k = {'n_components':args_use['n_components']}
  1096. self.Model_Name = 'PCA'
  1097. def Predict(self, x_data):
  1098. x_Predict = self.Model.transform(x_data)
  1099. return x_Predict,'PCA'
  1100. class RPCA_Model(Unsupervised):
  1101. def __init__(self, args_use, model, *args, **kwargs):
  1102. super(RPCA_Model, self).__init__(*args, **kwargs)
  1103. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  1104. self.n_components = args_use['n_components']
  1105. self.k = {'n_components': args_use['n_components']}
  1106. self.Model_Name = 'RPCA'
  1107. def Predict(self, x_data):
  1108. x_Predict = self.Model.transform(x_data)
  1109. return x_Predict,'RPCA'
  1110. class KPCA_Model(Unsupervised):
  1111. def __init__(self, args_use, model, *args, **kwargs):
  1112. super(KPCA_Model, self).__init__(*args, **kwargs)
  1113. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  1114. self.n_components = args_use['n_components']
  1115. self.kernel = args_use['kernel']
  1116. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  1117. self.Model_Name = 'KPCA'
  1118. def Predict(self, x_data):
  1119. x_Predict = self.Model.transform(x_data)
  1120. return x_Predict,'KPCA'
  1121. class LDA_Model(Unsupervised):
  1122. def __init__(self, args_use, model, *args, **kwargs):
  1123. super(LDA_Model, self).__init__(*args, **kwargs)
  1124. self.Model = LDA(n_components=args_use['n_components'])
  1125. self.n_components = args_use['n_components']
  1126. self.k = {'n_components': args_use['n_components']}
  1127. self.Model_Name = 'LDA'
  1128. def Predict(self, x_data):
  1129. x_Predict = self.Model.transform(x_data)
  1130. return x_Predict,'LDA'
  1131. class NMF_Model(Unsupervised):
  1132. def __init__(self, args_use, model, *args, **kwargs):
  1133. super(NMF_Model, self).__init__(*args, **kwargs)
  1134. self.Model = NMF(n_components=args_use['n_components'])
  1135. self.n_components = args_use['n_components']
  1136. self.k = {'n_components':args_use['n_components']}
  1137. self.Model_Name = 'NFM'
  1138. def Predict(self, x_data):
  1139. x_Predict = self.Model.transform(x_data)
  1140. return x_Predict,'NMF'
  1141. class TSNE_Model(Unsupervised):
  1142. def __init__(self, args_use, model, *args, **kwargs):
  1143. super(TSNE_Model, self).__init__(*args, **kwargs)
  1144. self.Model = TSNE(n_components=args_use['n_components'])
  1145. self.n_components = args_use['n_components']
  1146. self.k = {'n_components':args_use['n_components']}
  1147. self.Model_Name = 't-SNE'
  1148. def Fit(self,*args, **kwargs):
  1149. return 'None', 'None'
  1150. def Predict(self, x_data):
  1151. x_Predict = self.Model.fit_transform(x_data)
  1152. return x_Predict,'SNE'
  1153. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  1154. def __init__(self,args_use,model,*args,**kwargs):
  1155. super(MLP_Model, self).__init__(*args,**kwargs)
  1156. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  1157. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  1158. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1159. #记录这两个是为了克隆
  1160. self.hidden_layer_sizes = args_use['hidden_size']
  1161. self.activation = args_use['activation']
  1162. self.max_iter = args_use['max_iter']
  1163. self.solver = args_use['solver']
  1164. self.alpha = args_use['alpha']
  1165. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  1166. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  1167. self.Model_Name = model
  1168. class kmeans_Model(UnsupervisedModel):
  1169. def __init__(self, args_use, model, *args, **kwargs):
  1170. super(kmeans_Model, self).__init__(*args, **kwargs)
  1171. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  1172. self.n_clusters = args_use['n_clusters']
  1173. self.k = {'n_clusters':args_use['n_clusters']}
  1174. self.Model_Name = 'k-means'
  1175. def Predict(self, x_data):
  1176. y_Predict = self.Model.predict(x_data)
  1177. return y_Predict,'k-means'
  1178. class Agglomerative_Model(UnsupervisedModel):
  1179. def __init__(self, args_use, model, *args, **kwargs):
  1180. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  1181. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  1182. self.n_clusters = args_use['n_clusters']
  1183. self.k = {'n_clusters':args_use['n_clusters']}
  1184. self.Model_Name = 'Agglomerative'
  1185. def Predict(self, x_data):
  1186. y_Predict = self.Model.fit_predict(x_data)
  1187. return y_Predict,'Agglomerative'
  1188. class DBSCAN_Model(UnsupervisedModel):
  1189. def __init__(self, args_use, model, *args, **kwargs):
  1190. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  1191. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  1192. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  1193. # min_samples
  1194. self.eps = args_use['eps']
  1195. self.min_samples = args_use['min_samples']
  1196. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  1197. self.Model_Name = 'DBSCAN'
  1198. def Predict(self, x_data):
  1199. y_Predict = self.Model.fit_predict(x_data)
  1200. return y_Predict,'DBSCAN'
  1201. class Machine_Learner(Learner):#数据处理者
  1202. def __init__(self,*args, **kwargs):
  1203. super().__init__(*args, **kwargs)
  1204. self.Learner = {}#记录机器
  1205. self.Learn_Dic = {'Line':Line_Model,
  1206. 'Ridge':Line_Model,
  1207. 'Lasso':Line_Model,
  1208. 'LogisticRegression':LogisticRegression_Model,
  1209. 'Knn_class':Knn_Model,
  1210. 'Knn': Knn_Model,
  1211. 'Tree_class': Tree_Model,
  1212. 'Tree': Tree_Model,
  1213. 'Forest':Forest_Model,
  1214. 'Forest_class': Forest_Model,
  1215. 'GradientTree_class':GradientTree_Model,
  1216. 'GradientTree': GradientTree_Model,
  1217. 'Variance':Variance_Model,
  1218. 'SelectKBest':SelectKBest_Model,
  1219. 'Z-Score':Standardization_Model,
  1220. 'MinMaxScaler':MinMaxScaler_Model,
  1221. 'LogScaler':LogScaler_Model,
  1222. 'atanScaler':atanScaler_Model,
  1223. 'decimalScaler':decimalScaler_Model,
  1224. 'sigmodScaler':sigmodScaler_Model,
  1225. 'Mapzoom':Mapzoom_Model,
  1226. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  1227. 'Regularization':Regularization_Model,
  1228. 'Binarizer':Binarizer_Model,
  1229. 'Discretization':Discretization_Model,
  1230. 'Label':Label_Model,
  1231. 'OneHotEncoder':OneHotEncoder_Model,
  1232. 'Missed':Missed_Model,
  1233. 'PCA':PCA_Model,
  1234. 'RPCA':RPCA_Model,
  1235. 'KPCA':KPCA_Model,
  1236. 'LDA':LDA_Model,
  1237. 'SVC':SVC_Model,
  1238. 'SVR':SVR_Model,
  1239. 'MLP':MLP_Model,
  1240. 'MLP_class': MLP_Model,
  1241. 'NMF':NMF_Model,
  1242. 't-SNE':TSNE_Model,
  1243. 'k-means':kmeans_Model,
  1244. 'Agglomerative':Agglomerative_Model,
  1245. 'DBSCAN':DBSCAN_Model,
  1246. }
  1247. self.Learner_Type = {}#记录机器的类型
  1248. def p_Args(self,Text,Type):#解析参数
  1249. args = {}
  1250. args_use = {}
  1251. #输入数据
  1252. exec(Text,args)
  1253. #处理数据
  1254. if Type in ('MLP','MLP_class'):
  1255. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  1256. else:
  1257. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  1258. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  1259. if Type in ('MLP','MLP_class'):
  1260. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  1261. else:
  1262. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  1263. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  1264. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  1265. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  1266. if Type in ('Tree','Forest','GradientTree'):
  1267. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  1268. else:
  1269. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  1270. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  1271. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  1272. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  1273. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  1274. args_use['P'] = float(args.get('min_samples_split', 0.8))
  1275. args_use['k'] = args.get('k',1)
  1276. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  1277. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  1278. get(args.get('score_func','f_classif'),f_classif))
  1279. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  1280. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  1281. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  1282. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  1283. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  1284. args_use['miss_value'] = args.get('miss_value',np.nan)
  1285. args_use['fill_method'] = args.get('fill_method','mean')
  1286. args_use['fill_value'] = args.get('fill_value',None)
  1287. args_use['n_components'] = args.get('n_components',1)
  1288. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  1289. args_use['n_Tree'] = args.get('n_Tree',100)
  1290. args_use['gamma'] = args.get('gamma',1)
  1291. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  1292. args_use['activation'] = str(args.get('activation','relu'))
  1293. args_use['solver'] = str(args.get('solver','adam'))
  1294. if Type in ('k-means',):
  1295. args_use['n_clusters'] = int(args.get('n_clusters',8))
  1296. else:
  1297. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  1298. args_use['eps'] = float(args.get('n_clusters', 0.5))
  1299. args_use['min_samples'] = int(args.get('n_clusters', 5))
  1300. return args_use
  1301. def Add_Learner(self,Learner,Text=''):
  1302. get = self.Learn_Dic[Learner]
  1303. name = f'Le[{len(self.Learner)}]{Learner}'
  1304. #参数调节
  1305. args_use = self.p_Args(Text,Learner)
  1306. #生成学习器
  1307. self.Learner[name] = get(model=Learner,args_use=args_use)
  1308. self.Learner_Type[name] = Learner
  1309. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  1310. model = self.get_Learner(Learner)
  1311. name = f'Le[{len(self.Learner)}]SelectFrom_Model'
  1312. #参数调节
  1313. args_use = self.p_Args(Text,'SelectFrom_Model')
  1314. #生成学习器
  1315. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  1316. self.Learner_Type[name] = 'SelectFrom_Model'
  1317. def Return_Learner(self):
  1318. return self.Learner.copy()
  1319. def get_Learner(self,name):
  1320. return self.Learner[name]
  1321. def get_Learner_Type(self,name):
  1322. return self.Learner_Type[name]
  1323. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  1324. x_data = self.get_Sheet(x_name)
  1325. y_data = self.get_Sheet(y_name)
  1326. model = self.get_Learner(Learner)
  1327. return model.Fit(x_data,y_data,split)
  1328. def Predict(self,x_name,Learner,Text='',**kwargs):
  1329. x_data = self.get_Sheet(x_name)
  1330. model = self.get_Learner(Learner)
  1331. y_data,name = model.Predict(x_data)
  1332. self.Add_Form(y_data,f'{x_name}:{name}')
  1333. return y_data
  1334. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  1335. model = self.get_Learner(Learner)
  1336. x = self.get_Sheet(name_x)
  1337. y = self.get_Sheet(name_y)
  1338. return model.Score(x,y)
  1339. def Show_Args(self,Learner,Dic):#显示参数
  1340. model = self.get_Learner(Learner)
  1341. return model.Des(Dic)
  1342. def Del_Leaner(self,Leaner):
  1343. del self.Learner[Leaner]
  1344. del self.Learner_Type[Leaner]
  1345. def judging_Digits(num:(int,float)):
  1346. a = str(abs(num)).split('.')[0]
  1347. if a == '':raise ValueError
  1348. return len(a)