Learn_Numpy.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886
  1. from pyecharts.components import Table #绘制表格
  2. from pyecharts import options as opts
  3. from pyecharts.charts import Tab,Page
  4. from pandas import DataFrame,read_csv
  5. import numpy as np
  6. from sklearn.model_selection import train_test_split
  7. from sklearn.linear_model import *
  8. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  9. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor
  10. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  11. GradientBoostingRegressor)
  12. from sklearn.metrics import accuracy_score
  13. from sklearn.feature_selection import *
  14. from sklearn.preprocessing import *
  15. from sklearn.impute import SimpleImputer
  16. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  17. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  18. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  19. from sklearn.neural_network import MLPClassifier,MLPRegressor
  20. from sklearn.manifold import TSNE
  21. # import sklearn as sk
  22. #设置
  23. np.set_printoptions(threshold=np.inf)
  24. class Learner:
  25. def __init__(self,*args,**kwargs):
  26. self.numpy_Dic = {}#name:numpy
  27. def Add_Form(self,data:np.array,name):
  28. name = f'{name}[{len(self.numpy_Dic)}]'
  29. self.numpy_Dic[name] = data
  30. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  31. type_ = np.str if str_must else np.float
  32. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  33. try:
  34. data = pf_data.to_numpy(dtype=type_)
  35. except ValueError:
  36. data = pf_data.to_numpy(dtype=np.str)
  37. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  38. self.Add_Form(data,name)
  39. return data
  40. def Add_Python(self, Text, sheet_name):
  41. name = {}
  42. name.update(globals().copy())
  43. name.update(locals().copy())
  44. exec(Text, name)
  45. exec('get = Creat()', name)
  46. if isinstance(name['get'], np.array): # 已经是DataFram
  47. get = name['get']
  48. else:
  49. try:
  50. get = np.array(name['get'])
  51. except:
  52. get = np.array([name['get']])
  53. self.Add_Form(get, sheet_name)
  54. return get
  55. def get_Form(self) -> dict:
  56. return self.numpy_Dic.copy()
  57. def get_Sheet(self,name) -> np.array:
  58. return self.numpy_Dic[name].copy()
  59. def to_CSV(self,Dic:str,name,sep) -> str:
  60. get = self.get_Sheet(name)
  61. np.savetxt(Dic, get, delimiter=sep)
  62. return Dic
  63. def to_Html_One(self,name,Dic=''):
  64. if Dic == '': Dic = f'{name}.html'
  65. get = self.get_Sheet(name)
  66. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  67. get = get.tolist()
  68. for i in range(len(get)):
  69. get[i] = [i+1] + get[i]
  70. headers = [i for i in range(len(get[0]))]
  71. table = Table()
  72. table.add(headers, get).set_global_opts(
  73. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  74. table.render(Dic)
  75. return Dic
  76. def to_Html(self, name, Dic='', type_=0):
  77. if Dic == '': Dic = f'{name}.html'
  78. # 把要画的sheet放到第一个
  79. Sheet_Dic = self.get_Form()
  80. del Sheet_Dic[name]
  81. Sheet_list = [name] + list(Sheet_Dic.keys())
  82. class TAB_F:
  83. def __init__(self, q):
  84. self.tab = q # 一个Tab
  85. def render(self, Dic):
  86. return self.tab.render(Dic)
  87. # 生成一个显示页面
  88. if type_ == 0:
  89. class TAB(TAB_F):
  90. def add(self, table, k, *f):
  91. self.tab.add(table, k)
  92. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  93. elif type_ == 1:
  94. class TAB(TAB_F):
  95. def add(self, table, *k):
  96. self.tab.add(table)
  97. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  98. else:
  99. class TAB(TAB_F):
  100. def add(self, table, *k):
  101. self.tab.add(table)
  102. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  103. # 迭代添加内容
  104. for name in Sheet_list:
  105. get = self.get_Sheet(name)
  106. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  107. get = get.tolist()
  108. for i in range(len(get)):
  109. get[i] = [i+1] + get[i]
  110. headers = [i for i in range(len(get[0]))]
  111. table = Table()
  112. table.add(headers, get).set_global_opts(
  113. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  114. tab.add(table, f'表格:{name}')
  115. tab.render(Dic)
  116. return Dic
  117. class Study_MachineBase:
  118. def __init__(self,*args,**kwargs):
  119. self.Model = None
  120. self.have_Fit = False
  121. #记录这两个是为了克隆
  122. def Accuracy(self,y_Predict,y_Really):
  123. return accuracy_score(y_Predict, y_Really)
  124. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  125. self.have_Fit = True
  126. y_data = y_data.ravel()
  127. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  128. self.Model.fit(x_data,y_data)
  129. train_score = self.Model.score(x_train,y_train)
  130. test_score = self.Model.score(x_test,y_test)
  131. return train_score,test_score
  132. def Score(self,x_data,y_data):
  133. Score = self.Model.score(x_data,y_data)
  134. return Score
  135. def Predict(self,x_data):
  136. y_Predict = self.Model.predict(x_data)
  137. return y_Predict,'预测'
  138. class prep_Base(Study_MachineBase):
  139. def __init__(self,*args,**kwargs):
  140. super(prep_Base, self).__init__(*args,**kwargs)
  141. self.Model = None
  142. def Fit(self, x_data,y_data, *args, **kwargs):
  143. if not self.have_Fit: # 不允许第二次训练
  144. self.Model.fit(x_data,y_data)
  145. return 'None', 'None'
  146. def Predict(self, x_data):
  147. x_Predict = self.Model.transform(x_data)
  148. return x_Predict,'特征工程'
  149. def Score(self, x_data, y_data):
  150. return 'None' # 没有score
  151. class Line_Model(Study_MachineBase):
  152. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  153. super(Line_Model, self).__init__(*args,**kwargs)
  154. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  155. model]
  156. if model == 'Line':
  157. self.Model = Model()
  158. self.k = {}
  159. else:
  160. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  161. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  162. #记录这两个是为了克隆
  163. self.Alpha = args_use['alpha']
  164. self.max_iter = args_use['max_iter']
  165. self.Model_Name = model
  166. class LogisticRegression_Model(Study_MachineBase):
  167. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  168. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  169. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  170. #记录这两个是为了克隆
  171. self.C = args_use['C']
  172. self.max_iter = args_use['max_iter']
  173. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  174. self.Model_Name = model
  175. class Knn_Model(Study_MachineBase):
  176. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  177. super(Knn_Model, self).__init__(*args,**kwargs)
  178. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  179. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  180. #记录这两个是为了克隆
  181. self.n_neighbors = args_use['n_neighbors']
  182. self.p = args_use['p']
  183. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  184. self.Model_Name = model
  185. class Tree_Model(Study_MachineBase):
  186. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  187. super(Tree_Model, self).__init__(*args,**kwargs)
  188. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  189. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  190. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  191. #记录这两个是为了克隆
  192. self.criterion = args_use['criterion']
  193. self.splitter = args_use['splitter']
  194. self.max_features = args_use['max_features']
  195. self.max_depth = args_use['max_depth']
  196. self.min_samples_split = args_use['min_samples_split']
  197. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  198. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  199. self.Model_Name = model
  200. class Forest_Model(Study_MachineBase):
  201. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  202. super(Forest_Model, self).__init__(*args,**kwargs)
  203. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  204. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  205. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  206. #记录这两个是为了克隆
  207. self.n_estimators = args_use['n_Tree']
  208. self.criterion = args_use['criterion']
  209. self.max_features = args_use['max_features']
  210. self.max_depth = args_use['max_depth']
  211. self.min_samples_split = args_use['min_samples_split']
  212. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  213. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  214. self.Model_Name = model
  215. class GradientTree_Model(Study_MachineBase):
  216. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  217. super(GradientTree_Model, self).__init__(*args,**kwargs)
  218. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  219. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  220. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  221. #记录这两个是为了克隆
  222. self.criterion = args_use['criterion']
  223. self.splitter = args_use['splitter']
  224. self.max_features = args_use['max_features']
  225. self.max_depth = args_use['max_depth']
  226. self.min_samples_split = args_use['min_samples_split']
  227. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  228. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  229. self.Model_Name = model
  230. class SVC_Model(Study_MachineBase):
  231. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  232. super(SVC_Model, self).__init__(*args,**kwargs)
  233. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  234. #记录这两个是为了克隆
  235. self.C = args_use['C']
  236. self.gamma = args_use['gamma']
  237. self.kernel = args_use['kernel']
  238. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  239. self.Model_Name = model
  240. class SVR_Model(Study_MachineBase):
  241. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  242. super(SVR_Model, self).__init__(*args,**kwargs)
  243. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  244. #记录这两个是为了克隆
  245. self.C = args_use['C']
  246. self.gamma = args_use['gamma']
  247. self.kernel = args_use['kernel']
  248. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  249. self.Model_Name = model
  250. class Variance_Model(prep_Base):
  251. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  252. super(Variance_Model, self).__init__(*args,**kwargs)
  253. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  254. #记录这两个是为了克隆
  255. self.threshold = args_use['P']
  256. self.k = {'threshold':args_use['P']}
  257. self.Model_Name = model
  258. class SelectKBest_Model(prep_Base):
  259. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  260. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  261. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  262. # 记录这两个是为了克隆
  263. self.k_ = args_use['k']
  264. self.score_func=args_use['score_func']
  265. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  266. self.Model_Name = model
  267. class SelectFrom_Model(prep_Base):
  268. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  269. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  270. self.Model = Learner.Model
  271. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  272. self.max_features = args_use['k']
  273. self.estimator=Learner.Model
  274. self.k = {'max_features':args_use['k'],'estimator':Learner.Model}
  275. self.Model_Name = 'SelectFrom_Model'
  276. def Fit(self, x_data,y_data, *args, **kwargs):
  277. if not self.have_Fit: # 不允许第二次训练
  278. self.Select_Model.fit(x_data,y_data)
  279. return 'None', 'None'
  280. def Predict(self, x_data):
  281. try:
  282. x_Predict = self.Select_Model.transform(x_data)
  283. return x_Predict,'模型特征工程'
  284. except:
  285. return np.array([]),'无结果工程'
  286. class Standardization_Model(prep_Base):#z-score标准化
  287. def __init__(self, args_use, model, *args, **kwargs):
  288. super(Standardization_Model, self).__init__(*args, **kwargs)
  289. self.Model = StandardScaler()
  290. self.k = {}
  291. self.Model_Name = 'StandardScaler'
  292. class MinMaxScaler_Model(prep_Base):#离差标准化
  293. def __init__(self, args_use, model, *args, **kwargs):
  294. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  295. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  296. self.k = {}
  297. self.Model_Name = 'MinMaxScaler'
  298. class LogScaler_Model(prep_Base):#对数标准化
  299. def __init__(self, args_use, model, *args, **kwargs):
  300. super(LogScaler_Model, self).__init__(*args, **kwargs)
  301. self.Model = None
  302. self.k = {}
  303. self.Model_Name = 'LogScaler'
  304. def Fit(self, x_data, *args, **kwargs):
  305. if not self.have_Fit: # 不允许第二次训练
  306. self.max_logx = np.log(x_data.max())
  307. return 'None', 'None'
  308. def Predict(self, x_data):
  309. try:
  310. max_logx = self.max_logx
  311. except:
  312. self.have_Fit = False
  313. self.Fit(x_data)
  314. max_logx = self.max_logx
  315. x_Predict = (np.log(x_data)/max_logx)
  316. return x_Predict,'对数变换'
  317. class atanScaler_Model(prep_Base):#对数标准化
  318. def __init__(self, args_use, model, *args, **kwargs):
  319. super(atanScaler_Model, self).__init__(*args, **kwargs)
  320. self.Model = None
  321. self.k = {}
  322. self.Model_Name = 'atanScaler'
  323. def Fit(self, x_data, *args, **kwargs):
  324. return 'None', 'None'
  325. def Predict(self, x_data):
  326. x_Predict = (np.arctan(x_data)*(2/np.pi))
  327. return x_Predict,'atan变换'
  328. class decimalScaler_Model(prep_Base):#小数定标准化
  329. def __init__(self, args_use, model, *args, **kwargs):
  330. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  331. self.Model = None
  332. self.k = {}
  333. self.Model_Name = 'Decimal_normalization'
  334. def Fit(self, x_data, *args, **kwargs):
  335. if not self.have_Fit: # 不允许第二次训练
  336. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  337. return 'None', 'None'
  338. def Predict(self, x_data):
  339. try:
  340. j = self.j
  341. except:
  342. self.have_Fit = False
  343. self.Fit(x_data)
  344. j = self.j
  345. x_Predict = (x_data/(10**j))
  346. return x_Predict,'小数定标标准化'
  347. class Mapzoom_Model(prep_Base):#映射标准化
  348. def __init__(self, args_use, model, *args, **kwargs):
  349. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  350. self.Model = None
  351. self.feature_range = args_use['feature_range']
  352. self.k = {}
  353. self.Model_Name = 'Decimal_normalization'
  354. def Fit(self, x_data, *args, **kwargs):
  355. if not self.have_Fit: # 不允许第二次训练
  356. self.max = x_data.max()
  357. self.min = x_data.min()
  358. return 'None', 'None'
  359. def Predict(self, x_data):
  360. try:
  361. max = self.max
  362. min = self.min
  363. except:
  364. self.have_Fit = False
  365. self.Fit(x_data)
  366. max = self.max
  367. min = self.min
  368. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  369. return x_Predict,'映射标准化'
  370. class sigmodScaler_Model(prep_Base):#sigmod变换
  371. def __init__(self, args_use, model, *args, **kwargs):
  372. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  373. self.Model = None
  374. self.k = {}
  375. self.Model_Name = 'sigmodScaler_Model'
  376. def Fit(self, x_data, *args, **kwargs):
  377. return 'None', 'None'
  378. def Predict(self, x_data:np.array):
  379. x_Predict = (1/(1+np.exp(-x_data)))
  380. return x_Predict,'Sigmod变换'
  381. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  382. def __init__(self, args_use, model, *args, **kwargs):
  383. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  384. self.Model = None
  385. self.feature_range = args_use['feature_range']
  386. self.k = {}
  387. self.Model_Name = 'Fuzzy_quantization'
  388. def Fit(self, x_data, *args, **kwargs):
  389. if not self.have_Fit: # 不允许第二次训练
  390. self.max = x_data.max()
  391. self.min = x_data.min()
  392. return 'None', 'None'
  393. def Predict(self, x_data,*args,**kwargs):
  394. try:
  395. max = self.max
  396. min = self.min
  397. except:
  398. self.have_Fit = False
  399. self.Fit(x_data)
  400. max = self.max
  401. min = self.min
  402. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  403. return x_Predict,'映射标准化'
  404. class Regularization_Model(prep_Base):#离差标准化
  405. def __init__(self, args_use, model, *args, **kwargs):
  406. super(Regularization_Model, self).__init__(*args, **kwargs)
  407. self.Model = Normalizer(norm=args_use['norm'])
  408. self.k = {'norm':args_use['norm']}
  409. self.Model_Name = 'Regularization'
  410. class Binarizer_Model(prep_Base):#二值化
  411. def __init__(self, args_use, model, *args, **kwargs):
  412. super(Binarizer_Model, self).__init__(*args, **kwargs)
  413. self.Model = Binarizer(threshold=args_use['threshold'])
  414. self.k = {}
  415. self.Model_Name = 'Binarizer'
  416. class Discretization_Model(prep_Base):#n值离散
  417. def __init__(self, args_use, model, *args, **kwargs):
  418. super(Discretization_Model, self).__init__(*args, **kwargs)
  419. self.Model = None
  420. range_ = args_use['split_range']
  421. if range_ == []:raise Exception
  422. elif len(range_) == 1:range_.append(range_[0])
  423. self.range = range_
  424. self.k = {}
  425. self.Model_Name = 'Discretization'
  426. def Fit(self,*args,**kwargs):
  427. return 'None','None'
  428. def Predict(self,x_data):
  429. x_Predict = x_data.copy()#复制
  430. range_ = self.range
  431. bool_list = []
  432. max_ = len(range_) - 1
  433. o_t = None
  434. for i in range(len(range_)):
  435. try:
  436. t = float(range_[i])
  437. except:continue
  438. if o_t == None:#第一个参数
  439. bool_list.append(x_Predict <= t)
  440. else:
  441. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  442. if i == max_:
  443. bool_list.append(t <= x_Predict)
  444. o_t = t
  445. for i in range(len(bool_list)):
  446. x_Predict[bool_list[i]] = i
  447. return x_Predict,f'{len(bool_list)}值离散化'
  448. class Label_Model(prep_Base):#数字编码
  449. def __init__(self, args_use, model, *args, **kwargs):
  450. super(Label_Model, self).__init__(*args, **kwargs)
  451. self.Model = []
  452. self.k = {}
  453. self.Model_Name = 'LabelEncoder'
  454. def Fit(self,x_data,*args, **kwargs):
  455. if not self.have_Fit: # 不允许第二次训练
  456. if x_data.ndim == 1:x_data = np.array([x_data])
  457. for i in range(x_data.shape[1]):
  458. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  459. return 'None', 'None'
  460. def Predict(self, x_data):
  461. x_Predict = x_data.copy()
  462. if x_data.ndim == 1: x_data = np.array([x_data])
  463. for i in range(x_data.shape[1]):
  464. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  465. return x_Predict,'数字编码'
  466. class OneHotEncoder_Model(prep_Base):#独热编码
  467. def __init__(self, args_use, model, *args, **kwargs):
  468. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  469. self.Model = []
  470. self.ndim_up = args_use['ndim_up']
  471. self.k = {}
  472. self.Model_Name = 'OneHotEncoder'
  473. def Fit(self,x_data,*args, **kwargs):
  474. if not self.have_Fit: # 不允许第二次训练
  475. if x_data.ndim == 1:x_data = [x_data]
  476. for i in range(x_data.shape[1]):
  477. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  478. self.Model.append(OneHotEncoder().fit(data))#训练机器
  479. return 'None', 'None'
  480. def Predict(self, x_data):
  481. x_new = []
  482. for i in range(x_data.shape[1]):
  483. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  484. oneHot = self.Model[i].transform(data).toarray().tolist()
  485. print(len(oneHot),oneHot)
  486. x_new.append(oneHot)#添加到列表中
  487. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  488. x_Predict = []
  489. for i in range(x_new.shape[1]):
  490. x_Predict.append(x_new[:,i])
  491. x_Predict = np.array(x_Predict)#转换回array
  492. if not self.ndim_up:#需要降维操作
  493. print('Q')
  494. new_xPredict = []
  495. for i in x_Predict:
  496. new_list = []
  497. list_ = i.tolist()
  498. for a in list_:
  499. new_list += a
  500. new = np.array(new_list)
  501. new_xPredict.append(new)
  502. return np.array(new_xPredict),'独热编码'
  503. return x_Predict,'独热编码'#不需要降维
  504. class Missed_Model(prep_Base):#缺失数据补充
  505. def __init__(self, args_use, model, *args, **kwargs):
  506. super(Missed_Model, self).__init__(*args, **kwargs)
  507. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  508. fill_value=args_use['fill_value'])
  509. self.k = {}
  510. self.Model_Name = 'Missed'
  511. def Fit(self, x_data, *args, **kwargs):
  512. if not self.have_Fit: # 不允许第二次训练
  513. self.Model.fit(x_data)
  514. return 'None', 'None'
  515. def Predict(self, x_data):
  516. x_Predict = self.Model.transform(x_data)
  517. return x_Predict,'填充缺失'
  518. class PCA_Model(prep_Base):
  519. def __init__(self, args_use, model, *args, **kwargs):
  520. super(PCA_Model, self).__init__(*args, **kwargs)
  521. self.Model = PCA(n_components=args_use['n_components'])
  522. self.n_components = args_use['n_components']
  523. self.k = {'n_components':args_use['n_components']}
  524. self.Model_Name = 'PCA'
  525. def Fit(self, x_data, *args, **kwargs):
  526. if not self.have_Fit: # 不允许第二次训练
  527. self.Model.fit(x_data)
  528. return 'None', 'None'
  529. def Predict(self, x_data):
  530. x_Predict = self.Model.transform(x_data)
  531. return x_Predict,'PCA'
  532. class RPCA_Model(prep_Base):
  533. def __init__(self, args_use, model, *args, **kwargs):
  534. super(RPCA_Model, self).__init__(*args, **kwargs)
  535. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  536. self.n_components = args_use['n_components']
  537. self.k = {'n_components': args_use['n_components']}
  538. self.Model_Name = 'RPCA'
  539. def Fit(self, x_data, *args, **kwargs):
  540. if not self.have_Fit: # 不允许第二次训练
  541. self.Model.fit(x_data)
  542. return 'None', 'None'
  543. def Predict(self, x_data):
  544. x_Predict = self.Model.transform(x_data)
  545. return x_Predict,'RPCA'
  546. class KPCA_Model(prep_Base):
  547. def __init__(self, args_use, model, *args, **kwargs):
  548. super(KPCA_Model, self).__init__(*args, **kwargs)
  549. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  550. self.n_components = args_use['n_components']
  551. self.kernel = args_use['kernel']
  552. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  553. self.Model_Name = 'KPCA'
  554. def Fit(self, x_data, *args, **kwargs):
  555. if not self.have_Fit: # 不允许第二次训练
  556. self.Model.fit(x_data)
  557. return 'None', 'None'
  558. def Predict(self, x_data):
  559. x_Predict = self.Model.transform(x_data)
  560. return x_Predict,'KPCA'
  561. class LDA_Model(prep_Base):
  562. def __init__(self, args_use, model, *args, **kwargs):
  563. super(LDA_Model, self).__init__(*args, **kwargs)
  564. self.Model = LDA(n_components=args_use['n_components'])
  565. self.n_components = args_use['n_components']
  566. self.k = {'n_components': args_use['n_components']}
  567. self.Model_Name = 'LDA'
  568. def Fit(self, x_data,y_data, *args, **kwargs):
  569. if not self.have_Fit: # 不允许第二次训练
  570. self.Model.fit(x_data,y_data)
  571. return 'None', 'None'
  572. def Predict(self, x_data):
  573. x_Predict = self.Model.transform(x_data)
  574. return x_Predict,'LDA'
  575. class NMF_Model(prep_Base):
  576. def __init__(self, args_use, model, *args, **kwargs):
  577. super(NMF_Model, self).__init__(*args, **kwargs)
  578. self.Model = NMF(n_components=args_use['n_components'])
  579. self.n_components = args_use['n_components']
  580. self.k = {'n_components':args_use['n_components']}
  581. self.Model_Name = 'NFM'
  582. def Fit(self, x_data,y_data, *args, **kwargs):
  583. if not self.have_Fit: # 不允许第二次训练
  584. self.Model.fit(x_data,y_data)
  585. return 'None', 'None'
  586. def Predict(self, x_data):
  587. x_Predict = self.Model.transform(x_data)
  588. return x_Predict,'NMF'
  589. class TSNE_Model(prep_Base):
  590. def __init__(self, args_use, model, *args, **kwargs):
  591. super(TSNE_Model, self).__init__(*args, **kwargs)
  592. self.Model = TSNE(n_components=args_use['n_components'])
  593. self.n_components = args_use['n_components']
  594. self.k = {'n_components':args_use['n_components']}
  595. self.Model_Name = 't-SNE'
  596. def Fit(self, x_data,y_data, *args, **kwargs):
  597. return 'None', 'None'
  598. def Predict(self, x_data):
  599. x_Predict = self.Model.fit_transform(x_data)
  600. return x_Predict,'SNE'
  601. class MLP_Model(Study_MachineBase):
  602. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  603. super(MLP_Model, self).__init__(*args,**kwargs)
  604. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  605. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  606. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  607. #记录这两个是为了克隆
  608. self.hidden_layer_sizes = args_use['hidden_size']
  609. self.activation = args_use['activation']
  610. self.max_iter = args_use['max_iter']
  611. self.solver = args_use['solver']
  612. self.alpha = args_use['alpha']
  613. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  614. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  615. self.Model_Name = model
  616. class Machine_Learner(Learner):#数据处理者
  617. def __init__(self,*args, **kwargs):
  618. super().__init__(*args, **kwargs)
  619. self.Learner = {}#记录机器
  620. self.Learn_Dic = {'Line':Line_Model,
  621. 'Ridge':Line_Model,
  622. 'Lasso':Line_Model,
  623. 'LogisticRegression':LogisticRegression_Model,
  624. 'Knn_class':Knn_Model,
  625. 'Knn': Knn_Model,
  626. 'Tree_class': Tree_Model,
  627. 'Tree': Tree_Model,
  628. 'Forest':Forest_Model,
  629. 'Forest_class': Forest_Model,
  630. 'GradientTree_class':GradientTree_Model,
  631. 'GradientTree': GradientTree_Model,
  632. 'Variance':Variance_Model,
  633. 'SelectKBest':SelectKBest_Model,
  634. 'Z-Score':Standardization_Model,
  635. 'MinMaxScaler':MinMaxScaler_Model,
  636. 'LogScaler':LogScaler_Model,
  637. 'atanScaler':atanScaler_Model,
  638. 'decimalScaler':decimalScaler_Model,
  639. 'sigmodScaler':sigmodScaler_Model,
  640. 'Mapzoom':Mapzoom_Model,
  641. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  642. 'Regularization':Regularization_Model,
  643. 'Binarizer':Binarizer_Model,
  644. 'Discretization':Discretization_Model,
  645. 'Label':Label_Model,
  646. 'OneHotEncoder':OneHotEncoder_Model,
  647. 'Missed':Missed_Model,
  648. 'PCA':PCA_Model,
  649. 'RPCA':RPCA_Model,
  650. 'KPCA':KPCA_Model,
  651. 'LDA':LDA_Model,
  652. 'SVC':SVC_Model,
  653. 'SVR':SVR_Model,
  654. 'MLP':MLP_Model,
  655. 'MLP_class': MLP_Model,
  656. 'NMF':NMF_Model,
  657. 't-SNE':TSNE_Model,
  658. }
  659. self.Learner_Type = {}#记录机器的类型
  660. def p_Args(self,Text,Type):#解析参数
  661. args = {}
  662. args_use = {}
  663. #输入数据
  664. exec(Text,args)
  665. #处理数据
  666. if Type in ('MLP','MLP_class'):
  667. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  668. else:
  669. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  670. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  671. if Type in ('MLP','MLP_class'):
  672. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  673. else:
  674. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  675. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  676. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  677. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  678. if Type in ('Tree','Forest','GradientTree'):
  679. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  680. else:
  681. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  682. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  683. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  684. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  685. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  686. args_use['P'] = float(args.get('min_samples_split', 0.8))
  687. args_use['k'] = args.get('k',1)
  688. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  689. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  690. get(args.get('score_func','f_classif'),f_classif))
  691. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  692. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  693. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  694. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  695. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  696. args_use['miss_value'] = args.get('miss_value',np.nan)
  697. args_use['fill_method'] = args.get('fill_method','mean')
  698. args_use['fill_value'] = args.get('fill_value',None)
  699. args_use['n_components'] = args.get('n_components',1)
  700. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  701. args_use['n_Tree'] = args.get('n_Tree',100)
  702. args_use['gamma'] = args.get('gamma',1)
  703. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  704. args_use['activation'] = str(args.get('activation','relu'))
  705. args_use['solver'] = str(args.get('solver','adam'))
  706. return args_use
  707. def Add_Learner(self,Learner,Text=''):
  708. get = self.Learn_Dic[Learner]
  709. name = f'Le[{len(self.Learner)}]{Learner}'
  710. #参数调节
  711. args_use = self.p_Args(Text,Learner)
  712. #生成学习器
  713. self.Learner[name] = get(model=Learner,args_use=args_use)
  714. self.Learner_Type[name] = Learner
  715. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  716. model = self.get_Learner(Learner)
  717. name = f'Le[{len(self.Learner)}]SelectFrom_Model'
  718. #参数调节
  719. args_use = self.p_Args(Text,'SelectFrom_Model')
  720. #生成学习器
  721. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  722. self.Learner_Type[name] = 'SelectFrom_Model'
  723. def Return_Learner(self):
  724. return self.Learner.copy()
  725. def get_Learner(self,name):
  726. return self.Learner[name]
  727. def get_Learner_Type(self,name):
  728. return self.Learner_Type[name]
  729. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  730. x_data = self.get_Sheet(x_name)
  731. y_data = self.get_Sheet(y_name)
  732. model = self.get_Learner(Learner)
  733. return model.Fit(x_data,y_data,split)
  734. def Predict(self,x_name,Learner,Text='',**kwargs):
  735. x_data = self.get_Sheet(x_name)
  736. model = self.get_Learner(Learner)
  737. y_data,name = model.Predict(x_data)
  738. self.Add_Form(y_data,f'{x_name}:{name}')
  739. return y_data
  740. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  741. model = self.get_Learner(Learner)
  742. x = self.get_Sheet(name_x)
  743. y = self.get_Sheet(name_y)
  744. return model.Score(x,y)
  745. def Show_Args(self,Learner,Dic):#显示参数
  746. pass
  747. def Del_Leaner(self,Leaner):
  748. del self.Learner[Leaner]
  749. del self.Learner_Type[Leaner]
  750. def judging_Digits(num:(int,float)):
  751. a = str(abs(num)).split('.')[0]
  752. if a == '':raise ValueError
  753. return len(a)