Learn_Numpy.py 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. from pyecharts.components import Table #绘制表格
  2. from pyecharts import options as opts
  3. from random import randint
  4. from pyecharts.charts import *
  5. from pandas import DataFrame,read_csv
  6. import numpy as np
  7. from sklearn.model_selection import train_test_split
  8. from sklearn.linear_model import *
  9. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  10. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor
  11. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  12. GradientBoostingRegressor)
  13. from sklearn.metrics import accuracy_score
  14. from sklearn.feature_selection import *
  15. from sklearn.preprocessing import *
  16. from sklearn.impute import SimpleImputer
  17. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  18. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  19. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  20. from sklearn.neural_network import MLPClassifier,MLPRegressor
  21. from sklearn.manifold import TSNE
  22. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  23. from pyecharts.charts import *
  24. # import sklearn as sk
  25. #设置
  26. np.set_printoptions(threshold=np.inf)
  27. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  28. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  29. class Learner:
  30. def __init__(self,*args,**kwargs):
  31. self.numpy_Dic = {}#name:numpy
  32. def Add_Form(self,data:np.array,name):
  33. name = f'{name}[{len(self.numpy_Dic)}]'
  34. self.numpy_Dic[name] = data
  35. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  36. type_ = np.str if str_must else np.float
  37. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  38. try:
  39. data = pf_data.to_numpy(dtype=type_)
  40. except ValueError:
  41. data = pf_data.to_numpy(dtype=np.str)
  42. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  43. self.Add_Form(data,name)
  44. return data
  45. def Add_Python(self, Text, sheet_name):
  46. name = {}
  47. name.update(globals().copy())
  48. name.update(locals().copy())
  49. exec(Text, name)
  50. exec('get = Creat()', name)
  51. if isinstance(name['get'], np.array): # 已经是DataFram
  52. get = name['get']
  53. else:
  54. try:
  55. get = np.array(name['get'])
  56. except:
  57. get = np.array([name['get']])
  58. self.Add_Form(get, sheet_name)
  59. return get
  60. def get_Form(self) -> dict:
  61. return self.numpy_Dic.copy()
  62. def get_Sheet(self,name) -> np.array:
  63. return self.numpy_Dic[name].copy()
  64. def to_CSV(self,Dic:str,name,sep) -> str:
  65. get = self.get_Sheet(name)
  66. np.savetxt(Dic, get, delimiter=sep)
  67. return Dic
  68. def to_Html_One(self,name,Dic=''):
  69. if Dic == '': Dic = f'{name}.html'
  70. get = self.get_Sheet(name)
  71. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  72. get = get.tolist()
  73. for i in range(len(get)):
  74. get[i] = [i+1] + get[i]
  75. headers = [i for i in range(len(get[0]))]
  76. table = Table()
  77. table.add(headers, get).set_global_opts(
  78. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  79. table.render(Dic)
  80. return Dic
  81. def to_Html(self, name, Dic='', type_=0):
  82. if Dic == '': Dic = f'{name}.html'
  83. # 把要画的sheet放到第一个
  84. Sheet_Dic = self.get_Form()
  85. del Sheet_Dic[name]
  86. Sheet_list = [name] + list(Sheet_Dic.keys())
  87. class TAB_F:
  88. def __init__(self, q):
  89. self.tab = q # 一个Tab
  90. def render(self, Dic):
  91. return self.tab.render(Dic)
  92. # 生成一个显示页面
  93. if type_ == 0:
  94. class TAB(TAB_F):
  95. def add(self, table, k, *f):
  96. self.tab.add(table, k)
  97. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  98. elif type_ == 1:
  99. class TAB(TAB_F):
  100. def add(self, table, *k):
  101. self.tab.add(table)
  102. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  103. else:
  104. class TAB(TAB_F):
  105. def add(self, table, *k):
  106. self.tab.add(table)
  107. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  108. # 迭代添加内容
  109. for name in Sheet_list:
  110. get = self.get_Sheet(name)
  111. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  112. get = get.tolist()
  113. for i in range(len(get)):
  114. get[i] = [i+1] + get[i]
  115. headers = [i for i in range(len(get[0]))]
  116. table = Table()
  117. table.add(headers, get).set_global_opts(
  118. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  119. tab.add(table, f'表格:{name}')
  120. tab.render(Dic)
  121. return Dic
  122. class Study_MachineBase:
  123. def __init__(self,*args,**kwargs):
  124. self.Model = None
  125. self.have_Fit = False
  126. self.x_trainData = None
  127. self.y_trainData = None
  128. #记录这两个是为了克隆
  129. def Accuracy(self,y_Predict,y_Really):
  130. return accuracy_score(y_Predict, y_Really)
  131. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  132. self.have_Fit = True
  133. y_data = y_data.ravel()
  134. self.x_trainData = x_data
  135. self.y_trainData = y_data
  136. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  137. self.Model.fit(x_data,y_data)
  138. train_score = self.Model.score(x_train,y_train)
  139. test_score = self.Model.score(x_test,y_test)
  140. return train_score,test_score
  141. def Score(self,x_data,y_data):
  142. Score = self.Model.score(x_data,y_data)
  143. return Score
  144. def Predict(self,x_data):
  145. y_Predict = self.Model.predict(x_data)
  146. return y_Predict,'预测'
  147. def Des(self,*args,**kwargs):
  148. return ()
  149. class prep_Base(Study_MachineBase):
  150. def __init__(self,*args,**kwargs):
  151. super(prep_Base, self).__init__(*args,**kwargs)
  152. self.Model = None
  153. def Fit(self, x_data,y_data, *args, **kwargs):
  154. self.x_trainData = x_data
  155. self.y_train = y_data
  156. if not self.have_Fit: # 不允许第二次训练
  157. self.Model.fit(x_data,y_data)
  158. return 'None', 'None'
  159. def Predict(self, x_data):
  160. x_Predict = self.Model.transform(x_data)
  161. return x_Predict,'特征工程'
  162. def Score(self, x_data, y_data):
  163. return 'None' # 没有score
  164. class Unsupervised(prep_Base):
  165. def Fit(self, x_data, *args, **kwargs):
  166. self.x_trainData = x_data
  167. self.y_train = None
  168. if not self.have_Fit: # 不允许第二次训练
  169. self.Model.fit(x_data)
  170. return 'None', 'None'
  171. class UnsupervisedModel(prep_Base):
  172. def Fit(self, x_data, *args, **kwargs):
  173. self.x_trainData = x_data
  174. self.y_train = None
  175. self.Model.fit(x_data)
  176. return 'None', 'None'
  177. def scatter(w_heard,w):
  178. c = (
  179. Scatter()
  180. .add_xaxis(w_heard)
  181. .add_yaxis('', w, **Label_Set)
  182. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  183. )
  184. return c
  185. def bar(w_heard,w):
  186. c = (
  187. Bar()
  188. .add_xaxis(w_heard)
  189. .add_yaxis('', abs(w).tolist(), **Label_Set)
  190. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  191. )
  192. return c
  193. def line(w_sum,w,b):
  194. x = np.arange(-5, 5, 1)
  195. c = (
  196. Line()
  197. .add_xaxis(x.tolist())
  198. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  199. )
  200. for i in range(len(w)):
  201. y = x * w[i] + (w[i] / w_sum) * b
  202. c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  203. return c
  204. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  205. y = y_trainData.tolist()
  206. x_data = x_trainData.T
  207. re = []
  208. for i in range(len(x_data)):
  209. x = x_data[i]
  210. p = int(x.max() - x.min()) / 5
  211. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  212. y_num = x_num * w[i] + (w[i] / w_sum) * b
  213. c = (
  214. Line()
  215. .add_xaxis(x_num.tolist())
  216. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  217. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  218. )
  219. b = (
  220. Scatter()
  221. .add_xaxis(x.tolist())
  222. .add_yaxis(f'{i}特征', y, **Label_Set)
  223. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  224. )
  225. b.overlap(c)
  226. re.append(b)
  227. return re
  228. class Line_Model(Study_MachineBase):
  229. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  230. super(Line_Model, self).__init__(*args,**kwargs)
  231. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  232. model]
  233. if model == 'Line':
  234. self.Model = Model()
  235. self.k = {}
  236. else:
  237. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  238. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  239. #记录这两个是为了克隆
  240. self.Alpha = args_use['alpha']
  241. self.max_iter = args_use['max_iter']
  242. self.Model_Name = model
  243. def Des(self,Dic='render.html',*args,**kwargs):
  244. #获取数据
  245. w = self.Model.coef_.tolist()#变为表格
  246. w_sum = self.Model.coef_.sum()
  247. w_heard = [f'系数w[{i}]' for i in range(len(w))]
  248. b = self.Model.intercept_
  249. tab = Tab()
  250. tab.add(scatter(w_heard,w),'系数w散点图')
  251. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  252. tab.add(line(w_sum,w,b), '系数w曲线')
  253. re = see_Line(self.x_trainData,self.y_trainData,w,w_sum,b)
  254. for i in range(len(re)):
  255. tab.add(re[i], f'{i}预测分类类表')
  256. columns = w_heard + ['截距b']
  257. data = w + [b]
  258. if self.Model_Name != 'Line':
  259. columns += ['阿尔法','最大迭代次数']
  260. data += [self.Model.alpha,self.Model.max_iter]
  261. c = Table().add(headers=columns,rows=[data])
  262. tab.add(c, '数据表')
  263. save = Dic + r'/render.HTML'
  264. tab.render(save)#生成HTML
  265. return save,
  266. class LogisticRegression_Model(Study_MachineBase):
  267. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  268. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  269. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  270. #记录这两个是为了克隆
  271. self.C = args_use['C']
  272. self.max_iter = args_use['max_iter']
  273. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  274. self.Model_Name = model
  275. def Des(self,Dic='render.html',*args,**kwargs):
  276. #获取数据
  277. w_array = self.Model.coef_
  278. w_list = w_array.tolist() # 变为表格
  279. b = self.Model.intercept_
  280. c = self.Model.C
  281. max_iter = self.Model.max_iter
  282. class_ = self.Model.classes_.tolist()
  283. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  284. tab = Tab()
  285. for i in range(len(w_list)):
  286. w = w_list[i]
  287. w_sum = self.Model.coef_.sum()
  288. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  289. tab.add(scatter(w_heard, w), '系数w散点图')
  290. tab.add(bar(w_heard, w_array[i]), '系数柱状图')
  291. tab.add(line(w_sum, w, b), '系数w曲线')
  292. columns = class_heard + ['截距b','C','最大迭代数']
  293. data = class_ + [b,c,max_iter]
  294. c = Table().add(headers=columns, rows=[data])
  295. tab.add(c, '数据表')
  296. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  297. tab.add(c, '系数数据表')
  298. save = Dic + r'/render.HTML'
  299. tab.render(save) # 生成HTML
  300. return save,
  301. def get_Color():
  302. # 随机颜色,雷达图默认非随机颜色
  303. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  304. color = '#'
  305. for a in rgb:
  306. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  307. return color
  308. def is_continuous(data:np.array,f:float=0.1):
  309. data = data.tolist()
  310. l = list(set(data))
  311. re = len(l)/len(data)>=f or len(data) <= 3
  312. return re
  313. class Categorical_Data:
  314. def __init__(self):
  315. self.x_means = []
  316. self.x_range = []
  317. self.Type = []
  318. # self.min_max = [0,None]
  319. def __call__(self,x1, *args, **kwargs):
  320. return self.is_continuous(x1)
  321. def is_continuous(self,x1:np.array):
  322. try:
  323. x1_con = is_continuous(x1)
  324. if x1_con:
  325. self.x_means.append(np.mean(x1))
  326. self.add_Range(x1)
  327. else:
  328. self.x_means.append(np.median(x1))
  329. self.add_Range(x1,False)
  330. return x1_con
  331. except:
  332. self.add_Range(x1,False)
  333. return False
  334. def add_Range(self,x1:np.array,range_=True):
  335. try:
  336. if not range_ : raise Exception
  337. min_ = int(x1.min())
  338. max_ = int(x1.max())
  339. #不需要复制列表
  340. # if self.min_max[0] > min_:self.min_max[0] = min_
  341. # if self.min_max[1] < max_:self.min_max[1] = max_
  342. # self.x_range.append(self.min_max)
  343. self.x_range.append([min(min_,0),max_])
  344. self.Type.append(1)
  345. except:
  346. self.x_range.append(np.array.tolist())
  347. self.Type.append(2)
  348. def get(self):
  349. return self.x_means,self.x_range,self.Type
  350. def Training_visualization(x_trainData,class_,y):
  351. x_data = x_trainData.T
  352. Cat = Categorical_Data()
  353. o_cList = []
  354. for i in range(len(x_data)):
  355. x1 = x_data[i] # x坐标
  356. x1_con = Cat(x1)
  357. if i == 0:continue
  358. x2 = x_data[i - 1] # y坐标
  359. x2_con = is_continuous(x2)
  360. o_c = None # 旧的C
  361. for n_class in class_:
  362. x_1 = x1[y == n_class].tolist()
  363. x_2 = x2[y == n_class].tolist()
  364. c = (Scatter()
  365. .add_xaxis(x_1)
  366. .add_yaxis(f'{n_class}', x_2, **Label_Set)
  367. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set,
  368. yaxis_opts=opts.AxisOpts(type_='value' if x2_con else None,axisline_opts=opts.AxisLineOpts(is_on_zero=False)),
  369. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,axisline_opts=opts.AxisLineOpts(is_on_zero=False))))
  370. if o_c == None:
  371. o_c = c
  372. else:
  373. o_c = o_c.overlap(c)
  374. o_cList.append(o_c)
  375. means,x_range,Type = Cat.get()
  376. return o_cList,means,x_range,Type
  377. def regress_visualization(x_trainData,y):
  378. x_data = x_trainData.T
  379. Cat = Categorical_Data()
  380. o_cList = []
  381. for i in range(len(x_data)):
  382. x1 = x_data[i] # x坐标
  383. x1_con = Cat(x1)
  384. if i == 0:continue
  385. print(f'类型{i}:\n{x1_con}x1=\n{x1}')
  386. x2 = x_data[i - 1] # y坐标
  387. x2_con = is_continuous(x2)
  388. print(f'\n{x2_con}x2=\n{x2}')
  389. value = [[x1[i],x2[i],y[i]] for i in range(len(x1))]
  390. value = sorted(value,key=lambda y:y[1])
  391. value = sorted(value,key=lambda y:y[0])#两次排序
  392. c = (
  393. HeatMap()
  394. .add_xaxis(x1)
  395. .add_yaxis('数据',x2,value)
  396. .set_global_opts(title_opts=opts.TitleOpts(title="预测热点图"),visualmap_opts=opts.VisualMapOpts(max_=y.max(),min_=y.min()),
  397. **global_Set,yaxis_opts=opts.AxisOpts(type_='category'),
  398. xaxis_opts=opts.AxisOpts(type_='category'))
  399. )
  400. o_cList.append(c)
  401. means,x_range,Type = Cat.get()
  402. return o_cList,means,x_range,Type
  403. class Knn_Model(Study_MachineBase):
  404. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  405. super(Knn_Model, self).__init__(*args,**kwargs)
  406. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  407. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  408. #记录这两个是为了克隆
  409. self.n_neighbors = args_use['n_neighbors']
  410. self.p = args_use['p']
  411. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  412. self.Model_Name = model
  413. def Des(self,Dic,*args,**kwargs):
  414. tab = Tab()
  415. y = self.y_trainData
  416. x_data = self.x_trainData
  417. if self.Model_Name == 'Knn_class':
  418. class_ = self.Model.classes_.tolist()
  419. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  420. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  421. for i in range(len(get)):
  422. tab.add(get[i],f'{i}类型图')
  423. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type,get)
  424. for i in range(len(get)):
  425. tab.add(get[i], f'{i}预测类型图')
  426. # c = Table().add(headers=class_heard, rows=class_)
  427. # tab.add(c, '数据表')
  428. else:
  429. get, x_means, x_range,Type = regress_visualization(x_data, y)
  430. for i in range(len(get)):
  431. tab.add(get[i], f'{i}类型图')
  432. save = Dic + r'/render.HTML'
  433. tab.render(save) # 生成HTML
  434. return save,
  435. def Prediction_boundary(r,x_means,Predict_Func):
  436. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类
  437. # a-特征x,b-特征x-1,c-其他特征
  438. a = np.array([i for i in r for _ in r]).T
  439. b = np.array([i for _ in r for i in r]).T
  440. data_c = np.array([x_means for _ in r for i in r])
  441. o_cList = []
  442. for i in range(data_c.shape[1]):
  443. if i == 0:
  444. continue
  445. data = data_c.copy()
  446. data[:, i - 1] = a
  447. data[:, i] = b
  448. y_data = Predict_Func(data)[0]
  449. value = [[a[i], b[i], y_data[i]] for i in range(len(a))]
  450. a_con = is_continuous(a)
  451. b_con = is_continuous(b)
  452. c = (
  453. HeatMap()
  454. .add_xaxis(a)
  455. .add_yaxis('数据', b, value)
  456. .set_global_opts(title_opts=opts.TitleOpts(title="预测热点图"), visualmap_opts=opts.VisualMapOpts(max_=y_data.max(),min_=y_data.min()),
  457. **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if b_con else None),
  458. xaxis_opts=opts.AxisOpts(type_='value' if a_con else None))
  459. )
  460. o_cList.append(c)
  461. return o_cList
  462. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,add_o):
  463. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  464. # a-特征x,b-特征x-1,c-其他特征
  465. #规定,i-1是x轴,a是x轴,x_1是x轴
  466. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  467. o_cList = []
  468. for i in range(len(x_means)):
  469. if i == 0:
  470. continue
  471. n_ra = x_range[i-1]
  472. Type_ra = Type[i-1]
  473. n_rb = x_range[i]
  474. Type_rb = Type[i]
  475. print(f'{n_ra},{n_rb}')
  476. if Type_ra == 1:
  477. n = int(35 / (n_ra[1] - n_ra[0]))
  478. ra = [i / n for i in range(n_ra[0] * n, n_ra[1] * n)]
  479. else:
  480. ra = n_ra
  481. if Type_rb == 1:
  482. n = int(35 / (n_rb[1] - n_rb[0]))
  483. rb = [i / n for i in range(n_rb[0] * n, n_rb[1] * n)]
  484. else:
  485. rb = n_rb
  486. a = np.array([i for i in ra for _ in rb]).T
  487. b = np.array([i for _ in ra for i in rb]).T
  488. data_c = np.array([x_means for _ in ra for i in rb])
  489. data = data_c.copy()
  490. data[:, i - 1] = a
  491. data[:, i] = b
  492. y_data = Predict_Func(data)[0].tolist()
  493. value = [[a[i], b[i], class_dict.get(y_data[i],-1)] for i in range(len(a))]
  494. c = (HeatMap()
  495. .add_xaxis(a)
  496. .add_yaxis(f'数据', b, value, **Label_Set)#value的第一个数值是x
  497. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Set,
  498. yaxis_opts=opts.AxisOpts(axisline_opts=opts.AxisLineOpts(is_on_zero=False),type_='category'),
  499. xaxis_opts=opts.AxisOpts(axisline_opts=opts.AxisLineOpts(is_on_zero=False),type_='category')
  500. ,visualmap_opts=opts.VisualMapOpts(is_show=False,max_=max(class_dict.values()),min_=-1))
  501. )
  502. try:
  503. c.overlap(add_o[i])
  504. except:pass
  505. o_cList.append(c)
  506. return o_cList
  507. class Tree_Model(Study_MachineBase):
  508. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  509. super(Tree_Model, self).__init__(*args,**kwargs)
  510. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  511. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  512. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  513. #记录这两个是为了克隆
  514. self.criterion = args_use['criterion']
  515. self.splitter = args_use['splitter']
  516. self.max_features = args_use['max_features']
  517. self.max_depth = args_use['max_depth']
  518. self.min_samples_split = args_use['min_samples_split']
  519. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  520. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  521. self.Model_Name = model
  522. class Forest_Model(Study_MachineBase):
  523. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  524. super(Forest_Model, self).__init__(*args,**kwargs)
  525. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  526. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  527. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  528. #记录这两个是为了克隆
  529. self.n_estimators = args_use['n_Tree']
  530. self.criterion = args_use['criterion']
  531. self.max_features = args_use['max_features']
  532. self.max_depth = args_use['max_depth']
  533. self.min_samples_split = args_use['min_samples_split']
  534. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  535. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  536. self.Model_Name = model
  537. class GradientTree_Model(Study_MachineBase):
  538. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  539. super(GradientTree_Model, self).__init__(*args,**kwargs)
  540. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  541. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  542. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  543. #记录这两个是为了克隆
  544. self.criterion = args_use['criterion']
  545. self.splitter = args_use['splitter']
  546. self.max_features = args_use['max_features']
  547. self.max_depth = args_use['max_depth']
  548. self.min_samples_split = args_use['min_samples_split']
  549. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  550. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  551. self.Model_Name = model
  552. class SVC_Model(Study_MachineBase):
  553. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  554. super(SVC_Model, self).__init__(*args,**kwargs)
  555. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  556. #记录这两个是为了克隆
  557. self.C = args_use['C']
  558. self.gamma = args_use['gamma']
  559. self.kernel = args_use['kernel']
  560. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  561. self.Model_Name = model
  562. class SVR_Model(Study_MachineBase):
  563. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  564. super(SVR_Model, self).__init__(*args,**kwargs)
  565. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  566. #记录这两个是为了克隆
  567. self.C = args_use['C']
  568. self.gamma = args_use['gamma']
  569. self.kernel = args_use['kernel']
  570. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  571. self.Model_Name = model
  572. class Variance_Model(Unsupervised):#无监督
  573. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  574. super(Variance_Model, self).__init__(*args,**kwargs)
  575. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  576. #记录这两个是为了克隆
  577. self.threshold = args_use['P']
  578. self.k = {'threshold':args_use['P']}
  579. self.Model_Name = model
  580. class SelectKBest_Model(prep_Base):#有监督
  581. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  582. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  583. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  584. # 记录这两个是为了克隆
  585. self.k_ = args_use['k']
  586. self.score_func=args_use['score_func']
  587. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  588. self.Model_Name = model
  589. class SelectFrom_Model(prep_Base):#有监督
  590. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  591. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  592. self.Model = Learner.Model
  593. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  594. self.max_features = args_use['k']
  595. self.estimator=Learner.Model
  596. self.k = {'max_features':args_use['k'],'estimator':Learner.Model}
  597. self.Model_Name = 'SelectFrom_Model'
  598. def Predict(self, x_data):
  599. try:
  600. x_Predict = self.Select_Model.transform(x_data)
  601. return x_Predict,'模型特征工程'
  602. except:
  603. return np.array([]),'无结果工程'
  604. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  605. def __init__(self, args_use, model, *args, **kwargs):
  606. super(Standardization_Model, self).__init__(*args, **kwargs)
  607. self.Model = StandardScaler()
  608. self.k = {}
  609. self.Model_Name = 'StandardScaler'
  610. class MinMaxScaler_Model(Unsupervised):#离差标准化
  611. def __init__(self, args_use, model, *args, **kwargs):
  612. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  613. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  614. self.k = {}
  615. self.Model_Name = 'MinMaxScaler'
  616. class LogScaler_Model(prep_Base):#对数标准化
  617. def __init__(self, args_use, model, *args, **kwargs):
  618. super(LogScaler_Model, self).__init__(*args, **kwargs)
  619. self.Model = None
  620. self.k = {}
  621. self.Model_Name = 'LogScaler'
  622. def Fit(self, x_data, *args, **kwargs):
  623. if not self.have_Fit: # 不允许第二次训练
  624. self.max_logx = np.log(x_data.max())
  625. return 'None', 'None'
  626. def Predict(self, x_data):
  627. try:
  628. max_logx = self.max_logx
  629. except:
  630. self.have_Fit = False
  631. self.Fit(x_data)
  632. max_logx = self.max_logx
  633. x_Predict = (np.log(x_data)/max_logx)
  634. return x_Predict,'对数变换'
  635. class atanScaler_Model(prep_Base):#atan标准化
  636. def __init__(self, args_use, model, *args, **kwargs):
  637. super(atanScaler_Model, self).__init__(*args, **kwargs)
  638. self.Model = None
  639. self.k = {}
  640. self.Model_Name = 'atanScaler'
  641. def Fit(self, x_data, *args, **kwargs):
  642. return 'None', 'None'
  643. def Predict(self, x_data):
  644. x_Predict = (np.arctan(x_data)*(2/np.pi))
  645. return x_Predict,'atan变换'
  646. class decimalScaler_Model(prep_Base):#小数定标准化
  647. def __init__(self, args_use, model, *args, **kwargs):
  648. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  649. self.Model = None
  650. self.k = {}
  651. self.Model_Name = 'Decimal_normalization'
  652. def Fit(self, x_data, *args, **kwargs):
  653. if not self.have_Fit: # 不允许第二次训练
  654. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  655. return 'None', 'None'
  656. def Predict(self, x_data):
  657. try:
  658. j = self.j
  659. except:
  660. self.have_Fit = False
  661. self.Fit(x_data)
  662. j = self.j
  663. x_Predict = (x_data/(10**j))
  664. return x_Predict,'小数定标标准化'
  665. class Mapzoom_Model(prep_Base):#映射标准化
  666. def __init__(self, args_use, model, *args, **kwargs):
  667. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  668. self.Model = None
  669. self.feature_range = args_use['feature_range']
  670. self.k = {}
  671. self.Model_Name = 'Decimal_normalization'
  672. def Fit(self, x_data, *args, **kwargs):
  673. if not self.have_Fit: # 不允许第二次训练
  674. self.max = x_data.max()
  675. self.min = x_data.min()
  676. return 'None', 'None'
  677. def Predict(self, x_data):
  678. try:
  679. max = self.max
  680. min = self.min
  681. except:
  682. self.have_Fit = False
  683. self.Fit(x_data)
  684. max = self.max
  685. min = self.min
  686. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  687. return x_Predict,'映射标准化'
  688. class sigmodScaler_Model(prep_Base):#sigmod变换
  689. def __init__(self, args_use, model, *args, **kwargs):
  690. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  691. self.Model = None
  692. self.k = {}
  693. self.Model_Name = 'sigmodScaler_Model'
  694. def Fit(self, x_data, *args, **kwargs):
  695. return 'None', 'None'
  696. def Predict(self, x_data:np.array):
  697. x_Predict = (1/(1+np.exp(-x_data)))
  698. return x_Predict,'Sigmod变换'
  699. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  700. def __init__(self, args_use, model, *args, **kwargs):
  701. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  702. self.Model = None
  703. self.feature_range = args_use['feature_range']
  704. self.k = {}
  705. self.Model_Name = 'Fuzzy_quantization'
  706. def Fit(self, x_data, *args, **kwargs):
  707. if not self.have_Fit: # 不允许第二次训练
  708. self.max = x_data.max()
  709. self.min = x_data.min()
  710. return 'None', 'None'
  711. def Predict(self, x_data,*args,**kwargs):
  712. try:
  713. max = self.max
  714. min = self.min
  715. except:
  716. self.have_Fit = False
  717. self.Fit(x_data)
  718. max = self.max
  719. min = self.min
  720. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  721. return x_Predict,'映射标准化'
  722. class Regularization_Model(Unsupervised):#正则化
  723. def __init__(self, args_use, model, *args, **kwargs):
  724. super(Regularization_Model, self).__init__(*args, **kwargs)
  725. self.Model = Normalizer(norm=args_use['norm'])
  726. self.k = {'norm':args_use['norm']}
  727. self.Model_Name = 'Regularization'
  728. class Binarizer_Model(Unsupervised):#二值化
  729. def __init__(self, args_use, model, *args, **kwargs):
  730. super(Binarizer_Model, self).__init__(*args, **kwargs)
  731. self.Model = Binarizer(threshold=args_use['threshold'])
  732. self.k = {}
  733. self.Model_Name = 'Binarizer'
  734. class Discretization_Model(prep_Base):#n值离散
  735. def __init__(self, args_use, model, *args, **kwargs):
  736. super(Discretization_Model, self).__init__(*args, **kwargs)
  737. self.Model = None
  738. range_ = args_use['split_range']
  739. if range_ == []:raise Exception
  740. elif len(range_) == 1:range_.append(range_[0])
  741. self.range = range_
  742. self.k = {}
  743. self.Model_Name = 'Discretization'
  744. def Fit(self,*args,**kwargs):
  745. return 'None','None'
  746. def Predict(self,x_data):
  747. x_Predict = x_data.copy()#复制
  748. range_ = self.range
  749. bool_list = []
  750. max_ = len(range_) - 1
  751. o_t = None
  752. for i in range(len(range_)):
  753. try:
  754. t = float(range_[i])
  755. except:continue
  756. if o_t == None:#第一个参数
  757. bool_list.append(x_Predict <= t)
  758. else:
  759. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  760. if i == max_:
  761. bool_list.append(t <= x_Predict)
  762. o_t = t
  763. for i in range(len(bool_list)):
  764. x_Predict[bool_list[i]] = i
  765. return x_Predict,f'{len(bool_list)}值离散化'
  766. class Label_Model(prep_Base):#数字编码
  767. def __init__(self, args_use, model, *args, **kwargs):
  768. super(Label_Model, self).__init__(*args, **kwargs)
  769. self.Model = []
  770. self.k = {}
  771. self.Model_Name = 'LabelEncoder'
  772. def Fit(self,x_data,*args, **kwargs):
  773. if not self.have_Fit: # 不允许第二次训练
  774. if x_data.ndim == 1:x_data = np.array([x_data])
  775. for i in range(x_data.shape[1]):
  776. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  777. return 'None', 'None'
  778. def Predict(self, x_data):
  779. x_Predict = x_data.copy()
  780. if x_data.ndim == 1: x_data = np.array([x_data])
  781. for i in range(x_data.shape[1]):
  782. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  783. return x_Predict,'数字编码'
  784. class OneHotEncoder_Model(prep_Base):#独热编码
  785. def __init__(self, args_use, model, *args, **kwargs):
  786. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  787. self.Model = []
  788. self.ndim_up = args_use['ndim_up']
  789. self.k = {}
  790. self.Model_Name = 'OneHotEncoder'
  791. def Fit(self,x_data,*args, **kwargs):
  792. if not self.have_Fit: # 不允许第二次训练
  793. if x_data.ndim == 1:x_data = [x_data]
  794. for i in range(x_data.shape[1]):
  795. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  796. self.Model.append(OneHotEncoder().fit(data))#训练机器
  797. return 'None', 'None'
  798. def Predict(self, x_data):
  799. x_new = []
  800. for i in range(x_data.shape[1]):
  801. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  802. oneHot = self.Model[i].transform(data).toarray().tolist()
  803. print(len(oneHot),oneHot)
  804. x_new.append(oneHot)#添加到列表中
  805. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  806. x_Predict = []
  807. for i in range(x_new.shape[1]):
  808. x_Predict.append(x_new[:,i])
  809. x_Predict = np.array(x_Predict)#转换回array
  810. if not self.ndim_up:#需要降维操作
  811. print('Q')
  812. new_xPredict = []
  813. for i in x_Predict:
  814. new_list = []
  815. list_ = i.tolist()
  816. for a in list_:
  817. new_list += a
  818. new = np.array(new_list)
  819. new_xPredict.append(new)
  820. return np.array(new_xPredict),'独热编码'
  821. return x_Predict,'独热编码'#不需要降维
  822. class Missed_Model(Unsupervised):#缺失数据补充
  823. def __init__(self, args_use, model, *args, **kwargs):
  824. super(Missed_Model, self).__init__(*args, **kwargs)
  825. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  826. fill_value=args_use['fill_value'])
  827. self.k = {}
  828. self.Model_Name = 'Missed'
  829. def Predict(self, x_data):
  830. x_Predict = self.Model.transform(x_data)
  831. return x_Predict,'填充缺失'
  832. class PCA_Model(Unsupervised):
  833. def __init__(self, args_use, model, *args, **kwargs):
  834. super(PCA_Model, self).__init__(*args, **kwargs)
  835. self.Model = PCA(n_components=args_use['n_components'])
  836. self.n_components = args_use['n_components']
  837. self.k = {'n_components':args_use['n_components']}
  838. self.Model_Name = 'PCA'
  839. def Predict(self, x_data):
  840. x_Predict = self.Model.transform(x_data)
  841. return x_Predict,'PCA'
  842. class RPCA_Model(Unsupervised):
  843. def __init__(self, args_use, model, *args, **kwargs):
  844. super(RPCA_Model, self).__init__(*args, **kwargs)
  845. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  846. self.n_components = args_use['n_components']
  847. self.k = {'n_components': args_use['n_components']}
  848. self.Model_Name = 'RPCA'
  849. def Predict(self, x_data):
  850. x_Predict = self.Model.transform(x_data)
  851. return x_Predict,'RPCA'
  852. class KPCA_Model(Unsupervised):
  853. def __init__(self, args_use, model, *args, **kwargs):
  854. super(KPCA_Model, self).__init__(*args, **kwargs)
  855. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  856. self.n_components = args_use['n_components']
  857. self.kernel = args_use['kernel']
  858. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  859. self.Model_Name = 'KPCA'
  860. def Predict(self, x_data):
  861. x_Predict = self.Model.transform(x_data)
  862. return x_Predict,'KPCA'
  863. class LDA_Model(Unsupervised):
  864. def __init__(self, args_use, model, *args, **kwargs):
  865. super(LDA_Model, self).__init__(*args, **kwargs)
  866. self.Model = LDA(n_components=args_use['n_components'])
  867. self.n_components = args_use['n_components']
  868. self.k = {'n_components': args_use['n_components']}
  869. self.Model_Name = 'LDA'
  870. def Predict(self, x_data):
  871. x_Predict = self.Model.transform(x_data)
  872. return x_Predict,'LDA'
  873. class NMF_Model(Unsupervised):
  874. def __init__(self, args_use, model, *args, **kwargs):
  875. super(NMF_Model, self).__init__(*args, **kwargs)
  876. self.Model = NMF(n_components=args_use['n_components'])
  877. self.n_components = args_use['n_components']
  878. self.k = {'n_components':args_use['n_components']}
  879. self.Model_Name = 'NFM'
  880. def Predict(self, x_data):
  881. x_Predict = self.Model.transform(x_data)
  882. return x_Predict,'NMF'
  883. class TSNE_Model(Unsupervised):
  884. def __init__(self, args_use, model, *args, **kwargs):
  885. super(TSNE_Model, self).__init__(*args, **kwargs)
  886. self.Model = TSNE(n_components=args_use['n_components'])
  887. self.n_components = args_use['n_components']
  888. self.k = {'n_components':args_use['n_components']}
  889. self.Model_Name = 't-SNE'
  890. def Fit(self,*args, **kwargs):
  891. return 'None', 'None'
  892. def Predict(self, x_data):
  893. x_Predict = self.Model.fit_transform(x_data)
  894. return x_Predict,'SNE'
  895. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  896. def __init__(self,args_use,model,*args,**kwargs):
  897. super(MLP_Model, self).__init__(*args,**kwargs)
  898. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  899. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  900. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  901. #记录这两个是为了克隆
  902. self.hidden_layer_sizes = args_use['hidden_size']
  903. self.activation = args_use['activation']
  904. self.max_iter = args_use['max_iter']
  905. self.solver = args_use['solver']
  906. self.alpha = args_use['alpha']
  907. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  908. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  909. self.Model_Name = model
  910. class kmeans_Model(UnsupervisedModel):
  911. def __init__(self, args_use, model, *args, **kwargs):
  912. super(kmeans_Model, self).__init__(*args, **kwargs)
  913. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  914. self.n_clusters = args_use['n_clusters']
  915. self.k = {'n_clusters':args_use['n_clusters']}
  916. self.Model_Name = 'k-means'
  917. def Predict(self, x_data):
  918. y_Predict = self.Model.predict(x_data)
  919. return y_Predict,'k-means'
  920. class Agglomerative_Model(UnsupervisedModel):
  921. def __init__(self, args_use, model, *args, **kwargs):
  922. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  923. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  924. self.n_clusters = args_use['n_clusters']
  925. self.k = {'n_clusters':args_use['n_clusters']}
  926. self.Model_Name = 'Agglomerative'
  927. def Predict(self, x_data):
  928. y_Predict = self.Model.fit_predict(x_data)
  929. return y_Predict,'Agglomerative'
  930. class DBSCAN_Model(UnsupervisedModel):
  931. def __init__(self, args_use, model, *args, **kwargs):
  932. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  933. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  934. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  935. # min_samples
  936. self.eps = args_use['eps']
  937. self.min_samples = args_use['min_samples']
  938. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  939. self.Model_Name = 'DBSCAN'
  940. def Predict(self, x_data):
  941. y_Predict = self.Model.fit_predict(x_data)
  942. return y_Predict,'DBSCAN'
  943. class Machine_Learner(Learner):#数据处理者
  944. def __init__(self,*args, **kwargs):
  945. super().__init__(*args, **kwargs)
  946. self.Learner = {}#记录机器
  947. self.Learn_Dic = {'Line':Line_Model,
  948. 'Ridge':Line_Model,
  949. 'Lasso':Line_Model,
  950. 'LogisticRegression':LogisticRegression_Model,
  951. 'Knn_class':Knn_Model,
  952. 'Knn': Knn_Model,
  953. 'Tree_class': Tree_Model,
  954. 'Tree': Tree_Model,
  955. 'Forest':Forest_Model,
  956. 'Forest_class': Forest_Model,
  957. 'GradientTree_class':GradientTree_Model,
  958. 'GradientTree': GradientTree_Model,
  959. 'Variance':Variance_Model,
  960. 'SelectKBest':SelectKBest_Model,
  961. 'Z-Score':Standardization_Model,
  962. 'MinMaxScaler':MinMaxScaler_Model,
  963. 'LogScaler':LogScaler_Model,
  964. 'atanScaler':atanScaler_Model,
  965. 'decimalScaler':decimalScaler_Model,
  966. 'sigmodScaler':sigmodScaler_Model,
  967. 'Mapzoom':Mapzoom_Model,
  968. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  969. 'Regularization':Regularization_Model,
  970. 'Binarizer':Binarizer_Model,
  971. 'Discretization':Discretization_Model,
  972. 'Label':Label_Model,
  973. 'OneHotEncoder':OneHotEncoder_Model,
  974. 'Missed':Missed_Model,
  975. 'PCA':PCA_Model,
  976. 'RPCA':RPCA_Model,
  977. 'KPCA':KPCA_Model,
  978. 'LDA':LDA_Model,
  979. 'SVC':SVC_Model,
  980. 'SVR':SVR_Model,
  981. 'MLP':MLP_Model,
  982. 'MLP_class': MLP_Model,
  983. 'NMF':NMF_Model,
  984. 't-SNE':TSNE_Model,
  985. 'k-means':kmeans_Model,
  986. 'Agglomerative':Agglomerative_Model,
  987. 'DBSCAN':DBSCAN_Model,
  988. }
  989. self.Learner_Type = {}#记录机器的类型
  990. def p_Args(self,Text,Type):#解析参数
  991. args = {}
  992. args_use = {}
  993. #输入数据
  994. exec(Text,args)
  995. #处理数据
  996. if Type in ('MLP','MLP_class'):
  997. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  998. else:
  999. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  1000. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  1001. if Type in ('MLP','MLP_class'):
  1002. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  1003. else:
  1004. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  1005. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  1006. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  1007. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  1008. if Type in ('Tree','Forest','GradientTree'):
  1009. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  1010. else:
  1011. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  1012. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  1013. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  1014. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  1015. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  1016. args_use['P'] = float(args.get('min_samples_split', 0.8))
  1017. args_use['k'] = args.get('k',1)
  1018. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  1019. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  1020. get(args.get('score_func','f_classif'),f_classif))
  1021. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  1022. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  1023. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  1024. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  1025. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  1026. args_use['miss_value'] = args.get('miss_value',np.nan)
  1027. args_use['fill_method'] = args.get('fill_method','mean')
  1028. args_use['fill_value'] = args.get('fill_value',None)
  1029. args_use['n_components'] = args.get('n_components',1)
  1030. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  1031. args_use['n_Tree'] = args.get('n_Tree',100)
  1032. args_use['gamma'] = args.get('gamma',1)
  1033. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  1034. args_use['activation'] = str(args.get('activation','relu'))
  1035. args_use['solver'] = str(args.get('solver','adam'))
  1036. if Type in ('k-means',):
  1037. args_use['n_clusters'] = int(args.get('n_clusters',8))
  1038. else:
  1039. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  1040. args_use['eps'] = float(args.get('n_clusters', 0.5))
  1041. args_use['min_samples'] = int(args.get('n_clusters', 5))
  1042. return args_use
  1043. def Add_Learner(self,Learner,Text=''):
  1044. get = self.Learn_Dic[Learner]
  1045. name = f'Le[{len(self.Learner)}]{Learner}'
  1046. #参数调节
  1047. args_use = self.p_Args(Text,Learner)
  1048. #生成学习器
  1049. self.Learner[name] = get(model=Learner,args_use=args_use)
  1050. self.Learner_Type[name] = Learner
  1051. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  1052. model = self.get_Learner(Learner)
  1053. name = f'Le[{len(self.Learner)}]SelectFrom_Model'
  1054. #参数调节
  1055. args_use = self.p_Args(Text,'SelectFrom_Model')
  1056. #生成学习器
  1057. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  1058. self.Learner_Type[name] = 'SelectFrom_Model'
  1059. def Return_Learner(self):
  1060. return self.Learner.copy()
  1061. def get_Learner(self,name):
  1062. return self.Learner[name]
  1063. def get_Learner_Type(self,name):
  1064. return self.Learner_Type[name]
  1065. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  1066. x_data = self.get_Sheet(x_name)
  1067. y_data = self.get_Sheet(y_name)
  1068. model = self.get_Learner(Learner)
  1069. return model.Fit(x_data,y_data,split)
  1070. def Predict(self,x_name,Learner,Text='',**kwargs):
  1071. x_data = self.get_Sheet(x_name)
  1072. model = self.get_Learner(Learner)
  1073. y_data,name = model.Predict(x_data)
  1074. self.Add_Form(y_data,f'{x_name}:{name}')
  1075. return y_data
  1076. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  1077. model = self.get_Learner(Learner)
  1078. x = self.get_Sheet(name_x)
  1079. y = self.get_Sheet(name_y)
  1080. return model.Score(x,y)
  1081. def Show_Args(self,Learner,Dic):#显示参数
  1082. model = self.get_Learner(Learner)
  1083. return model.Des(Dic)
  1084. def Del_Leaner(self,Leaner):
  1085. del self.Learner[Leaner]
  1086. del self.Learner_Type[Leaner]
  1087. def judging_Digits(num:(int,float)):
  1088. a = str(abs(num)).split('.')[0]
  1089. if a == '':raise ValueError
  1090. return len(a)