Learn_Numpy.py 121 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts.components import Image
  3. from pyecharts import options as opts
  4. from random import randint
  5. from pyecharts.charts import *
  6. from pyecharts.options.series_options import JsCode
  7. from scipy.cluster.hierarchy import dendrogram, ward
  8. import matplotlib.pyplot as plt
  9. from pandas import DataFrame,read_csv
  10. import numpy as np
  11. import re
  12. from sklearn.model_selection import train_test_split
  13. from sklearn.linear_model import *
  14. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  15. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  16. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  17. GradientBoostingRegressor)
  18. from sklearn.metrics import accuracy_score
  19. from sklearn.feature_selection import *
  20. from sklearn.preprocessing import *
  21. from sklearn.impute import SimpleImputer
  22. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  23. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  24. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  25. from sklearn.neural_network import MLPClassifier,MLPRegressor
  26. from sklearn.manifold import TSNE
  27. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  28. from pyecharts.charts import *
  29. # import sklearn as sk
  30. #设置
  31. np.set_printoptions(threshold=np.inf)
  32. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  33. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  34. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  35. class Table(Table_Fisrt):
  36. def add(self, headers, rows, attributes = None):
  37. if len(rows) == 1:
  38. new_headers = ['数据类型','数据']
  39. new_rows = list(zip(headers,rows[0]))
  40. return super().add(new_headers,new_rows,attributes)
  41. else:
  42. return super().add(headers, rows, attributes)
  43. def make_list(first,end,num=35):
  44. n = num / (end - first)
  45. if n == 0: n = 1
  46. re = []
  47. n_first = first * n
  48. n_end = end * n
  49. while n_first <= n_end:
  50. cul = n_first / n
  51. re.append(round(cul,2))
  52. n_first += 1
  53. return re
  54. def list_filter(list_,num=70):
  55. #假设列表已经不重复
  56. if len(list_) <= num:return list_
  57. n = int(num / len(list_))
  58. re = list_[::n]
  59. return re
  60. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  61. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  62. # a-特征x,b-特征x-1,c-其他特征
  63. o_cList = []
  64. if len(x_means) == 1:
  65. return Prediction_boundary(x_range,x_means,Predict_Func,Type)
  66. for i in range(len(x_means)):
  67. for j in range(len(x_means)):
  68. if j <= i:continue
  69. n_ra = x_range[j]
  70. Type_ra = Type[j]
  71. n_rb = x_range[i]
  72. Type_rb = Type[i]
  73. if Type_ra == 1:
  74. ra = make_list(n_ra[0],n_ra[1],70)
  75. else:
  76. ra = list_filter(n_ra)#可以接受最大为70
  77. if Type_rb == 1:
  78. rb = make_list(n_rb[0],n_rb[1],35)
  79. else:
  80. rb = list_filter(n_rb)#可以接受最大为70
  81. a = np.array([i for i in ra for _ in rb]).T
  82. b = np.array([i for _ in ra for i in rb]).T
  83. data = np.array([x_means for _ in ra for i in rb])
  84. data[:, j] = a
  85. data[:, i] = b
  86. y_data = Predict_Func(data)[0].tolist()
  87. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  88. c = (HeatMap()
  89. .add_xaxis(np.unique(a))
  90. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  91. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  92. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  93. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  94. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  95. pos_right='3%'))#显示
  96. )
  97. o_cList.append(c)
  98. return o_cList
  99. def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  100. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  101. # a-特征x,b-特征x-1,c-其他特征
  102. o_cList = []
  103. if len(x_means) == 1:
  104. return o_cList
  105. for i in range(len(x_means)):
  106. if i == 0:
  107. continue
  108. n_ra = x_range[i - 1]
  109. Type_ra = Type[i - 1]
  110. n_rb = x_range[i]
  111. Type_rb = Type[i]
  112. if Type_ra == 1:
  113. ra = make_list(n_ra[0],n_ra[1],70)
  114. else:
  115. ra = list_filter(n_ra)#可以接受最大为70
  116. if Type_rb == 1:
  117. rb = make_list(n_rb[0],n_rb[1],35)
  118. else:
  119. rb = list_filter(n_rb)#可以接受最大为70
  120. a = np.array([i for i in ra for _ in rb]).T
  121. b = np.array([i for _ in ra for i in rb]).T
  122. data = np.array([x_means for _ in ra for i in rb])
  123. data[:, i - 1] = a
  124. data[:, i] = b
  125. y_data = Predict_Func(data)[0].tolist()
  126. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  127. c = (HeatMap()
  128. .add_xaxis(np.unique(a))
  129. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  130. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  131. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  132. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  133. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  134. pos_right='3%'))#显示
  135. )
  136. o_cList.append(c)
  137. return o_cList
  138. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  139. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  140. # a-特征x,b-特征x-1,c-其他特征
  141. #规定,i-1是x轴,a是x轴,x_1是x轴
  142. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  143. if not nono:
  144. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  145. else:v_dict = []
  146. for i in class_dict:
  147. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  148. o_cList = []
  149. if len(x_means) == 1:
  150. n_ra = x_range[0]
  151. if Type[0] == 1:
  152. ra = make_list(n_ra[0], n_ra[1], 70)
  153. else:
  154. ra = n_ra
  155. a = np.array([i for i in ra]).reshape(-1,1)
  156. y_data = Predict_Func(a)[0].tolist()
  157. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  158. c = (HeatMap()
  159. .add_xaxis(['None'])
  160. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  161. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  162. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  163. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  164. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  165. min_=-1,
  166. is_piecewise=True, pieces=v_dict,
  167. orient='horizontal', pos_bottom='3%'))
  168. )
  169. o_cList.append(c)
  170. return o_cList
  171. #如果x_means长度不等于1则执行下面
  172. for i in range(len(x_means)):
  173. if i == 0:
  174. continue
  175. n_ra = x_range[i-1]
  176. Type_ra = Type[i-1]
  177. n_rb = x_range[i]
  178. Type_rb = Type[i]
  179. if Type_ra == 1:
  180. ra = make_list(n_ra[0],n_ra[1],70)
  181. else:
  182. ra = n_ra
  183. if Type_rb == 1:
  184. rb = make_list(n_rb[0],n_rb[1],35)
  185. else:
  186. rb = n_rb
  187. a = np.array([i for i in ra for _ in rb]).T
  188. b = np.array([i for _ in ra for i in rb]).T
  189. data = np.array([x_means for _ in ra for i in rb])
  190. data[:, i - 1] = a
  191. data[:, i] = b
  192. y_data = Predict_Func(data)[0].tolist()
  193. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  194. c = (HeatMap()
  195. .add_xaxis(np.unique(a))
  196. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  197. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  198. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  199. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  200. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  201. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  202. )
  203. o_cList.append(c)
  204. return o_cList
  205. def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  206. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  207. # a-特征x,b-特征x-1,c-其他特征
  208. #规定,i-1是x轴,a是x轴,x_1是x轴
  209. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  210. if not nono:
  211. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  212. else:v_dict = []
  213. for i in class_dict:
  214. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  215. o_cList = []
  216. if len(x_means) == 1:
  217. return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono)
  218. #如果x_means长度不等于1则执行下面
  219. for i in range(len(x_means)):
  220. for j in range(len(x_means)):
  221. if j <= i:continue
  222. n_ra = x_range[j]
  223. Type_ra = Type[j]
  224. n_rb = x_range[i]
  225. Type_rb = Type[i]
  226. if Type_ra == 1:
  227. ra = make_list(n_ra[0],n_ra[1],70)
  228. else:
  229. ra = n_ra
  230. if Type_rb == 1:
  231. rb = make_list(n_rb[0],n_rb[1],35)
  232. else:
  233. rb = n_rb
  234. a = np.array([i for i in ra for _ in rb]).T
  235. b = np.array([i for _ in ra for i in rb]).T
  236. data = np.array([x_means for _ in ra for i in rb])
  237. data[:, j] = a
  238. data[:, i] = b
  239. y_data = Predict_Func(data)[0].tolist()
  240. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  241. c = (HeatMap()
  242. .add_xaxis(np.unique(a))
  243. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  244. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  245. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  246. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  247. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  248. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  249. )
  250. o_cList.append(c)
  251. return o_cList
  252. def SeeTree(Dic):
  253. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  254. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  255. node_Dict = {}
  256. link_list = []
  257. with open(Dic, 'r') as f: # 貌似必须分开w和r
  258. for i in f:
  259. try:
  260. get = re.findall(node_re, i)[0]
  261. if get[0] != '':
  262. try:
  263. v = float(get[0])
  264. except:
  265. v = 0
  266. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  267. continue
  268. except:
  269. pass
  270. try:
  271. get = re.findall(link_re, i)[0]
  272. if get[0] != '' and get[1] != '':
  273. link_list.append((get[0], get[1]))
  274. except:
  275. pass
  276. father_list = [] # 已经有父亲的list
  277. for i in link_list:
  278. father = i[0] # 父节点
  279. son = i[1] # 子节点
  280. try:
  281. node_Dict[father]['children'].append(node_Dict[son])
  282. father_list.append(son)
  283. if int(son) == 0: print('F')
  284. except:
  285. pass
  286. father = list(set(node_Dict.keys()) - set(father_list))
  287. c = (
  288. Tree()
  289. .add("", [node_Dict[father[0]]], is_roam=True)
  290. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  291. toolbox_opts=opts.ToolboxOpts(is_show=True))
  292. )
  293. return c
  294. def make_Tab(heard,row):
  295. return Table().add(headers=heard, rows=row)
  296. def scatter(w_heard,w):
  297. c = (
  298. Scatter()
  299. .add_xaxis(w_heard)
  300. .add_yaxis('', w, **Label_Set)
  301. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  302. )
  303. return c
  304. def bar(w_heard,w):
  305. c = (
  306. Bar()
  307. .add_xaxis(w_heard)
  308. .add_yaxis('', abs(w).tolist(), **Label_Set)
  309. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  310. )
  311. return c
  312. # def line(w_sum,w,b):
  313. # x = np.arange(-5, 5, 1)
  314. # c = (
  315. # Line()
  316. # .add_xaxis(x.tolist())
  317. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  318. # )
  319. # for i in range(len(w)):
  320. # y = x * w[i] + b
  321. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  322. # return c
  323. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  324. y = y_trainData.tolist()
  325. x_data = x_trainData.T
  326. re = []
  327. for i in range(len(x_data)):
  328. x = x_data[i]
  329. p = int(x.max() - x.min()) / 5
  330. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  331. y_num = x_num * w[i] + (w[i] / w_sum) * b
  332. c = (
  333. Line()
  334. .add_xaxis(x_num.tolist())
  335. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  336. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  337. )
  338. t = (
  339. Scatter()
  340. .add_xaxis(x.tolist())
  341. .add_yaxis(f'{i}特征', y, **Label_Set)
  342. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  343. )
  344. t.overlap(c)
  345. re.append(t)
  346. return re
  347. def get_Color():
  348. # 随机颜色,雷达图默认非随机颜色
  349. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  350. color = '#'
  351. for a in rgb:
  352. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  353. return color
  354. def is_continuous(data:np.array,f:float=0.1):
  355. data = data.tolist()
  356. l = np.unique(data).tolist()
  357. try:
  358. re = len(l)/len(data)>=f or len(data) <= 3
  359. return re
  360. except:return False
  361. def make_Cat(x_data):
  362. Cat = Categorical_Data()
  363. for i in range(len(x_data)):
  364. x1 = x_data[i] # x坐标
  365. Cat(x1)
  366. return Cat
  367. def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  368. x_data = x_trainData.T
  369. if len(x_data) == 1:
  370. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  371. Cat = make_Cat(x_data)
  372. o_cList = []
  373. for i in range(len(x_data)):
  374. for a in range(len(x_data)):
  375. if a <= i: continue
  376. x1 = x_data[i] # x坐标
  377. x1_con = is_continuous(x1)
  378. x2 = x_data[a] # y坐标
  379. x2_con = is_continuous(x2)
  380. o_c = None # 旧的C
  381. for class_num in range(len(class_)):
  382. n_class = class_[class_num]
  383. x_1 = x1[y == n_class].tolist()
  384. x_2 = x2[y == n_class]
  385. x_2_new = np.unique(x_2)
  386. x_2 = x2[y == n_class].tolist()
  387. #x与散点图不同,这里是纵坐标
  388. c = (Scatter()
  389. .add_xaxis(x_2)
  390. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  391. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  392. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  393. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  394. )
  395. c.add_xaxis(x_2_new)
  396. if o_c == None:
  397. o_c = c
  398. else:
  399. o_c = o_c.overlap(c)
  400. o_cList.append(o_c)
  401. means,x_range,Type = Cat.get()
  402. return o_cList,means,x_range,Type
  403. def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  404. x_data = x_trainData.T
  405. if len(x_data) == 1:
  406. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  407. Cat = make_Cat(x_data)
  408. o_cList = []
  409. for i in range(len(x_data)):
  410. for a in range(len(x_data)):
  411. if a <= i: continue
  412. x1 = x_data[i] # x坐标
  413. x1_con = is_continuous(x1)
  414. x2 = x_data[a] # y坐标
  415. x2_con = is_continuous(x2)
  416. o_c = None # 旧的C
  417. for class_num in range(len(class_)):
  418. n_class = class_[class_num]
  419. x_1 = x1[y == n_class].tolist()
  420. x_2 = x2[y == n_class]
  421. x_2_new = np.unique(x_2)
  422. x_2 = x2[y == n_class].tolist()
  423. #x与散点图不同,这里是纵坐标
  424. c = (Scatter()
  425. .add_xaxis(x_2)
  426. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  427. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  428. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  429. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  430. )
  431. c.add_xaxis(x_2_new)
  432. #添加簇中心
  433. try:
  434. center_x_2 = [center[class_num][a]]
  435. except:
  436. center_x_2 = [0]
  437. b = (Scatter()
  438. .add_xaxis(center_x_2)
  439. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  440. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  441. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  442. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  443. )
  444. c.overlap(b)
  445. if o_c == None:
  446. o_c = c
  447. else:
  448. o_c = o_c.overlap(c)
  449. o_cList.append(o_c)
  450. means,x_range,Type = Cat.get()
  451. return o_cList,means,x_range,Type
  452. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  453. x_data = x_trainData.T
  454. if len(x_data) == 1:
  455. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  456. Cat = make_Cat(x_data)
  457. o_cList = []
  458. for i in range(len(x_data)):
  459. x1 = x_data[i] # x坐标
  460. x1_con = is_continuous(x1)
  461. if i == 0:continue
  462. x2 = x_data[i - 1] # y坐标
  463. x2_con = is_continuous(x2)
  464. o_c = None # 旧的C
  465. for n_class in class_:
  466. x_1 = x1[y == n_class].tolist()
  467. x_2 = x2[y == n_class]
  468. x_2_new = np.unique(x_2)
  469. x_2 = x2[y == n_class].tolist()
  470. #x与散点图不同,这里是纵坐标
  471. c = (Scatter()
  472. .add_xaxis(x_2)
  473. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  474. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  475. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  476. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  477. )
  478. c.add_xaxis(x_2_new)
  479. if o_c == None:
  480. o_c = c
  481. else:
  482. o_c = o_c.overlap(c)
  483. o_cList.append(o_c)
  484. means,x_range,Type = Cat.get()
  485. return o_cList,means,x_range,Type
  486. def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别)
  487. x_data = x_trainData.T
  488. if len(x_data) == 1:
  489. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  490. Cat = make_Cat(x_data)
  491. o_cList = []
  492. for i in range(len(x_data)):
  493. x1 = x_data[i] # x坐标
  494. x1_con = is_continuous(x1)
  495. if i == 0:continue
  496. x2 = x_data[i - 1] # y坐标
  497. x2_con = is_continuous(x2)
  498. x2_new = np.unique(x2)
  499. #x与散点图不同,这里是纵坐标
  500. c = (Scatter()
  501. .add_xaxis(x2)
  502. .add_yaxis('', x1.tolist(), **Label_Set)
  503. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg,
  504. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  505. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  506. )
  507. c.add_xaxis(x2_new)
  508. o_cList.append(c)
  509. means,x_range,Type = Cat.get()
  510. return o_cList,means,x_range,Type
  511. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  512. x_data = x_trainData.T
  513. if len(x_data) == 1:
  514. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  515. o_cList = []
  516. means.append(0)
  517. means = np.array(means)
  518. for i in range(len(x_data)):
  519. if i == 0:continue
  520. x1_con = is_continuous(x_data[i])
  521. x2 = x_data[i - 1] # y坐标
  522. x2_con = is_continuous(x2)
  523. o_c = None # 旧的C
  524. for class_num in range(len(class_)):
  525. n_class = class_[class_num]
  526. x2_new = np.unique(x2[y == n_class])
  527. #x与散点图不同,这里是纵坐标
  528. #加入这个判断是为了解决sklearn历史遗留问题
  529. if len(class_) == 2:#二分类问题
  530. if class_num == 0:continue
  531. w = w_list[0]
  532. b = b_list[0]
  533. else:#多分类问题
  534. w = w_list[class_num]
  535. b = b_list[class_num]
  536. if x2_con:
  537. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  538. w = np.append(w, 0)
  539. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  540. c = (
  541. Line()
  542. .add_xaxis(x2_new)
  543. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  544. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  545. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  546. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  547. )
  548. if o_c == None:
  549. o_c = c
  550. else:
  551. o_c = o_c.overlap(c)
  552. #下面不要接任何代码,因为上面会continue
  553. o_cList.append(o_c)
  554. return o_cList
  555. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  556. x_data = x_trainData.T
  557. if len(x_data) == 1:
  558. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  559. o_cList = []
  560. means.append(0)#确保mean[i+1]不会超出index
  561. means = np.array(means)
  562. w = np.append(w,0)
  563. for i in range(len(x_data)):
  564. x1 = x_data[i]
  565. x1_con = is_continuous(x1)
  566. if x1_con:
  567. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  568. x1_new = np.unique(x1)
  569. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  570. y_con = is_continuous(y_data)
  571. c = (
  572. Line()
  573. .add_xaxis(x1_new)
  574. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  575. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  576. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  577. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  578. )
  579. o_cList.append(c)
  580. return o_cList
  581. def regress_visualization(x_trainData,y):#y-x数据图
  582. x_data = x_trainData.T
  583. y_con = is_continuous(y)
  584. Cat = make_Cat(x_data)
  585. o_cList = []
  586. try:
  587. visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()),
  588. pos_right='3%')
  589. except:
  590. visualmap_opts = None
  591. y_con = False
  592. for i in range(len(x_data)):
  593. x1 = x_data[i] # x坐标
  594. x1_con = is_continuous(x1)
  595. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  596. if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的
  597. ry_con,x1_con = x1_con,y_con
  598. x1,ry = y,x1
  599. else:
  600. ry_con = y_con
  601. ry = y
  602. c = (
  603. Scatter()
  604. .add_xaxis(x1.tolist())#研究表明,这个是横轴
  605. .add_yaxis('数据',ry.tolist(),**Label_Set)
  606. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  607. yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True),
  608. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  609. visualmap_opts=visualmap_opts
  610. )
  611. )
  612. c.add_xaxis(np.unique(x1))
  613. o_cList.append(c)
  614. means,x_range,Type = Cat.get()
  615. return o_cList,means,x_range,Type
  616. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  617. seeting = global_Set if data_name else global_Leg
  618. x_data = x_trainData.T
  619. only = False
  620. if len(x_data) == 1:
  621. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  622. only = True
  623. o_cList = []
  624. for i in range(len(x_data)):
  625. for a in range(len(x_data)):
  626. if a <= i: continue#重复内容,跳过
  627. x1 = x_data[i] # x坐标
  628. x1_con = is_continuous(x1)
  629. x2 = x_data[a] # y坐标
  630. x2_con = is_continuous(x2)
  631. x2_new = np.unique(x2)
  632. if only:x2_con = False
  633. #x与散点图不同,这里是纵坐标
  634. c = (Scatter()
  635. .add_xaxis(x2)
  636. .add_yaxis(data_name, x1, **Label_Set)
  637. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  638. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  639. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  640. )
  641. c.add_xaxis(x2_new)
  642. o_cList.append(c)
  643. return o_cList
  644. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  645. seeting = global_Set if data_name else global_Leg
  646. x_data = x_trainData.T
  647. only = False
  648. if len(x_data) == 1:
  649. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  650. only = True
  651. o_cList = []
  652. for i in range(len(x_data)):
  653. for a in range(len(x_data)):
  654. if a <= i: continue#重复内容,跳过(a读取的是i后面的)
  655. x1 = x_data[i] # x坐标
  656. x1_con = is_continuous(x1)
  657. x2 = x_data[a] # y坐标
  658. x2_con = is_continuous(x2)
  659. x2_new = np.unique(x2)
  660. x1_list = x1.astype(np.str).tolist()
  661. for i in range(len(x1_list)):
  662. x1_list[i] = [x1_list[i],f'特征{i}']
  663. if only:x2_con = False
  664. #x与散点图不同,这里是纵坐标
  665. c = (Scatter()
  666. .add_xaxis(x2)
  667. .add_yaxis(data_name, x1_list, **Label_Set)
  668. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  669. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  670. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  671. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
  672. )
  673. c.add_xaxis(x2_new)
  674. o_cList.append(c)
  675. return o_cList
  676. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  677. seeting = global_Set if data_name else global_Leg
  678. x_data = x_trainData.T
  679. if len(x_data) == 1:
  680. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  681. o_cList = []
  682. for i in range(len(x_data)):
  683. for a in range(len(x_data)):
  684. if a <= i: continue#重复内容,跳过
  685. x1 = x_data[i] # x坐标
  686. x2 = x_data[a] # y坐标
  687. x2_new = np.unique(x2)
  688. #x与散点图不同,这里是纵坐标
  689. c = (Scatter()
  690. .add_xaxis(x2)
  691. .add_yaxis(data_name, x1, **Label_Set)
  692. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  693. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  694. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  695. )
  696. c.add_xaxis(x2_new)
  697. o_cList.append(c)
  698. return o_cList
  699. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  700. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  701. get_x = Feature_visualization(x_data,'原数据')#原来
  702. get_y = Feature_visualization(y_data,'转换数据')#转换
  703. for i in range(len(get_x)):
  704. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  705. return tab
  706. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  707. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  708. get_x = Feature_visualization(x_data,'原数据')#原来
  709. get_y = Feature_visualization(y_data,'转换数据')#转换
  710. for i in range(len(get_x)):
  711. try:
  712. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  713. except IndexError:pass
  714. try:
  715. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  716. except IndexError:pass
  717. return tab
  718. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  719. if type(y_data) is np.ndarray:
  720. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  721. for i in range(len(get_y)):
  722. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  723. return tab
  724. def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
  725. if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
  726. get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
  727. get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
  728. print(h_data)
  729. print(w_data)
  730. print(h_data.T)
  731. for i in range(len(get_x)):
  732. try:
  733. tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
  734. except IndexError:pass
  735. try:
  736. tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
  737. except IndexError:pass
  738. return tab
  739. def make_bar(name, value,tab):#绘制柱状图
  740. c = (
  741. Bar()
  742. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  743. .add_yaxis(name, value, **Label_Set)
  744. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  745. )
  746. tab.add(c, name)
  747. def judging_Digits(num:(int,float)):#查看小数位数
  748. a = str(abs(num)).split('.')[0]
  749. if a == '':raise ValueError
  750. return len(a)
  751. class Learner:
  752. def __init__(self,*args,**kwargs):
  753. self.numpy_Dic = {}#name:numpy
  754. def Add_Form(self,data:np.array,name):
  755. name = f'{name}[{len(self.numpy_Dic)}]'
  756. self.numpy_Dic[name] = data
  757. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  758. type_ = np.str if str_must else np.float
  759. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  760. try:
  761. data = pf_data.to_numpy(dtype=type_)
  762. except ValueError:
  763. data = pf_data.to_numpy(dtype=np.str)
  764. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  765. self.Add_Form(data,name)
  766. return data
  767. def Add_Python(self, Text, sheet_name):
  768. name = {}
  769. name.update(globals().copy())
  770. name.update(locals().copy())
  771. exec(Text, name)
  772. exec('get = Creat()', name)
  773. if isinstance(name['get'], np.array): # 已经是DataFram
  774. get = name['get']
  775. else:
  776. try:
  777. get = np.array(name['get'])
  778. except:
  779. get = np.array([name['get']])
  780. self.Add_Form(get, sheet_name)
  781. return get
  782. def get_Form(self) -> dict:
  783. return self.numpy_Dic.copy()
  784. def get_Sheet(self,name) -> np.array:
  785. return self.numpy_Dic[name].copy()
  786. def to_CSV(self,Dic:str,name,sep) -> str:
  787. get = self.get_Sheet(name)
  788. np.savetxt(Dic, get, delimiter=sep)
  789. return Dic
  790. def to_Html_One(self,name,Dic=''):
  791. if Dic == '': Dic = f'{name}.html'
  792. get = self.get_Sheet(name)
  793. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  794. get = get.tolist()
  795. for i in range(len(get)):
  796. get[i] = [i+1] + get[i]
  797. headers = [i for i in range(len(get[0]))]
  798. table = Table()
  799. table.add(headers, get).set_global_opts(
  800. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  801. table.render(Dic)
  802. return Dic
  803. def to_Html(self, name, Dic='', type_=0):
  804. if Dic == '': Dic = f'{name}.html'
  805. # 把要画的sheet放到第一个
  806. Sheet_Dic = self.get_Form()
  807. del Sheet_Dic[name]
  808. Sheet_list = [name] + list(Sheet_Dic.keys())
  809. class TAB_F:
  810. def __init__(self, q):
  811. self.tab = q # 一个Tab
  812. def render(self, Dic):
  813. return self.tab.render(Dic)
  814. # 生成一个显示页面
  815. if type_ == 0:
  816. class TAB(TAB_F):
  817. def add(self, table, k, *f):
  818. self.tab.add(table, k)
  819. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  820. elif type_ == 1:
  821. class TAB(TAB_F):
  822. def add(self, table, *k):
  823. self.tab.add(table)
  824. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  825. else:
  826. class TAB(TAB_F):
  827. def add(self, table, *k):
  828. self.tab.add(table)
  829. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  830. # 迭代添加内容
  831. for name in Sheet_list:
  832. get = self.get_Sheet(name)
  833. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  834. get = get.tolist()
  835. for i in range(len(get)):
  836. get[i] = [i+1] + get[i]
  837. headers = [i for i in range(len(get[0]))]
  838. table = Table()
  839. table.add(headers, get).set_global_opts(
  840. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  841. tab.add(table, f'表格:{name}')
  842. tab.render(Dic)
  843. return Dic
  844. class Study_MachineBase:
  845. def __init__(self,*args,**kwargs):
  846. self.Model = None
  847. self.have_Fit = False
  848. self.x_trainData = None
  849. self.y_trainData = None
  850. #有监督学习专有的testData
  851. self.x_testData = None
  852. self.y_testData = None
  853. #记录这两个是为了克隆
  854. def Accuracy(self,y_Predict,y_Really):
  855. return accuracy_score(y_Predict, y_Really)
  856. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  857. self.have_Fit = True
  858. y_data = y_data.ravel()
  859. self.x_trainData = x_data
  860. self.y_trainData = y_data
  861. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  862. self.Model.fit(x_data,y_data)
  863. train_score = self.Model.score(x_train,y_train)
  864. test_score = self.Model.score(x_test,y_test)
  865. return train_score,test_score
  866. def Score(self,x_data,y_data):
  867. Score = self.Model.score(x_data,y_data)
  868. return Score
  869. def Predict(self,x_data,*args,**kwargs):
  870. self.x_testData = x_data.copy()
  871. y_Predict = self.Model.predict(x_data)
  872. self.y_testData = y_Predict.copy()
  873. return y_Predict,'预测'
  874. def Des(self,*args,**kwargs):
  875. return ()
  876. class prep_Base(Study_MachineBase):
  877. def __init__(self,*args,**kwargs):
  878. super(prep_Base, self).__init__(*args,**kwargs)
  879. self.Model = None
  880. def Fit(self, x_data,y_data, *args, **kwargs):
  881. if not self.have_Fit: # 不允许第二次训练
  882. self.x_trainData = x_data
  883. self.y_trainData = y_data
  884. self.Model.fit(x_data,y_data)
  885. return 'None', 'None'
  886. def Predict(self, x_data, *args, **kwargs):
  887. self.x_trainData = x_data
  888. x_Predict = self.Model.transform(x_data)
  889. self.y_trainData = x_Predict
  890. return x_Predict,'特征工程'
  891. def Score(self, x_data, y_data):
  892. return 'None' # 没有score
  893. class Unsupervised(prep_Base):
  894. def Fit(self, x_data, *args, **kwargs):
  895. if not self.have_Fit: # 不允许第二次训练
  896. self.x_trainData = x_data
  897. self.y_trainData = None
  898. self.Model.fit(x_data)
  899. return 'None', 'None'
  900. class UnsupervisedModel(prep_Base):
  901. def Fit(self, x_data, *args, **kwargs):
  902. self.x_trainData = x_data
  903. self.y_trainData = None
  904. self.Model.fit(x_data)
  905. return 'None', 'None'
  906. class To_PyeBase(Study_MachineBase):
  907. def __init__(self,args_use,model,*args,**kwargs):
  908. super(To_PyeBase, self).__init__(*args,**kwargs)
  909. self.Model = None
  910. #记录这两个是为了克隆
  911. self.k = {}
  912. self.Model_Name = model
  913. def Fit(self, x_data,y_data, *args, **kwargs):
  914. self.x_trainData = x_data
  915. self.y_trainData = y_data.ravel()
  916. return 'None', 'None'
  917. def Predict(self, x_data, *args, **kwargs):
  918. return np.array([]),'请使用训练'
  919. def Score(self, x_data, y_data):
  920. return 'None' # 没有score
  921. class View_data(To_PyeBase):#绘制预测型热力图
  922. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  923. super(View_data, self).__init__(args_use,Learner,*args, **kwargs)
  924. self.Model = Learner.Model
  925. self.Select_Model = None
  926. self.have_Fit = Learner.have_Fit
  927. self.Model_Name = 'Select_Model'
  928. self.Learner = Learner
  929. self.Learner_name = Learner.Model_Name
  930. def Fit(self,*args,**kwargs):
  931. return 'None','None'
  932. def Predict(self,x_data,Add_Func=None,*args, **kwargs):
  933. x_trainData = self.Learner.x_trainData
  934. y_trainData = self.Learner.y_trainData
  935. x_name = self.Learner_name
  936. if not x_trainData is None:
  937. Add_Func(x_trainData, f'{x_name}:x训练数据')
  938. try:
  939. x_testData = self.x_testData
  940. if not x_testData is None:
  941. Add_Func(x_testData, f'{x_name}:x测试数据')
  942. except:pass
  943. try:
  944. y_testData = self.y_testData
  945. if not y_testData is None:
  946. Add_Func(y_testData, f'{x_name}:y测试数据')
  947. except:pass
  948. if y_trainData is None:
  949. return np.array([]), 'y训练数据'
  950. return y_trainData,'y训练数据'
  951. def Des(self,Dic,*args,**kwargs):
  952. return Dic,
  953. class Cluster_Tree(To_PyeBase):
  954. def Des(self, Dic, *args, **kwargs):
  955. tab = Tab()
  956. x_data = self.x_trainData
  957. linkage_array = ward(x_data)#self.y_trainData是结果
  958. dendrogram(linkage_array)
  959. plt.savefig(Dic + r'/Cluster_graph.png')
  960. image = Image()
  961. image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图"))
  962. tab.add(image,'聚类树状图')
  963. save = Dic + r'/render.HTML'
  964. tab.render(save) # 生成HTML
  965. return save,
  966. class Class_To_Bar(To_PyeBase):
  967. def Des(self,Dic,*args,**kwargs):
  968. tab = Tab()
  969. x_data = self.x_trainData.T
  970. y_data = self.y_trainData
  971. class_ = np.unique(y_data).tolist()#类型
  972. class_list = []
  973. for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
  974. class_list.append(y_data == n_class)
  975. for num_i in range(len(x_data)):#迭代每一个特征
  976. i = x_data[num_i]
  977. i_con = is_continuous(i)
  978. if i_con and len(i) >= 11:
  979. c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  980. start = i.min()
  981. end = i.max()
  982. n = (end - start) / 10#生成10条柱子
  983. x_axis = []#x轴
  984. num_startEND = 0#迭代到第n个
  985. while num_startEND <= 9:#把每个特征分为10类进行迭代
  986. x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据
  987. try:
  988. if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有
  989. s = (start <= i) == (i < end)#布尔索引
  990. except:#因为start + n有超出end的风险
  991. s = (start <= i) == (i <= end)#布尔索引
  992. # n_data = i[s] # 取得现在的特征数据
  993. for num in range(len(class_list)):#根据类别进行迭代
  994. now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
  995. bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  996. c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  997. num_startEND += 1
  998. start += n
  999. else :
  1000. iter_np = np.unique(i)
  1001. c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1002. x_axis = [] # 添加x轴数据
  1003. for i_num in range(len(iter_np)):#迭代每一个i(不重复)
  1004. i_data = iter_np[i_num]
  1005. # n_data= i[i == i_data]#取得现在特征数据
  1006. x_axis.append(f'[{i_data}]')
  1007. for num in range(len(class_list)):# 根据类别进行迭代
  1008. now_class = class_list[num]#取得class_list的布尔数组
  1009. bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1010. c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1011. c = (
  1012. Bar()
  1013. .add_xaxis(x_axis)
  1014. .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'),
  1015. yaxis_opts=opts.AxisOpts(type_='value')))
  1016. for i in range(len(c_list)):
  1017. c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
  1018. tab.add(c, f'类型-[{num_i}]特征统计柱状图')
  1019. #未完成
  1020. save = Dic + r'/render.HTML'
  1021. tab.render(save) # 生成HTML
  1022. return save,
  1023. class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图
  1024. def Des(self,Dic,*args,**kwargs):
  1025. tab = Tab()
  1026. data = self.x_trainData
  1027. x = [f'横[{i}]' for i in range(len(data))]
  1028. y = [f'纵[{i}]' for i in range(len(data[0]))]
  1029. value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1030. print(value)
  1031. c = (HeatMap()
  1032. .add_xaxis(x)
  1033. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1034. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1035. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1036. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1037. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  1038. min_=float(data.min()),
  1039. pos_right='3%'))#显示
  1040. )
  1041. tab.add(c,'矩阵热力图')
  1042. tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格')
  1043. save = Dic + r'/render.HTML'
  1044. tab.render(save) # 生成HTML
  1045. return save,
  1046. class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图
  1047. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1048. super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs)
  1049. self.Model = Learner.Model
  1050. self.Select_Model = None
  1051. self.have_Fit = Learner.have_Fit
  1052. self.Model_Name = 'Select_Model'
  1053. self.Learner = Learner
  1054. self.x_trainData = Learner.x_trainData
  1055. self.y_trainData = Learner.y_trainData
  1056. self.means = []
  1057. def Fit(self,x_data,*args,**kwargs):
  1058. try:
  1059. self.means = x_data.ravel()
  1060. except:
  1061. pass
  1062. return 'None','None'
  1063. def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs):
  1064. tab = Tab()
  1065. y = self.y_trainData
  1066. x_data = self.x_trainData
  1067. try:#如果没有class
  1068. class_ = self.Model.classes_.tolist()
  1069. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1070. #获取数据
  1071. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1072. #可使用自带的means,并且nan表示跳过
  1073. for i in range(min([len(x_means),len(self.means)])):
  1074. try:
  1075. g = self.means[i]
  1076. if g == np.nan:raise Exception
  1077. x_means[i] = g
  1078. except:pass
  1079. print(x_means)
  1080. get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type)
  1081. for i in range(len(get)):
  1082. tab.add(get[i], f'{i}预测热力图')
  1083. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1084. data = class_ + [f'{i}' for i in x_means]
  1085. c = Table().add(headers=heard, rows=[data])
  1086. tab.add(c, '数据表')
  1087. except:
  1088. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1089. get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type)
  1090. for i in range(len(get)):
  1091. tab.add(get[i], f'{i}预测热力图')
  1092. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1093. data = [f'{i}' for i in x_means]
  1094. c = Table().add(headers=heard, rows=[data])
  1095. tab.add(c, '数据表')
  1096. save = Dic + r'/render.HTML'
  1097. tab.render(save) # 生成HTML
  1098. return save,
  1099. class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图
  1100. def Des(self,Dic,*args,**kwargs):
  1101. return super().Des(Dic,Decision_boundary,Prediction_boundary)
  1102. class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More
  1103. def Des(self,Dic,*args,**kwargs):
  1104. return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More)
  1105. class Near_feature_scatter_class_More(To_PyeBase):
  1106. def Des(self, Dic, *args, **kwargs):
  1107. tab = Tab()
  1108. x_data = self.x_trainData
  1109. y = self.y_trainData
  1110. class_ = np.unique(y).ravel().tolist()
  1111. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  1112. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  1113. for i in range(len(get)):
  1114. tab.add(get[i], f'{i}训练数据散点图')
  1115. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1116. data = class_ + [f'{i}' for i in x_means]
  1117. c = Table().add(headers=heard, rows=[data])
  1118. tab.add(c, '数据表')
  1119. save = Dic + r'/render.HTML'
  1120. tab.render(save) # 生成HTML
  1121. return save,
  1122. class Near_feature_scatter_More(To_PyeBase):
  1123. def Des(self,Dic,*args,**kwargs):
  1124. tab = Tab()
  1125. x_data = self.x_trainData
  1126. x_means = make_Cat(x_data).get()[0]
  1127. get_y = Feature_visualization(x_data, '数据散点图') # 转换
  1128. for i in range(len(get_y)):
  1129. tab.add(get_y[i], f'[{i}]数据x-x散点图')
  1130. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1131. data = [f'{i}' for i in x_means]
  1132. c = Table().add(headers=heard, rows=[data])
  1133. tab.add(c, '数据表')
  1134. save = Dic + r'/render.HTML'
  1135. tab.render(save) # 生成HTML
  1136. return save,
  1137. class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据
  1138. def Des(self,Dic,*args,**kwargs):
  1139. #获取数据
  1140. class_ = np.unique(self.y_trainData).ravel().tolist()
  1141. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1142. tab = Tab()
  1143. y = self.y_trainData
  1144. x_data = self.x_trainData
  1145. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1146. for i in range(len(get)):
  1147. tab.add(get[i], f'{i}临近特征散点图')
  1148. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1149. data = class_ + [f'{i}' for i in x_means]
  1150. c = Table().add(headers=heard, rows=[data])
  1151. tab.add(c, '数据表')
  1152. save = Dic + r'/render.HTML'
  1153. tab.render(save) # 生成HTML
  1154. return save,
  1155. class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据
  1156. def Des(self,Dic,*args,**kwargs):
  1157. tab = Tab()
  1158. x_data = self.x_trainData.T
  1159. y = self.y_trainData
  1160. get, x_means, x_range,Type = Training_visualization_NoClass(x_data)
  1161. for i in range(len(get)):
  1162. tab.add(get[i], f'{i}临近特征散点图')
  1163. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1164. data = [f'{i}' for i in x_means]
  1165. tab.add(make_Tab(columns,[data]), '数据表')
  1166. save = Dic + r'/render.HTML'
  1167. tab.render(save) # 生成HTML
  1168. return save,
  1169. class Feature_scatter_YX(To_PyeBase):#y-x图
  1170. def Des(self,Dic,*args,**kwargs):
  1171. tab = Tab()
  1172. x_data = self.x_trainData
  1173. y = self.y_trainData
  1174. get, x_means, x_range,Type = regress_visualization(x_data,y)
  1175. for i in range(len(get)):
  1176. tab.add(get[i], f'{i}特征x-y散点图')
  1177. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1178. data = [f'{i}' for i in x_means]
  1179. tab.add(make_Tab(columns,[data]), '数据表')
  1180. save = Dic + r'/render.HTML'
  1181. tab.render(save) # 生成HTML
  1182. return save,
  1183. class Weight_curve(To_PyeBase):#权重曲线
  1184. def Des(self,Dic,*args,**kwargs):
  1185. w = self.x_trainData
  1186. b = self.y_trainData
  1187. class Line_Model(Study_MachineBase):
  1188. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1189. super(Line_Model, self).__init__(*args,**kwargs)
  1190. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  1191. model]
  1192. if model == 'Line':
  1193. self.Model = Model()
  1194. self.k = {}
  1195. else:
  1196. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1197. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  1198. #记录这两个是为了克隆
  1199. self.Alpha = args_use['alpha']
  1200. self.max_iter = args_use['max_iter']
  1201. self.Model_Name = model
  1202. def Des(self,Dic,*args,**kwargs):
  1203. tab = Tab()
  1204. x_data = self.x_trainData
  1205. y = self.y_trainData
  1206. w_list = self.Model.coef_.tolist()
  1207. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  1208. b = self.Model.intercept_.tolist()
  1209. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1210. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1211. for i in range(len(get)):
  1212. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1213. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1214. for i in range(len(get)):
  1215. tab.add(get[i], f'{i}预测热力图')
  1216. tab.add(scatter(w_heard,w_list),'系数w散点图')
  1217. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  1218. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  1219. data = [f'{i}' for i in x_means] + w_list + [b]
  1220. if self.Model_Name != 'Line':
  1221. columns += ['阿尔法','最大迭代次数']
  1222. data += [self.Model.alpha,self.Model.max_iter]
  1223. tab.add(make_Tab(columns,[data]), '数据表')
  1224. save = Dic + r'/render.HTML'
  1225. tab.render(save) # 生成HTML
  1226. return save,
  1227. class LogisticRegression_Model(Study_MachineBase):
  1228. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1229. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  1230. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  1231. #记录这两个是为了克隆
  1232. self.C = args_use['C']
  1233. self.max_iter = args_use['max_iter']
  1234. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  1235. self.Model_Name = model
  1236. def Des(self,Dic='render.html',*args,**kwargs):
  1237. #获取数据
  1238. w_array = self.Model.coef_
  1239. w_list = w_array.tolist() # 变为表格
  1240. b = self.Model.intercept_
  1241. c = self.Model.C
  1242. max_iter = self.Model.max_iter
  1243. class_ = self.Model.classes_.tolist()
  1244. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1245. tab = Tab()
  1246. y = self.y_trainData
  1247. x_data = self.x_trainData
  1248. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1249. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1250. for i in range(len(get)):
  1251. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1252. for i in range(len(w_list)):
  1253. w = w_list[i]
  1254. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  1255. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  1256. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  1257. columns = class_heard + ['截距b','C','最大迭代数']
  1258. data = class_ + [b,c,max_iter]
  1259. c = Table().add(headers=columns, rows=[data])
  1260. tab.add(c, '数据表')
  1261. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  1262. tab.add(c, '系数数据表')
  1263. save = Dic + r'/render.HTML'
  1264. tab.render(save) # 生成HTML
  1265. return save,
  1266. class Categorical_Data:#数据统计助手
  1267. def __init__(self):
  1268. self.x_means = []
  1269. self.x_range = []
  1270. self.Type = []
  1271. def __call__(self,x1, *args, **kwargs):
  1272. get = self.is_continuous(x1)
  1273. return get
  1274. def is_continuous(self,x1:np.array):
  1275. try:
  1276. x1_con = is_continuous(x1)
  1277. if x1_con:
  1278. self.x_means.append(np.mean(x1))
  1279. self.add_Range(x1)
  1280. else:
  1281. raise Exception
  1282. return x1_con
  1283. except:#找出出现次数最多的元素
  1284. new = np.unique(x1)#去除相同的元素
  1285. count_list = []
  1286. for i in new:
  1287. count_list.append(np.sum(x1 == i))
  1288. index = count_list.index(max(count_list))#找出最大值的索引
  1289. self.x_means.append(x1[index])
  1290. self.add_Range(x1,False)
  1291. return False
  1292. def add_Range(self,x1:np.array,range_=True):
  1293. try:
  1294. if not range_ : raise Exception
  1295. min_ = int(x1.min()) - 1
  1296. max_ = int(x1.max()) + 1
  1297. #不需要复制列表
  1298. self.x_range.append([min_,max_])
  1299. self.Type.append(1)
  1300. except:
  1301. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  1302. self.Type.append(2)
  1303. def get(self):
  1304. return self.x_means,self.x_range,self.Type
  1305. class Knn_Model(Study_MachineBase):
  1306. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1307. super(Knn_Model, self).__init__(*args,**kwargs)
  1308. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  1309. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  1310. #记录这两个是为了克隆
  1311. self.n_neighbors = args_use['n_neighbors']
  1312. self.p = args_use['p']
  1313. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  1314. self.Model_Name = model
  1315. def Des(self,Dic,*args,**kwargs):
  1316. tab = Tab()
  1317. y = self.y_trainData
  1318. x_data = self.x_trainData
  1319. y_test = self.y_testData
  1320. x_test = self.x_testData
  1321. if self.Model_Name == 'Knn_class':
  1322. class_ = self.Model.classes_.tolist()
  1323. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1324. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1325. for i in range(len(get)):
  1326. tab.add(get[i],f'{i}训练数据散点图')
  1327. if not y_test is None:
  1328. get = Training_visualization(x_test,class_,y_test)[0]
  1329. for i in range(len(get)):
  1330. tab.add(get[i],f'{i}测试数据散点图')
  1331. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1332. for i in range(len(get)):
  1333. tab.add(get[i], f'{i}预测热力图')
  1334. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1335. data = class_ + [f'{i}' for i in x_means]
  1336. c = Table().add(headers=heard, rows=[data])
  1337. tab.add(c, '数据表')
  1338. else:
  1339. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1340. for i in range(len(get)):
  1341. tab.add(get[i], f'{i}训练数据散点图')
  1342. get = regress_visualization(x_test, y_test)[0]
  1343. for i in range(len(get)):
  1344. tab.add(get[i], f'{i}测试数据类型图')
  1345. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1346. for i in range(len(get)):
  1347. tab.add(get[i], f'{i}预测热力图')
  1348. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1349. data = [f'{i}' for i in x_means]
  1350. c = Table().add(headers=heard, rows=[data])
  1351. tab.add(c, '数据表')
  1352. save = Dic + r'/render.HTML'
  1353. tab.render(save) # 生成HTML
  1354. return save,
  1355. class Tree_Model(Study_MachineBase):
  1356. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1357. super(Tree_Model, self).__init__(*args,**kwargs)
  1358. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  1359. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  1360. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1361. #记录这两个是为了克隆
  1362. self.criterion = args_use['criterion']
  1363. self.splitter = args_use['splitter']
  1364. self.max_features = args_use['max_features']
  1365. self.max_depth = args_use['max_depth']
  1366. self.min_samples_split = args_use['min_samples_split']
  1367. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1368. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1369. self.Model_Name = model
  1370. def Des(self, Dic, *args, **kwargs):
  1371. tab = Tab()
  1372. importance = self.Model.feature_importances_.tolist()
  1373. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  1374. export_graphviz(self.Model, out_file=f)
  1375. make_bar('特征重要性',importance,tab)
  1376. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  1377. y = self.y_trainData
  1378. x_data = self.x_trainData
  1379. y_test = self.y_testData
  1380. x_test = self.x_testData
  1381. if self.Model_Name == 'Tree_class':
  1382. class_ = self.Model.classes_.tolist()
  1383. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1384. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1385. for i in range(len(get)):
  1386. tab.add(get[i],f'{i}训练数据散点图')
  1387. get = Training_visualization(x_test, class_, y_test)[0]
  1388. for i in range(len(get)):
  1389. tab.add(get[i], f'{i}测试数据散点图')
  1390. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1391. for i in range(len(get)):
  1392. tab.add(get[i], f'{i}预测热力图')
  1393. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1394. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  1395. else:
  1396. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1397. for i in range(len(get)):
  1398. tab.add(get[i], f'{i}训练数据散点图')
  1399. get = regress_visualization(x_test, y_test)[0]
  1400. for i in range(len(get)):
  1401. tab.add(get[i], f'{i}测试数据类型图')
  1402. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1403. for i in range(len(get)):
  1404. tab.add(get[i], f'{i}预测热力图')
  1405. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1406. [[f'{i}' for i in x_means] + importance]), '数据表')
  1407. save = Dic + r'/render.HTML'
  1408. tab.render(save) # 生成HTML
  1409. return save,
  1410. class Forest_Model(Study_MachineBase):
  1411. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1412. super(Forest_Model, self).__init__(*args,**kwargs)
  1413. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  1414. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  1415. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1416. #记录这两个是为了克隆
  1417. self.n_estimators = args_use['n_Tree']
  1418. self.criterion = args_use['criterion']
  1419. self.max_features = args_use['max_features']
  1420. self.max_depth = args_use['max_depth']
  1421. self.min_samples_split = args_use['min_samples_split']
  1422. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  1423. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1424. self.Model_Name = model
  1425. def Des(self, Dic, *args, **kwargs):
  1426. tab = Tab()
  1427. #多个决策树可视化
  1428. for i in range(len(self.Model.estimators_)):
  1429. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  1430. export_graphviz(self.Model.estimators_[i], out_file=f)
  1431. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  1432. y = self.y_trainData
  1433. x_data = self.x_trainData
  1434. if self.Model_Name == 'Forest_class':
  1435. class_ = self.Model.classes_.tolist()
  1436. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1437. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1438. for i in range(len(get)):
  1439. tab.add(get[i],f'{i}训练数据散点图')
  1440. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1441. for i in range(len(get)):
  1442. tab.add(get[i], f'{i}预测热力图')
  1443. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1444. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1445. else:
  1446. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1447. for i in range(len(get)):
  1448. tab.add(get[i], f'{i}预测类型图')
  1449. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1450. for i in range(len(get)):
  1451. tab.add(get[i], f'{i}预测热力图')
  1452. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1453. save = Dic + r'/render.HTML'
  1454. tab.render(save) # 生成HTML
  1455. return save,
  1456. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  1457. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1458. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  1459. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  1460. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  1461. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1462. #记录这两个是为了克隆
  1463. self.criterion = args_use['criterion']
  1464. self.splitter = args_use['splitter']
  1465. self.max_features = args_use['max_features']
  1466. self.max_depth = args_use['max_depth']
  1467. self.min_samples_split = args_use['min_samples_split']
  1468. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1469. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1470. self.Model_Name = model
  1471. def Des(self, Dic, *args, **kwargs):
  1472. tab = Tab()
  1473. #多个决策树可视化
  1474. for a in range(len(self.Model.estimators_)):
  1475. for i in range(len(self.Model.estimators_[a])):
  1476. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  1477. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  1478. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  1479. y = self.y_trainData
  1480. x_data = self.x_trainData
  1481. if self.Model_Name == 'Tree_class':
  1482. class_ = self.Model.classes_.tolist()
  1483. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1484. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1485. for i in range(len(get)):
  1486. tab.add(get[i],f'{i}训练数据散点图')
  1487. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1488. for i in range(len(get)):
  1489. tab.add(get[i], f'{i}预测热力图')
  1490. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1491. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1492. else:
  1493. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1494. for i in range(len(get)):
  1495. tab.add(get[i], f'{i}预测类型图')
  1496. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1497. for i in range(len(get)):
  1498. tab.add(get[i], f'{i}预测热力图')
  1499. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1500. save = Dic + r'/render.HTML'
  1501. tab.render(save) # 生成HTML
  1502. return save,
  1503. class SVC_Model(Study_MachineBase):
  1504. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1505. super(SVC_Model, self).__init__(*args,**kwargs)
  1506. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1507. #记录这两个是为了克隆
  1508. self.C = args_use['C']
  1509. self.gamma = args_use['gamma']
  1510. self.kernel = args_use['kernel']
  1511. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1512. self.Model_Name = model
  1513. def Des(self, Dic, *args, **kwargs):
  1514. tab = Tab()
  1515. w_list = self.Model.coef_.tolist()
  1516. b = self.Model.intercept_.tolist()
  1517. class_ = self.Model.classes_.tolist()
  1518. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1519. y = self.y_trainData
  1520. x_data = self.x_trainData
  1521. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1522. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1523. for i in range(len(get)):
  1524. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1525. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  1526. for i in range(len(get)):
  1527. tab.add(get[i], f'{i}预测热力图')
  1528. dic = {2:'离散',1:'连续'}
  1529. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  1530. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1531. save = Dic + r'/render.HTML'
  1532. tab.render(save) # 生成HTML
  1533. return save,
  1534. class SVR_Model(Study_MachineBase):
  1535. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1536. super(SVR_Model, self).__init__(*args,**kwargs)
  1537. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1538. #记录这两个是为了克隆
  1539. self.C = args_use['C']
  1540. self.gamma = args_use['gamma']
  1541. self.kernel = args_use['kernel']
  1542. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1543. self.Model_Name = model
  1544. def Des(self,Dic,*args,**kwargs):
  1545. tab = Tab()
  1546. x_data = self.x_trainData
  1547. y = self.y_trainData
  1548. try:
  1549. w_list = self.Model.coef_.tolist()#未必有这个属性
  1550. b = self.Model.intercept_.tolist()
  1551. U = True
  1552. except:
  1553. U = False
  1554. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1555. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1556. for i in range(len(get)):
  1557. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1558. else:tab.add(get[i], f'{i}预测类型图')
  1559. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1560. for i in range(len(get)):
  1561. tab.add(get[i], f'{i}预测热力图')
  1562. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1563. save = Dic + r'/render.HTML'
  1564. tab.render(save) # 生成HTML
  1565. return save,
  1566. class Variance_Model(Unsupervised):#无监督
  1567. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1568. super(Variance_Model, self).__init__(*args,**kwargs)
  1569. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  1570. #记录这两个是为了克隆
  1571. self.threshold = args_use['P']
  1572. self.k = {'threshold':args_use['P']}
  1573. self.Model_Name = model
  1574. def Des(self,Dic,*args,**kwargs):
  1575. tab = Tab()
  1576. var = self.Model.variances_#标准差
  1577. y_data = self.y_trainData
  1578. if type(y_data) is np.ndarray:
  1579. get = Feature_visualization(self.y_trainData)
  1580. for i in range(len(get)):
  1581. tab.add(get[i],f'[{i}]数据x-x散点图')
  1582. c = (
  1583. Bar()
  1584. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  1585. .add_yaxis('标准差', var.tolist(), **Label_Set)
  1586. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1587. )
  1588. tab.add(c,'数据标准差')
  1589. save = Dic + r'/render.HTML'
  1590. tab.render(save) # 生成HTML
  1591. return save,
  1592. class SelectKBest_Model(prep_Base):#无监督
  1593. def __init__(self, args_use, model, *args, **kwargs):
  1594. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  1595. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  1596. # 记录这两个是为了克隆
  1597. self.k_ = args_use['k']
  1598. self.score_func=args_use['score_func']
  1599. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  1600. self.Model_Name = model
  1601. def Des(self,Dic,*args,**kwargs):
  1602. tab = Tab()
  1603. score = self.Model.scores_.tolist()
  1604. support = self.Model.get_support()
  1605. y_data = self.y_trainData
  1606. x_data = self.x_trainData
  1607. if type(x_data) is np.ndarray:
  1608. get = Feature_visualization(x_data)
  1609. for i in range(len(get)):
  1610. tab.add(get[i],f'[{i}]数据x-x散点图')
  1611. if type(y_data) is np.ndarray:
  1612. get = Feature_visualization(y_data)
  1613. for i in range(len(get)):
  1614. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1615. Choose = []
  1616. UnChoose = []
  1617. for i in range(len(score)):
  1618. if support[i]:
  1619. Choose.append(score[i])
  1620. UnChoose.append(0)#占位
  1621. else:
  1622. UnChoose.append(score[i])
  1623. Choose.append(0)
  1624. c = (
  1625. Bar()
  1626. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1627. .add_yaxis('选中特征', Choose, **Label_Set)
  1628. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1629. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1630. )
  1631. tab.add(c,'单变量重要程度')
  1632. save = Dic + r'/render.HTML'
  1633. tab.render(save) # 生成HTML
  1634. return save,
  1635. class SelectFrom_Model(prep_Base):#无监督
  1636. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1637. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  1638. self.Model = Learner.Model
  1639. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  1640. self.max_features = args_use['k']
  1641. self.estimator=Learner.Model
  1642. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  1643. self.have_Fit = Learner.have_Fit
  1644. self.Model_Name = 'SelectFrom_Model'
  1645. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  1646. if not self.have_Fit: # 不允许第二次训练
  1647. self.Select_Model.fit(x_data, y_data)
  1648. return 'None', 'None'
  1649. return 'NONE','NONE'
  1650. def Predict(self, x_data, *args, **kwargs):
  1651. try:
  1652. self.x_trainData = x_data
  1653. x_Predict = self.Select_Model.transform(x_data)
  1654. self.y_trainData = x_Predict
  1655. print(self.y_trainData)
  1656. print(self.x_trainData)
  1657. return x_Predict,'模型特征工程'
  1658. except:
  1659. return np.array([]),'无结果工程'
  1660. def Des(self,Dic,*args,**kwargs):
  1661. tab = Tab()
  1662. support = self.Select_Model.get_support()
  1663. y_data = self.y_trainData
  1664. x_data = self.x_trainData
  1665. if type(x_data) is np.ndarray:
  1666. get = Feature_visualization(x_data)
  1667. for i in range(len(get)):
  1668. tab.add(get[i],f'[{i}]数据x-x散点图')
  1669. if type(y_data) is np.ndarray:
  1670. get = Feature_visualization(y_data)
  1671. for i in range(len(get)):
  1672. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1673. def make_Bar(score):
  1674. Choose = []
  1675. UnChoose = []
  1676. for i in range(len(score)):
  1677. if support[i]:
  1678. Choose.append(abs(score[i]))
  1679. UnChoose.append(0) # 占位
  1680. else:
  1681. UnChoose.append(abs(score[i]))
  1682. Choose.append(0)
  1683. c = (
  1684. Bar()
  1685. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1686. .add_yaxis('选中特征', Choose, **Label_Set)
  1687. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1688. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1689. )
  1690. tab.add(c,'单变量重要程度')
  1691. try:
  1692. make_Bar(self.Model.coef_)
  1693. except:
  1694. try:
  1695. make_Bar(self.Model.feature_importances_)
  1696. except:pass
  1697. save = Dic + r'/render.HTML'
  1698. tab.render(save) # 生成HTML
  1699. return save,
  1700. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  1701. def __init__(self, args_use, model, *args, **kwargs):
  1702. super(Standardization_Model, self).__init__(*args, **kwargs)
  1703. self.Model = StandardScaler()
  1704. self.k = {}
  1705. self.Model_Name = 'StandardScaler'
  1706. def Des(self,Dic,*args,**kwargs):
  1707. tab = Tab()
  1708. y_data = self.y_trainData
  1709. x_data = self.x_trainData
  1710. var = self.Model.var_.tolist()
  1711. means = self.Model.mean_.tolist()
  1712. scale = self.Model.scale_.tolist()
  1713. Conversion_control(y_data,x_data,tab)
  1714. make_bar('标准差',var,tab)
  1715. make_bar('方差',means,tab)
  1716. make_bar('Scale',scale,tab)
  1717. save = Dic + r'/render.HTML'
  1718. tab.render(save) # 生成HTML
  1719. return save,
  1720. class MinMaxScaler_Model(Unsupervised):#离差标准化
  1721. def __init__(self, args_use, model, *args, **kwargs):
  1722. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  1723. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  1724. self.k = {}
  1725. self.Model_Name = 'MinMaxScaler'
  1726. def Des(self,Dic,*args,**kwargs):
  1727. tab = Tab()
  1728. y_data = self.y_trainData
  1729. x_data = self.x_trainData
  1730. scale = self.Model.scale_.tolist()
  1731. max_ = self.Model.data_max_.tolist()
  1732. min_ = self.Model.data_min_.tolist()
  1733. Conversion_control(y_data,x_data,tab)
  1734. make_bar('Scale',scale,tab)
  1735. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  1736. row=[max_ + min_]), '数据表格')
  1737. save = Dic + r'/render.HTML'
  1738. tab.render(save) # 生成HTML
  1739. return save,
  1740. class LogScaler_Model(prep_Base):#对数标准化
  1741. def __init__(self, args_use, model, *args, **kwargs):
  1742. super(LogScaler_Model, self).__init__(*args, **kwargs)
  1743. self.Model = None
  1744. self.k = {}
  1745. self.Model_Name = 'LogScaler'
  1746. def Fit(self, x_data, *args, **kwargs):
  1747. if not self.have_Fit: # 不允许第二次训练
  1748. self.max_logx = np.log(x_data.max())
  1749. return 'None', 'None'
  1750. def Predict(self, x_data, *args, **kwargs):
  1751. try:
  1752. max_logx = self.max_logx
  1753. except:
  1754. self.have_Fit = False
  1755. self.Fit(x_data)
  1756. max_logx = self.max_logx
  1757. self.x_trainData = x_data.copy()
  1758. x_Predict = (np.log(x_data)/max_logx)
  1759. self.y_trainData = x_Predict.copy()
  1760. return x_Predict,'对数变换'
  1761. def Des(self,Dic,*args,**kwargs):
  1762. tab = Tab()
  1763. y_data = self.y_trainData
  1764. x_data = self.x_trainData
  1765. Conversion_control(y_data,x_data,tab)
  1766. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  1767. save = Dic + r'/render.HTML'
  1768. tab.render(save) # 生成HTML
  1769. return save,
  1770. class atanScaler_Model(prep_Base):#atan标准化
  1771. def __init__(self, args_use, model, *args, **kwargs):
  1772. super(atanScaler_Model, self).__init__(*args, **kwargs)
  1773. self.Model = None
  1774. self.k = {}
  1775. self.Model_Name = 'atanScaler'
  1776. def Fit(self, x_data, *args, **kwargs):
  1777. return 'None', 'None'
  1778. def Predict(self, x_data, *args, **kwargs):
  1779. self.x_trainData = x_data.copy()
  1780. x_Predict = (np.arctan(x_data)*(2/np.pi))
  1781. self.y_trainData = x_Predict.copy()
  1782. return x_Predict,'atan变换'
  1783. def Des(self,Dic,*args,**kwargs):
  1784. tab = Tab()
  1785. y_data = self.y_trainData
  1786. x_data = self.x_trainData
  1787. Conversion_control(y_data,x_data,tab)
  1788. save = Dic + r'/render.HTML'
  1789. tab.render(save) # 生成HTML
  1790. return save,
  1791. class decimalScaler_Model(prep_Base):#小数定标准化
  1792. def __init__(self, args_use, model, *args, **kwargs):
  1793. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  1794. self.Model = None
  1795. self.k = {}
  1796. self.Model_Name = 'Decimal_normalization'
  1797. def Fit(self, x_data, *args, **kwargs):
  1798. if not self.have_Fit: # 不允许第二次训练
  1799. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  1800. return 'None', 'None'
  1801. def Predict(self, x_data, *args, **kwargs):
  1802. self.x_trainData = x_data.copy()
  1803. try:
  1804. j = self.j
  1805. except:
  1806. self.have_Fit = False
  1807. self.Fit(x_data)
  1808. j = self.j
  1809. x_Predict = (x_data/(10**j))
  1810. self.y_trainData = x_Predict.copy()
  1811. return x_Predict,'小数定标标准化'
  1812. def Des(self,Dic,*args,**kwargs):
  1813. tab = Tab()
  1814. y_data = self.y_trainData
  1815. x_data = self.x_trainData
  1816. j = self.j
  1817. Conversion_control(y_data,x_data,tab)
  1818. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  1819. save = Dic + r'/render.HTML'
  1820. tab.render(save) # 生成HTML
  1821. return save,
  1822. class Mapzoom_Model(prep_Base):#映射标准化
  1823. def __init__(self, args_use, model, *args, **kwargs):
  1824. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  1825. self.Model = None
  1826. self.feature_range = args_use['feature_range']
  1827. self.k = {}
  1828. self.Model_Name = 'Decimal_normalization'
  1829. def Fit(self, x_data, *args, **kwargs):
  1830. if not self.have_Fit: # 不允许第二次训练
  1831. self.max = x_data.max()
  1832. self.min = x_data.min()
  1833. return 'None', 'None'
  1834. def Predict(self, x_data, *args, **kwargs):
  1835. self.x_trainData = x_data.copy()
  1836. try:
  1837. max = self.max
  1838. min = self.min
  1839. except:
  1840. self.have_Fit = False
  1841. self.Fit(x_data)
  1842. max = self.max
  1843. min = self.min
  1844. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  1845. self.y_trainData = x_Predict.copy()
  1846. return x_Predict,'映射标准化'
  1847. def Des(self,Dic,*args,**kwargs):
  1848. tab = Tab()
  1849. y_data = self.y_trainData
  1850. x_data = self.x_trainData
  1851. max = self.max
  1852. min = self.min
  1853. Conversion_control(y_data,x_data,tab)
  1854. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1855. save = Dic + r'/render.HTML'
  1856. tab.render(save) # 生成HTML
  1857. return save,
  1858. class sigmodScaler_Model(prep_Base):#sigmod变换
  1859. def __init__(self, args_use, model, *args, **kwargs):
  1860. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  1861. self.Model = None
  1862. self.k = {}
  1863. self.Model_Name = 'sigmodScaler_Model'
  1864. def Fit(self, x_data, *args, **kwargs):
  1865. return 'None', 'None'
  1866. def Predict(self, x_data:np.array):
  1867. self.x_trainData = x_data.copy()
  1868. x_Predict = (1/(1+np.exp(-x_data)))
  1869. self.y_trainData = x_Predict.copy()
  1870. return x_Predict,'Sigmod变换'
  1871. def Des(self,Dic,*args,**kwargs):
  1872. tab = Tab()
  1873. y_data = self.y_trainData
  1874. x_data = self.x_trainData
  1875. Conversion_control(y_data,x_data,tab)
  1876. save = Dic + r'/render.HTML'
  1877. tab.render(save) # 生成HTML
  1878. return save,
  1879. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  1880. def __init__(self, args_use, model, *args, **kwargs):
  1881. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  1882. self.Model = None
  1883. self.feature_range = args_use['feature_range']
  1884. self.k = {}
  1885. self.Model_Name = 'Fuzzy_quantization'
  1886. def Fit(self, x_data, *args, **kwargs):
  1887. if not self.have_Fit: # 不允许第二次训练
  1888. self.max = x_data.max()
  1889. self.min = x_data.min()
  1890. return 'None', 'None'
  1891. def Predict(self, x_data,*args,**kwargs):
  1892. self.y_trainData = x_data.copy()
  1893. try:
  1894. max = self.max
  1895. min = self.min
  1896. except:
  1897. self.have_Fit = False
  1898. self.Fit(x_data)
  1899. max = self.max
  1900. min = self.min
  1901. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  1902. self.y_trainData = x_Predict.copy()
  1903. return x_Predict,'映射标准化'
  1904. def Des(self,Dic,*args,**kwargs):
  1905. tab = Tab()
  1906. y_data = self.y_trainData
  1907. x_data = self.x_trainData
  1908. max = self.max
  1909. min = self.min
  1910. Conversion_control(y_data,x_data,tab)
  1911. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1912. save = Dic + r'/render.HTML'
  1913. tab.render(save) # 生成HTML
  1914. return save,
  1915. class Regularization_Model(Unsupervised):#正则化
  1916. def __init__(self, args_use, model, *args, **kwargs):
  1917. super(Regularization_Model, self).__init__(*args, **kwargs)
  1918. self.Model = Normalizer(norm=args_use['norm'])
  1919. self.k = {'norm':args_use['norm']}
  1920. self.Model_Name = 'Regularization'
  1921. def Des(self,Dic,*args,**kwargs):
  1922. tab = Tab()
  1923. y_data = self.y_trainData
  1924. x_data = self.x_trainData
  1925. Conversion_control(y_data,x_data,tab)
  1926. save = Dic + r'/render.HTML'
  1927. tab.render(save) # 生成HTML
  1928. return save,
  1929. #离散数据
  1930. class Binarizer_Model(Unsupervised):#二值化
  1931. def __init__(self, args_use, model, *args, **kwargs):
  1932. super(Binarizer_Model, self).__init__(*args, **kwargs)
  1933. self.Model = Binarizer(threshold=args_use['threshold'])
  1934. self.k = {}
  1935. self.Model_Name = 'Binarizer'
  1936. def Des(self,Dic,*args,**kwargs):
  1937. tab = Tab()
  1938. y_data = self.y_trainData
  1939. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  1940. for i in range(len(get_y)):
  1941. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  1942. save = Dic + r'/render.HTML'
  1943. tab.render(save) # 生成HTML
  1944. return save,
  1945. class Discretization_Model(prep_Base):#n值离散
  1946. def __init__(self, args_use, model, *args, **kwargs):
  1947. super(Discretization_Model, self).__init__(*args, **kwargs)
  1948. self.Model = None
  1949. range_ = args_use['split_range']
  1950. if range_ == []:raise Exception
  1951. elif len(range_) == 1:range_.append(range_[0])
  1952. self.range = range_
  1953. self.k = {}
  1954. self.Model_Name = 'Discretization'
  1955. def Fit(self,*args,**kwargs):
  1956. return 'None','None'
  1957. def Predict(self,x_data):
  1958. self.x_trainData = x_data.copy()
  1959. x_Predict = x_data.copy()#复制
  1960. range_ = self.range
  1961. bool_list = []
  1962. max_ = len(range_) - 1
  1963. o_t = None
  1964. for i in range(len(range_)):
  1965. try:
  1966. t = float(range_[i])
  1967. except:continue
  1968. if o_t == None:#第一个参数
  1969. bool_list.append(x_Predict <= t)
  1970. else:
  1971. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  1972. if i == max_:
  1973. bool_list.append(t <= x_Predict)
  1974. o_t = t
  1975. for i in range(len(bool_list)):
  1976. x_Predict[bool_list[i]] = i
  1977. self.y_trainData = x_Predict.copy()
  1978. return x_Predict,f'{len(bool_list)}值离散化'
  1979. def Des(self, Dic, *args, **kwargs):
  1980. tab = Tab()
  1981. y_data = self.y_trainData
  1982. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  1983. for i in range(len(get_y)):
  1984. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  1985. save = Dic + r'/render.HTML'
  1986. tab.render(save) # 生成HTML
  1987. return save,
  1988. class Label_Model(prep_Base):#数字编码
  1989. def __init__(self, args_use, model, *args, **kwargs):
  1990. super(Label_Model, self).__init__(*args, **kwargs)
  1991. self.Model = []
  1992. self.k = {}
  1993. self.Model_Name = 'LabelEncoder'
  1994. def Fit(self,x_data,*args, **kwargs):
  1995. if not self.have_Fit: # 不允许第二次训练
  1996. if x_data.ndim == 1:x_data = np.array([x_data])
  1997. for i in range(x_data.shape[1]):
  1998. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  1999. return 'None', 'None'
  2000. def Predict(self, x_data, *args, **kwargs):
  2001. x_Predict = x_data.copy()
  2002. if x_data.ndim == 1: x_data = np.array([x_data])
  2003. for i in range(x_data.shape[1]):
  2004. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  2005. self.y_trainData = x_Predict.copy()
  2006. return x_Predict,'数字编码'
  2007. def Des(self, Dic, *args, **kwargs):
  2008. tab = Tab()
  2009. y_data = self.y_trainData
  2010. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2011. for i in range(len(get_y)):
  2012. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2013. save = Dic + r'/render.HTML'
  2014. tab.render(save) # 生成HTML
  2015. return save,
  2016. class OneHotEncoder_Model(prep_Base):#独热编码
  2017. def __init__(self, args_use, model, *args, **kwargs):
  2018. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  2019. self.Model = []
  2020. self.ndim_up = args_use['ndim_up']
  2021. self.k = {}
  2022. self.Model_Name = 'OneHotEncoder'
  2023. def Fit(self,x_data,*args, **kwargs):
  2024. if not self.have_Fit: # 不允许第二次训练
  2025. if x_data.ndim == 1:x_data = [x_data]
  2026. for i in range(x_data.shape[1]):
  2027. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  2028. self.Model.append(OneHotEncoder().fit(data))#训练机器
  2029. return 'None', 'None'
  2030. def Predict(self, x_data, *args, **kwargs):
  2031. self.x_trainData = x_data.copy()
  2032. x_new = []
  2033. for i in range(x_data.shape[1]):
  2034. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  2035. oneHot = self.Model[i].transform(data).toarray().tolist()
  2036. x_new.append(oneHot)#添加到列表中
  2037. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  2038. x_Predict = []
  2039. for i in range(x_new.shape[1]):
  2040. x_Predict.append(x_new[:,i])
  2041. x_Predict = np.array(x_Predict)#转换回array
  2042. if not self.ndim_up:#压缩操作
  2043. new_xPredict = []
  2044. for i in x_Predict:
  2045. new_list = []
  2046. list_ = i.tolist()
  2047. for a in list_:
  2048. new_list += a
  2049. new = np.array(new_list)
  2050. new_xPredict.append(new)
  2051. self.y_trainData = x_Predict.copy()
  2052. return np.array(new_xPredict),'独热编码'
  2053. #不保存y_trainData
  2054. return x_Predict,'独热编码'#不需要降维
  2055. def Des(self, Dic, *args, **kwargs):
  2056. tab = Tab()
  2057. y_data = self.y_trainData
  2058. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2059. for i in range(len(get_y)):
  2060. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2061. save = Dic + r'/render.HTML'
  2062. tab.render(save) # 生成HTML
  2063. return save,
  2064. class Missed_Model(Unsupervised):#缺失数据补充
  2065. def __init__(self, args_use, model, *args, **kwargs):
  2066. super(Missed_Model, self).__init__(*args, **kwargs)
  2067. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  2068. fill_value=args_use['fill_value'])
  2069. self.k = {}
  2070. self.Model_Name = 'Missed'
  2071. def Predict(self, x_data, *args, **kwargs):
  2072. self.x_trainData = x_data.copy()
  2073. x_Predict = self.Model.transform(x_data)
  2074. self.y_trainData = x_Predict.copy()
  2075. return x_Predict,'填充缺失'
  2076. def Des(self,Dic,*args,**kwargs):
  2077. tab = Tab()
  2078. y_data = self.y_trainData
  2079. x_data = self.x_trainData
  2080. Conversion_control(y_data,x_data,tab)
  2081. save = Dic + r'/render.HTML'
  2082. tab.render(save) # 生成HTML
  2083. return save,
  2084. class PCA_Model(Unsupervised):
  2085. def __init__(self, args_use, model, *args, **kwargs):
  2086. super(PCA_Model, self).__init__(*args, **kwargs)
  2087. self.Model = PCA(n_components=args_use['n_components'])
  2088. self.n_components = args_use['n_components']
  2089. self.k = {'n_components':args_use['n_components']}
  2090. self.Model_Name = 'PCA'
  2091. def Predict(self, x_data, *args, **kwargs):
  2092. self.x_trainData = x_data.copy()
  2093. x_Predict = self.Model.transform(x_data)
  2094. self.y_trainData = x_Predict.copy()
  2095. return x_Predict,'PCA'
  2096. def Des(self,Dic,*args,**kwargs):
  2097. tab = Tab()
  2098. y_data = self.y_trainData
  2099. importance = self.Model.components_.tolist()
  2100. var = self.Model.explained_variance_.tolist()#方量差
  2101. Conversion_Separate_Format(y_data,tab)
  2102. x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
  2103. y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
  2104. value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
  2105. c = (HeatMap()
  2106. .add_xaxis(x_data)
  2107. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2108. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2109. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2110. xaxis_opts=opts.AxisOpts(is_scale=True),
  2111. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  2112. min_=int(self.Model.components_.min()),
  2113. pos_right='3%')) # 显示
  2114. )
  2115. tab.add(c,'成分热力图')
  2116. c = (
  2117. Bar()
  2118. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2119. .add_yaxis('放量差', var, **Label_Set)
  2120. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2121. )
  2122. tab.add(c, '方量差柱状图')
  2123. save = Dic + r'/render.HTML'
  2124. tab.render(save) # 生成HTML
  2125. return save,
  2126. class RPCA_Model(Unsupervised):
  2127. def __init__(self, args_use, model, *args, **kwargs):
  2128. super(RPCA_Model, self).__init__(*args, **kwargs)
  2129. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  2130. self.n_components = args_use['n_components']
  2131. self.k = {'n_components': args_use['n_components']}
  2132. self.Model_Name = 'RPCA'
  2133. def Predict(self, x_data, *args, **kwargs):
  2134. self.x_trainData = x_data.copy()
  2135. x_Predict = self.Model.transform(x_data)
  2136. self.y_trainData = x_Predict.copy()
  2137. return x_Predict,'RPCA'
  2138. def Des(self, Dic, *args, **kwargs):
  2139. tab = Tab()
  2140. y_data = self.y_trainData
  2141. importance = self.Model.components_.tolist()
  2142. var = self.Model.explained_variance_.tolist() # 方量差
  2143. Conversion_Separate_Format(y_data, tab)
  2144. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  2145. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  2146. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
  2147. range(len(importance[i]))]
  2148. c = (HeatMap()
  2149. .add_xaxis(x_data)
  2150. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2151. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2152. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2153. xaxis_opts=opts.AxisOpts(is_scale=True),
  2154. visualmap_opts=opts.VisualMapOpts(is_show=True,
  2155. max_=int(self.Model.components_.max()) + 1,
  2156. min_=int(self.Model.components_.min()),
  2157. pos_right='3%')) # 显示
  2158. )
  2159. tab.add(c, '成分热力图')
  2160. c = (
  2161. Bar()
  2162. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2163. .add_yaxis('放量差', var, **Label_Set)
  2164. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2165. )
  2166. tab.add(c, '方量差柱状图')
  2167. save = Dic + r'/render.HTML'
  2168. tab.render(save) # 生成HTML
  2169. return save,
  2170. class KPCA_Model(Unsupervised):
  2171. def __init__(self, args_use, model, *args, **kwargs):
  2172. super(KPCA_Model, self).__init__(*args, **kwargs)
  2173. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  2174. self.n_components = args_use['n_components']
  2175. self.kernel = args_use['kernel']
  2176. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  2177. self.Model_Name = 'KPCA'
  2178. def Predict(self, x_data, *args, **kwargs):
  2179. self.x_trainData = x_data.copy()
  2180. x_Predict = self.Model.transform(x_data)
  2181. self.y_trainData = x_Predict.copy()
  2182. return x_Predict,'KPCA'
  2183. def Des(self, Dic, *args, **kwargs):
  2184. tab = Tab()
  2185. y_data = self.y_trainData
  2186. Conversion_Separate_Format(y_data, tab)
  2187. save = Dic + r'/render.HTML'
  2188. tab.render(save) # 生成HTML
  2189. return save,
  2190. class LDA_Model(prep_Base):#有监督学习
  2191. def __init__(self, args_use, model, *args, **kwargs):
  2192. super(LDA_Model, self).__init__(*args, **kwargs)
  2193. self.Model = LDA(n_components=args_use['n_components'])
  2194. self.n_components = args_use['n_components']
  2195. self.k = {'n_components': args_use['n_components']}
  2196. self.Model_Name = 'LDA'
  2197. def Predict(self, x_data, *args, **kwargs):
  2198. self.x_trainData = x_data.copy()
  2199. x_Predict = self.Model.transform(x_data)
  2200. self.y_trainData = x_Predict.copy()
  2201. return x_Predict,'LDA'
  2202. def Des(self,Dic,*args,**kwargs):
  2203. tab = Tab()
  2204. y_data = self.y_trainData
  2205. x_data = self.x_trainData
  2206. Conversion_Separate_Format(y_data,tab)
  2207. save = Dic + r'/render.HTML'
  2208. tab.render(save) # 生成HTML
  2209. return save,
  2210. class NMF_Model(Unsupervised):
  2211. def __init__(self, args_use, model, *args, **kwargs):
  2212. super(NMF_Model, self).__init__(*args, **kwargs)
  2213. self.Model = NMF(n_components=args_use['n_components'])
  2214. self.n_components = args_use['n_components']
  2215. self.k = {'n_components':args_use['n_components']}
  2216. self.Model_Name = 'NFM'
  2217. self.h_trainData = None
  2218. #x_trainData保存的是W,h_trainData和y_trainData是后来数据
  2219. def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
  2220. self.x_trainData = x_data.copy()
  2221. x_Predict = self.Model.transform(x_data)
  2222. self.y_trainData = x_Predict.copy()
  2223. self.h_trainData = self.Model.components_
  2224. if Add_Func != None and x_name != '':
  2225. Add_Func(self.h_trainData, f'{x_name}:V->NMF[H]')
  2226. return x_Predict,'V->NMF[W]'
  2227. def Des(self,Dic,*args,**kwargs):
  2228. tab = Tab()
  2229. y_data = self.y_trainData
  2230. x_data = self.x_trainData
  2231. h_data = self.h_trainData
  2232. Conversion_SeparateWH(y_data,h_data,tab)
  2233. wh_data = np.matmul(y_data, h_data)
  2234. difference_data = x_data - wh_data
  2235. def make_HeatMap(data,name,max_,min_):
  2236. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  2237. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  2238. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2239. c = (HeatMap()
  2240. .add_xaxis(x)
  2241. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2242. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  2243. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2244. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2245. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  2246. min_=min_,
  2247. pos_right='3%'))#显示
  2248. )
  2249. tab.add(c,name)
  2250. max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
  2251. min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
  2252. make_HeatMap(x_data,'原始数据热力图',max_,min_)
  2253. make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
  2254. make_HeatMap(difference_data,'数据差热力图',max_,min_)
  2255. save = Dic + r'/render.HTML'
  2256. tab.render(save) # 生成HTML
  2257. return save,
  2258. class TSNE_Model(Unsupervised):
  2259. def __init__(self, args_use, model, *args, **kwargs):
  2260. super(TSNE_Model, self).__init__(*args, **kwargs)
  2261. self.Model = TSNE(n_components=args_use['n_components'])
  2262. self.n_components = args_use['n_components']
  2263. self.k = {'n_components':args_use['n_components']}
  2264. self.Model_Name = 't-SNE'
  2265. def Fit(self,*args, **kwargs):
  2266. return 'None', 'None'
  2267. def Predict(self, x_data, *args, **kwargs):
  2268. self.x_trainData = x_data.copy()
  2269. x_Predict = self.Model.fit_transform(x_data)
  2270. self.y_trainData = x_Predict.copy()
  2271. return x_Predict,'SNE'
  2272. def Des(self,Dic,*args,**kwargs):
  2273. tab = Tab()
  2274. y_data = self.y_trainData
  2275. Conversion_Separate_Format(y_data,tab)
  2276. save = Dic + r'/render.HTML'
  2277. tab.render(save) # 生成HTML
  2278. return save,
  2279. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  2280. def __init__(self,args_use,model,*args,**kwargs):
  2281. super(MLP_Model, self).__init__(*args,**kwargs)
  2282. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  2283. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  2284. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  2285. #记录这两个是为了克隆
  2286. self.hidden_layer_sizes = args_use['hidden_size']
  2287. self.activation = args_use['activation']
  2288. self.max_iter = args_use['max_iter']
  2289. self.solver = args_use['solver']
  2290. self.alpha = args_use['alpha']
  2291. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  2292. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  2293. self.Model_Name = model
  2294. def Des(self,Dic,*args,**kwargs):
  2295. tab = Tab()
  2296. coefs = self.Model.coefs_
  2297. def make_HeatMap(data,name):
  2298. x = [f'特征(节点)[{i}]' for i in range(len(data))] # 主成分
  2299. y = [f'节点[{i}]' for i in range(len(data[0]))] # 主成分
  2300. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2301. c = (HeatMap()
  2302. .add_xaxis(x)
  2303. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2304. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  2305. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2306. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2307. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  2308. min_=float(data.min()),
  2309. pos_right='3%'))#显示
  2310. )
  2311. tab.add(c,name)
  2312. tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
  2313. heard = ['神经网络层数']
  2314. data = [self.Model.n_layers_]
  2315. for i in range(len(coefs)):
  2316. make_HeatMap(coefs[i],f'{i}层权重矩阵')
  2317. heard.append(f'第{i}层节点数')
  2318. data.append(len(coefs[i][0]))
  2319. if self.Model_Name == 'MLP_class':
  2320. heard += [f'[{i}]类型' for i in range(len(self.Model.classes_))]
  2321. data += self.Model.classes_.tolist()
  2322. tab.add(make_Tab(heard,[data]),'数据表')
  2323. save = Dic + r'/render.HTML'
  2324. tab.render(save) # 生成HTML
  2325. return save,
  2326. class kmeans_Model(UnsupervisedModel):
  2327. def __init__(self, args_use, model, *args, **kwargs):
  2328. super(kmeans_Model, self).__init__(*args, **kwargs)
  2329. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  2330. self.class_ = []
  2331. self.n_clusters = args_use['n_clusters']
  2332. self.k = {'n_clusters':args_use['n_clusters']}
  2333. self.Model_Name = 'k-means'
  2334. def Fit(self, x_data, *args, **kwargs):
  2335. re = super().Fit(x_data,*args,**kwargs)
  2336. self.class_ = list(set(self.Model.labels_.tolist()))
  2337. return re
  2338. def Predict(self, x_data, *args, **kwargs):
  2339. self.x_trainData = x_data
  2340. y_Predict = self.Model.predict(x_data)
  2341. self.y_trainData = y_Predict
  2342. return y_Predict,'k-means'
  2343. def Des(self,Dic,*args,**kwargs):
  2344. tab = Tab()
  2345. y = self.y_trainData
  2346. x_data = self.x_trainData
  2347. class_ = self.class_
  2348. center = self.Model.cluster_centers_
  2349. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2350. get,x_means,x_range,Type = Training_visualization_More(x_data,class_,y,center)
  2351. for i in range(len(get)):
  2352. tab.add(get[i],f'{i}训练数据散点图')
  2353. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2354. data = class_ + [f'{i}' for i in x_means]
  2355. c = Table().add(headers=heard, rows=[data])
  2356. tab.add(c, '数据表')
  2357. save = Dic + r'/render.HTML'
  2358. tab.render(save) # 生成HTML
  2359. return save,
  2360. class Agglomerative_Model(UnsupervisedModel):
  2361. def __init__(self, args_use, model, *args, **kwargs):
  2362. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  2363. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  2364. self.class_ = []
  2365. self.n_clusters = args_use['n_clusters']
  2366. self.k = {'n_clusters':args_use['n_clusters']}
  2367. self.Model_Name = 'Agglomerative'
  2368. def Fit(self, x_data, *args, **kwargs):
  2369. re = super().Fit(x_data,*args,**kwargs)
  2370. self.class_ = list(set(self.Model.labels_.tolist()))
  2371. return re
  2372. def Predict(self, x_data, *args, **kwargs):
  2373. y_Predict = self.Model.fit_predict(x_data)
  2374. self.y_trainData = y_Predict
  2375. return y_Predict,'Agglomerative'
  2376. def Des(self, Dic, *args, **kwargs):
  2377. tab = Tab()
  2378. y = self.y_trainData
  2379. x_data = self.x_trainData
  2380. class_ = self.class_
  2381. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2382. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2383. for i in range(len(get)):
  2384. tab.add(get[i], f'{i}训练数据散点图')
  2385. linkage_array = ward(self.x_trainData)#self.y_trainData是结果
  2386. dendrogram(linkage_array)
  2387. plt.savefig(Dic + r'/Cluster_graph.png')
  2388. image = Image()
  2389. image.add(
  2390. src=Dic + r'/Cluster_graph.png',
  2391. ).set_global_opts(
  2392. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  2393. )
  2394. tab.add(image,'聚类树状图')
  2395. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2396. data = class_ + [f'{i}' for i in x_means]
  2397. c = Table().add(headers=heard, rows=[data])
  2398. tab.add(c, '数据表')
  2399. save = Dic + r'/render.HTML'
  2400. tab.render(save) # 生成HTML
  2401. return save,
  2402. class DBSCAN_Model(UnsupervisedModel):
  2403. def __init__(self, args_use, model, *args, **kwargs):
  2404. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  2405. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  2406. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  2407. # min_samples
  2408. self.eps = args_use['eps']
  2409. self.min_samples = args_use['min_samples']
  2410. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  2411. self.class_ = []
  2412. self.Model_Name = 'DBSCAN'
  2413. def Fit(self, x_data, *args, **kwargs):
  2414. re = super().Fit(x_data,*args,**kwargs)
  2415. self.class_ = list(set(self.Model.labels_.tolist()))
  2416. return re
  2417. def Predict(self, x_data, *args, **kwargs):
  2418. y_Predict = self.Model.fit_predict(x_data)
  2419. self.y_trainData = y_Predict
  2420. return y_Predict,'DBSCAN'
  2421. def Des(self, Dic, *args, **kwargs):
  2422. tab = Tab()
  2423. y = self.y_trainData
  2424. x_data = self.x_trainData
  2425. class_ = self.class_
  2426. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2427. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2428. for i in range(len(get)):
  2429. tab.add(get[i], f'{i}训练数据散点图')
  2430. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2431. data = class_ + [f'{i}' for i in x_means]
  2432. c = Table().add(headers=heard, rows=[data])
  2433. tab.add(c, '数据表')
  2434. save = Dic + r'/render.HTML'
  2435. tab.render(save) # 生成HTML
  2436. return save,
  2437. class Machine_Learner(Learner):#数据处理者
  2438. def __init__(self,*args, **kwargs):
  2439. super().__init__(*args, **kwargs)
  2440. self.Learner = {}#记录机器
  2441. self.Learn_Dic = {'Line':Line_Model,
  2442. 'Ridge':Line_Model,
  2443. 'Lasso':Line_Model,
  2444. 'LogisticRegression':LogisticRegression_Model,
  2445. 'Knn_class':Knn_Model,
  2446. 'Knn': Knn_Model,
  2447. 'Tree_class': Tree_Model,
  2448. 'Tree': Tree_Model,
  2449. 'Forest':Forest_Model,
  2450. 'Forest_class': Forest_Model,
  2451. 'GradientTree_class':GradientTree_Model,
  2452. 'GradientTree': GradientTree_Model,
  2453. 'Variance':Variance_Model,
  2454. 'SelectKBest':SelectKBest_Model,
  2455. 'Z-Score':Standardization_Model,
  2456. 'MinMaxScaler':MinMaxScaler_Model,
  2457. 'LogScaler':LogScaler_Model,
  2458. 'atanScaler':atanScaler_Model,
  2459. 'decimalScaler':decimalScaler_Model,
  2460. 'sigmodScaler':sigmodScaler_Model,
  2461. 'Mapzoom':Mapzoom_Model,
  2462. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  2463. 'Regularization':Regularization_Model,
  2464. 'Binarizer':Binarizer_Model,
  2465. 'Discretization':Discretization_Model,
  2466. 'Label':Label_Model,
  2467. 'OneHotEncoder':OneHotEncoder_Model,
  2468. 'Missed':Missed_Model,
  2469. 'PCA':PCA_Model,
  2470. 'RPCA':RPCA_Model,
  2471. 'KPCA':KPCA_Model,
  2472. 'LDA':LDA_Model,
  2473. 'SVC':SVC_Model,
  2474. 'SVR':SVR_Model,
  2475. 'MLP':MLP_Model,
  2476. 'MLP_class': MLP_Model,
  2477. 'NMF':NMF_Model,
  2478. 't-SNE':TSNE_Model,
  2479. 'k-means':kmeans_Model,
  2480. 'Agglomerative':Agglomerative_Model,
  2481. 'DBSCAN':DBSCAN_Model,
  2482. 'ClassBar':Class_To_Bar,
  2483. 'FeatureScatter':Near_feature_scatter,
  2484. 'FeatureScatterClass': Near_feature_scatter_class,
  2485. 'FeatureScatter_all':Near_feature_scatter_More,
  2486. 'FeatureScatterClass_all':Near_feature_scatter_class_More,
  2487. 'HeatMap':Numpy_To_HeatMap,
  2488. 'FeatureY-X':Feature_scatter_YX,
  2489. 'ClusterTree':Cluster_Tree,
  2490. }
  2491. self.Learner_Type = {}#记录机器的类型
  2492. def p_Args(self,Text,Type):#解析参数
  2493. args = {}
  2494. args_use = {}
  2495. #输入数据
  2496. exec(Text,args)
  2497. #处理数据
  2498. if Type in ('MLP','MLP_class'):
  2499. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  2500. else:
  2501. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  2502. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  2503. if Type in ('MLP','MLP_class'):
  2504. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  2505. else:
  2506. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  2507. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  2508. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  2509. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  2510. if Type in ('Tree','Forest','GradientTree'):
  2511. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  2512. else:
  2513. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  2514. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  2515. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  2516. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  2517. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  2518. args_use['P'] = float(args.get('min_samples_split', 0.8))
  2519. args_use['k'] = args.get('k',1)
  2520. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  2521. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  2522. get(args.get('score_func','f_classif'),f_classif))
  2523. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  2524. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  2525. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  2526. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  2527. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  2528. args_use['miss_value'] = args.get('miss_value',np.nan)
  2529. args_use['fill_method'] = args.get('fill_method','mean')
  2530. args_use['fill_value'] = args.get('fill_value',None)
  2531. args_use['n_components'] = args.get('n_components',1)
  2532. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  2533. args_use['n_Tree'] = args.get('n_Tree',100)
  2534. args_use['gamma'] = args.get('gamma',1)
  2535. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  2536. args_use['activation'] = str(args.get('activation','relu'))
  2537. args_use['solver'] = str(args.get('solver','adam'))
  2538. if Type in ('k-means',):
  2539. args_use['n_clusters'] = int(args.get('n_clusters',8))
  2540. else:
  2541. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  2542. args_use['eps'] = float(args.get('n_clusters', 0.5))
  2543. args_use['min_samples'] = int(args.get('n_clusters', 5))
  2544. return args_use
  2545. def Add_Learner(self,Learner,Text=''):
  2546. get = self.Learn_Dic[Learner]
  2547. name = f'Le[{len(self.Learner)}]{Learner}'
  2548. #参数调节
  2549. args_use = self.p_Args(Text,Learner)
  2550. #生成学习器
  2551. self.Learner[name] = get(model=Learner,args_use=args_use)
  2552. self.Learner_Type[name] = Learner
  2553. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  2554. model = self.get_Learner(Learner)
  2555. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  2556. #参数调节
  2557. args_use = self.p_Args(Text,'SelectFrom_Model')
  2558. #生成学习器
  2559. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  2560. self.Learner_Type[name] = 'SelectFrom_Model'
  2561. def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器
  2562. model = self.get_Learner(Learner)
  2563. name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
  2564. #生成学习器
  2565. args_use = self.p_Args(Text, 'Predictive_HeatMap')
  2566. self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use)
  2567. self.Learner_Type[name] = 'Predictive_HeatMap'
  2568. def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器
  2569. model = self.get_Learner(Learner)
  2570. name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
  2571. #生成学习器
  2572. args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
  2573. self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use)
  2574. self.Learner_Type[name] = 'Predictive_HeatMap_More'
  2575. def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器
  2576. model = self.get_Learner(Learner)
  2577. name = f'Le[{len(self.Learner)}]View_data:{Learner}'
  2578. #生成学习器
  2579. args_use = self.p_Args(Text, 'View_data')
  2580. self.Learner[name] = View_data(Learner=model,args_use=args_use)
  2581. self.Learner_Type[name] = 'View_data'
  2582. def Return_Learner(self):
  2583. return self.Learner.copy()
  2584. def get_Learner(self,name):
  2585. return self.Learner[name]
  2586. def get_Learner_Type(self,name):
  2587. return self.Learner_Type[name]
  2588. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  2589. x_data = self.get_Sheet(x_name)
  2590. y_data = self.get_Sheet(y_name)
  2591. model = self.get_Learner(Learner)
  2592. return model.Fit(x_data,y_data,split)
  2593. def Predict(self,x_name,Learner,Text='',**kwargs):
  2594. x_data = self.get_Sheet(x_name)
  2595. model = self.get_Learner(Learner)
  2596. y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form)
  2597. self.Add_Form(y_data,f'{x_name}:{name}')
  2598. return y_data
  2599. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  2600. model = self.get_Learner(Learner)
  2601. x = self.get_Sheet(name_x)
  2602. y = self.get_Sheet(name_y)
  2603. return model.Score(x,y)
  2604. def Show_Args(self,Learner,Dic):#显示参数
  2605. model = self.get_Learner(Learner)
  2606. return model.Des(Dic)
  2607. def Del_Leaner(self,Leaner):
  2608. del self.Learner[Leaner]
  2609. del self.Learner_Type[Leaner]