12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262 |
- from pyecharts.components import Table #绘制表格
- from pyecharts import options as opts
- from random import randint
- from pyecharts.charts import *
- from pandas import DataFrame,read_csv
- import numpy as np
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import *
- from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
- from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor
- from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
- GradientBoostingRegressor)
- from sklearn.metrics import accuracy_score
- from sklearn.feature_selection import *
- from sklearn.preprocessing import *
- from sklearn.impute import SimpleImputer
- from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
- from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
- from sklearn.neural_network import MLPClassifier,MLPRegressor
- from sklearn.manifold import TSNE
- from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
- from pyecharts.charts import *
- # import sklearn as sk
- #设置
- np.set_printoptions(threshold=np.inf)
- global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
- Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
- class Learner:
- def __init__(self,*args,**kwargs):
- self.numpy_Dic = {}#name:numpy
- def Add_Form(self,data:np.array,name):
- name = f'{name}[{len(self.numpy_Dic)}]'
- self.numpy_Dic[name] = data
- def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
- type_ = np.str if str_must else np.float
- pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
- try:
- data = pf_data.to_numpy(dtype=type_)
- except ValueError:
- data = pf_data.to_numpy(dtype=np.str)
- if data.ndim == 1: data = np.expand_dims(data, axis=1)
- self.Add_Form(data,name)
- return data
- def Add_Python(self, Text, sheet_name):
- name = {}
- name.update(globals().copy())
- name.update(locals().copy())
- exec(Text, name)
- exec('get = Creat()', name)
- if isinstance(name['get'], np.array): # 已经是DataFram
- get = name['get']
- else:
- try:
- get = np.array(name['get'])
- except:
- get = np.array([name['get']])
- self.Add_Form(get, sheet_name)
- return get
- def get_Form(self) -> dict:
- return self.numpy_Dic.copy()
- def get_Sheet(self,name) -> np.array:
- return self.numpy_Dic[name].copy()
- def to_CSV(self,Dic:str,name,sep) -> str:
- get = self.get_Sheet(name)
- np.savetxt(Dic, get, delimiter=sep)
- return Dic
- def to_Html_One(self,name,Dic=''):
- if Dic == '': Dic = f'{name}.html'
- get = self.get_Sheet(name)
- if get.ndim == 1: get = np.expand_dims(get, axis=1)
- get = get.tolist()
- for i in range(len(get)):
- get[i] = [i+1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = Table()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
- table.render(Dic)
- return Dic
- def to_Html(self, name, Dic='', type_=0):
- if Dic == '': Dic = f'{name}.html'
- # 把要画的sheet放到第一个
- Sheet_Dic = self.get_Form()
- del Sheet_Dic[name]
- Sheet_list = [name] + list(Sheet_Dic.keys())
- class TAB_F:
- def __init__(self, q):
- self.tab = q # 一个Tab
- def render(self, Dic):
- return self.tab.render(Dic)
- # 生成一个显示页面
- if type_ == 0:
- class TAB(TAB_F):
- def add(self, table, k, *f):
- self.tab.add(table, k)
- tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
- elif type_ == 1:
- class TAB(TAB_F):
- def add(self, table, *k):
- self.tab.add(table)
- tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
- else:
- class TAB(TAB_F):
- def add(self, table, *k):
- self.tab.add(table)
- tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
- # 迭代添加内容
- for name in Sheet_list:
- get = self.get_Sheet(name)
- if get.ndim == 1: get = np.expand_dims(get, axis=1)
- get = get.tolist()
- for i in range(len(get)):
- get[i] = [i+1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = Table()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
- tab.add(table, f'表格:{name}')
- tab.render(Dic)
- return Dic
- class Study_MachineBase:
- def __init__(self,*args,**kwargs):
- self.Model = None
- self.have_Fit = False
- self.x_trainData = None
- self.y_trainData = None
- #记录这两个是为了克隆
- def Accuracy(self,y_Predict,y_Really):
- return accuracy_score(y_Predict, y_Really)
- def Fit(self,x_data,y_data,split=0.3,**kwargs):
- self.have_Fit = True
- y_data = y_data.ravel()
- self.x_trainData = x_data
- self.y_trainData = y_data
- x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
- self.Model.fit(x_data,y_data)
- train_score = self.Model.score(x_train,y_train)
- test_score = self.Model.score(x_test,y_test)
- return train_score,test_score
- def Score(self,x_data,y_data):
- Score = self.Model.score(x_data,y_data)
- return Score
- def Predict(self,x_data):
- y_Predict = self.Model.predict(x_data)
- return y_Predict,'预测'
- def Des(self,*args,**kwargs):
- return ()
- class prep_Base(Study_MachineBase):
- def __init__(self,*args,**kwargs):
- super(prep_Base, self).__init__(*args,**kwargs)
- self.Model = None
- def Fit(self, x_data,y_data, *args, **kwargs):
- self.x_trainData = x_data
- self.y_train = y_data
- if not self.have_Fit: # 不允许第二次训练
- self.Model.fit(x_data,y_data)
- return 'None', 'None'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'特征工程'
- def Score(self, x_data, y_data):
- return 'None' # 没有score
- class Unsupervised(prep_Base):
- def Fit(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- self.y_train = None
- if not self.have_Fit: # 不允许第二次训练
- self.Model.fit(x_data)
- return 'None', 'None'
- class UnsupervisedModel(prep_Base):
- def Fit(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- self.y_train = None
- self.Model.fit(x_data)
- return 'None', 'None'
- def scatter(w_heard,w):
- c = (
- Scatter()
- .add_xaxis(w_heard)
- .add_yaxis('', w, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
- )
- return c
- def bar(w_heard,w):
- c = (
- Bar()
- .add_xaxis(w_heard)
- .add_yaxis('', abs(w).tolist(), **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- return c
- def line(w_sum,w,b):
- x = np.arange(-5, 5, 1)
- c = (
- Line()
- .add_xaxis(x.tolist())
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
- )
- for i in range(len(w)):
- y = x * w[i] + (w[i] / w_sum) * b
- c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
- return c
- def see_Line(x_trainData,y_trainData,w,w_sum,b):
- y = y_trainData.tolist()
- x_data = x_trainData.T
- re = []
- for i in range(len(x_data)):
- x = x_data[i]
- p = int(x.max() - x.min()) / 5
- x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
- y_num = x_num * w[i] + (w[i] / w_sum) * b
- c = (
- Line()
- .add_xaxis(x_num.tolist())
- .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
- )
- b = (
- Scatter()
- .add_xaxis(x.tolist())
- .add_yaxis(f'{i}特征', y, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
- )
- b.overlap(c)
- re.append(b)
- return re
- class Line_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Line_Model, self).__init__(*args,**kwargs)
- Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
- model]
- if model == 'Line':
- self.Model = Model()
- self.k = {}
- else:
- self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
- self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
- #记录这两个是为了克隆
- self.Alpha = args_use['alpha']
- self.max_iter = args_use['max_iter']
- self.Model_Name = model
- def Des(self,Dic='render.html',*args,**kwargs):
- #获取数据
- w = self.Model.coef_.tolist()#变为表格
- w_sum = self.Model.coef_.sum()
- w_heard = [f'系数w[{i}]' for i in range(len(w))]
- b = self.Model.intercept_
- tab = Tab()
- tab.add(scatter(w_heard,w),'系数w散点图')
- tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
- tab.add(line(w_sum,w,b), '系数w曲线')
- re = see_Line(self.x_trainData,self.y_trainData,w,w_sum,b)
- for i in range(len(re)):
- tab.add(re[i], f'{i}预测分类类表')
- columns = w_heard + ['截距b']
- data = w + [b]
- if self.Model_Name != 'Line':
- columns += ['阿尔法','最大迭代次数']
- data += [self.Model.alpha,self.Model.max_iter]
- c = Table().add(headers=columns,rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save)#生成HTML
- return save,
- class LogisticRegression_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(LogisticRegression_Model, self).__init__(*args,**kwargs)
- self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.max_iter = args_use['max_iter']
- self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
- self.Model_Name = model
- def Des(self,Dic='render.html',*args,**kwargs):
- #获取数据
- w_array = self.Model.coef_
- w_list = w_array.tolist() # 变为表格
- b = self.Model.intercept_
- c = self.Model.C
- max_iter = self.Model.max_iter
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- tab = Tab()
- for i in range(len(w_list)):
- w = w_list[i]
- w_sum = self.Model.coef_.sum()
- w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
- tab.add(scatter(w_heard, w), '系数w散点图')
- tab.add(bar(w_heard, w_array[i]), '系数柱状图')
- tab.add(line(w_sum, w, b), '系数w曲线')
- columns = class_heard + ['截距b','C','最大迭代数']
- data = class_ + [b,c,max_iter]
- c = Table().add(headers=columns, rows=[data])
- tab.add(c, '数据表')
- c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
- tab.add(c, '系数数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- def get_Color():
- # 随机颜色,雷达图默认非随机颜色
- rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
- color = '#'
- for a in rgb:
- color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
- return color
- def is_continuous(data:np.array,f:float=0.1):
- data = data.tolist()
- l = list(set(data))
- re = len(l)/len(data)>=f or len(data) <= 3
- return re
- class Categorical_Data:
- def __init__(self):
- self.x_means = []
- self.x_range = []
- self.Type = []
- # self.min_max = [0,None]
- def __call__(self,x1, *args, **kwargs):
- return self.is_continuous(x1)
- def is_continuous(self,x1:np.array):
- try:
- x1_con = is_continuous(x1)
- if x1_con:
- self.x_means.append(np.mean(x1))
- self.add_Range(x1)
- else:
- self.x_means.append(np.median(x1))
- self.add_Range(x1,False)
- return x1_con
- except:
- self.add_Range(x1,False)
- return False
- def add_Range(self,x1:np.array,range_=True):
- try:
- if not range_ : raise Exception
- min_ = int(x1.min())
- max_ = int(x1.max())
- #不需要复制列表
- # if self.min_max[0] > min_:self.min_max[0] = min_
- # if self.min_max[1] < max_:self.min_max[1] = max_
- # self.x_range.append(self.min_max)
- self.x_range.append([min(min_,0),max_])
- self.Type.append(1)
- except:
- self.x_range.append(np.array.tolist())
- self.Type.append(2)
- def get(self):
- return self.x_means,self.x_range,self.Type
- def Training_visualization(x_trainData,class_,y):
- x_data = x_trainData.T
- Cat = Categorical_Data()
- o_cList = []
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = Cat(x1)
- if i == 0:continue
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for n_class in class_:
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class].tolist()
- c = (Scatter()
- .add_xaxis(x_1)
- .add_yaxis(f'{n_class}', x_2, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x2_con else None,axisline_opts=opts.AxisLineOpts(is_on_zero=False)),
- xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,axisline_opts=opts.AxisLineOpts(is_on_zero=False))))
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def regress_visualization(x_trainData,y):
- x_data = x_trainData.T
- Cat = Categorical_Data()
- o_cList = []
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = Cat(x1)
- if i == 0:continue
- print(f'类型{i}:\n{x1_con}x1=\n{x1}')
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- print(f'\n{x2_con}x2=\n{x2}')
- value = [[x1[i],x2[i],y[i]] for i in range(len(x1))]
- value = sorted(value,key=lambda y:y[1])
- value = sorted(value,key=lambda y:y[0])#两次排序
- c = (
- HeatMap()
- .add_xaxis(x1)
- .add_yaxis('数据',x2,value)
- .set_global_opts(title_opts=opts.TitleOpts(title="预测热点图"),visualmap_opts=opts.VisualMapOpts(max_=y.max(),min_=y.min()),
- **global_Set,yaxis_opts=opts.AxisOpts(type_='category'),
- xaxis_opts=opts.AxisOpts(type_='category'))
- )
- o_cList.append(c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- class Knn_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Knn_Model, self).__init__(*args,**kwargs)
- Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
- self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
- #记录这两个是为了克隆
- self.n_neighbors = args_use['n_neighbors']
- self.p = args_use['p']
- self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- if self.Model_Name == 'Knn_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}类型图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type,get)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测类型图')
- # c = Table().add(headers=class_heard, rows=class_)
- # tab.add(c, '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}类型图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- def Prediction_boundary(r,x_means,Predict_Func):
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类
- # a-特征x,b-特征x-1,c-其他特征
- a = np.array([i for i in r for _ in r]).T
- b = np.array([i for _ in r for i in r]).T
- data_c = np.array([x_means for _ in r for i in r])
- o_cList = []
- for i in range(data_c.shape[1]):
- if i == 0:
- continue
- data = data_c.copy()
- data[:, i - 1] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0]
- value = [[a[i], b[i], y_data[i]] for i in range(len(a))]
- a_con = is_continuous(a)
- b_con = is_continuous(b)
- c = (
- HeatMap()
- .add_xaxis(a)
- .add_yaxis('数据', b, value)
- .set_global_opts(title_opts=opts.TitleOpts(title="预测热点图"), visualmap_opts=opts.VisualMapOpts(max_=y_data.max(),min_=y_data.min()),
- **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if b_con else None),
- xaxis_opts=opts.AxisOpts(type_='value' if a_con else None))
- )
- o_cList.append(c)
- return o_cList
- def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,add_o):
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
- # a-特征x,b-特征x-1,c-其他特征
- #规定,i-1是x轴,a是x轴,x_1是x轴
- class_dict = dict(zip(class_,[i for i in range(len(class_))]))
- o_cList = []
- for i in range(len(x_means)):
- if i == 0:
- continue
- n_ra = x_range[i-1]
- Type_ra = Type[i-1]
- n_rb = x_range[i]
- Type_rb = Type[i]
- print(f'{n_ra},{n_rb}')
- if Type_ra == 1:
- n = int(35 / (n_ra[1] - n_ra[0]))
- ra = [i / n for i in range(n_ra[0] * n, n_ra[1] * n)]
- else:
- ra = n_ra
- if Type_rb == 1:
- n = int(35 / (n_rb[1] - n_rb[0]))
- rb = [i / n for i in range(n_rb[0] * n, n_rb[1] * n)]
- else:
- rb = n_rb
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data_c = np.array([x_means for _ in ra for i in rb])
- data = data_c.copy()
- data[:, i - 1] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[a[i], b[i], class_dict.get(y_data[i],-1)] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(a)
- .add_yaxis(f'数据', b, value, **Label_Set)#value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Set,
- yaxis_opts=opts.AxisOpts(axisline_opts=opts.AxisLineOpts(is_on_zero=False),type_='category'),
- xaxis_opts=opts.AxisOpts(axisline_opts=opts.AxisLineOpts(is_on_zero=False),type_='category')
- ,visualmap_opts=opts.VisualMapOpts(is_show=False,max_=max(class_dict.values()),min_=-1))
- )
- try:
- c.overlap(add_o[i])
- except:pass
- o_cList.append(c)
- return o_cList
- class Tree_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Tree_Model, self).__init__(*args,**kwargs)
- Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
- self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.criterion = args_use['criterion']
- self.splitter = args_use['splitter']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- class Forest_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Forest_Model, self).__init__(*args,**kwargs)
- Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
- self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.n_estimators = args_use['n_Tree']
- self.criterion = args_use['criterion']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- class GradientTree_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(GradientTree_Model, self).__init__(*args,**kwargs)
- Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
- self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.criterion = args_use['criterion']
- self.splitter = args_use['splitter']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- class SVC_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SVC_Model, self).__init__(*args,**kwargs)
- self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.gamma = args_use['gamma']
- self.kernel = args_use['kernel']
- self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
- self.Model_Name = model
- class SVR_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SVR_Model, self).__init__(*args,**kwargs)
- self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.gamma = args_use['gamma']
- self.kernel = args_use['kernel']
- self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
- self.Model_Name = model
- class Variance_Model(Unsupervised):#无监督
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Variance_Model, self).__init__(*args,**kwargs)
- self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
- #记录这两个是为了克隆
- self.threshold = args_use['P']
- self.k = {'threshold':args_use['P']}
- self.Model_Name = model
- class SelectKBest_Model(prep_Base):#有监督
- def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SelectKBest_Model, self).__init__(*args, **kwargs)
- self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
- # 记录这两个是为了克隆
- self.k_ = args_use['k']
- self.score_func=args_use['score_func']
- self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
- self.Model_Name = model
- class SelectFrom_Model(prep_Base):#有监督
- def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SelectFrom_Model, self).__init__(*args, **kwargs)
- self.Model = Learner.Model
- self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
- self.max_features = args_use['k']
- self.estimator=Learner.Model
- self.k = {'max_features':args_use['k'],'estimator':Learner.Model}
- self.Model_Name = 'SelectFrom_Model'
- def Predict(self, x_data):
- try:
- x_Predict = self.Select_Model.transform(x_data)
- return x_Predict,'模型特征工程'
- except:
- return np.array([]),'无结果工程'
- class Standardization_Model(Unsupervised):#z-score标准化 无监督
- def __init__(self, args_use, model, *args, **kwargs):
- super(Standardization_Model, self).__init__(*args, **kwargs)
- self.Model = StandardScaler()
- self.k = {}
- self.Model_Name = 'StandardScaler'
- class MinMaxScaler_Model(Unsupervised):#离差标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
- self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
- self.k = {}
- self.Model_Name = 'MinMaxScaler'
- class LogScaler_Model(prep_Base):#对数标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(LogScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'LogScaler'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max_logx = np.log(x_data.max())
- return 'None', 'None'
- def Predict(self, x_data):
- try:
- max_logx = self.max_logx
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max_logx = self.max_logx
- x_Predict = (np.log(x_data)/max_logx)
- return x_Predict,'对数变换'
- class atanScaler_Model(prep_Base):#atan标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(atanScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'atanScaler'
- def Fit(self, x_data, *args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data):
- x_Predict = (np.arctan(x_data)*(2/np.pi))
- return x_Predict,'atan变换'
- class decimalScaler_Model(prep_Base):#小数定标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(decimalScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'Decimal_normalization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
- return 'None', 'None'
- def Predict(self, x_data):
- try:
- j = self.j
- except:
- self.have_Fit = False
- self.Fit(x_data)
- j = self.j
- x_Predict = (x_data/(10**j))
- return x_Predict,'小数定标标准化'
- class Mapzoom_Model(prep_Base):#映射标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Mapzoom_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.feature_range = args_use['feature_range']
- self.k = {}
- self.Model_Name = 'Decimal_normalization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max = x_data.max()
- self.min = x_data.min()
- return 'None', 'None'
- def Predict(self, x_data):
- try:
- max = self.max
- min = self.min
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max = self.max
- min = self.min
- x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
- return x_Predict,'映射标准化'
- class sigmodScaler_Model(prep_Base):#sigmod变换
- def __init__(self, args_use, model, *args, **kwargs):
- super(sigmodScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'sigmodScaler_Model'
- def Fit(self, x_data, *args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data:np.array):
- x_Predict = (1/(1+np.exp(-x_data)))
- return x_Predict,'Sigmod变换'
- class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.feature_range = args_use['feature_range']
- self.k = {}
- self.Model_Name = 'Fuzzy_quantization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max = x_data.max()
- self.min = x_data.min()
- return 'None', 'None'
- def Predict(self, x_data,*args,**kwargs):
- try:
- max = self.max
- min = self.min
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max = self.max
- min = self.min
- x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
- return x_Predict,'映射标准化'
- class Regularization_Model(Unsupervised):#正则化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Regularization_Model, self).__init__(*args, **kwargs)
- self.Model = Normalizer(norm=args_use['norm'])
- self.k = {'norm':args_use['norm']}
- self.Model_Name = 'Regularization'
- class Binarizer_Model(Unsupervised):#二值化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Binarizer_Model, self).__init__(*args, **kwargs)
- self.Model = Binarizer(threshold=args_use['threshold'])
- self.k = {}
- self.Model_Name = 'Binarizer'
- class Discretization_Model(prep_Base):#n值离散
- def __init__(self, args_use, model, *args, **kwargs):
- super(Discretization_Model, self).__init__(*args, **kwargs)
- self.Model = None
- range_ = args_use['split_range']
- if range_ == []:raise Exception
- elif len(range_) == 1:range_.append(range_[0])
- self.range = range_
- self.k = {}
- self.Model_Name = 'Discretization'
- def Fit(self,*args,**kwargs):
- return 'None','None'
- def Predict(self,x_data):
- x_Predict = x_data.copy()#复制
- range_ = self.range
- bool_list = []
- max_ = len(range_) - 1
- o_t = None
- for i in range(len(range_)):
- try:
- t = float(range_[i])
- except:continue
- if o_t == None:#第一个参数
- bool_list.append(x_Predict <= t)
- else:
- bool_list.append((o_t <= x_Predict) == (x_Predict < t))
- if i == max_:
- bool_list.append(t <= x_Predict)
- o_t = t
- for i in range(len(bool_list)):
- x_Predict[bool_list[i]] = i
- return x_Predict,f'{len(bool_list)}值离散化'
- class Label_Model(prep_Base):#数字编码
- def __init__(self, args_use, model, *args, **kwargs):
- super(Label_Model, self).__init__(*args, **kwargs)
- self.Model = []
- self.k = {}
- self.Model_Name = 'LabelEncoder'
- def Fit(self,x_data,*args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- if x_data.ndim == 1:x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
- return 'None', 'None'
- def Predict(self, x_data):
- x_Predict = x_data.copy()
- if x_data.ndim == 1: x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
- return x_Predict,'数字编码'
- class OneHotEncoder_Model(prep_Base):#独热编码
- def __init__(self, args_use, model, *args, **kwargs):
- super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
- self.Model = []
- self.ndim_up = args_use['ndim_up']
- self.k = {}
- self.Model_Name = 'OneHotEncoder'
- def Fit(self,x_data,*args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- if x_data.ndim == 1:x_data = [x_data]
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
- self.Model.append(OneHotEncoder().fit(data))#训练机器
- return 'None', 'None'
- def Predict(self, x_data):
- x_new = []
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
- oneHot = self.Model[i].transform(data).toarray().tolist()
- print(len(oneHot),oneHot)
- x_new.append(oneHot)#添加到列表中
- x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
- x_Predict = []
- for i in range(x_new.shape[1]):
- x_Predict.append(x_new[:,i])
- x_Predict = np.array(x_Predict)#转换回array
- if not self.ndim_up:#需要降维操作
- print('Q')
- new_xPredict = []
- for i in x_Predict:
- new_list = []
- list_ = i.tolist()
- for a in list_:
- new_list += a
- new = np.array(new_list)
- new_xPredict.append(new)
- return np.array(new_xPredict),'独热编码'
- return x_Predict,'独热编码'#不需要降维
- class Missed_Model(Unsupervised):#缺失数据补充
- def __init__(self, args_use, model, *args, **kwargs):
- super(Missed_Model, self).__init__(*args, **kwargs)
- self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
- fill_value=args_use['fill_value'])
- self.k = {}
- self.Model_Name = 'Missed'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'填充缺失'
- class PCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(PCA_Model, self).__init__(*args, **kwargs)
- self.Model = PCA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 'PCA'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'PCA'
- class RPCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(RPCA_Model, self).__init__(*args, **kwargs)
- self.Model = IncrementalPCA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components': args_use['n_components']}
- self.Model_Name = 'RPCA'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'RPCA'
- class KPCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(KPCA_Model, self).__init__(*args, **kwargs)
- self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
- self.n_components = args_use['n_components']
- self.kernel = args_use['kernel']
- self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
- self.Model_Name = 'KPCA'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'KPCA'
- class LDA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(LDA_Model, self).__init__(*args, **kwargs)
- self.Model = LDA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components': args_use['n_components']}
- self.Model_Name = 'LDA'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'LDA'
- class NMF_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(NMF_Model, self).__init__(*args, **kwargs)
- self.Model = NMF(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 'NFM'
- def Predict(self, x_data):
- x_Predict = self.Model.transform(x_data)
- return x_Predict,'NMF'
- class TSNE_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(TSNE_Model, self).__init__(*args, **kwargs)
- self.Model = TSNE(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 't-SNE'
- def Fit(self,*args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data):
- x_Predict = self.Model.fit_transform(x_data)
- return x_Predict,'SNE'
- class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
- def __init__(self,args_use,model,*args,**kwargs):
- super(MLP_Model, self).__init__(*args,**kwargs)
- Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
- self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
- solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
- #记录这两个是为了克隆
- self.hidden_layer_sizes = args_use['hidden_size']
- self.activation = args_use['activation']
- self.max_iter = args_use['max_iter']
- self.solver = args_use['solver']
- self.alpha = args_use['alpha']
- self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
- 'solver':args_use['solver'],'alpha':args_use['alpha']}
- self.Model_Name = model
- class kmeans_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(kmeans_Model, self).__init__(*args, **kwargs)
- self.Model = KMeans(n_clusters=args_use['n_clusters'])
- self.n_clusters = args_use['n_clusters']
- self.k = {'n_clusters':args_use['n_clusters']}
- self.Model_Name = 'k-means'
- def Predict(self, x_data):
- y_Predict = self.Model.predict(x_data)
- return y_Predict,'k-means'
- class Agglomerative_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(Agglomerative_Model, self).__init__(*args, **kwargs)
- self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
- self.n_clusters = args_use['n_clusters']
- self.k = {'n_clusters':args_use['n_clusters']}
- self.Model_Name = 'Agglomerative'
- def Predict(self, x_data):
- y_Predict = self.Model.fit_predict(x_data)
- return y_Predict,'Agglomerative'
- class DBSCAN_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(DBSCAN_Model, self).__init__(*args, **kwargs)
- self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
- #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
- # min_samples
- self.eps = args_use['eps']
- self.min_samples = args_use['min_samples']
- self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
- self.Model_Name = 'DBSCAN'
- def Predict(self, x_data):
- y_Predict = self.Model.fit_predict(x_data)
- return y_Predict,'DBSCAN'
- class Machine_Learner(Learner):#数据处理者
- def __init__(self,*args, **kwargs):
- super().__init__(*args, **kwargs)
- self.Learner = {}#记录机器
- self.Learn_Dic = {'Line':Line_Model,
- 'Ridge':Line_Model,
- 'Lasso':Line_Model,
- 'LogisticRegression':LogisticRegression_Model,
- 'Knn_class':Knn_Model,
- 'Knn': Knn_Model,
- 'Tree_class': Tree_Model,
- 'Tree': Tree_Model,
- 'Forest':Forest_Model,
- 'Forest_class': Forest_Model,
- 'GradientTree_class':GradientTree_Model,
- 'GradientTree': GradientTree_Model,
- 'Variance':Variance_Model,
- 'SelectKBest':SelectKBest_Model,
- 'Z-Score':Standardization_Model,
- 'MinMaxScaler':MinMaxScaler_Model,
- 'LogScaler':LogScaler_Model,
- 'atanScaler':atanScaler_Model,
- 'decimalScaler':decimalScaler_Model,
- 'sigmodScaler':sigmodScaler_Model,
- 'Mapzoom':Mapzoom_Model,
- 'Fuzzy_quantization':Fuzzy_quantization_Model,
- 'Regularization':Regularization_Model,
- 'Binarizer':Binarizer_Model,
- 'Discretization':Discretization_Model,
- 'Label':Label_Model,
- 'OneHotEncoder':OneHotEncoder_Model,
- 'Missed':Missed_Model,
- 'PCA':PCA_Model,
- 'RPCA':RPCA_Model,
- 'KPCA':KPCA_Model,
- 'LDA':LDA_Model,
- 'SVC':SVC_Model,
- 'SVR':SVR_Model,
- 'MLP':MLP_Model,
- 'MLP_class': MLP_Model,
- 'NMF':NMF_Model,
- 't-SNE':TSNE_Model,
- 'k-means':kmeans_Model,
- 'Agglomerative':Agglomerative_Model,
- 'DBSCAN':DBSCAN_Model,
- }
- self.Learner_Type = {}#记录机器的类型
- def p_Args(self,Text,Type):#解析参数
- args = {}
- args_use = {}
- #输入数据
- exec(Text,args)
- #处理数据
- if Type in ('MLP','MLP_class'):
- args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
- else:
- args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
- args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
- if Type in ('MLP','MLP_class'):
- args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
- else:
- args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
- args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
- args_use['p'] = int(args.get('p', 2)) # 距离计算方式
- args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
- if Type in ('Tree','Forest','GradientTree'):
- args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
- else:
- args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
- args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
- args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
- args_use['max_depth'] = args.get('max_depth', None) # 最大深度
- args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
- args_use['P'] = float(args.get('min_samples_split', 0.8))
- args_use['k'] = args.get('k',1)
- args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
- 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
- get(args.get('score_func','f_classif'),f_classif))
- args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
- args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
- args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
- args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
- args_use['ndim_up'] = bool(args.get('ndim_up', True))
- args_use['miss_value'] = args.get('miss_value',np.nan)
- args_use['fill_method'] = args.get('fill_method','mean')
- args_use['fill_value'] = args.get('fill_value',None)
- args_use['n_components'] = args.get('n_components',1)
- args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
- args_use['n_Tree'] = args.get('n_Tree',100)
- args_use['gamma'] = args.get('gamma',1)
- args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
- args_use['activation'] = str(args.get('activation','relu'))
- args_use['solver'] = str(args.get('solver','adam'))
- if Type in ('k-means',):
- args_use['n_clusters'] = int(args.get('n_clusters',8))
- else:
- args_use['n_clusters'] = int(args.get('n_clusters', 2))
- args_use['eps'] = float(args.get('n_clusters', 0.5))
- args_use['min_samples'] = int(args.get('n_clusters', 5))
- return args_use
- def Add_Learner(self,Learner,Text=''):
- get = self.Learn_Dic[Learner]
- name = f'Le[{len(self.Learner)}]{Learner}'
- #参数调节
- args_use = self.p_Args(Text,Learner)
- #生成学习器
- self.Learner[name] = get(model=Learner,args_use=args_use)
- self.Learner_Type[name] = Learner
- def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
- model = self.get_Learner(Learner)
- name = f'Le[{len(self.Learner)}]SelectFrom_Model'
- #参数调节
- args_use = self.p_Args(Text,'SelectFrom_Model')
- #生成学习器
- self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
- self.Learner_Type[name] = 'SelectFrom_Model'
- def Return_Learner(self):
- return self.Learner.copy()
- def get_Learner(self,name):
- return self.Learner[name]
- def get_Learner_Type(self,name):
- return self.Learner_Type[name]
- def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
- x_data = self.get_Sheet(x_name)
- y_data = self.get_Sheet(y_name)
- model = self.get_Learner(Learner)
- return model.Fit(x_data,y_data,split)
- def Predict(self,x_name,Learner,Text='',**kwargs):
- x_data = self.get_Sheet(x_name)
- model = self.get_Learner(Learner)
- y_data,name = model.Predict(x_data)
- self.Add_Form(y_data,f'{x_name}:{name}')
- return y_data
- def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
- model = self.get_Learner(Learner)
- x = self.get_Sheet(name_x)
- y = self.get_Sheet(name_y)
- return model.Score(x,y)
- def Show_Args(self,Learner,Dic):#显示参数
- model = self.get_Learner(Learner)
- return model.Des(Dic)
- def Del_Leaner(self,Leaner):
- del self.Learner[Leaner]
- del self.Learner_Type[Leaner]
- def judging_Digits(num:(int,float)):
- a = str(abs(num)).split('.')[0]
- if a == '':raise ValueError
- return len(a)
|