Learn_Numpy.py 158 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts.components import Image
  3. from pyecharts import options as opts
  4. from random import randint
  5. from pyecharts.charts import *
  6. from pyecharts.charts import Tab as tab_First
  7. from pyecharts.options.series_options import JsCode
  8. from scipy.cluster.hierarchy import dendrogram, ward
  9. import matplotlib.pyplot as plt
  10. from pandas import DataFrame,read_csv
  11. import numpy as np
  12. import re
  13. from sklearn.model_selection import train_test_split
  14. from sklearn.linear_model import *
  15. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  16. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  17. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  18. GradientBoostingRegressor)
  19. from sklearn.metrics import *
  20. from sklearn.feature_selection import *
  21. from sklearn.preprocessing import *
  22. from sklearn.impute import SimpleImputer
  23. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  24. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  25. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  26. from sklearn.neural_network import MLPClassifier,MLPRegressor
  27. from sklearn.manifold import TSNE
  28. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  29. from scipy import optimize
  30. from scipy.fftpack import fft,ifft#快速傅里叶变换
  31. from os.path import split as path_split
  32. from os.path import exists,basename,splitext
  33. from os import mkdir
  34. import tarfile
  35. import pickle
  36. import joblib
  37. #设置
  38. np.set_printoptions(threshold=np.inf)
  39. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  40. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  41. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  42. More_Global = False#是否使用全部特征绘图
  43. All_Global = True#是否导出charts
  44. CSV_Global = True#是否导出CSV
  45. CLF_Global = True#是否导出模型
  46. TAR_Global = True#是否打包tar
  47. NEW_Global = True#是否新建目录
  48. class Tab(tab_First):
  49. def __init__(self, *args,**kwargs):
  50. super(Tab, self).__init__(*args,**kwargs)
  51. self.element = {}#记录tab组成元素 name:charts
  52. def add(self, chart, tab_name):
  53. self.element[tab_name] = chart
  54. return super(Tab, self).add(chart, tab_name)
  55. def render(self,path: str = "render.html",template_name: str = "simple_tab.html",*args,**kwargs,) -> str:
  56. if All_Global:
  57. Dic = path_split(path)[0]
  58. for i in self.element:
  59. self.element[i].render(Dic + '/' + i + '.html')
  60. return super(Tab, self).render(path,template_name,*args,**kwargs)
  61. class Table(Table_Fisrt):
  62. def __init__(self,*args,**kwargs):
  63. super(Table, self).__init__(*args,**kwargs)
  64. self.HEADERS = []
  65. self.ROWS = [[]]
  66. def add(self, headers, rows, attributes = None):
  67. if len(rows) == 1:
  68. new_headers = ['数据类型','数据']
  69. new_rows = list(zip(headers,rows[0]))
  70. self.HEADERS = new_headers
  71. self.ROWS = new_rows
  72. return super().add(new_headers,new_rows,attributes)
  73. else:
  74. self.HEADERS = headers
  75. self.ROWS = rows
  76. return super().add(headers, rows, attributes)
  77. def render(self,path= "render.html",*args,**kwargs,) -> str:
  78. if CSV_Global:
  79. Dic,name = path_split(path)
  80. name = splitext(name)[0]
  81. try:
  82. DataFrame(self.ROWS,columns = self.HEADERS).to_csv(Dic + '/' + name + '.csv')
  83. except:
  84. pass
  85. return super().render(path,*args,**kwargs)
  86. def make_list(first,end,num=35):
  87. n = num / (end - first)
  88. if n == 0: n = 1
  89. re = []
  90. n_first = first * n
  91. n_end = end * n
  92. while n_first <= n_end:
  93. cul = n_first / n
  94. re.append(round(cul,2))
  95. n_first += 1
  96. return re
  97. def list_filter(list_,num=70):
  98. #假设列表已经不重复
  99. if len(list_) <= num:return list_
  100. n = int(num / len(list_))
  101. re = list_[::n]
  102. return re
  103. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  104. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  105. # a-特征x,b-特征x-1,c-其他特征
  106. o_cList = []
  107. if len(x_means) == 1:
  108. return o_cList
  109. for i in range(len(x_means)):
  110. for j in range(len(x_means)):
  111. if j <= i:continue
  112. n_ra = x_range[j]
  113. Type_ra = Type[j]
  114. n_rb = x_range[i]
  115. Type_rb = Type[i]
  116. if Type_ra == 1:
  117. ra = make_list(n_ra[0],n_ra[1],70)
  118. else:
  119. ra = list_filter(n_ra)#可以接受最大为70
  120. if Type_rb == 1:
  121. rb = make_list(n_rb[0],n_rb[1],35)
  122. else:
  123. rb = list_filter(n_rb)#可以接受最大为70
  124. a = np.array([i for i in ra for _ in rb]).T
  125. b = np.array([i for _ in ra for i in rb]).T
  126. data = np.array([x_means for _ in ra for i in rb])
  127. data[:, j] = a
  128. data[:, i] = b
  129. y_data = Predict_Func(data)[0].tolist()
  130. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  131. c = (HeatMap()
  132. .add_xaxis(np.unique(a))
  133. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  134. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  135. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  136. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  137. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  138. pos_right='3%'))#显示
  139. )
  140. o_cList.append(c)
  141. return o_cList
  142. def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  143. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  144. # a-特征x,b-特征x-1,c-其他特征
  145. o_cList = []
  146. if len(x_means) == 1:
  147. return o_cList
  148. for i in range(len(x_means)):
  149. if i == 0:
  150. continue
  151. n_ra = x_range[i - 1]
  152. Type_ra = Type[i - 1]
  153. n_rb = x_range[i]
  154. Type_rb = Type[i]
  155. if Type_ra == 1:
  156. ra = make_list(n_ra[0],n_ra[1],70)
  157. else:
  158. ra = list_filter(n_ra)#可以接受最大为70
  159. if Type_rb == 1:
  160. rb = make_list(n_rb[0],n_rb[1],35)
  161. else:
  162. rb = list_filter(n_rb)#可以接受最大为70
  163. a = np.array([i for i in ra for _ in rb]).T
  164. b = np.array([i for _ in ra for i in rb]).T
  165. data = np.array([x_means for _ in ra for i in rb])
  166. data[:, i - 1] = a
  167. data[:, i] = b
  168. y_data = Predict_Func(data)[0].tolist()
  169. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  170. c = (HeatMap()
  171. .add_xaxis(np.unique(a))
  172. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  173. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  174. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  175. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  176. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  177. pos_right='3%'))#显示
  178. )
  179. o_cList.append(c)
  180. return o_cList
  181. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  182. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  183. # a-特征x,b-特征x-1,c-其他特征
  184. #规定,i-1是x轴,a是x轴,x_1是x轴
  185. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  186. if not nono:
  187. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  188. else:v_dict = []
  189. for i in class_dict:
  190. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  191. o_cList = []
  192. if len(x_means) == 1:
  193. n_ra = x_range[0]
  194. if Type[0] == 1:
  195. ra = make_list(n_ra[0], n_ra[1], 70)
  196. else:
  197. ra = n_ra
  198. a = np.array([i for i in ra]).reshape(-1,1)
  199. y_data = Predict_Func(a)[0].tolist()
  200. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  201. c = (HeatMap()
  202. .add_xaxis(['None'])
  203. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  204. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  205. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  206. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  207. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  208. min_=-1,
  209. is_piecewise=True, pieces=v_dict,
  210. orient='horizontal', pos_bottom='3%'))
  211. )
  212. o_cList.append(c)
  213. return o_cList
  214. #如果x_means长度不等于1则执行下面
  215. for i in range(len(x_means)):
  216. if i == 0:
  217. continue
  218. n_ra = x_range[i-1]
  219. Type_ra = Type[i-1]
  220. n_rb = x_range[i]
  221. Type_rb = Type[i]
  222. if Type_ra == 1:
  223. ra = make_list(n_ra[0],n_ra[1],70)
  224. else:
  225. ra = n_ra
  226. if Type_rb == 1:
  227. rb = make_list(n_rb[0],n_rb[1],35)
  228. else:
  229. rb = n_rb
  230. a = np.array([i for i in ra for _ in rb]).T
  231. b = np.array([i for _ in ra for i in rb]).T
  232. data = np.array([x_means for _ in ra for i in rb])
  233. data[:, i - 1] = a
  234. data[:, i] = b
  235. y_data = Predict_Func(data)[0].tolist()
  236. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  237. c = (HeatMap()
  238. .add_xaxis(np.unique(a))
  239. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  240. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  241. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  242. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  243. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  244. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  245. )
  246. o_cList.append(c)
  247. return o_cList
  248. def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  249. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  250. # a-特征x,b-特征x-1,c-其他特征
  251. #规定,i-1是x轴,a是x轴,x_1是x轴
  252. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  253. if not nono:
  254. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  255. else:v_dict = []
  256. for i in class_dict:
  257. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  258. o_cList = []
  259. if len(x_means) == 1:
  260. return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono)
  261. #如果x_means长度不等于1则执行下面
  262. for i in range(len(x_means)):
  263. for j in range(len(x_means)):
  264. if j <= i:continue
  265. n_ra = x_range[j]
  266. Type_ra = Type[j]
  267. n_rb = x_range[i]
  268. Type_rb = Type[i]
  269. if Type_ra == 1:
  270. ra = make_list(n_ra[0],n_ra[1],70)
  271. else:
  272. ra = n_ra
  273. if Type_rb == 1:
  274. rb = make_list(n_rb[0],n_rb[1],35)
  275. else:
  276. rb = n_rb
  277. a = np.array([i for i in ra for _ in rb]).T
  278. b = np.array([i for _ in ra for i in rb]).T
  279. data = np.array([x_means for _ in ra for i in rb])
  280. data[:, j] = a
  281. data[:, i] = b
  282. y_data = Predict_Func(data)[0].tolist()
  283. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  284. c = (HeatMap()
  285. .add_xaxis(np.unique(a))
  286. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  287. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  288. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  289. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  290. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  291. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  292. )
  293. o_cList.append(c)
  294. return o_cList
  295. def SeeTree(Dic):
  296. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  297. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  298. node_Dict = {}
  299. link_list = []
  300. with open(Dic, 'r') as f: # 貌似必须分开w和r
  301. for i in f:
  302. try:
  303. get = re.findall(node_re, i)[0]
  304. if get[0] != '':
  305. try:
  306. v = float(get[0])
  307. except:
  308. v = 0
  309. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  310. continue
  311. except:
  312. pass
  313. try:
  314. get = re.findall(link_re, i)[0]
  315. if get[0] != '' and get[1] != '':
  316. link_list.append((get[0], get[1]))
  317. except:
  318. pass
  319. father_list = [] # 已经有父亲的list
  320. for i in link_list:
  321. father = i[0] # 父节点
  322. son = i[1] # 子节点
  323. try:
  324. node_Dict[father]['children'].append(node_Dict[son])
  325. father_list.append(son)
  326. if int(son) == 0: print('F')
  327. except:
  328. pass
  329. father = list(set(node_Dict.keys()) - set(father_list))
  330. c = (
  331. Tree()
  332. .add("", [node_Dict[father[0]]], is_roam=True)
  333. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  334. toolbox_opts=opts.ToolboxOpts(is_show=True))
  335. )
  336. return c
  337. def make_Tab(heard,row):
  338. return Table().add(headers=heard, rows=row)
  339. def scatter(w_heard,w):
  340. c = (
  341. Scatter()
  342. .add_xaxis(w_heard)
  343. .add_yaxis('', w, **Label_Set)
  344. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  345. )
  346. return c
  347. def bar(w_heard,w):
  348. c = (
  349. Bar()
  350. .add_xaxis(w_heard)
  351. .add_yaxis('', abs(w).tolist(), **Label_Set)
  352. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  353. )
  354. return c
  355. # def line(w_sum,w,b):
  356. # x = np.arange(-5, 5, 1)
  357. # c = (
  358. # Line()
  359. # .add_xaxis(x.tolist())
  360. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  361. # )
  362. # for i in range(len(w)):
  363. # y = x * w[i] + b
  364. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  365. # return c
  366. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  367. y = y_trainData.tolist()
  368. x_data = x_trainData.T
  369. re = []
  370. for i in range(len(x_data)):
  371. x = x_data[i]
  372. p = int(x.max() - x.min()) / 5
  373. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  374. y_num = x_num * w[i] + (w[i] / w_sum) * b
  375. c = (
  376. Line()
  377. .add_xaxis(x_num.tolist())
  378. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  379. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  380. )
  381. t = (
  382. Scatter()
  383. .add_xaxis(x.tolist())
  384. .add_yaxis(f'{i}特征', y, **Label_Set)
  385. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  386. )
  387. t.overlap(c)
  388. re.append(t)
  389. return re
  390. def get_Color():
  391. # 随机颜色,雷达图默认非随机颜色
  392. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  393. color = '#'
  394. for a in rgb:
  395. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  396. return color
  397. def is_continuous(data:np.array,f:float=0.1):
  398. data = data.tolist()
  399. l = np.unique(data).tolist()
  400. try:
  401. re = len(l)/len(data)>=f or len(data) <= 3
  402. return re
  403. except:return False
  404. def make_Cat(x_data):
  405. Cat = Categorical_Data()
  406. for i in range(len(x_data)):
  407. x1 = x_data[i] # x坐标
  408. Cat(x1)
  409. return Cat
  410. def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  411. x_data = x_trainData.T
  412. if len(x_data) == 1:
  413. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  414. Cat = make_Cat(x_data)
  415. o_cList = []
  416. for i in range(len(x_data)):
  417. for a in range(len(x_data)):
  418. if a <= i: continue
  419. x1 = x_data[i] # x坐标
  420. x1_con = is_continuous(x1)
  421. x2 = x_data[a] # y坐标
  422. x2_con = is_continuous(x2)
  423. o_c = None # 旧的C
  424. for class_num in range(len(class_)):
  425. n_class = class_[class_num]
  426. x_1 = x1[y == n_class].tolist()
  427. x_2 = x2[y == n_class]
  428. x_2_new = np.unique(x_2)
  429. x_2 = x2[y == n_class].tolist()
  430. #x与散点图不同,这里是纵坐标
  431. c = (Scatter()
  432. .add_xaxis(x_2)
  433. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  434. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  435. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  436. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  437. )
  438. c.add_xaxis(x_2_new)
  439. if o_c == None:
  440. o_c = c
  441. else:
  442. o_c = o_c.overlap(c)
  443. o_cList.append(o_c)
  444. means,x_range,Type = Cat.get()
  445. return o_cList,means,x_range,Type
  446. def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  447. x_data = x_trainData.T
  448. if len(x_data) == 1:
  449. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  450. Cat = make_Cat(x_data)
  451. o_cList = []
  452. for i in range(len(x_data)):
  453. for a in range(len(x_data)):
  454. if a <= i: continue
  455. x1 = x_data[i] # x坐标
  456. x1_con = is_continuous(x1)
  457. x2 = x_data[a] # y坐标
  458. x2_con = is_continuous(x2)
  459. o_c = None # 旧的C
  460. for class_num in range(len(class_)):
  461. n_class = class_[class_num]
  462. x_1 = x1[y == n_class].tolist()
  463. x_2 = x2[y == n_class]
  464. x_2_new = np.unique(x_2)
  465. x_2 = x2[y == n_class].tolist()
  466. #x与散点图不同,这里是纵坐标
  467. c = (Scatter()
  468. .add_xaxis(x_2)
  469. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  470. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  471. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  472. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  473. )
  474. c.add_xaxis(x_2_new)
  475. #添加簇中心
  476. try:
  477. center_x_2 = [center[class_num][a]]
  478. except:
  479. center_x_2 = [0]
  480. b = (Scatter()
  481. .add_xaxis(center_x_2)
  482. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  483. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  484. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  485. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  486. )
  487. c.overlap(b)
  488. if o_c == None:
  489. o_c = c
  490. else:
  491. o_c = o_c.overlap(c)
  492. o_cList.append(o_c)
  493. means,x_range,Type = Cat.get()
  494. return o_cList,means,x_range,Type
  495. def Training_visualization_Center(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  496. x_data = x_trainData.T
  497. if len(x_data) == 1:
  498. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  499. Cat = make_Cat(x_data)
  500. o_cList = []
  501. for i in range(len(x_data)):
  502. x1 = x_data[i] # x坐标
  503. x1_con = is_continuous(x1)
  504. if i == 0:continue
  505. x2 = x_data[i - 1] # y坐标
  506. x2_con = is_continuous(x2)
  507. o_c = None # 旧的C
  508. for class_num in range(len(class_)):
  509. n_class = class_[class_num]
  510. x_1 = x1[y == n_class].tolist()
  511. x_2 = x2[y == n_class]
  512. x_2_new = np.unique(x_2)
  513. x_2 = x2[y == n_class].tolist()
  514. #x与散点图不同,这里是纵坐标
  515. c = (Scatter()
  516. .add_xaxis(x_2)
  517. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  518. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i-1}-{i}]训练数据散点图'), **global_Set,
  519. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  520. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  521. )
  522. c.add_xaxis(x_2_new)
  523. #添加簇中心
  524. try:
  525. center_x_2 = [center[class_num][i-1]]
  526. except:
  527. center_x_2 = [0]
  528. b = (Scatter()
  529. .add_xaxis(center_x_2)
  530. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  531. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  532. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  533. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  534. )
  535. c.overlap(b)
  536. if o_c == None:
  537. o_c = c
  538. else:
  539. o_c = o_c.overlap(c)
  540. o_cList.append(o_c)
  541. means,x_range,Type = Cat.get()
  542. return o_cList,means,x_range,Type
  543. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  544. x_data = x_trainData.T
  545. if len(x_data) == 1:
  546. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  547. Cat = make_Cat(x_data)
  548. o_cList = []
  549. for i in range(len(x_data)):
  550. x1 = x_data[i] # x坐标
  551. x1_con = is_continuous(x1)
  552. if i == 0:continue
  553. x2 = x_data[i - 1] # y坐标
  554. x2_con = is_continuous(x2)
  555. o_c = None # 旧的C
  556. for n_class in class_:
  557. x_1 = x1[y == n_class].tolist()
  558. x_2 = x2[y == n_class]
  559. x_2_new = np.unique(x_2)
  560. x_2 = x2[y == n_class].tolist()
  561. #x与散点图不同,这里是纵坐标
  562. c = (Scatter()
  563. .add_xaxis(x_2)
  564. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  565. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  566. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  567. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  568. )
  569. c.add_xaxis(x_2_new)
  570. if o_c == None:
  571. o_c = c
  572. else:
  573. o_c = o_c.overlap(c)
  574. o_cList.append(o_c)
  575. means,x_range,Type = Cat.get()
  576. return o_cList,means,x_range,Type
  577. def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别)
  578. x_data = x_trainData.T
  579. if len(x_data) == 1:
  580. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  581. Cat = make_Cat(x_data)
  582. o_cList = []
  583. for i in range(len(x_data)):
  584. x1 = x_data[i] # x坐标
  585. x1_con = is_continuous(x1)
  586. if i == 0:continue
  587. x2 = x_data[i - 1] # y坐标
  588. x2_con = is_continuous(x2)
  589. x2_new = np.unique(x2)
  590. #x与散点图不同,这里是纵坐标
  591. c = (Scatter()
  592. .add_xaxis(x2)
  593. .add_yaxis('', x1.tolist(), **Label_Set)
  594. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg,
  595. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  596. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  597. )
  598. c.add_xaxis(x2_new)
  599. o_cList.append(c)
  600. means,x_range,Type = Cat.get()
  601. return o_cList,means,x_range,Type
  602. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  603. x_data = x_trainData.T
  604. if len(x_data) == 1:
  605. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  606. o_cList = []
  607. means.append(0)
  608. means = np.array(means)
  609. for i in range(len(x_data)):
  610. if i == 0:continue
  611. x1_con = is_continuous(x_data[i])
  612. x2 = x_data[i - 1] # y坐标
  613. x2_con = is_continuous(x2)
  614. o_c = None # 旧的C
  615. for class_num in range(len(class_)):
  616. n_class = class_[class_num]
  617. x2_new = np.unique(x2[y == n_class])
  618. #x与散点图不同,这里是纵坐标
  619. #加入这个判断是为了解决sklearn历史遗留问题
  620. if len(class_) == 2:#二分类问题
  621. if class_num == 0:continue
  622. w = w_list[0]
  623. b = b_list[0]
  624. else:#多分类问题
  625. w = w_list[class_num]
  626. b = b_list[class_num]
  627. if x2_con:
  628. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  629. w = np.append(w, 0)
  630. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  631. c = (
  632. Line()
  633. .add_xaxis(x2_new)
  634. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  635. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  636. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  637. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  638. )
  639. if o_c == None:
  640. o_c = c
  641. else:
  642. o_c = o_c.overlap(c)
  643. #下面不要接任何代码,因为上面会continue
  644. o_cList.append(o_c)
  645. return o_cList
  646. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  647. x_data = x_trainData.T
  648. if len(x_data) == 1:
  649. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  650. o_cList = []
  651. means.append(0)#确保mean[i+1]不会超出index
  652. means = np.array(means)
  653. w = np.append(w,0)
  654. for i in range(len(x_data)):
  655. x1 = x_data[i]
  656. x1_con = is_continuous(x1)
  657. if x1_con:
  658. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  659. x1_new = np.unique(x1)
  660. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  661. y_con = is_continuous(y_data)
  662. c = (
  663. Line()
  664. .add_xaxis(x1_new)
  665. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  666. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  667. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  668. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  669. )
  670. o_cList.append(c)
  671. return o_cList
  672. def regress_visualization(x_trainData,y):#y-x数据图
  673. x_data = x_trainData.T
  674. y_con = is_continuous(y)
  675. Cat = make_Cat(x_data)
  676. o_cList = []
  677. try:
  678. visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()),
  679. pos_right='3%')
  680. except:
  681. visualmap_opts = None
  682. y_con = False
  683. for i in range(len(x_data)):
  684. x1 = x_data[i] # x坐标
  685. x1_con = is_continuous(x1)
  686. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  687. if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的
  688. ry_con,x1_con = x1_con,y_con
  689. x1,ry = y,x1
  690. else:
  691. ry_con = y_con
  692. ry = y
  693. c = (
  694. Scatter()
  695. .add_xaxis(x1.tolist())#研究表明,这个是横轴
  696. .add_yaxis('数据',ry.tolist(),**Label_Set)
  697. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  698. yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True),
  699. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  700. visualmap_opts=visualmap_opts
  701. )
  702. )
  703. c.add_xaxis(np.unique(x1))
  704. o_cList.append(c)
  705. means,x_range,Type = Cat.get()
  706. return o_cList,means,x_range,Type
  707. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  708. seeting = global_Set if data_name else global_Leg
  709. x_data = x_trainData.T
  710. only = False
  711. if len(x_data) == 1:
  712. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  713. only = True
  714. o_cList = []
  715. for i in range(len(x_data)):
  716. for a in range(len(x_data)):
  717. if a <= i: continue#重复内容,跳过
  718. x1 = x_data[i] # x坐标
  719. x1_con = is_continuous(x1)
  720. x2 = x_data[a] # y坐标
  721. x2_con = is_continuous(x2)
  722. x2_new = np.unique(x2)
  723. if only:x2_con = False
  724. #x与散点图不同,这里是纵坐标
  725. c = (Scatter()
  726. .add_xaxis(x2)
  727. .add_yaxis(data_name, x1, **Label_Set)
  728. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  729. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  730. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  731. )
  732. c.add_xaxis(x2_new)
  733. o_cList.append(c)
  734. return o_cList
  735. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  736. seeting = global_Set if data_name else global_Leg
  737. x_data = x_trainData.T
  738. only = False
  739. if len(x_data) == 1:
  740. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  741. only = True
  742. o_cList = []
  743. for i in range(len(x_data)):
  744. for a in range(len(x_data)):
  745. if a <= i: continue#重复内容,跳过(a读取的是i后面的)
  746. x1 = x_data[i] # x坐标
  747. x1_con = is_continuous(x1)
  748. x2 = x_data[a] # y坐标
  749. x2_con = is_continuous(x2)
  750. x2_new = np.unique(x2)
  751. x1_list = x1.astype(np.str).tolist()
  752. for i in range(len(x1_list)):
  753. x1_list[i] = [x1_list[i],f'特征{i}']
  754. if only:x2_con = False
  755. #x与散点图不同,这里是纵坐标
  756. c = (Scatter()
  757. .add_xaxis(x2)
  758. .add_yaxis(data_name, x1_list, **Label_Set)
  759. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  760. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  761. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  762. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
  763. )
  764. c.add_xaxis(x2_new)
  765. o_cList.append(c)
  766. return o_cList
  767. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  768. seeting = global_Set if data_name else global_Leg
  769. x_data = x_trainData.T
  770. if len(x_data) == 1:
  771. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  772. o_cList = []
  773. for i in range(len(x_data)):
  774. for a in range(len(x_data)):
  775. if a <= i: continue#重复内容,跳过
  776. x1 = x_data[i] # x坐标
  777. x2 = x_data[a] # y坐标
  778. x2_new = np.unique(x2)
  779. #x与散点图不同,这里是纵坐标
  780. c = (Scatter()
  781. .add_xaxis(x2)
  782. .add_yaxis(data_name, x1, **Label_Set)
  783. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  784. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  785. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  786. )
  787. c.add_xaxis(x2_new)
  788. o_cList.append(c)
  789. return o_cList
  790. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  791. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  792. get_x = Feature_visualization(x_data,'原数据')#原来
  793. get_y = Feature_visualization(y_data,'转换数据')#转换
  794. for i in range(len(get_x)):
  795. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  796. return tab
  797. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  798. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  799. get_x = Feature_visualization(x_data,'原数据')#原来
  800. get_y = Feature_visualization(y_data,'转换数据')#转换
  801. for i in range(len(get_x)):
  802. try:
  803. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  804. except IndexError:pass
  805. try:
  806. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  807. except IndexError:pass
  808. return tab
  809. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  810. if type(y_data) is np.ndarray:
  811. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  812. for i in range(len(get_y)):
  813. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  814. return tab
  815. def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
  816. if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
  817. get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
  818. get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
  819. print(h_data)
  820. print(w_data)
  821. print(h_data.T)
  822. for i in range(len(get_x)):
  823. try:
  824. tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
  825. except IndexError:pass
  826. try:
  827. tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
  828. except IndexError:pass
  829. return tab
  830. def make_bar(name, value,tab):#绘制柱状图
  831. c = (
  832. Bar()
  833. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  834. .add_yaxis(name, value, **Label_Set)
  835. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  836. )
  837. tab.add(c, name)
  838. def judging_Digits(num:(int,float)):#查看小数位数
  839. a = str(abs(num)).split('.')[0]
  840. if a == '':raise ValueError
  841. return len(a)
  842. class Learner:
  843. def __init__(self,*args,**kwargs):
  844. self.numpy_Dic = {}#name:numpy
  845. self.Fucn_Add()#制作Func_Dic
  846. def Add_Form(self,data:np.array,name):
  847. name = f'{name}[{len(self.numpy_Dic)}]'
  848. self.numpy_Dic[name] = data
  849. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  850. type_ = np.str if str_must else np.float
  851. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  852. try:
  853. data = pf_data.to_numpy(dtype=type_)
  854. except ValueError:
  855. data = pf_data.to_numpy(dtype=np.str)
  856. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  857. self.Add_Form(data,name)
  858. return data
  859. def Add_Python(self, Text, sheet_name):
  860. name = {}
  861. name.update(globals().copy())
  862. name.update(locals().copy())
  863. exec(Text, name)
  864. exec('get = Creat()', name)
  865. if isinstance(name['get'], np.array): # 已经是DataFram
  866. get = name['get']
  867. else:
  868. try:
  869. get = np.array(name['get'])
  870. except:
  871. get = np.array([name['get']])
  872. self.Add_Form(get, sheet_name)
  873. return get
  874. def get_Form(self) -> dict:
  875. return self.numpy_Dic.copy()
  876. def get_Sheet(self,name) -> np.array:
  877. return self.numpy_Dic[name].copy()
  878. def to_CSV(self,Dic:str,name,sep) -> str:
  879. get = self.get_Sheet(name)
  880. np.savetxt(Dic, get, delimiter=sep)
  881. return Dic
  882. def to_Html_One(self,name,Dic=''):
  883. if Dic == '': Dic = f'{name}.html'
  884. get = self.get_Sheet(name)
  885. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  886. get = get.tolist()
  887. for i in range(len(get)):
  888. get[i] = [i+1] + get[i]
  889. headers = [i for i in range(len(get[0]))]
  890. table = Table_Fisrt()
  891. table.add(headers, get).set_global_opts(
  892. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  893. table.render(Dic)
  894. return Dic
  895. def to_Html(self, name, Dic='', type_=0):
  896. if Dic == '': Dic = f'{name}.html'
  897. # 把要画的sheet放到第一个
  898. Sheet_Dic = self.get_Form()
  899. del Sheet_Dic[name]
  900. Sheet_list = [name] + list(Sheet_Dic.keys())
  901. class TAB_F:
  902. def __init__(self, q):
  903. self.tab = q # 一个Tab
  904. def render(self, Dic):
  905. return self.tab.render(Dic)
  906. # 生成一个显示页面
  907. if type_ == 0:
  908. class TAB(TAB_F):
  909. def add(self, table, k, *f):
  910. self.tab.add(table, k)
  911. tab = TAB(tab_First(page_title='CoTan:查看表格')) # 一个Tab
  912. elif type_ == 1:
  913. class TAB(TAB_F):
  914. def add(self, table, *k):
  915. self.tab.add(table)
  916. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  917. else:
  918. class TAB(TAB_F):
  919. def add(self, table, *k):
  920. self.tab.add(table)
  921. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  922. # 迭代添加内容
  923. for name in Sheet_list:
  924. get = self.get_Sheet(name)
  925. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  926. get = get.tolist()
  927. for i in range(len(get)):
  928. get[i] = [i+1] + get[i]
  929. headers = [i for i in range(len(get[0]))]
  930. table = Table_Fisrt()
  931. table.add(headers, get).set_global_opts(
  932. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  933. tab.add(table, f'表格:{name}')
  934. tab.render(Dic)
  935. return Dic
  936. def Merge(self,name,axis=0):#aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
  937. sheet_list = []
  938. for i in name:
  939. sheet_list.append(self.get_Sheet(i))
  940. get = {0:np.hstack,1:np.vstack,2:np.dstack}[axis](sheet_list)
  941. self.Add_Form(np.array(get),f'{name[0]}合成')
  942. def Split(self,name,split=2,axis=0):#aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
  943. sheet = self.get_Sheet(name)
  944. get = {0:np.hsplit,1:np.vsplit,2:np.dsplit}[axis](sheet,split)
  945. for i in get:
  946. self.Add_Form(i,f'{name[0]}分割')
  947. def Two_Split(self,name,split,axis):#二分切割(0-横向,1-纵向)
  948. sheet = self.get_Sheet(name)
  949. try:
  950. split = float(eval(split))
  951. if split < 1:
  952. split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
  953. else:
  954. raise Exception
  955. except:
  956. split = int(split)
  957. if axis == 0:
  958. self.Add_Form(sheet[:,split:], f'{name[0]}分割')
  959. self.Add_Form(sheet[:,:split], f'{name[0]}分割')
  960. def Deep(self,sheet:np.ndarray):
  961. return sheet.ravel()
  962. def Down_Ndim(self,sheet:np.ndarray):#横向
  963. down_list = []
  964. for i in sheet:
  965. down_list.append(i.ravel())
  966. return np.array(down_list)
  967. def LongitudinalDown_Ndim(self,sheet:np.ndarray):#纵向
  968. down_list = []
  969. for i in range(len(sheet[0])):
  970. down_list.append(sheet[:,i].ravel())
  971. return np.array(down_list).T
  972. def Reval(self,name,axis):#axis:0-横向,1-纵向(带.T),2-深度
  973. sheet = self.get_Sheet(name)
  974. self.Add_Form({0:self.Down_Ndim,1:self.LongitudinalDown_Ndim,2:self.Deep}[axis](sheet).copy(),f'{name}伸展')
  975. def Del_Ndim(self,name):#删除无用维度
  976. sheet = self.get_Sheet(name)
  977. self.Add_Form(np.squeeze(sheet), f'{name}降维')
  978. def T(self,name,Func:list):
  979. sheet = self.get_Sheet(name)
  980. if sheet.ndim <= 2:
  981. self.Add_Form(sheet.T.copy(), f'{name}.T')
  982. else:
  983. self.Add_Form(np.transpose(sheet,Func).copy(), f'{name}.T')
  984. def reShape(self,name,shape:list):
  985. sheet = self.get_Sheet(name)
  986. self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r')
  987. def Fucn_Add(self):
  988. self.Func_Dic = {
  989. 'abs':lambda x,y:np.abs(x),
  990. 'sqrt':lambda x,y:np.sqrt(x),
  991. 'pow':lambda x,y:x**y,
  992. 'loge':lambda x,y:np.log(x),
  993. 'log10':lambda x,y:np.log10(x),
  994. 'ceil':lambda x,y:np.ceil(x),
  995. 'floor':lambda x,y:np.floor(x),
  996. 'rint':lambda x,y:np.rint(x),
  997. 'sin':lambda x,y:np.sin(x),
  998. 'cos':lambda x,y:np.cos(x),
  999. 'tan':lambda x,y:np.tan(x),
  1000. 'tanh':lambda x,y:np.tanh(x),
  1001. 'sinh':lambda x,y:np.sinh(x),
  1002. 'cosh':lambda x,y:np.cosh(x),
  1003. 'asin': lambda x, y: np.arcsin(x),
  1004. 'acos': lambda x, y: np.arccos(x),
  1005. 'atan': lambda x, y: np.arctan(x),
  1006. 'atanh': lambda x, y: np.arctanh(x),
  1007. 'asinh': lambda x, y: np.arcsinh(x),
  1008. 'acosh': lambda x, y: np.arccosh(x),
  1009. 'add': lambda x, y: x + y,#矩阵或元素
  1010. 'sub': lambda x, y: x - y,#矩阵或元素
  1011. 'mul': lambda x, y: np.multiply(x,y),#元素级别
  1012. 'matmul': lambda x, y: np.matmul(x,y),#矩阵
  1013. 'dot': lambda x, y: np.dot(x,y),#矩阵
  1014. 'div': lambda x, y: x / y,
  1015. 'div_floor': lambda x, y: np.floor_divide(x,y),
  1016. 'power': lambda x, y: np.power(x,y),#元素级
  1017. }
  1018. def Cul_Numpy(self,data,data_type,Func):
  1019. if not 1 in data_type:raise Exception
  1020. func = self.Func_Dic.get(Func,lambda x,y:x)
  1021. args_data = []
  1022. for i in range(len(data)):
  1023. if data_type[i] == 0:
  1024. args_data.append(data[i])
  1025. else:
  1026. args_data.append(self.get_Sheet(data[i]))
  1027. get = func(*args_data)
  1028. self.Add_Form(get,f'{Func}({data[0]},{data[1]})')
  1029. return get
  1030. class Study_MachineBase:
  1031. def __init__(self,*args,**kwargs):
  1032. self.Model = None
  1033. self.have_Fit = False
  1034. self.have_Predict = False
  1035. self.x_trainData = None
  1036. self.y_trainData = None
  1037. #有监督学习专有的testData
  1038. self.x_testData = None
  1039. self.y_testData = None
  1040. #记录这两个是为了克隆
  1041. def Fit(self,x_data,y_data,split=0.3,Increment=True,**kwargs):
  1042. y_data = y_data.ravel()
  1043. try:
  1044. if self.x_trainData is None or not Increment:raise Exception
  1045. self.x_trainData = np.vstack(x_data,self.x_trainData)
  1046. self.y_trainData = np.vstack(y_data,self.y_trainData)
  1047. except:
  1048. self.x_trainData = x_data.copy()
  1049. self.y_trainData = y_data.copy()
  1050. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  1051. try:#增量式训练
  1052. if not Increment:raise Exception
  1053. self.Model.partial_fit(x_data,y_data)
  1054. except:
  1055. self.Model.fit(self.x_trainData, self.y_trainData)
  1056. train_score = self.Model.score(x_train,y_train)
  1057. test_score = self.Model.score(x_test,y_test)
  1058. self.have_Fit = True
  1059. return train_score,test_score
  1060. def Score(self,x_data,y_data):
  1061. Score = self.Model.score(x_data,y_data)
  1062. return Score
  1063. def Class_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray):
  1064. y_Really = y_Really.ravel()
  1065. y_Predict = self.Predict(x_data)[0]
  1066. Accuracy = self._Accuracy(y_Predict,y_Really)
  1067. Recall,class_ = self._Macro(y_Predict,y_Really)
  1068. Precision,class_ = self._Macro(y_Predict,y_Really,1)
  1069. F1,class_ = self._Macro(y_Predict,y_Really,2)
  1070. Confusion_matrix,class_ = self._Confusion_matrix(y_Predict,y_Really)
  1071. kappa = self._Kappa_score(y_Predict,y_Really)
  1072. tab = Tab()
  1073. def gauge_base(name:str,value:float) -> Gauge:
  1074. c = (
  1075. Gauge()
  1076. .add("", [(name, round(value*100,2))],min_ = 0, max_ = 100)
  1077. .set_global_opts(title_opts=opts.TitleOpts(title=name))
  1078. )
  1079. return c
  1080. tab.add(gauge_base('准确率',Accuracy),'准确率')
  1081. tab.add(gauge_base('kappa',kappa),'kappa')
  1082. def Bar_base(name,value) -> Bar:
  1083. c = (
  1084. Bar()
  1085. .add_xaxis(class_)
  1086. .add_yaxis(name, value, **Label_Set)
  1087. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set)
  1088. )
  1089. return c
  1090. tab.add(Bar_base('精确率',Precision.tolist()),'精确率')
  1091. tab.add(Bar_base('召回率',Recall.tolist()),'召回率')
  1092. tab.add(Bar_base('F1',F1.tolist()),'F1')
  1093. def heatmap_base(name,value,max_,min_,show) -> HeatMap:
  1094. c = (
  1095. HeatMap()
  1096. .add_xaxis(class_)
  1097. .add_yaxis(name, class_, value, label_opts=opts.LabelOpts(is_show=show,position='inside'))
  1098. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set,visualmap_opts=
  1099. opts.VisualMapOpts(max_=max_,min_=min_,pos_right='3%'))
  1100. )
  1101. return c
  1102. value = [[class_[i],class_[j],float(Confusion_matrix[i,j])] for i in range(len(class_)) for j in range(len(class_))]
  1103. tab.add(heatmap_base('混淆矩阵',value,float(Confusion_matrix.max()),float(Confusion_matrix.min()),len(class_)<7), '混淆矩阵')
  1104. desTo_CSV(Dic,'混淆矩阵',Confusion_matrix,class_,class_)
  1105. desTo_CSV(Dic,'评分',[Precision,Recall,F1],class_,['精确率','召回率','F1'])
  1106. save = Dic + r'/分类模型评估.HTML'
  1107. tab.render(save)
  1108. return save,
  1109. def _Accuracy(self,y_Predict,y_Really):#准确率
  1110. return accuracy_score(y_Really, y_Predict)
  1111. def _Macro(self,y_Predict,y_Really,func=0):
  1112. Func = [recall_score,precision_score,f1_score]#召回率,精确率和f1
  1113. class_ = np.unique(y_Really).tolist()
  1114. result = (Func[func](y_Really,y_Predict,class_,average=None))
  1115. return result,class_
  1116. def _Confusion_matrix(self,y_Predict,y_Really):#混淆矩阵
  1117. class_ = np.unique(y_Really).tolist()
  1118. return confusion_matrix(y_Really, y_Predict),class_
  1119. def _Kappa_score(self,y_Predict,y_Really):
  1120. return cohen_kappa_score(y_Really, y_Predict)
  1121. def Regression_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray):
  1122. y_Really = y_Really.ravel()
  1123. y_Predict = self.Predict(x_data)[0]
  1124. tab = Tab()
  1125. MSE = self._MSE(y_Predict,y_Really)
  1126. MAE = self._MAE(y_Predict,y_Really)
  1127. r2_Score = self._R2_Score(y_Predict,y_Really)
  1128. RMSE = self._RMSE(y_Predict,y_Really)
  1129. tab.add(make_Tab(['MSE','MAE','RMSE','r2_Score'],[[MSE,MAE,RMSE,r2_Score]]), '评估数据')
  1130. save = Dic + r'/回归模型评估.HTML'
  1131. tab.render(save)
  1132. return save,
  1133. def Clusters_Score(self,Dic,x_data:np.ndarray,*args):
  1134. y_Predict = self.Predict(x_data)[0]
  1135. tab = Tab()
  1136. Coefficient,Coefficient_array = self._Coefficient_clustering(x_data,y_Predict)
  1137. def gauge_base(name:str,value:float) -> Gauge:
  1138. c = (
  1139. Gauge()
  1140. .add("", [(name, round(value*100,2))],min_ = 0, max_ = 10**(judging_Digits(value*100)))
  1141. .set_global_opts(title_opts=opts.TitleOpts(title=name))
  1142. )
  1143. return c
  1144. def Bar_base(name,value,xaxis) -> Bar:
  1145. c = (
  1146. Bar()
  1147. .add_xaxis(xaxis)
  1148. .add_yaxis(name, value, **Label_Set)
  1149. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set)
  1150. )
  1151. return c
  1152. tab.add(gauge_base('平均轮廓系数', Coefficient),'平均轮廓系数')
  1153. def Bar_(Coefficient_array,name='数据轮廓系数'):
  1154. xaxis = [f'数据{i}' for i in range(len(Coefficient_array))]
  1155. value = Coefficient_array.tolist()
  1156. tab.add(Bar_base(name,value,xaxis),name)
  1157. n = 20
  1158. if len(Coefficient_array) <= n:
  1159. Bar_(Coefficient_array)
  1160. elif len(Coefficient_array) <= n**2:
  1161. a = 0
  1162. while a <= len(Coefficient_array):
  1163. b = a + n
  1164. if b >= len(Coefficient_array):b = len(Coefficient_array) + 1
  1165. Cofe_array = Coefficient_array[a:b]
  1166. Bar_(Cofe_array,f'{a}-{b}数据轮廓系数')
  1167. a += n
  1168. else:
  1169. split = np.hsplit(Coefficient_array,n)
  1170. a = 0
  1171. for Cofe_array in split:
  1172. Bar_(Cofe_array, f'{a}%-{a + n}%数据轮廓系数')
  1173. a += n
  1174. save = Dic + r'/聚类模型评估.HTML'
  1175. tab.render(save)
  1176. return save,
  1177. def _MSE(self,y_Predict,y_Really):#均方误差
  1178. return mean_squared_error(y_Really, y_Predict)
  1179. def _MAE(self,y_Predict,y_Really):#中值绝对误差
  1180. return median_absolute_error(y_Really, y_Predict)
  1181. def _R2_Score(self,y_Predict,y_Really):#中值绝对误差
  1182. return r2_score(y_Really, y_Predict)
  1183. def _RMSE(self,y_Predict,y_Really):#中值绝对误差
  1184. return self._MSE(y_Predict,y_Really) ** 0.5
  1185. def _Coefficient_clustering(self,x_data,y_Predict):
  1186. means_score = silhouette_score(x_data,y_Predict)
  1187. outline_score = silhouette_samples(x_data,y_Predict)
  1188. return means_score, outline_score
  1189. def Predict(self,x_data,*args,**kwargs):
  1190. self.x_testData = x_data.copy()
  1191. y_Predict = self.Model.predict(x_data)
  1192. self.y_testData = y_Predict.copy()
  1193. self.have_Predict = True
  1194. return y_Predict,'预测'
  1195. def Des(self,Dic,*args,**kwargs):
  1196. return (Dic,)
  1197. class prep_Base(Study_MachineBase):#不允许第二次训练
  1198. def __init__(self,*args,**kwargs):
  1199. super(prep_Base, self).__init__(*args,**kwargs)
  1200. self.Model = None
  1201. def Fit(self, x_data,y_data,Increment=True, *args, **kwargs):
  1202. if not self.have_Predict: # 不允许第二次训练
  1203. y_data = y_data.ravel()
  1204. try:
  1205. if self.x_trainData is None or not Increment: raise Exception
  1206. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1207. self.y_trainData = np.vstack(y_data, self.y_trainData)
  1208. except:
  1209. self.x_trainData = x_data.copy()
  1210. self.y_trainData = y_data.copy()
  1211. try: # 增量式训练
  1212. if not Increment: raise Exception
  1213. self.Model.partial_fit(x_data, y_data)
  1214. except:
  1215. self.Model.fit(self.x_trainData, self.y_trainData)
  1216. self.have_Fit = True
  1217. return 'None', 'None'
  1218. def Predict(self, x_data, *args, **kwargs):
  1219. self.x_testData = x_data.copy()
  1220. x_Predict = self.Model.transform(x_data)
  1221. self.y_testData = x_Predict.copy()
  1222. self.have_Predict = True
  1223. return x_Predict,'特征工程'
  1224. def Score(self, x_data, y_data):
  1225. return 'None' # 没有score
  1226. class Unsupervised(prep_Base):#无监督,不允许第二次训练
  1227. def Fit(self, x_data,Increment=True, *args, **kwargs):
  1228. if not self.have_Predict: # 不允许第二次训练
  1229. self.y_trainData = None
  1230. try:
  1231. if self.x_trainData is None or not Increment: raise Exception
  1232. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1233. except:
  1234. self.x_trainData = x_data.copy()
  1235. try: # 增量式训练
  1236. if not Increment: raise Exception
  1237. self.Model.partial_fit(x_data)
  1238. except:
  1239. self.Model.fit(self.x_trainData, self.y_trainData)
  1240. self.have_Fit = True
  1241. return 'None', 'None'
  1242. class UnsupervisedModel(prep_Base):#无监督
  1243. def Fit(self, x_data, Increment=True,*args, **kwargs):
  1244. self.y_trainData = None
  1245. try:
  1246. if self.x_trainData is None or not Increment: raise Exception
  1247. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1248. except:
  1249. self.x_trainData = x_data.copy()
  1250. try: # 增量式训练
  1251. if not Increment: raise Exception
  1252. self.Model.partial_fit(x_data)
  1253. except:
  1254. self.Model.fit(self.x_trainData, self.y_trainData)
  1255. self.have_Fit = True
  1256. return 'None', 'None'
  1257. class To_PyeBase(Study_MachineBase):
  1258. def __init__(self,args_use,model,*args,**kwargs):
  1259. super(To_PyeBase, self).__init__(*args,**kwargs)
  1260. self.Model = None
  1261. #记录这两个是为了克隆
  1262. self.k = {}
  1263. self.Model_Name = model
  1264. def Fit(self, x_data,y_data, *args, **kwargs):
  1265. self.x_trainData = x_data.copy()
  1266. self.y_trainData = y_data.ravel().copy()
  1267. self.have_Fit = True
  1268. return 'None', 'None'
  1269. def Predict(self, x_data, *args, **kwargs):
  1270. self.have_Predict = True
  1271. return np.array([]),'请使用训练'
  1272. def Score(self, x_data, y_data):
  1273. return 'None' # 没有score
  1274. def num_str(num,f):
  1275. num = str(round(float(num),f))
  1276. if len(num.replace('.','')) == f:
  1277. return num
  1278. n = num.split('.')
  1279. if len(n) == 0:#无小数
  1280. return num + '.' + '0' * (f - len(num))
  1281. else:
  1282. return num + '0' * (f - len(num) + 1)#len(num)多算了一位小数点
  1283. def desTo_CSV(Dic,name,data,columns=None,row=None):
  1284. Dic = Dic + '/' + name + '.csv'
  1285. DataFrame(data,columns=columns,index=row).to_csv(Dic,header=False if columns is None else True,
  1286. index=False if row is None else True)
  1287. return data
  1288. class Des(To_PyeBase):#数据分析
  1289. def Des(self, Dic, *args, **kwargs):
  1290. tab = Tab()
  1291. data = self.x_trainData
  1292. def Cumulative_calculation(data,func,name,tab):
  1293. sum_list = []
  1294. for i in range(len(data)):#按行迭代数据
  1295. sum_list.append([])
  1296. for a in range(len(data[i])):
  1297. s = num_str(func(data[:i+1,a]),8)
  1298. sum_list[-1].append(s)
  1299. desTo_CSV(Dic,f'{name}',sum_list)
  1300. tab.add(make_Tab([f'[{i}]' for i in range(len(sum_list[0]))],sum_list),f'{name}')
  1301. Geometric_mean = lambda x:np.power(np.prod(x),1/len(x))#几何平均数
  1302. Square_mean = lambda x:np.sqrt(np.sum(np.power(x,2)) / len(x))#平方平均数
  1303. Harmonic_mean = lambda x:len(x)/np.sum(np.power(x,-1))#调和平均数
  1304. Cumulative_calculation(data,np.sum,'累计求和',tab)
  1305. Cumulative_calculation(data,np.var,'累计方差',tab)
  1306. Cumulative_calculation(data,np.std,'累计标准差',tab)
  1307. Cumulative_calculation(data,np.mean,'累计算术平均值',tab)
  1308. Cumulative_calculation(data,Geometric_mean,'累计几何平均值',tab)
  1309. Cumulative_calculation(data,Square_mean,'累计平方平均值',tab)
  1310. Cumulative_calculation(data,Harmonic_mean,'累计调和平均值',tab)
  1311. Cumulative_calculation(data,np.median,'累计中位数',tab)
  1312. Cumulative_calculation(data,np.max,'累计最大值',tab)
  1313. Cumulative_calculation(data,np.min,'累计最小值',tab)
  1314. save = Dic + r'/数据分析.HTML'
  1315. tab.render(save) # 生成HTML
  1316. return save,
  1317. class CORR(To_PyeBase):#相关性和协方差
  1318. def Des(self, Dic, *args, **kwargs):
  1319. tab = Tab()
  1320. data = DataFrame(self.x_trainData)
  1321. corr = data.corr().to_numpy()#相关性
  1322. cov = data.cov().to_numpy()#协方差
  1323. def HeatMAP(data,name:str,max_,min_):
  1324. x = [f'特征[{i}]' for i in range(len(data))]
  1325. y = [f'特征[{i}]' for i in range(len(data[0]))]
  1326. value = [(f'特征[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1327. c = (HeatMap()
  1328. .add_xaxis(x)
  1329. .add_yaxis(f'数据', y, value, label_opts=opts.LabelOpts(is_show= True if len(x) <= 10 else False,position='inside'))#如果特征太多则不显示标签
  1330. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1331. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1332. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1333. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,min_=min_,pos_right='3%'))#显示
  1334. )
  1335. tab.add(c,name)
  1336. HeatMAP(corr,'相关性热力图',1,-1)
  1337. HeatMAP(cov,'协方差热力图',float(cov.max()),float(cov.min()))
  1338. desTo_CSV(Dic, f'相关性矩阵', corr)
  1339. desTo_CSV(Dic, f'协方差矩阵', cov)
  1340. save = Dic + r'/数据相关性.HTML'
  1341. tab.render(save) # 生成HTML
  1342. return save,
  1343. class View_data(To_PyeBase):#绘制预测型热力图
  1344. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1345. super(View_data, self).__init__(args_use,Learner,*args, **kwargs)
  1346. self.Model = Learner.Model
  1347. self.Select_Model = None
  1348. self.have_Fit = Learner.have_Fit
  1349. self.Model_Name = 'Select_Model'
  1350. self.Learner = Learner
  1351. self.Learner_name = Learner.Model_Name
  1352. def Fit(self,*args,**kwargs):
  1353. self.have_Fit = True
  1354. return 'None','None'
  1355. def Predict(self,x_data,Add_Func=None,*args, **kwargs):
  1356. x_trainData = self.Learner.x_trainData
  1357. y_trainData = self.Learner.y_trainData
  1358. x_name = self.Learner_name
  1359. if not x_trainData is None:
  1360. Add_Func(x_trainData, f'{x_name}:x训练数据')
  1361. try:
  1362. x_testData = self.x_testData
  1363. if not x_testData is None:
  1364. Add_Func(x_testData, f'{x_name}:x测试数据')
  1365. except:pass
  1366. try:
  1367. y_testData = self.y_testData.copy()
  1368. if not y_testData is None:
  1369. Add_Func(y_testData, f'{x_name}:y测试数据')
  1370. except:pass
  1371. self.have_Fit = True
  1372. if y_trainData is None:
  1373. return np.array([]), 'y训练数据'
  1374. return y_trainData,'y训练数据'
  1375. def Des(self,Dic,*args,**kwargs):
  1376. return Dic,
  1377. class MatrixScatter(To_PyeBase):#矩阵散点图
  1378. def Des(self, Dic, *args, **kwargs):
  1379. tab = Tab()
  1380. data = self.x_trainData
  1381. if data.ndim <= 2:#维度为2
  1382. c = (Scatter()
  1383. .add_xaxis([f'{i}' for i in range(data.shape[1])])
  1384. .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg)
  1385. )
  1386. if data.ndim == 2:
  1387. for num in range(len(data)):
  1388. i = data[num]
  1389. c.add_yaxis(f'{num}',[[f'{num}',x] for x in i],color='#FFFFFF')
  1390. else:
  1391. c.add_yaxis(f'0', [[0,x]for x in data],color='#FFFFFF')
  1392. c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
  1393. formatter=JsCode("function(params){return params.data[2];}"),
  1394. ))
  1395. elif data.ndim == 3:
  1396. c = (Scatter3D()
  1397. .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'),**global_Leg)
  1398. )
  1399. for num in range(len(data)):
  1400. i = data[num]
  1401. for s_num in range(len(i)):
  1402. s = i[s_num]
  1403. y_data = [[num,s_num,x,float(s[x])] for x in range(len(s))]
  1404. c.add(f'{num}',y_data,zaxis3d_opts = opts.Axis3DOpts(type_="category"))
  1405. c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
  1406. formatter=JsCode("function(params){return params.data[3];}")))
  1407. else:
  1408. c = Scatter()
  1409. tab.add(c,'矩阵散点图')
  1410. save = Dic + r'/矩阵散点图.HTML'
  1411. tab.render(save) # 生成HTML
  1412. return save,
  1413. class Cluster_Tree(To_PyeBase):#聚类树状图
  1414. def Des(self, Dic, *args, **kwargs):
  1415. tab = Tab()
  1416. x_data = self.x_trainData
  1417. linkage_array = ward(x_data)#self.y_trainData是结果
  1418. dendrogram(linkage_array)
  1419. plt.savefig(Dic + r'/Cluster_graph.png')
  1420. image = Image()
  1421. image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图"))
  1422. tab.add(image,'聚类树状图')
  1423. save = Dic + r'/聚类树状图.HTML'
  1424. tab.render(save) # 生成HTML
  1425. return save,
  1426. class Class_To_Bar(To_PyeBase):#类型柱状图
  1427. def Des(self,Dic,*args,**kwargs):
  1428. tab = Tab()
  1429. x_data = self.x_trainData.T
  1430. y_data = self.y_trainData
  1431. class_ = np.unique(y_data).tolist()#类型
  1432. class_list = []
  1433. for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
  1434. class_list.append(y_data == n_class)
  1435. for num_i in range(len(x_data)):#迭代每一个特征
  1436. i = x_data[num_i]
  1437. i_con = is_continuous(i)
  1438. if i_con and len(i) >= 11:
  1439. c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1440. start = i.min()
  1441. end = i.max()
  1442. n = (end - start) / 10#生成10条柱子
  1443. x_axis = []#x轴
  1444. num_startEND = 0#迭代到第n个
  1445. while num_startEND <= 9:#把每个特征分为10类进行迭代
  1446. x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据
  1447. try:
  1448. if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有
  1449. s = (start <= i) == (i < end)#布尔索引
  1450. except:#因为start + n有超出end的风险
  1451. s = (start <= i) == (i <= end)#布尔索引
  1452. # n_data = i[s] # 取得现在的特征数据
  1453. for num in range(len(class_list)):#根据类别进行迭代
  1454. now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
  1455. bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1456. c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1457. num_startEND += 1
  1458. start += n
  1459. else :
  1460. iter_np = np.unique(i)
  1461. c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1462. x_axis = [] # 添加x轴数据
  1463. for i_num in range(len(iter_np)):#迭代每一个i(不重复)
  1464. i_data = iter_np[i_num]
  1465. # n_data= i[i == i_data]#取得现在特征数据
  1466. x_axis.append(f'[{i_data}]')
  1467. for num in range(len(class_list)):# 根据类别进行迭代
  1468. now_class = class_list[num]#取得class_list的布尔数组
  1469. bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1470. c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1471. c = (
  1472. Bar()
  1473. .add_xaxis(x_axis)
  1474. .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'),
  1475. yaxis_opts=opts.AxisOpts(type_='value')))
  1476. y_axis = []
  1477. for i in range(len(c_list)):
  1478. y_axis.append(f'{class_[i]}')
  1479. c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
  1480. desTo_CSV(Dic, f'类型-[{num_i}]特征统计柱状图', c_list, x_axis, y_axis)
  1481. tab.add(c, f'类型-[{num_i}]特征统计柱状图')
  1482. #未完成
  1483. save = Dic + r'/特征统计.HTML'
  1484. tab.render(save) # 生成HTML
  1485. return save,
  1486. class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图
  1487. def Des(self,Dic,*args,**kwargs):
  1488. tab = Tab()
  1489. data = self.x_trainData
  1490. x = [f'横[{i}]' for i in range(len(data))]
  1491. y = [f'纵[{i}]' for i in range(len(data[0]))]
  1492. value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1493. c = (HeatMap()
  1494. .add_xaxis(x)
  1495. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1496. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1497. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1498. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1499. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  1500. min_=float(data.min()),
  1501. pos_right='3%'))#显示
  1502. )
  1503. tab.add(c,'矩阵热力图')
  1504. tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格')
  1505. save = Dic + r'/矩阵热力图.HTML'
  1506. tab.render(save) # 生成HTML
  1507. return save,
  1508. class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图
  1509. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1510. super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs)
  1511. self.Model = Learner.Model
  1512. self.Select_Model = None
  1513. self.have_Fit = Learner.have_Fit
  1514. self.Model_Name = 'Select_Model'
  1515. self.Learner = Learner
  1516. self.x_trainData = Learner.x_trainData.copy()
  1517. self.y_trainData = Learner.y_trainData.copy()
  1518. self.means = []
  1519. def Fit(self,x_data,*args,**kwargs):
  1520. try:
  1521. self.means = x_data.ravel()
  1522. except:
  1523. pass
  1524. self.have_Fit = True
  1525. return 'None','None'
  1526. def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs):
  1527. tab = Tab()
  1528. y = self.y_trainData
  1529. x_data = self.x_trainData
  1530. try:#如果没有class
  1531. class_ = self.Model.classes_.tolist()
  1532. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1533. #获取数据
  1534. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1535. #可使用自带的means,并且nan表示跳过
  1536. for i in range(min([len(x_means),len(self.means)])):
  1537. try:
  1538. g = self.means[i]
  1539. if g == np.nan:raise Exception
  1540. x_means[i] = g
  1541. except:pass
  1542. get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type)
  1543. for i in range(len(get)):
  1544. tab.add(get[i], f'{i}预测热力图')
  1545. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1546. data = class_ + [f'{i}' for i in x_means]
  1547. c = Table().add(headers=heard, rows=[data])
  1548. tab.add(c, '数据表')
  1549. except:
  1550. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1551. get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type)
  1552. for i in range(len(get)):
  1553. tab.add(get[i], f'{i}预测热力图')
  1554. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1555. data = [f'{i}' for i in x_means]
  1556. c = Table().add(headers=heard, rows=[data])
  1557. tab.add(c, '数据表')
  1558. save = Dic + r'/预测热力图.HTML'
  1559. tab.render(save) # 生成HTML
  1560. return save,
  1561. class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图
  1562. def Des(self,Dic,*args,**kwargs):
  1563. return super().Des(Dic,Decision_boundary,Prediction_boundary)
  1564. class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More
  1565. def Des(self,Dic,*args,**kwargs):
  1566. return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More)
  1567. class Near_feature_scatter_class_More(To_PyeBase):
  1568. def Des(self, Dic, *args, **kwargs):
  1569. tab = Tab()
  1570. x_data = self.x_trainData
  1571. y = self.y_trainData
  1572. class_ = np.unique(y).ravel().tolist()
  1573. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  1574. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  1575. for i in range(len(get)):
  1576. tab.add(get[i], f'{i}训练数据散点图')
  1577. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1578. data = class_ + [f'{i}' for i in x_means]
  1579. c = Table().add(headers=heard, rows=[data])
  1580. tab.add(c, '数据表')
  1581. save = Dic + r'/数据特征散点图(分类).HTML'
  1582. tab.render(save) # 生成HTML
  1583. return save,
  1584. class Near_feature_scatter_More(To_PyeBase):
  1585. def Des(self,Dic,*args,**kwargs):
  1586. tab = Tab()
  1587. x_data = self.x_trainData
  1588. x_means = make_Cat(x_data).get()[0]
  1589. get_y = Feature_visualization(x_data, '数据散点图') # 转换
  1590. for i in range(len(get_y)):
  1591. tab.add(get_y[i], f'[{i}]数据x-x散点图')
  1592. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1593. data = [f'{i}' for i in x_means]
  1594. c = Table().add(headers=heard, rows=[data])
  1595. tab.add(c, '数据表')
  1596. save = Dic + r'/数据特征散点图.HTML'
  1597. tab.render(save) # 生成HTML
  1598. return save,
  1599. class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据
  1600. def Des(self,Dic,*args,**kwargs):
  1601. #获取数据
  1602. class_ = np.unique(self.y_trainData).ravel().tolist()
  1603. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1604. tab = Tab()
  1605. y = self.y_trainData
  1606. x_data = self.x_trainData
  1607. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1608. for i in range(len(get)):
  1609. tab.add(get[i], f'{i}临近特征散点图')
  1610. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1611. data = class_ + [f'{i}' for i in x_means]
  1612. c = Table().add(headers=heard, rows=[data])
  1613. tab.add(c, '数据表')
  1614. save = Dic + r'/临近数据特征散点图(分类).HTML'
  1615. tab.render(save) # 生成HTML
  1616. return save,
  1617. class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据
  1618. def Des(self,Dic,*args,**kwargs):
  1619. tab = Tab()
  1620. x_data = self.x_trainData.T
  1621. y = self.y_trainData
  1622. get, x_means, x_range,Type = Training_visualization_NoClass(x_data)
  1623. for i in range(len(get)):
  1624. tab.add(get[i], f'{i}临近特征散点图')
  1625. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1626. data = [f'{i}' for i in x_means]
  1627. tab.add(make_Tab(columns,[data]), '数据表')
  1628. save = Dic + r'/临近数据特征散点图.HTML'
  1629. tab.render(save) # 生成HTML
  1630. return save,
  1631. class Feature_scatter_YX(To_PyeBase):#y-x图
  1632. def Des(self,Dic,*args,**kwargs):
  1633. tab = Tab()
  1634. x_data = self.x_trainData
  1635. y = self.y_trainData
  1636. get, x_means, x_range,Type = regress_visualization(x_data,y)
  1637. for i in range(len(get)):
  1638. tab.add(get[i], f'{i}特征x-y散点图')
  1639. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1640. data = [f'{i}' for i in x_means]
  1641. tab.add(make_Tab(columns,[data]), '数据表')
  1642. save = Dic + r'/特征y-x图像.HTML'
  1643. tab.render(save) # 生成HTML
  1644. return save,
  1645. class Line_Model(Study_MachineBase):
  1646. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1647. super(Line_Model, self).__init__(*args,**kwargs)
  1648. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  1649. model]
  1650. if model == 'Line':
  1651. self.Model = Model()
  1652. self.k = {}
  1653. else:
  1654. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1655. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  1656. #记录这两个是为了克隆
  1657. self.Alpha = args_use['alpha']
  1658. self.max_iter = args_use['max_iter']
  1659. self.Model_Name = model
  1660. def Des(self,Dic,*args,**kwargs):
  1661. tab = Tab()
  1662. x_data = self.x_trainData
  1663. y = self.y_trainData
  1664. w_list = self.Model.coef_.tolist()
  1665. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  1666. b = self.Model.intercept_.tolist()
  1667. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1668. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1669. for i in range(len(get)):
  1670. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1671. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1672. for i in range(len(get)):
  1673. tab.add(get[i], f'{i}预测热力图')
  1674. tab.add(scatter(w_heard,w_list),'系数w散点图')
  1675. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  1676. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  1677. data = [f'{i}' for i in x_means] + w_list + [b]
  1678. if self.Model_Name != 'Line':
  1679. columns += ['阿尔法','最大迭代次数']
  1680. data += [self.Model.alpha,self.Model.max_iter]
  1681. tab.add(make_Tab(columns,[data]), '数据表')
  1682. desTo_CSV(Dic, '系数表', [w_list] + [b], [f'系数W[{i}]' for i in range(len(w_list))] + ['截距'])
  1683. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1684. save = Dic + r'/线性回归模型.HTML'
  1685. tab.render(save) # 生成HTML
  1686. return save,
  1687. class LogisticRegression_Model(Study_MachineBase):
  1688. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1689. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  1690. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  1691. #记录这两个是为了克隆
  1692. self.C = args_use['C']
  1693. self.max_iter = args_use['max_iter']
  1694. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  1695. self.Model_Name = model
  1696. def Des(self,Dic='render.html',*args,**kwargs):
  1697. #获取数据
  1698. w_array = self.Model.coef_
  1699. w_list = w_array.tolist() # 变为表格
  1700. b = self.Model.intercept_
  1701. c = self.Model.C
  1702. max_iter = self.Model.max_iter
  1703. class_ = self.Model.classes_.tolist()
  1704. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1705. tab = Tab()
  1706. y = self.y_trainData
  1707. x_data = self.x_trainData
  1708. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1709. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1710. for i in range(len(get)):
  1711. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1712. for i in range(len(w_list)):
  1713. w = w_list[i]
  1714. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  1715. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  1716. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  1717. columns = class_heard + [f'截距{i}' for i in range(len(b))] + ['C', '最大迭代数']
  1718. data = class_ + b.tolist() + [c, max_iter]
  1719. c = Table().add(headers=columns, rows=[data])
  1720. tab.add(c, '数据表')
  1721. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  1722. tab.add(c, '系数数据表')
  1723. c = Table().add(headers=[f'普适预测第{i}特征' for i in range(len(x_means))], rows=[[f'{i}' for i in x_means]])
  1724. tab.add(c, '普适预测数据表')
  1725. desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
  1726. desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  1727. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1728. save = Dic + r'/逻辑回归.HTML'
  1729. tab.render(save) # 生成HTML
  1730. return save,
  1731. class Categorical_Data:#数据统计助手
  1732. def __init__(self):
  1733. self.x_means = []
  1734. self.x_range = []
  1735. self.Type = []
  1736. def __call__(self,x1, *args, **kwargs):
  1737. get = self.is_continuous(x1)
  1738. return get
  1739. def is_continuous(self,x1:np.array):
  1740. try:
  1741. x1_con = is_continuous(x1)
  1742. if x1_con:
  1743. self.x_means.append(np.mean(x1))
  1744. self.add_Range(x1)
  1745. else:
  1746. raise Exception
  1747. return x1_con
  1748. except:#找出出现次数最多的元素
  1749. new = np.unique(x1)#去除相同的元素
  1750. count_list = []
  1751. for i in new:
  1752. count_list.append(np.sum(x1 == i))
  1753. index = count_list.index(max(count_list))#找出最大值的索引
  1754. self.x_means.append(x1[index])
  1755. self.add_Range(x1,False)
  1756. return False
  1757. def add_Range(self,x1:np.array,range_=True):
  1758. try:
  1759. if not range_ : raise Exception
  1760. min_ = int(x1.min()) - 1
  1761. max_ = int(x1.max()) + 1
  1762. #不需要复制列表
  1763. self.x_range.append([min_,max_])
  1764. self.Type.append(1)
  1765. except:
  1766. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  1767. self.Type.append(2)
  1768. def get(self):
  1769. return self.x_means,self.x_range,self.Type
  1770. class Knn_Model(Study_MachineBase):
  1771. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1772. super(Knn_Model, self).__init__(*args,**kwargs)
  1773. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  1774. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  1775. #记录这两个是为了克隆
  1776. self.n_neighbors = args_use['n_neighbors']
  1777. self.p = args_use['p']
  1778. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  1779. self.Model_Name = model
  1780. def Des(self,Dic,*args,**kwargs):
  1781. tab = Tab()
  1782. y = self.y_trainData
  1783. x_data = self.x_trainData
  1784. y_test = self.y_testData
  1785. x_test = self.x_testData
  1786. if self.Model_Name == 'Knn_class':
  1787. class_ = self.Model.classes_.tolist()
  1788. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1789. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1790. for i in range(len(get)):
  1791. tab.add(get[i],f'{i}训练数据散点图')
  1792. if not y_test is None:
  1793. get = Training_visualization(x_test,class_,y_test)[0]
  1794. for i in range(len(get)):
  1795. tab.add(get[i],f'{i}测试数据散点图')
  1796. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1797. for i in range(len(get)):
  1798. tab.add(get[i], f'{i}预测热力图')
  1799. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1800. data = class_ + [f'{i}' for i in x_means]
  1801. c = Table().add(headers=heard, rows=[data])
  1802. tab.add(c, '数据表')
  1803. else:
  1804. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1805. for i in range(len(get)):
  1806. tab.add(get[i], f'{i}训练数据散点图')
  1807. get = regress_visualization(x_test, y_test)[0]
  1808. for i in range(len(get)):
  1809. tab.add(get[i], f'{i}测试数据类型图')
  1810. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1811. for i in range(len(get)):
  1812. tab.add(get[i], f'{i}预测热力图')
  1813. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1814. data = [f'{i}' for i in x_means]
  1815. c = Table().add(headers=heard, rows=[data])
  1816. tab.add(c, '数据表')
  1817. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1818. save = Dic + r'/K.HTML'
  1819. tab.render(save) # 生成HTML
  1820. return save,
  1821. class Tree_Model(Study_MachineBase):
  1822. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1823. super(Tree_Model, self).__init__(*args,**kwargs)
  1824. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  1825. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  1826. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1827. #记录这两个是为了克隆
  1828. self.criterion = args_use['criterion']
  1829. self.splitter = args_use['splitter']
  1830. self.max_features = args_use['max_features']
  1831. self.max_depth = args_use['max_depth']
  1832. self.min_samples_split = args_use['min_samples_split']
  1833. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1834. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1835. self.Model_Name = model
  1836. def Des(self, Dic, *args, **kwargs):
  1837. tab = Tab()
  1838. importance = self.Model.feature_importances_.tolist()
  1839. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  1840. export_graphviz(self.Model, out_file=f)
  1841. make_bar('特征重要性',importance,tab)
  1842. desTo_CSV(Dic, '特征重要性', [importance], [f'[{i}]特征' for i in range(len(importance))])
  1843. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  1844. y = self.y_trainData
  1845. x_data = self.x_trainData
  1846. y_test = self.y_testData
  1847. x_test = self.x_testData
  1848. if self.Model_Name == 'Tree_class':
  1849. class_ = self.Model.classes_.tolist()
  1850. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1851. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1852. for i in range(len(get)):
  1853. tab.add(get[i],f'{i}训练数据散点图')
  1854. get = Training_visualization(x_test, class_, y_test)[0]
  1855. for i in range(len(get)):
  1856. tab.add(get[i], f'{i}测试数据散点图')
  1857. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1858. for i in range(len(get)):
  1859. tab.add(get[i], f'{i}预测热力图')
  1860. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1861. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  1862. else:
  1863. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1864. for i in range(len(get)):
  1865. tab.add(get[i], f'{i}训练数据散点图')
  1866. get = regress_visualization(x_test, y_test)[0]
  1867. for i in range(len(get)):
  1868. tab.add(get[i], f'{i}测试数据类型图')
  1869. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1870. for i in range(len(get)):
  1871. tab.add(get[i], f'{i}预测热力图')
  1872. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1873. [[f'{i}' for i in x_means] + importance]), '数据表')
  1874. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1875. save = Dic + r'/决策树.HTML'
  1876. tab.render(save) # 生成HTML
  1877. return save,
  1878. class Forest_Model(Study_MachineBase):
  1879. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1880. super(Forest_Model, self).__init__(*args,**kwargs)
  1881. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  1882. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  1883. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1884. #记录这两个是为了克隆
  1885. self.n_estimators = args_use['n_Tree']
  1886. self.criterion = args_use['criterion']
  1887. self.max_features = args_use['max_features']
  1888. self.max_depth = args_use['max_depth']
  1889. self.min_samples_split = args_use['min_samples_split']
  1890. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  1891. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1892. self.Model_Name = model
  1893. def Des(self, Dic, *args, **kwargs):
  1894. tab = Tab()
  1895. #多个决策树可视化
  1896. for i in range(len(self.Model.estimators_)):
  1897. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  1898. export_graphviz(self.Model.estimators_[i], out_file=f)
  1899. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  1900. y = self.y_trainData
  1901. x_data = self.x_trainData
  1902. if self.Model_Name == 'Forest_class':
  1903. class_ = self.Model.classes_.tolist()
  1904. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1905. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1906. for i in range(len(get)):
  1907. tab.add(get[i],f'{i}训练数据散点图')
  1908. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1909. for i in range(len(get)):
  1910. tab.add(get[i], f'{i}预测热力图')
  1911. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1912. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1913. else:
  1914. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1915. for i in range(len(get)):
  1916. tab.add(get[i], f'{i}预测类型图')
  1917. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1918. for i in range(len(get)):
  1919. tab.add(get[i], f'{i}预测热力图')
  1920. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1921. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1922. save = Dic + r'/随机森林.HTML'
  1923. tab.render(save) # 生成HTML
  1924. return save,
  1925. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  1926. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1927. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  1928. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  1929. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  1930. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1931. #记录这两个是为了克隆
  1932. self.criterion = args_use['criterion']
  1933. self.splitter = args_use['splitter']
  1934. self.max_features = args_use['max_features']
  1935. self.max_depth = args_use['max_depth']
  1936. self.min_samples_split = args_use['min_samples_split']
  1937. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1938. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1939. self.Model_Name = model
  1940. def Des(self, Dic, *args, **kwargs):
  1941. tab = Tab()
  1942. #多个决策树可视化
  1943. for a in range(len(self.Model.estimators_)):
  1944. for i in range(len(self.Model.estimators_[a])):
  1945. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  1946. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  1947. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  1948. y = self.y_trainData
  1949. x_data = self.x_trainData
  1950. if self.Model_Name == 'Tree_class':
  1951. class_ = self.Model.classes_.tolist()
  1952. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1953. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1954. for i in range(len(get)):
  1955. tab.add(get[i],f'{i}训练数据散点图')
  1956. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1957. for i in range(len(get)):
  1958. tab.add(get[i], f'{i}预测热力图')
  1959. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1960. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1961. else:
  1962. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1963. for i in range(len(get)):
  1964. tab.add(get[i], f'{i}预测类型图')
  1965. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1966. for i in range(len(get)):
  1967. tab.add(get[i], f'{i}预测热力图')
  1968. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1969. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1970. save = Dic + r'/梯度提升回归树.HTML'
  1971. tab.render(save) # 生成HTML
  1972. return save,
  1973. class SVC_Model(Study_MachineBase):
  1974. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1975. super(SVC_Model, self).__init__(*args,**kwargs)
  1976. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1977. #记录这两个是为了克隆
  1978. self.C = args_use['C']
  1979. self.gamma = args_use['gamma']
  1980. self.kernel = args_use['kernel']
  1981. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1982. self.Model_Name = model
  1983. def Des(self, Dic, *args, **kwargs):
  1984. tab = Tab()
  1985. try:
  1986. w_list = self.Model.coef_.tolist() # 未必有这个属性
  1987. b = self.Model.intercept_.tolist()
  1988. U = True
  1989. except:
  1990. U = False
  1991. class_ = self.Model.classes_.tolist()
  1992. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1993. y = self.y_trainData
  1994. x_data = self.x_trainData
  1995. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1996. if U:get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1997. for i in range(len(get)):
  1998. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1999. else:tab.add(get[i], f'{i}决策边界散点图')
  2000. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2001. for i in range(len(get)):
  2002. tab.add(get[i], f'{i}预测热力图')
  2003. dic = {2:'离散',1:'连续'}
  2004. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  2005. [class_ + [f'{i}' for i in x_means]]), '数据表')
  2006. if U:desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
  2007. if U:desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2008. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2009. save = Dic + r'/支持向量机分类.HTML'
  2010. tab.render(save) # 生成HTML
  2011. return save,
  2012. class SVR_Model(Study_MachineBase):
  2013. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  2014. super(SVR_Model, self).__init__(*args,**kwargs)
  2015. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  2016. #记录这两个是为了克隆
  2017. self.C = args_use['C']
  2018. self.gamma = args_use['gamma']
  2019. self.kernel = args_use['kernel']
  2020. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  2021. self.Model_Name = model
  2022. def Des(self,Dic,*args,**kwargs):
  2023. tab = Tab()
  2024. x_data = self.x_trainData
  2025. y = self.y_trainData
  2026. try:
  2027. w_list = self.Model.coef_.tolist()#未必有这个属性
  2028. b = self.Model.intercept_.tolist()
  2029. U = True
  2030. except:
  2031. U = False
  2032. get, x_means, x_range,Type = regress_visualization(x_data, y)
  2033. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  2034. for i in range(len(get)):
  2035. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  2036. else:tab.add(get[i], f'{i}预测类型图')
  2037. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2038. for i in range(len(get)):
  2039. tab.add(get[i], f'{i}预测热力图')
  2040. if U: desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
  2041. if U: desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2042. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2043. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  2044. save = Dic + r'/支持向量机回归.HTML'
  2045. tab.render(save) # 生成HTML
  2046. return save,
  2047. class Variance_Model(Unsupervised):#无监督
  2048. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  2049. super(Variance_Model, self).__init__(*args,**kwargs)
  2050. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  2051. #记录这两个是为了克隆
  2052. self.threshold = args_use['P']
  2053. self.k = {'threshold':args_use['P']}
  2054. self.Model_Name = model
  2055. def Des(self,Dic,*args,**kwargs):
  2056. tab = Tab()
  2057. var = self.Model.variances_#标准差
  2058. y_data = self.y_testData
  2059. if type(y_data) is np.ndarray:
  2060. get = Feature_visualization(self.y_testData)
  2061. for i in range(len(get)):
  2062. tab.add(get[i],f'[{i}]数据x-x散点图')
  2063. c = (
  2064. Bar()
  2065. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  2066. .add_yaxis('标准差', var.tolist(), **Label_Set)
  2067. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2068. )
  2069. tab.add(c,'数据标准差')
  2070. save = Dic + r'/方差特征选择.HTML'
  2071. tab.render(save) # 生成HTML
  2072. return save,
  2073. class SelectKBest_Model(prep_Base):#有监督
  2074. def __init__(self, args_use, model, *args, **kwargs):
  2075. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  2076. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  2077. # 记录这两个是为了克隆
  2078. self.k_ = args_use['k']
  2079. self.score_func=args_use['score_func']
  2080. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  2081. self.Model_Name = model
  2082. def Des(self,Dic,*args,**kwargs):
  2083. tab = Tab()
  2084. score = self.Model.scores_.tolist()
  2085. support = self.Model.get_support()
  2086. y_data = self.y_trainData
  2087. x_data = self.x_trainData
  2088. if type(x_data) is np.ndarray:
  2089. get = Feature_visualization(x_data)
  2090. for i in range(len(get)):
  2091. tab.add(get[i],f'[{i}]训练数据x-x散点图')
  2092. if type(y_data) is np.ndarray:
  2093. get = Feature_visualization(y_data)
  2094. for i in range(len(get)):
  2095. tab.add(get[i],f'[{i}]保留训练数据x-x散点图')
  2096. y_data = self.y_testData
  2097. x_data = self.x_testData
  2098. if type(x_data) is np.ndarray:
  2099. get = Feature_visualization(x_data)
  2100. for i in range(len(get)):
  2101. tab.add(get[i],f'[{i}]数据x-x散点图')
  2102. if type(y_data) is np.ndarray:
  2103. get = Feature_visualization(y_data)
  2104. for i in range(len(get)):
  2105. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  2106. Choose = []
  2107. UnChoose = []
  2108. for i in range(len(score)):
  2109. if support[i]:
  2110. Choose.append(score[i])
  2111. UnChoose.append(0)#占位
  2112. else:
  2113. UnChoose.append(score[i])
  2114. Choose.append(0)
  2115. c = (
  2116. Bar()
  2117. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  2118. .add_yaxis('选中特征', Choose, **Label_Set)
  2119. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  2120. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2121. )
  2122. tab.add(c,'单变量重要程度')
  2123. save = Dic + r'/单一变量特征选择.HTML'
  2124. tab.render(save) # 生成HTML
  2125. return save,
  2126. class SelectFrom_Model(prep_Base):#有监督
  2127. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2128. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  2129. self.Model = Learner.Model
  2130. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  2131. self.max_features = args_use['k']
  2132. self.estimator=Learner.Model
  2133. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  2134. self.have_Fit = Learner.have_Fit
  2135. self.Model_Name = 'SelectFrom_Model'
  2136. self.Learner = Learner
  2137. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  2138. y_data = y_data.ravel()
  2139. if not self.have_Fit: # 不允许第二次训练
  2140. self.Select_Model.fit(x_data, y_data)
  2141. self.have_Fit = True
  2142. return 'None','None'
  2143. def Predict(self, x_data, *args, **kwargs):
  2144. try:
  2145. self.x_testData = x_data.copy()
  2146. x_Predict = self.Select_Model.transform(x_data)
  2147. self.y_testData = x_Predict.copy()
  2148. self.have_Predict = True
  2149. return x_Predict,'模型特征工程'
  2150. except:
  2151. self.have_Predict = True
  2152. return np.array([]),'无结果工程'
  2153. def Des(self,Dic,*args,**kwargs):
  2154. tab = Tab()
  2155. support = self.Select_Model.get_support()
  2156. y_data = self.y_testData
  2157. x_data = self.x_testData
  2158. if type(x_data) is np.ndarray:
  2159. get = Feature_visualization(x_data)
  2160. for i in range(len(get)):
  2161. tab.add(get[i],f'[{i}]数据x-x散点图')
  2162. if type(y_data) is np.ndarray:
  2163. get = Feature_visualization(y_data)
  2164. for i in range(len(get)):
  2165. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  2166. def make_Bar(score):
  2167. Choose = []
  2168. UnChoose = []
  2169. for i in range(len(score)):
  2170. if support[i]:
  2171. Choose.append(abs(score[i]))
  2172. UnChoose.append(0) # 占位
  2173. else:
  2174. UnChoose.append(abs(score[i]))
  2175. Choose.append(0)
  2176. c = (
  2177. Bar()
  2178. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  2179. .add_yaxis('选中特征', Choose, **Label_Set)
  2180. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  2181. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2182. )
  2183. tab.add(c,'单变量重要程度')
  2184. try:
  2185. make_Bar(self.Model.coef_)
  2186. except:
  2187. try:
  2188. make_Bar(self.Model.feature_importances_)
  2189. except:pass
  2190. save = Dic + r'/模型特征选择.HTML'
  2191. tab.render(save) # 生成HTML
  2192. return save,
  2193. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  2194. def __init__(self, args_use, model, *args, **kwargs):
  2195. super(Standardization_Model, self).__init__(*args, **kwargs)
  2196. self.Model = StandardScaler()
  2197. self.k = {}
  2198. self.Model_Name = 'StandardScaler'
  2199. def Des(self,Dic,*args,**kwargs):
  2200. tab = Tab()
  2201. y_data = self.y_testData
  2202. x_data = self.x_testData
  2203. var = self.Model.var_.tolist()
  2204. means = self.Model.mean_.tolist()
  2205. scale = self.Model.scale_.tolist()
  2206. Conversion_control(y_data,x_data,tab)
  2207. make_bar('标准差',var,tab)
  2208. make_bar('方差',means,tab)
  2209. make_bar('Scale',scale,tab)
  2210. save = Dic + r'/z-score标准化.HTML'
  2211. tab.render(save) # 生成HTML
  2212. return save,
  2213. class MinMaxScaler_Model(Unsupervised):#离差标准化
  2214. def __init__(self, args_use, model, *args, **kwargs):
  2215. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  2216. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  2217. self.k = {}
  2218. self.Model_Name = 'MinMaxScaler'
  2219. def Des(self,Dic,*args,**kwargs):
  2220. tab = Tab()
  2221. y_data = self.y_testData
  2222. x_data = self.x_testData
  2223. scale = self.Model.scale_.tolist()
  2224. max_ = self.Model.data_max_.tolist()
  2225. min_ = self.Model.data_min_.tolist()
  2226. Conversion_control(y_data,x_data,tab)
  2227. make_bar('Scale',scale,tab)
  2228. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  2229. row=[max_ + min_]), '数据表格')
  2230. save = Dic + r'/离差标准化.HTML'
  2231. tab.render(save) # 生成HTML
  2232. return save,
  2233. class LogScaler_Model(prep_Base):#对数标准化
  2234. def __init__(self, args_use, model, *args, **kwargs):
  2235. super(LogScaler_Model, self).__init__(*args, **kwargs)
  2236. self.Model = None
  2237. self.k = {}
  2238. self.Model_Name = 'LogScaler'
  2239. def Fit(self, x_data, *args, **kwargs):
  2240. if not self.have_Predict: # 不允许第二次训练
  2241. self.max_logx = np.log(x_data.max())
  2242. self.have_Fit = True
  2243. return 'None', 'None'
  2244. def Predict(self, x_data, *args, **kwargs):
  2245. try:
  2246. max_logx = self.max_logx
  2247. except:
  2248. self.have_Fit = False
  2249. self.Fit(x_data)
  2250. max_logx = self.max_logx
  2251. self.x_testData = x_data.copy()
  2252. x_Predict = (np.log(x_data)/max_logx)
  2253. self.y_testData = x_Predict.copy()
  2254. self.have_Predict = True
  2255. return x_Predict,'对数变换'
  2256. def Des(self,Dic,*args,**kwargs):
  2257. tab = Tab()
  2258. y_data = self.y_testData
  2259. x_data = self.x_testData
  2260. Conversion_control(y_data,x_data,tab)
  2261. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  2262. save = Dic + r'/对数标准化.HTML'
  2263. tab.render(save) # 生成HTML
  2264. return save,
  2265. class atanScaler_Model(prep_Base):#atan标准化
  2266. def __init__(self, args_use, model, *args, **kwargs):
  2267. super(atanScaler_Model, self).__init__(*args, **kwargs)
  2268. self.Model = None
  2269. self.k = {}
  2270. self.Model_Name = 'atanScaler'
  2271. def Fit(self, x_data, *args, **kwargs):
  2272. self.have_Fit = True
  2273. return 'None', 'None'
  2274. def Predict(self, x_data, *args, **kwargs):
  2275. self.x_testData = x_data.copy()
  2276. x_Predict = (np.arctan(x_data)*(2/np.pi))
  2277. self.y_testData = x_Predict.copy()
  2278. self.have_Predict = True
  2279. return x_Predict,'atan变换'
  2280. def Des(self,Dic,*args,**kwargs):
  2281. tab = Tab()
  2282. y_data = self.y_testData
  2283. x_data = self.x_testData
  2284. Conversion_control(y_data,x_data,tab)
  2285. save = Dic + r'/反正切函数标准化.HTML'
  2286. tab.render(save) # 生成HTML
  2287. return save,
  2288. class decimalScaler_Model(prep_Base):#小数定标准化
  2289. def __init__(self, args_use, model, *args, **kwargs):
  2290. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  2291. self.Model = None
  2292. self.k = {}
  2293. self.Model_Name = 'Decimal_normalization'
  2294. def Fit(self, x_data, *args, **kwargs):
  2295. if not self.have_Predict: # 不允许第二次训练
  2296. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  2297. self.have_Fit = True
  2298. return 'None', 'None'
  2299. def Predict(self, x_data, *args, **kwargs):
  2300. self.x_testData = x_data.copy()
  2301. try:
  2302. j = self.j
  2303. except:
  2304. self.have_Fit = False
  2305. self.Fit(x_data)
  2306. j = self.j
  2307. x_Predict = (x_data/(10**j))
  2308. self.y_testData = x_Predict.copy()
  2309. self.have_Predict = True
  2310. return x_Predict,'小数定标标准化'
  2311. def Des(self,Dic,*args,**kwargs):
  2312. tab = Tab()
  2313. y_data = self.y_testData
  2314. x_data = self.x_testData
  2315. j = self.j
  2316. Conversion_control(y_data,x_data,tab)
  2317. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  2318. save = Dic + r'/小数定标标准化.HTML'
  2319. tab.render(save) # 生成HTML
  2320. return save,
  2321. class Mapzoom_Model(prep_Base):#映射标准化
  2322. def __init__(self, args_use, model, *args, **kwargs):
  2323. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  2324. self.Model = None
  2325. self.feature_range = args_use['feature_range']
  2326. self.k = {}
  2327. self.Model_Name = 'Decimal_normalization'
  2328. def Fit(self, x_data, *args, **kwargs):
  2329. if not self.have_Predict: # 不允许第二次训练
  2330. self.max = x_data.max()
  2331. self.min = x_data.min()
  2332. self.have_Fit = True
  2333. return 'None', 'None'
  2334. def Predict(self, x_data, *args, **kwargs):
  2335. self.x_testData = x_data.copy()
  2336. try:
  2337. max = self.max
  2338. min = self.min
  2339. except:
  2340. self.have_Fit = False
  2341. self.Fit(x_data)
  2342. max = self.max
  2343. min = self.min
  2344. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  2345. self.y_testData = x_Predict.copy()
  2346. self.have_Predict = True
  2347. return x_Predict,'映射标准化'
  2348. def Des(self,Dic,*args,**kwargs):
  2349. tab = Tab()
  2350. y_data = self.y_testData
  2351. x_data = self.x_testData
  2352. max = self.max
  2353. min = self.min
  2354. Conversion_control(y_data,x_data,tab)
  2355. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  2356. save = Dic + r'/映射标准化.HTML'
  2357. tab.render(save) # 生成HTML
  2358. return save,
  2359. class sigmodScaler_Model(prep_Base):#sigmod变换
  2360. def __init__(self, args_use, model, *args, **kwargs):
  2361. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  2362. self.Model = None
  2363. self.k = {}
  2364. self.Model_Name = 'sigmodScaler_Model'
  2365. def Fit(self, x_data, *args, **kwargs):
  2366. self.have_Fit = True
  2367. return 'None', 'None'
  2368. def Predict(self, x_data:np.array,*args,**kwargs):
  2369. self.x_testData = x_data.copy()
  2370. x_Predict = (1/(1+np.exp(-x_data)))
  2371. self.y_testData = x_Predict.copy()
  2372. self.have_Predict = True
  2373. return x_Predict,'Sigmod变换'
  2374. def Des(self,Dic,*args,**kwargs):
  2375. tab = Tab()
  2376. y_data = self.y_testData
  2377. x_data = self.x_testData
  2378. Conversion_control(y_data,x_data,tab)
  2379. save = Dic + r'/Sigmoid变换.HTML'
  2380. tab.render(save) # 生成HTML
  2381. return save,
  2382. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  2383. def __init__(self, args_use, model, *args, **kwargs):
  2384. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  2385. self.Model = None
  2386. self.feature_range = args_use['feature_range']
  2387. self.k = {}
  2388. self.Model_Name = 'Fuzzy_quantization'
  2389. def Fit(self, x_data, *args, **kwargs):
  2390. if not self.have_Predict: # 不允许第二次训练
  2391. self.max = x_data.max()
  2392. self.min = x_data.min()
  2393. self.have_Fit = True
  2394. return 'None', 'None'
  2395. def Predict(self, x_data,*args,**kwargs):
  2396. self.x_testData = x_data.copy()
  2397. try:
  2398. max = self.max
  2399. min = self.min
  2400. except:
  2401. self.have_Fit = False
  2402. self.Fit(x_data)
  2403. max = self.max
  2404. min = self.min
  2405. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  2406. self.y_testData = x_Predict.copy()
  2407. self.have_Predict = True
  2408. return x_Predict,'模糊量化标准化'
  2409. def Des(self,Dic,*args,**kwargs):
  2410. tab = Tab()
  2411. y_data = self.y_trainData
  2412. x_data = self.x_trainData
  2413. max = self.max
  2414. min = self.min
  2415. Conversion_control(y_data,x_data,tab)
  2416. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  2417. save = Dic + r'/模糊量化标准化.HTML'
  2418. tab.render(save) # 生成HTML
  2419. return save,
  2420. class Regularization_Model(Unsupervised):#正则化
  2421. def __init__(self, args_use, model, *args, **kwargs):
  2422. super(Regularization_Model, self).__init__(*args, **kwargs)
  2423. self.Model = Normalizer(norm=args_use['norm'])
  2424. self.k = {'norm':args_use['norm']}
  2425. self.Model_Name = 'Regularization'
  2426. def Des(self,Dic,*args,**kwargs):
  2427. tab = Tab()
  2428. y_data = self.y_testData.copy()
  2429. x_data = self.x_testData.copy()
  2430. Conversion_control(y_data,x_data,tab)
  2431. save = Dic + r'/正则化.HTML'
  2432. tab.render(save) # 生成HTML
  2433. return save,
  2434. #离散数据
  2435. class Binarizer_Model(Unsupervised):#二值化
  2436. def __init__(self, args_use, model, *args, **kwargs):
  2437. super(Binarizer_Model, self).__init__(*args, **kwargs)
  2438. self.Model = Binarizer(threshold=args_use['threshold'])
  2439. self.k = {}
  2440. self.Model_Name = 'Binarizer'
  2441. def Des(self,Dic,*args,**kwargs):
  2442. tab = Tab()
  2443. y_data = self.y_testData
  2444. x_data = self.x_testData
  2445. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  2446. for i in range(len(get_y)):
  2447. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  2448. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2449. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2450. tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
  2451. tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
  2452. save = Dic + r'/二值离散化.HTML'
  2453. tab.render(save) # 生成HTML
  2454. return save,
  2455. class Discretization_Model(prep_Base):#n值离散
  2456. def __init__(self, args_use, model, *args, **kwargs):
  2457. super(Discretization_Model, self).__init__(*args, **kwargs)
  2458. self.Model = None
  2459. range_ = args_use['split_range']
  2460. if range_ == []:raise Exception
  2461. elif len(range_) == 1:range_.append(range_[0])
  2462. self.range = range_
  2463. self.k = {}
  2464. self.Model_Name = 'Discretization'
  2465. def Fit(self,*args,**kwargs):
  2466. #t值在模型创建时已经保存
  2467. self.have_Fit = True
  2468. return 'None','None'
  2469. def Predict(self,x_data,*args,**kwargs):
  2470. self.x_testData = x_data.copy()
  2471. x_Predict = x_data.copy()#复制
  2472. range_ = self.range
  2473. bool_list = []
  2474. max_ = len(range_) - 1
  2475. o_t = None
  2476. for i in range(len(range_)):
  2477. try:
  2478. t = float(range_[i])
  2479. except:continue
  2480. if o_t == None:#第一个参数
  2481. bool_list.append(x_Predict <= t)
  2482. else:
  2483. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  2484. if i == max_:
  2485. bool_list.append(t <= x_Predict)
  2486. o_t = t
  2487. for i in range(len(bool_list)):
  2488. x_Predict[bool_list[i]] = i
  2489. self.y_testData = x_Predict.copy()
  2490. self.have_Predict = True
  2491. return x_Predict,f'{len(bool_list)}值离散化'
  2492. def Des(self, Dic, *args, **kwargs):
  2493. tab = Tab()
  2494. y_data = self.y_testData
  2495. x_data = self.x_testData
  2496. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2497. for i in range(len(get_y)):
  2498. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2499. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2500. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2501. tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
  2502. tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
  2503. save = Dic + r'/多值离散化.HTML'
  2504. tab.render(save) # 生成HTML
  2505. return save,
  2506. class Label_Model(prep_Base):#数字编码
  2507. def __init__(self, args_use, model, *args, **kwargs):
  2508. super(Label_Model, self).__init__(*args, **kwargs)
  2509. self.Model = []
  2510. self.k = {}
  2511. self.Model_Name = 'LabelEncoder'
  2512. def Fit(self,x_data,*args, **kwargs):
  2513. if not self.have_Predict: # 不允许第二次训练
  2514. self.Model = []
  2515. if x_data.ndim == 1:x_data = np.array([x_data])
  2516. for i in range(x_data.shape[1]):
  2517. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器(每个特征一个学习器)
  2518. self.have_Fit = True
  2519. return 'None', 'None'
  2520. def Predict(self, x_data, *args, **kwargs):
  2521. self.x_testData = x_data.copy()
  2522. x_Predict = x_data.copy()
  2523. if x_data.ndim == 1: x_data = np.array([x_data])
  2524. for i in range(x_data.shape[1]):
  2525. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  2526. self.y_testData = x_Predict.copy()
  2527. self.have_Predict = True
  2528. return x_Predict,'数字编码'
  2529. def Des(self, Dic, *args, **kwargs):
  2530. tab = Tab()
  2531. x_data = self.x_testData
  2532. y_data = self.y_testData
  2533. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2534. for i in range(len(get_y)):
  2535. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2536. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2537. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2538. tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
  2539. tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
  2540. save = Dic + r'/数字编码.HTML'
  2541. tab.render(save) # 生成HTML
  2542. return save,
  2543. class OneHotEncoder_Model(prep_Base):#独热编码
  2544. def __init__(self, args_use, model, *args, **kwargs):
  2545. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  2546. self.Model = []
  2547. self.ndim_up = args_use['ndim_up']
  2548. self.k = {}
  2549. self.Model_Name = 'OneHotEncoder'
  2550. self.OneHot_Data = None#三维独热编码
  2551. def Fit(self,x_data,*args, **kwargs):
  2552. if not self.have_Predict: # 不允许第二次训练
  2553. if x_data.ndim == 1:x_data = [x_data]
  2554. for i in range(x_data.shape[1]):
  2555. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  2556. self.Model.append(OneHotEncoder().fit(data))#训练机器
  2557. self.have_Fit = True
  2558. return 'None', 'None'
  2559. def Predict(self, x_data, *args, **kwargs):
  2560. self.x_testData = x_data.copy()
  2561. x_new = []
  2562. for i in range(x_data.shape[1]):
  2563. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  2564. oneHot = self.Model[i].transform(data).toarray().tolist()
  2565. x_new.append(oneHot)#添加到列表中
  2566. x_new = np.array(x_new)#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  2567. x_Predict = []
  2568. for i in range(x_new.shape[1]):
  2569. x_Predict.append(x_new[:,i])
  2570. x_Predict = np.array(x_Predict)#转换回array
  2571. self.OneHot_Data = x_Predict.copy() # 保存未降维数据
  2572. if not self.ndim_up:#压缩操作
  2573. new_xPredict = []
  2574. for i in x_Predict:
  2575. new_list = []
  2576. list_ = i.tolist()
  2577. for a in list_:
  2578. new_list += a
  2579. new = np.array(new_list)
  2580. new_xPredict.append(new)
  2581. self.y_testData = np.array(new_xPredict)
  2582. return self.y_testData.copy(),'独热编码'
  2583. self.y_testData = self.OneHot_Data
  2584. self.have_Predict = True
  2585. return x_Predict,'独热编码'
  2586. def Des(self, Dic, *args, **kwargs):
  2587. tab = Tab()
  2588. y_data = self.y_testData
  2589. x_data = self.x_testData
  2590. oh_data = self.OneHot_Data
  2591. if not self.ndim_up:
  2592. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2593. for i in range(len(get_y)):
  2594. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2595. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2596. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2597. tab.add(make_Tab(heard,oh_data.tolist()), f'编码数据')
  2598. tab.add(make_Tab(heard,np.dstack((oh_data,x_data)).tolist()), f'合成[原数据,编码]数据')
  2599. tab.add(make_Tab([f'编码:{i}' for i in range(len(y_data[0]))], y_data.tolist()), f'数据')
  2600. save = Dic + r'/独热编码.HTML'
  2601. tab.render(save) # 生成HTML
  2602. return save,
  2603. class Missed_Model(Unsupervised):#缺失数据补充
  2604. def __init__(self, args_use, model, *args, **kwargs):
  2605. super(Missed_Model, self).__init__(*args, **kwargs)
  2606. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  2607. fill_value=args_use['fill_value'])
  2608. self.k = {}
  2609. self.Model_Name = 'Missed'
  2610. def Predict(self, x_data, *args, **kwargs):
  2611. self.x_testData = x_data.copy()
  2612. x_Predict = self.Model.transform(x_data)
  2613. self.y_testData = x_Predict.copy()
  2614. self.have_Predict = True
  2615. return x_Predict,'填充缺失'
  2616. def Des(self,Dic,*args,**kwargs):
  2617. tab = Tab()
  2618. y_data = self.y_testData
  2619. x_data = self.x_testData
  2620. statistics = self.Model.statistics_.tolist()
  2621. Conversion_control(y_data,x_data,tab)
  2622. tab.add(make_Tab([f'特征[{i}]' for i in range(len(statistics))],[statistics]),'填充值')
  2623. save = Dic + r'/缺失数据填充.HTML'
  2624. tab.render(save) # 生成HTML
  2625. return save,
  2626. class PCA_Model(Unsupervised):
  2627. def __init__(self, args_use, model, *args, **kwargs):
  2628. super(PCA_Model, self).__init__(*args, **kwargs)
  2629. self.Model = PCA(n_components=args_use['n_components'])
  2630. self.n_components = args_use['n_components']
  2631. self.k = {'n_components':args_use['n_components']}
  2632. self.Model_Name = 'PCA'
  2633. def Predict(self, x_data, *args, **kwargs):
  2634. self.x_testData = x_data.copy()
  2635. x_Predict = self.Model.transform(x_data)
  2636. self.y_testData = x_Predict.copy()
  2637. self.have_Predict = True
  2638. return x_Predict,'PCA'
  2639. def Des(self,Dic,*args,**kwargs):
  2640. tab = Tab()
  2641. y_data = self.y_testData
  2642. importance = self.Model.components_.tolist()
  2643. var = self.Model.explained_variance_.tolist()#方量差
  2644. Conversion_Separate_Format(y_data,tab)
  2645. x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
  2646. y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
  2647. value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
  2648. c = (HeatMap()
  2649. .add_xaxis(x_data)
  2650. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2651. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2652. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2653. xaxis_opts=opts.AxisOpts(is_scale=True),
  2654. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  2655. min_=int(self.Model.components_.min()),
  2656. pos_right='3%')) # 显示
  2657. )
  2658. tab.add(c,'成分热力图')
  2659. c = (
  2660. Bar()
  2661. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2662. .add_yaxis('方量差', var, **Label_Set)
  2663. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2664. )
  2665. desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data])
  2666. desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
  2667. tab.add(c, '方量差柱状图')
  2668. save = Dic + r'/主成分分析.HTML'
  2669. tab.render(save) # 生成HTML
  2670. return save,
  2671. class RPCA_Model(Unsupervised):
  2672. def __init__(self, args_use, model, *args, **kwargs):
  2673. super(RPCA_Model, self).__init__(*args, **kwargs)
  2674. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  2675. self.n_components = args_use['n_components']
  2676. self.k = {'n_components': args_use['n_components']}
  2677. self.Model_Name = 'RPCA'
  2678. def Predict(self, x_data, *args, **kwargs):
  2679. self.x_testData = x_data.copy()
  2680. x_Predict = self.Model.transform(x_data)
  2681. self.y_testData = x_Predict.copy()
  2682. self.have_Predict = True
  2683. return x_Predict,'RPCA'
  2684. def Des(self, Dic, *args, **kwargs):
  2685. tab = Tab()
  2686. y_data = self.y_trainData
  2687. importance = self.Model.components_.tolist()
  2688. var = self.Model.explained_variance_.tolist() # 方量差
  2689. Conversion_Separate_Format(y_data, tab)
  2690. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  2691. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  2692. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
  2693. range(len(importance[i]))]
  2694. c = (HeatMap()
  2695. .add_xaxis(x_data)
  2696. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2697. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2698. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2699. xaxis_opts=opts.AxisOpts(is_scale=True),
  2700. visualmap_opts=opts.VisualMapOpts(is_show=True,
  2701. max_=int(self.Model.components_.max()) + 1,
  2702. min_=int(self.Model.components_.min()),
  2703. pos_right='3%')) # 显示
  2704. )
  2705. tab.add(c, '成分热力图')
  2706. c = (
  2707. Bar()
  2708. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2709. .add_yaxis('放量差', var, **Label_Set)
  2710. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2711. )
  2712. tab.add(c, '方量差柱状图')
  2713. desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data])
  2714. desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
  2715. save = Dic + r'/RPCA(主成分分析).HTML'
  2716. tab.render(save) # 生成HTML
  2717. return save,
  2718. class KPCA_Model(Unsupervised):
  2719. def __init__(self, args_use, model, *args, **kwargs):
  2720. super(KPCA_Model, self).__init__(*args, **kwargs)
  2721. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  2722. self.n_components = args_use['n_components']
  2723. self.kernel = args_use['kernel']
  2724. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  2725. self.Model_Name = 'KPCA'
  2726. def Predict(self, x_data, *args, **kwargs):
  2727. self.x_testData = x_data.copy()
  2728. x_Predict = self.Model.transform(x_data)
  2729. self.y_testData = x_Predict.copy()
  2730. self.have_Predict = True
  2731. return x_Predict,'KPCA'
  2732. def Des(self, Dic, *args, **kwargs):
  2733. tab = Tab()
  2734. y_data = self.y_testData
  2735. Conversion_Separate_Format(y_data, tab)
  2736. save = Dic + r'/KPCA(主成分分析).HTML'
  2737. tab.render(save) # 生成HTML
  2738. return save,
  2739. class LDA_Model(prep_Base):#有监督学习
  2740. def __init__(self, args_use, model, *args, **kwargs):
  2741. super(LDA_Model, self).__init__(*args, **kwargs)
  2742. self.Model = LDA(n_components=args_use['n_components'])
  2743. self.n_components = args_use['n_components']
  2744. self.k = {'n_components': args_use['n_components']}
  2745. self.Model_Name = 'LDA'
  2746. def Predict(self, x_data, *args, **kwargs):
  2747. self.x_testData = x_data.copy()
  2748. x_Predict = self.Model.transform(x_data)
  2749. self.y_testData = x_Predict.copy()
  2750. self.have_Predict = True
  2751. return x_Predict,'LDA'
  2752. def Des(self,Dic,*args,**kwargs):
  2753. tab = Tab()
  2754. x_data = self.x_testData
  2755. y_data = self.y_testData
  2756. Conversion_Separate_Format(y_data,tab)
  2757. w_list = self.Model.coef_.tolist() # 变为表格
  2758. b = self.Model.intercept_
  2759. tab = Tab()
  2760. x_means = make_Cat(x_data).get()[0]
  2761. get = Regress_W(x_data, None, w_list, b, x_means.copy())#回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据)
  2762. for i in range(len(get)):
  2763. tab.add(get[i].overlap(get[i]), f'类别:{i}LDA映射曲线')
  2764. save = Dic + r'/render.HTML'
  2765. tab.render(save) # 生成HTML
  2766. return save,
  2767. class NMF_Model(Unsupervised):
  2768. def __init__(self, args_use, model, *args, **kwargs):
  2769. super(NMF_Model, self).__init__(*args, **kwargs)
  2770. self.Model = NMF(n_components=args_use['n_components'])
  2771. self.n_components = args_use['n_components']
  2772. self.k = {'n_components':args_use['n_components']}
  2773. self.Model_Name = 'NFM'
  2774. self.h_testData = None
  2775. #x_trainData保存的是W,h_trainData和y_trainData是后来数据
  2776. def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
  2777. self.x_testData = x_data.copy()
  2778. x_Predict = self.Model.transform(x_data)
  2779. self.y_testData = x_Predict.copy()
  2780. self.h_testData = self.Model.components_
  2781. if Add_Func != None and x_name != '':
  2782. Add_Func(self.h_testData, f'{x_name}:V->NMF[H]')
  2783. self.have_Predict = True
  2784. return x_Predict,'V->NMF[W]'
  2785. def Des(self,Dic,*args,**kwargs):
  2786. tab = Tab()
  2787. y_data = self.y_testData
  2788. x_data = self.x_testData
  2789. h_data = self.h_testData
  2790. Conversion_SeparateWH(y_data,h_data,tab)
  2791. wh_data = np.matmul(y_data, h_data)
  2792. difference_data = x_data - wh_data
  2793. def make_HeatMap(data,name,max_,min_):
  2794. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  2795. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  2796. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2797. c = (HeatMap()
  2798. .add_xaxis(x)
  2799. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2800. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  2801. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2802. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2803. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  2804. min_=min_,
  2805. pos_right='3%'))#显示
  2806. )
  2807. tab.add(c,name)
  2808. max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
  2809. min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
  2810. make_HeatMap(x_data,'原始数据热力图',max_,min_)
  2811. make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
  2812. make_HeatMap(difference_data,'数据差热力图',max_,min_)
  2813. desTo_CSV(Dic, '权重矩阵', y_data)
  2814. desTo_CSV(Dic, '系数矩阵', h_data)
  2815. desTo_CSV(Dic, '系数*权重矩阵', wh_data)
  2816. save = Dic + r'/非负矩阵分解.HTML'
  2817. tab.render(save) # 生成HTML
  2818. return save,
  2819. class TSNE_Model(Unsupervised):
  2820. def __init__(self, args_use, model, *args, **kwargs):
  2821. super(TSNE_Model, self).__init__(*args, **kwargs)
  2822. self.Model = TSNE(n_components=args_use['n_components'])
  2823. self.n_components = args_use['n_components']
  2824. self.k = {'n_components':args_use['n_components']}
  2825. self.Model_Name = 't-SNE'
  2826. def Fit(self,*args, **kwargs):
  2827. self.have_Fit = True
  2828. return 'None', 'None'
  2829. def Predict(self, x_data, *args, **kwargs):
  2830. self.x_testData = x_data.copy()
  2831. x_Predict = self.Model.fit_transform(x_data)
  2832. self.y_testData = x_Predict.copy()
  2833. self.have_Predict = True
  2834. return x_Predict,'SNE'
  2835. def Des(self,Dic,*args,**kwargs):
  2836. tab = Tab()
  2837. y_data = self.y_testData
  2838. Conversion_Separate_Format(y_data,tab)
  2839. save = Dic + r'/T-SNE.HTML'
  2840. tab.render(save) # 生成HTML
  2841. return save,
  2842. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  2843. def __init__(self,args_use,model,*args,**kwargs):
  2844. super(MLP_Model, self).__init__(*args,**kwargs)
  2845. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  2846. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  2847. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  2848. #记录这两个是为了克隆
  2849. self.hidden_layer_sizes = args_use['hidden_size']
  2850. self.activation = args_use['activation']
  2851. self.max_iter = args_use['max_iter']
  2852. self.solver = args_use['solver']
  2853. self.alpha = args_use['alpha']
  2854. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  2855. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  2856. self.Model_Name = model
  2857. def Des(self,Dic,*args,**kwargs):
  2858. tab = Tab()
  2859. x_data = self.x_testData
  2860. y_data = self.y_testData
  2861. coefs = self.Model.coefs_
  2862. class_ = self.Model.classes_
  2863. n_layers_ = self.Model.n_layers_
  2864. def make_HeatMap(data,name):
  2865. x = [f'特征(节点)[{i}]' for i in range(len(data))]
  2866. y = [f'节点[{i}]' for i in range(len(data[0]))]
  2867. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2868. c = (HeatMap()
  2869. .add_xaxis(x)
  2870. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2871. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  2872. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2873. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2874. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  2875. min_=float(data.min()),
  2876. pos_right='3%'))#显示
  2877. )
  2878. tab.add(c,name)
  2879. tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
  2880. desTo_CSV(Dic,f'{name}:表格',data.T.tolist(),x,y)
  2881. get, x_means, x_range, Type = regress_visualization(x_data, y_data)
  2882. for i in range(len(get)):
  2883. tab.add(get[i], f'{i}训练数据散点图')
  2884. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2885. for i in range(len(get)):
  2886. tab.add(get[i], f'{i}预测热力图')
  2887. heard = ['神经网络层数']
  2888. data = [n_layers_]
  2889. for i in range(len(coefs)):
  2890. make_HeatMap(coefs[i],f'{i}层权重矩阵')
  2891. heard.append(f'第{i}层节点数')
  2892. data.append(len(coefs[i][0]))
  2893. if self.Model_Name == 'MLP_class':
  2894. heard += [f'[{i}]类型' for i in range(len(class_))]
  2895. data += class_.tolist()
  2896. tab.add(make_Tab(heard,[data]),'数据表')
  2897. save = Dic + r'/多层感知机.HTML'
  2898. tab.render(save) # 生成HTML
  2899. return save,
  2900. class kmeans_Model(UnsupervisedModel):
  2901. def __init__(self, args_use, model, *args, **kwargs):
  2902. super(kmeans_Model, self).__init__(*args, **kwargs)
  2903. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  2904. self.class_ = []
  2905. self.n_clusters = args_use['n_clusters']
  2906. self.k = {'n_clusters':args_use['n_clusters']}
  2907. self.Model_Name = 'k-means'
  2908. def Fit(self, x_data, *args, **kwargs):
  2909. re = super().Fit(x_data,*args,**kwargs)
  2910. self.class_ = list(set(self.Model.labels_.tolist()))
  2911. self.have_Fit = True
  2912. return re
  2913. def Predict(self, x_data, *args, **kwargs):
  2914. self.x_testData = x_data.copy()
  2915. y_Predict = self.Model.predict(x_data)
  2916. self.y_testData = y_Predict.copy()
  2917. self.have_Predict = True
  2918. return y_Predict,'k-means'
  2919. def Des(self,Dic,*args,**kwargs):
  2920. tab = Tab()
  2921. y = self.y_testData
  2922. x_data = self.x_testData
  2923. class_ = self.class_
  2924. center = self.Model.cluster_centers_
  2925. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2926. Func = Training_visualization_More if More_Global else Training_visualization_Center
  2927. get,x_means,x_range,Type = Func(x_data,class_,y,center)
  2928. for i in range(len(get)):
  2929. tab.add(get[i],f'{i}数据散点图')
  2930. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2931. for i in range(len(get)):
  2932. tab.add(get[i], f'{i}预测热力图')
  2933. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2934. data = class_ + [f'{i}' for i in x_means]
  2935. c = Table().add(headers=heard, rows=[data])
  2936. tab.add(c, '数据表')
  2937. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2938. save = Dic + r'/k-means聚类.HTML'
  2939. tab.render(save) # 生成HTML
  2940. return save,
  2941. class Agglomerative_Model(UnsupervisedModel):
  2942. def __init__(self, args_use, model, *args, **kwargs):
  2943. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  2944. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  2945. self.class_ = []
  2946. self.n_clusters = args_use['n_clusters']
  2947. self.k = {'n_clusters':args_use['n_clusters']}
  2948. self.Model_Name = 'Agglomerative'
  2949. def Fit(self, x_data, *args, **kwargs):
  2950. re = super().Fit(x_data,*args,**kwargs)
  2951. self.class_ = list(set(self.Model.labels_.tolist()))
  2952. self.have_Fit = True
  2953. return re
  2954. def Predict(self, x_data, *args, **kwargs):
  2955. self.x_testData = x_data.copy()
  2956. y_Predict = self.Model.fit_predict(x_data)
  2957. self.y_trainData = y_Predict.copy()
  2958. self.have_Predict = True
  2959. return y_Predict,'Agglomerative'
  2960. def Des(self, Dic, *args, **kwargs):
  2961. tab = Tab()
  2962. y = self.y_testData
  2963. x_data = self.x_testData
  2964. class_ = self.class_
  2965. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2966. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  2967. get, x_means, x_range, Type = Func(x_data, class_, y)
  2968. for i in range(len(get)):
  2969. tab.add(get[i], f'{i}训练数据散点图')
  2970. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2971. for i in range(len(get)):
  2972. tab.add(get[i], f'{i}预测热力图')
  2973. linkage_array = ward(self.x_trainData)#self.y_trainData是结果
  2974. dendrogram(linkage_array)
  2975. plt.savefig(Dic + r'/Cluster_graph.png')
  2976. image = Image()
  2977. image.add(
  2978. src=Dic + r'/Cluster_graph.png',
  2979. ).set_global_opts(
  2980. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  2981. )
  2982. tab.add(image,'聚类树状图')
  2983. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2984. data = class_ + [f'{i}' for i in x_means]
  2985. c = Table().add(headers=heard, rows=[data])
  2986. tab.add(c, '数据表')
  2987. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2988. save = Dic + r'/层次聚类.HTML'
  2989. tab.render(save) # 生成HTML
  2990. return save,
  2991. class DBSCAN_Model(UnsupervisedModel):
  2992. def __init__(self, args_use, model, *args, **kwargs):
  2993. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  2994. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  2995. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  2996. # min_samples
  2997. self.eps = args_use['eps']
  2998. self.min_samples = args_use['min_samples']
  2999. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  3000. self.class_ = []
  3001. self.Model_Name = 'DBSCAN'
  3002. def Fit(self, x_data, *args, **kwargs):
  3003. re = super().Fit(x_data,*args,**kwargs)
  3004. self.class_ = list(set(self.Model.labels_.tolist()))
  3005. self.have_Fit = True
  3006. return re
  3007. def Predict(self, x_data, *args, **kwargs):
  3008. self.x_testData = x_data.copy()
  3009. y_Predict = self.Model.fit_predict(x_data)
  3010. self.y_testData = y_Predict.copy()
  3011. self.have_Predict = True
  3012. return y_Predict,'DBSCAN'
  3013. def Des(self, Dic, *args, **kwargs):
  3014. #DBSCAN没有预测的必要
  3015. tab = Tab()
  3016. y = self.y_testData.copy()
  3017. x_data = self.x_testData.copy()
  3018. class_ = self.class_
  3019. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  3020. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  3021. get, x_means, x_range, Type = Func(x_data, class_, y)
  3022. for i in range(len(get)):
  3023. tab.add(get[i], f'{i}训练数据散点图')
  3024. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  3025. data = class_ + [f'{i}' for i in x_means]
  3026. c = Table().add(headers=heard, rows=[data])
  3027. tab.add(c, '数据表')
  3028. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  3029. save = Dic + r'/密度聚类.HTML'
  3030. tab.render(save) # 生成HTML
  3031. return save,
  3032. class Fast_Fourier(Study_MachineBase):#快速傅里叶变换
  3033. def __init__(self, args_use, model, *args, **kwargs):
  3034. super(Fast_Fourier, self).__init__(*args, **kwargs)
  3035. self.Model = None
  3036. self.Fourier = None
  3037. self.Frequency = None
  3038. self.Phase = None
  3039. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  3040. # min_samples
  3041. def Fit(self, x_data, *args, **kwargs):
  3042. re = super().Fit(x_data,*args,**kwargs)
  3043. self.class_ = list(set(self.Model.labels_.tolist()))
  3044. self.have_Fit = True
  3045. return re
  3046. def Predict(self, x_data, *args, **kwargs):
  3047. self.x_testData = x_data.copy()
  3048. y_Predict = self.Model.fit_predict(x_data)
  3049. self.y_testData = y_Predict.copy()
  3050. self.have_Predict = True
  3051. return y_Predict,'DBSCAN'
  3052. def Des(self, Dic, *args, **kwargs):
  3053. #DBSCAN没有预测的必要
  3054. tab = Tab()
  3055. y = self.y_testData.copy()
  3056. x_data = self.x_testData.copy()
  3057. class_ = self.class_
  3058. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  3059. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  3060. get, x_means, x_range, Type = Func(x_data, class_, y)
  3061. for i in range(len(get)):
  3062. tab.add(get[i], f'{i}训练数据散点图')
  3063. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  3064. data = class_ + [f'{i}' for i in x_means]
  3065. c = Table().add(headers=heard, rows=[data])
  3066. tab.add(c, '数据表')
  3067. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  3068. save = Dic + r'/密度聚类.HTML'
  3069. tab.render(save) # 生成HTML
  3070. return save,
  3071. class Curve_fitting(Study_MachineBase):#曲线拟合
  3072. def __init__(self,Name, str_, model, *args, **kwargs):
  3073. super(Curve_fitting, self).__init__(*args, **kwargs)
  3074. def ndimDown(data:np.ndarray):
  3075. if data.ndim == 1:return data
  3076. new_data = []
  3077. for i in data:
  3078. new_data.append(np.sum(i))
  3079. return np.array(new_data)
  3080. NAME = {'np':np,'Func':model,'ndimDown':ndimDown}
  3081. DEF = f'''
  3082. def FUNC({",".join(model.__code__.co_varnames)}):
  3083. answer = Func({",".join(model.__code__.co_varnames)})
  3084. return ndimDown(answer)
  3085. '''
  3086. exec(DEF,NAME)
  3087. self.Func = NAME['FUNC']
  3088. self.Fit_data = None
  3089. self.Name = Name
  3090. self.Func_Str = str_
  3091. def Fit(self, x_data:np.ndarray,y_data:np.ndarray, *args, **kwargs):
  3092. y_data = y_data.ravel()
  3093. x_data = x_data.astype(np.float64)
  3094. try:
  3095. if self.x_trainData is None:raise Exception
  3096. self.x_trainData = np.vstack(x_data,self.x_trainData)
  3097. self.y_trainData = np.vstack(y_data,self.y_trainData)
  3098. except:
  3099. self.x_trainData = x_data.copy()
  3100. self.y_trainData = y_data.copy()
  3101. self.Fit_data = optimize.curve_fit(self.Func,self.x_trainData,self.y_trainData)
  3102. self.Model = self.Fit_data[0].copy()
  3103. return 'None','None'
  3104. def Predict(self, x_data, *args, **kwargs):
  3105. self.x_testData = x_data.copy()
  3106. Predict = self.Func(x_data,*self.Model)
  3107. y_Predict = []
  3108. for i in Predict:
  3109. y_Predict.append(np.sum(i))
  3110. y_Predict = np.array(y_Predict)
  3111. self.y_testData = y_Predict.copy()
  3112. self.have_Predict = True
  3113. return y_Predict,self.Name
  3114. def Des(self, Dic, *args, **kwargs):
  3115. #DBSCAN没有预测的必要
  3116. tab = Tab()
  3117. y = self.y_testData.copy()
  3118. x_data = self.x_testData.copy()
  3119. get, x_means, x_range,Type = regress_visualization(x_data, y)
  3120. for i in range(len(get)):
  3121. tab.add(get[i], f'{i}预测类型图')
  3122. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  3123. for i in range(len(get)):
  3124. tab.add(get[i], f'{i}预测热力图')
  3125. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [[f'{i}' for i in x_means]]),'普适预测特征数据')
  3126. tab.add(make_Tab([f'参数[{i}]' for i in range(len(self.Model))], [[f'{i}' for i in self.Model]]), '拟合参数')
  3127. save = Dic + r'/曲线拟合.HTML'
  3128. tab.render(save) # 生成HTML
  3129. return save,
  3130. class Machine_Learner(Learner):#数据处理者
  3131. def __init__(self,*args, **kwargs):
  3132. super().__init__(*args, **kwargs)
  3133. self.Learner = {}#记录机器
  3134. self.Learn_Dic = {'Line':Line_Model,
  3135. 'Ridge':Line_Model,
  3136. 'Lasso':Line_Model,
  3137. 'LogisticRegression':LogisticRegression_Model,
  3138. 'Knn_class':Knn_Model,
  3139. 'Knn': Knn_Model,
  3140. 'Tree_class': Tree_Model,
  3141. 'Tree': Tree_Model,
  3142. 'Forest':Forest_Model,
  3143. 'Forest_class': Forest_Model,
  3144. 'GradientTree_class':GradientTree_Model,
  3145. 'GradientTree': GradientTree_Model,
  3146. 'Variance':Variance_Model,
  3147. 'SelectKBest':SelectKBest_Model,
  3148. 'Z-Score':Standardization_Model,
  3149. 'MinMaxScaler':MinMaxScaler_Model,
  3150. 'LogScaler':LogScaler_Model,
  3151. 'atanScaler':atanScaler_Model,
  3152. 'decimalScaler':decimalScaler_Model,
  3153. 'sigmodScaler':sigmodScaler_Model,
  3154. 'Mapzoom':Mapzoom_Model,
  3155. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  3156. 'Regularization':Regularization_Model,
  3157. 'Binarizer':Binarizer_Model,
  3158. 'Discretization':Discretization_Model,
  3159. 'Label':Label_Model,
  3160. 'OneHotEncoder':OneHotEncoder_Model,
  3161. 'Missed':Missed_Model,
  3162. 'PCA':PCA_Model,
  3163. 'RPCA':RPCA_Model,
  3164. 'KPCA':KPCA_Model,
  3165. 'LDA':LDA_Model,
  3166. 'SVC':SVC_Model,
  3167. 'SVR':SVR_Model,
  3168. 'MLP':MLP_Model,
  3169. 'MLP_class': MLP_Model,
  3170. 'NMF':NMF_Model,
  3171. 't-SNE':TSNE_Model,
  3172. 'k-means':kmeans_Model,
  3173. 'Agglomerative':Agglomerative_Model,
  3174. 'DBSCAN':DBSCAN_Model,
  3175. 'ClassBar':Class_To_Bar,
  3176. 'FeatureScatter':Near_feature_scatter,
  3177. 'FeatureScatterClass': Near_feature_scatter_class,
  3178. 'FeatureScatter_all':Near_feature_scatter_More,
  3179. 'FeatureScatterClass_all':Near_feature_scatter_class_More,
  3180. 'HeatMap':Numpy_To_HeatMap,
  3181. 'FeatureY-X':Feature_scatter_YX,
  3182. 'ClusterTree':Cluster_Tree,
  3183. 'MatrixScatter':MatrixScatter,
  3184. 'Correlation':CORR,
  3185. 'Statistics':Des,
  3186. }
  3187. self.Learner_Type = {}#记录机器的类型
  3188. def p_Args(self,Text,Type):#解析参数
  3189. args = {}
  3190. args_use = {}
  3191. #输入数据
  3192. exec(Text,args)
  3193. #处理数据
  3194. if Type in ('MLP','MLP_class'):
  3195. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  3196. else:
  3197. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  3198. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  3199. if Type in ('MLP','MLP_class'):
  3200. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  3201. else:
  3202. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  3203. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  3204. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  3205. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  3206. if Type in ('Tree','Forest','GradientTree'):
  3207. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  3208. else:
  3209. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  3210. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  3211. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  3212. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  3213. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  3214. args_use['P'] = float(args.get('min_samples_split', 0.8))
  3215. args_use['k'] = args.get('k',1)
  3216. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  3217. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  3218. get(args.get('score_func','f_classif'),f_classif))
  3219. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  3220. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  3221. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  3222. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  3223. args_use['ndim_up'] = bool(args.get('ndim_up', False))
  3224. args_use['miss_value'] = args.get('miss_value',np.nan)
  3225. args_use['fill_method'] = args.get('fill_method','mean')
  3226. args_use['fill_value'] = args.get('fill_value',None)
  3227. args_use['n_components'] = args.get('n_components',1)
  3228. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVC') else 'linear')
  3229. args_use['n_Tree'] = args.get('n_Tree',100)
  3230. args_use['gamma'] = args.get('gamma',1)
  3231. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  3232. args_use['activation'] = str(args.get('activation','relu'))
  3233. args_use['solver'] = str(args.get('solver','adam'))
  3234. if Type in ('k-means',):
  3235. args_use['n_clusters'] = int(args.get('n_clusters',8))
  3236. else:
  3237. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  3238. args_use['eps'] = float(args.get('n_clusters', 0.5))
  3239. args_use['min_samples'] = int(args.get('n_clusters', 5))
  3240. return args_use
  3241. def Add_Learner(self,Learner,Text=''):
  3242. get = self.Learn_Dic[Learner]
  3243. name = f'Le[{len(self.Learner)}]{Learner}'
  3244. #参数调节
  3245. args_use = self.p_Args(Text,Learner)
  3246. #生成学习器
  3247. self.Learner[name] = get(model=Learner,args_use=args_use)
  3248. self.Learner_Type[name] = Learner
  3249. def Add_Curve_Fitting(self,Learner_text,Text=''):
  3250. NAME = {}
  3251. exec(Learner_text,NAME)
  3252. name = f'Le[{len(self.Learner)}]{NAME.get("name","SELF")}'
  3253. func = NAME.get('f',lambda x,k,b:k * x + b)
  3254. self.Learner[name] = Curve_fitting(name,Learner_text,func)
  3255. self.Learner_Type[name] = 'Curve_fitting'
  3256. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  3257. model = self.get_Learner(Learner)
  3258. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  3259. #参数调节
  3260. args_use = self.p_Args(Text,'SelectFrom_Model')
  3261. #生成学习器
  3262. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  3263. self.Learner_Type[name] = 'SelectFrom_Model'
  3264. def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器
  3265. model = self.get_Learner(Learner)
  3266. name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
  3267. #生成学习器
  3268. args_use = self.p_Args(Text, 'Predictive_HeatMap')
  3269. self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use)
  3270. self.Learner_Type[name] = 'Predictive_HeatMap'
  3271. def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器
  3272. model = self.get_Learner(Learner)
  3273. name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
  3274. #生成学习器
  3275. args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
  3276. self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use)
  3277. self.Learner_Type[name] = 'Predictive_HeatMap_More'
  3278. def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器
  3279. model = self.get_Learner(Learner)
  3280. name = f'Le[{len(self.Learner)}]View_data:{Learner}'
  3281. #生成学习器
  3282. args_use = self.p_Args(Text, 'View_data')
  3283. self.Learner[name] = View_data(Learner=model,args_use=args_use)
  3284. self.Learner_Type[name] = 'View_data'
  3285. def Return_Learner(self):
  3286. return self.Learner.copy()
  3287. def get_Learner(self,name):
  3288. return self.Learner[name]
  3289. def get_Learner_Type(self,name):
  3290. return self.Learner_Type[name]
  3291. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  3292. x_data = self.get_Sheet(x_name)
  3293. y_data = self.get_Sheet(y_name)
  3294. model = self.get_Learner(Learner)
  3295. return model.Fit(x_data,y_data,split)
  3296. def Predict(self,x_name,Learner,Text='',**kwargs):
  3297. x_data = self.get_Sheet(x_name)
  3298. model = self.get_Learner(Learner)
  3299. y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form)
  3300. self.Add_Form(y_data,f'{x_name}:{name}')
  3301. return y_data
  3302. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  3303. model = self.get_Learner(Learner)
  3304. x = self.get_Sheet(name_x)
  3305. y = self.get_Sheet(name_y)
  3306. return model.Score(x,y)
  3307. def Show_Score(self,Learner,Dic,name_x,name_y,Func=0):#显示参数
  3308. x = self.get_Sheet(name_x)
  3309. y = self.get_Sheet(name_y)
  3310. if NEW_Global:
  3311. dic = Dic + f'/{Learner}分类评分[CoTan]'
  3312. new_dic = dic
  3313. a = 0
  3314. while exists(new_dic):#直到他不存在 —— False
  3315. new_dic = dic + f'[{a}]'
  3316. a += 1
  3317. mkdir(new_dic)
  3318. else:
  3319. new_dic = Dic
  3320. model = self.get_Learner(Learner)
  3321. #打包
  3322. func = [model.Class_Score, model.Regression_Score, model.Clusters_Score][Func]
  3323. save = func(new_dic,x,y)[0]
  3324. if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic)
  3325. return save,new_dic
  3326. def Show_Args(self,Learner,Dic):#显示参数
  3327. if NEW_Global:
  3328. dic = Dic + f'/{Learner}数据[CoTan]'
  3329. new_dic = dic
  3330. a = 0
  3331. while exists(new_dic):#直到他不存在 —— False
  3332. new_dic = dic + f'[{a}]'
  3333. a += 1
  3334. mkdir(new_dic)
  3335. else:
  3336. new_dic = Dic
  3337. model = self.get_Learner(Learner)
  3338. if (not(model.Model is None) or not(model.Model is list)) and CLF_Global:
  3339. joblib.dump(model.Model,new_dic + '/MODEL.model')#保存模型
  3340. # pickle.dump(model,new_dic + f'/{Learner}.pkl')#保存学习器
  3341. #打包
  3342. save = model.Des(new_dic)[0]
  3343. if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic)
  3344. return save,new_dic
  3345. def Del_Leaner(self,Leaner):
  3346. del self.Learner[Leaner]
  3347. del self.Learner_Type[Leaner]
  3348. def make_targz(output_filename, source_dir):
  3349. with tarfile.open(output_filename, "w:gz") as tar:
  3350. tar.add(source_dir, arcname=basename(source_dir))
  3351. return output_filename
  3352. def set_Global(More=More_Global,All=All_Global,CSV=CSV_Global,CLF=CLF_Global,TAR=TAR_Global,NEW=NEW_Global):
  3353. global More_Global,All_Global,CSV_Global,CLF_Global,TAR_Global,NEW_Global
  3354. More_Global = More # 是否使用全部特征绘图
  3355. All_Global = All # 是否导出charts
  3356. CSV_Global = CSV # 是否导出CSV
  3357. CLF_Global = CLF # 是否导出模型
  3358. TAR_Global = TAR # 是否打包tar
  3359. NEW_Global = NEW # 是否新建目录