Learn_Numpy.py 163 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947
  1. from os.path import split as path_split
  2. from os.path import exists,basename,splitext
  3. from os import mkdir,getcwd
  4. import tarfile
  5. import pickle
  6. import joblib
  7. from pyecharts.globals import CurrentConfig
  8. CurrentConfig.ONLINE_HOST = f"{getcwd()}/assets/"
  9. from pyecharts.components import Table as Table_Fisrt#绘制表格
  10. from pyecharts.components import Image
  11. from pyecharts import options as opts
  12. from random import randint
  13. from pyecharts.charts import *
  14. from pyecharts.charts import Tab as tab_First
  15. from pyecharts.options.series_options import JsCode
  16. from scipy.cluster.hierarchy import dendrogram, ward
  17. import matplotlib.pyplot as plt
  18. from pandas import DataFrame,read_csv
  19. import numpy as np
  20. import re
  21. from sklearn.model_selection import train_test_split
  22. from sklearn.linear_model import *
  23. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  24. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  25. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  26. GradientBoostingRegressor)
  27. from sklearn.metrics import *
  28. from sklearn.feature_selection import *
  29. from sklearn.preprocessing import *
  30. from sklearn.impute import SimpleImputer
  31. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  32. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  33. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  34. from sklearn.neural_network import MLPClassifier,MLPRegressor
  35. from sklearn.manifold import TSNE
  36. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  37. from scipy import optimize
  38. from scipy.fftpack import fft,ifft,ifftn,fftn#快速傅里叶变换
  39. #设置
  40. np.set_printoptions(threshold=np.inf)
  41. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  42. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  43. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  44. More_Global = False#是否使用全部特征绘图
  45. All_Global = True#是否导出charts
  46. CSV_Global = True#是否导出CSV
  47. CLF_Global = True#是否导出模型
  48. TAR_Global = True#是否打包tar
  49. NEW_Global = True#是否新建目录
  50. class Tab(tab_First):
  51. def __init__(self, *args,**kwargs):
  52. super(Tab, self).__init__(*args,**kwargs)
  53. self.element = {}#记录tab组成元素 name:charts
  54. def add(self, chart, tab_name):
  55. self.element[tab_name] = chart
  56. return super(Tab, self).add(chart, tab_name)
  57. def render(self,path: str = "render.html",template_name: str = "simple_tab.html",*args,**kwargs,) -> str:
  58. if All_Global:
  59. Dic = path_split(path)[0]
  60. for i in self.element:
  61. self.element[i].render(Dic + '/' + i + '.html')
  62. return super(Tab, self).render(path,template_name,*args,**kwargs)
  63. class Table(Table_Fisrt):
  64. def __init__(self,*args,**kwargs):
  65. super(Table, self).__init__(*args,**kwargs)
  66. self.HEADERS = []
  67. self.ROWS = [[]]
  68. def add(self, headers, rows, attributes = None):
  69. if len(rows) == 1:
  70. new_headers = ['数据类型','数据']
  71. new_rows = list(zip(headers,rows[0]))
  72. self.HEADERS = new_headers
  73. self.ROWS = new_rows
  74. return super().add(new_headers,new_rows,attributes)
  75. else:
  76. self.HEADERS = headers
  77. self.ROWS = rows
  78. return super().add(headers, rows, attributes)
  79. def render(self,path= "render.html",*args,**kwargs,) -> str:
  80. if CSV_Global:
  81. Dic,name = path_split(path)
  82. name = splitext(name)[0]
  83. try:
  84. DataFrame(self.ROWS,columns = self.HEADERS).to_csv(Dic + '/' + name + '.csv')
  85. except:
  86. pass
  87. return super().render(path,*args,**kwargs)
  88. def make_list(first,end,num=35):
  89. n = num / (end - first)
  90. if n == 0: n = 1
  91. re = []
  92. n_first = first * n
  93. n_end = end * n
  94. while n_first <= n_end:
  95. cul = n_first / n
  96. re.append(round(cul,2))
  97. n_first += 1
  98. return re
  99. def list_filter(list_,num=70):
  100. #假设列表已经不重复
  101. if len(list_) <= num:return list_
  102. n = int(num / len(list_))
  103. re = list_[::n]
  104. return re
  105. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  106. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  107. # a-特征x,b-特征x-1,c-其他特征
  108. o_cList = []
  109. if len(x_means) == 1:
  110. return o_cList
  111. for i in range(len(x_means)):
  112. for j in range(len(x_means)):
  113. if j <= i:continue
  114. n_ra = x_range[j]
  115. Type_ra = Type[j]
  116. n_rb = x_range[i]
  117. Type_rb = Type[i]
  118. if Type_ra == 1:
  119. ra = make_list(n_ra[0],n_ra[1],70)
  120. else:
  121. ra = list_filter(n_ra)#可以接受最大为70
  122. if Type_rb == 1:
  123. rb = make_list(n_rb[0],n_rb[1],35)
  124. else:
  125. rb = list_filter(n_rb)#可以接受最大为70
  126. a = np.array([i for i in ra for _ in rb]).T
  127. b = np.array([i for _ in ra for i in rb]).T
  128. data = np.array([x_means for _ in ra for i in rb])
  129. data[:, j] = a
  130. data[:, i] = b
  131. y_data = Predict_Func(data)[0].tolist()
  132. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  133. c = (HeatMap()
  134. .add_xaxis(np.unique(a))
  135. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  136. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  137. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  138. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  139. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  140. pos_right='3%'))#显示
  141. )
  142. o_cList.append(c)
  143. return o_cList
  144. def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  145. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  146. # a-特征x,b-特征x-1,c-其他特征
  147. o_cList = []
  148. if len(x_means) == 1:
  149. return o_cList
  150. for i in range(len(x_means)):
  151. if i == 0:
  152. continue
  153. n_ra = x_range[i - 1]
  154. Type_ra = Type[i - 1]
  155. n_rb = x_range[i]
  156. Type_rb = Type[i]
  157. if Type_ra == 1:
  158. ra = make_list(n_ra[0],n_ra[1],70)
  159. else:
  160. ra = list_filter(n_ra)#可以接受最大为70
  161. if Type_rb == 1:
  162. rb = make_list(n_rb[0],n_rb[1],35)
  163. else:
  164. rb = list_filter(n_rb)#可以接受最大为70
  165. a = np.array([i for i in ra for _ in rb]).T
  166. b = np.array([i for _ in ra for i in rb]).T
  167. data = np.array([x_means for _ in ra for i in rb])
  168. data[:, i - 1] = a
  169. data[:, i] = b
  170. y_data = Predict_Func(data)[0].tolist()
  171. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  172. c = (HeatMap()
  173. .add_xaxis(np.unique(a))
  174. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  175. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  176. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  177. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  178. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  179. pos_right='3%'))#显示
  180. )
  181. o_cList.append(c)
  182. return o_cList
  183. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  184. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  185. # a-特征x,b-特征x-1,c-其他特征
  186. #规定,i-1是x轴,a是x轴,x_1是x轴
  187. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  188. if not nono:
  189. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  190. else:v_dict = []
  191. for i in class_dict:
  192. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  193. o_cList = []
  194. if len(x_means) == 1:
  195. n_ra = x_range[0]
  196. if Type[0] == 1:
  197. ra = make_list(n_ra[0], n_ra[1], 70)
  198. else:
  199. ra = n_ra
  200. a = np.array([i for i in ra]).reshape(-1,1)
  201. y_data = Predict_Func(a)[0].tolist()
  202. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  203. c = (HeatMap()
  204. .add_xaxis(['None'])
  205. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  206. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  207. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  208. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  209. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  210. min_=-1,
  211. is_piecewise=True, pieces=v_dict,
  212. orient='horizontal', pos_bottom='3%'))
  213. )
  214. o_cList.append(c)
  215. return o_cList
  216. #如果x_means长度不等于1则执行下面
  217. for i in range(len(x_means)):
  218. if i == 0:
  219. continue
  220. n_ra = x_range[i-1]
  221. Type_ra = Type[i-1]
  222. n_rb = x_range[i]
  223. Type_rb = Type[i]
  224. if Type_ra == 1:
  225. ra = make_list(n_ra[0],n_ra[1],70)
  226. else:
  227. ra = n_ra
  228. if Type_rb == 1:
  229. rb = make_list(n_rb[0],n_rb[1],35)
  230. else:
  231. rb = n_rb
  232. a = np.array([i for i in ra for _ in rb]).T
  233. b = np.array([i for _ in ra for i in rb]).T
  234. data = np.array([x_means for _ in ra for i in rb])
  235. data[:, i - 1] = a
  236. data[:, i] = b
  237. y_data = Predict_Func(data)[0].tolist()
  238. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  239. c = (HeatMap()
  240. .add_xaxis(np.unique(a))
  241. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  242. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  243. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  244. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  245. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  246. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  247. )
  248. o_cList.append(c)
  249. return o_cList
  250. def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  251. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  252. # a-特征x,b-特征x-1,c-其他特征
  253. #规定,i-1是x轴,a是x轴,x_1是x轴
  254. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  255. if not nono:
  256. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  257. else:v_dict = []
  258. for i in class_dict:
  259. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  260. o_cList = []
  261. if len(x_means) == 1:
  262. return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono)
  263. #如果x_means长度不等于1则执行下面
  264. for i in range(len(x_means)):
  265. for j in range(len(x_means)):
  266. if j <= i:continue
  267. n_ra = x_range[j]
  268. Type_ra = Type[j]
  269. n_rb = x_range[i]
  270. Type_rb = Type[i]
  271. if Type_ra == 1:
  272. ra = make_list(n_ra[0],n_ra[1],70)
  273. else:
  274. ra = n_ra
  275. if Type_rb == 1:
  276. rb = make_list(n_rb[0],n_rb[1],35)
  277. else:
  278. rb = n_rb
  279. a = np.array([i for i in ra for _ in rb]).T
  280. b = np.array([i for _ in ra for i in rb]).T
  281. data = np.array([x_means for _ in ra for i in rb])
  282. data[:, j] = a
  283. data[:, i] = b
  284. y_data = Predict_Func(data)[0].tolist()
  285. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  286. c = (HeatMap()
  287. .add_xaxis(np.unique(a))
  288. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  289. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  290. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  291. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  292. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  293. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  294. )
  295. o_cList.append(c)
  296. return o_cList
  297. def SeeTree(Dic):
  298. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  299. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  300. node_Dict = {}
  301. link_list = []
  302. with open(Dic, 'r') as f: # 貌似必须分开w和r
  303. for i in f:
  304. try:
  305. get = re.findall(node_re, i)[0]
  306. if get[0] != '':
  307. try:
  308. v = float(get[0])
  309. except:
  310. v = 0
  311. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  312. continue
  313. except:
  314. pass
  315. try:
  316. get = re.findall(link_re, i)[0]
  317. if get[0] != '' and get[1] != '':
  318. link_list.append((get[0], get[1]))
  319. except:
  320. pass
  321. father_list = [] # 已经有父亲的list
  322. for i in link_list:
  323. father = i[0] # 父节点
  324. son = i[1] # 子节点
  325. try:
  326. node_Dict[father]['children'].append(node_Dict[son])
  327. father_list.append(son)
  328. if int(son) == 0: print('F')
  329. except:
  330. pass
  331. father = list(set(node_Dict.keys()) - set(father_list))
  332. c = (
  333. Tree()
  334. .add("", [node_Dict[father[0]]], is_roam=True)
  335. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  336. toolbox_opts=opts.ToolboxOpts(is_show=True))
  337. )
  338. return c
  339. def make_Tab(heard,row):
  340. return Table().add(headers=heard, rows=row)
  341. def scatter(w_heard,w):
  342. c = (
  343. Scatter()
  344. .add_xaxis(w_heard)
  345. .add_yaxis('', w, **Label_Set)
  346. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  347. )
  348. return c
  349. def bar(w_heard,w):
  350. c = (
  351. Bar()
  352. .add_xaxis(w_heard)
  353. .add_yaxis('', abs(w).tolist(), **Label_Set)
  354. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  355. )
  356. return c
  357. # def line(w_sum,w,b):
  358. # x = np.arange(-5, 5, 1)
  359. # c = (
  360. # Line()
  361. # .add_xaxis(x.tolist())
  362. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  363. # )
  364. # for i in range(len(w)):
  365. # y = x * w[i] + b
  366. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  367. # return c
  368. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  369. y = y_trainData.tolist()
  370. x_data = x_trainData.T
  371. re = []
  372. for i in range(len(x_data)):
  373. x = x_data[i]
  374. p = int(x.max() - x.min()) / 5
  375. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  376. y_num = x_num * w[i] + (w[i] / w_sum) * b
  377. c = (
  378. line()
  379. .add_xaxis(x_num.tolist())
  380. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  381. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  382. )
  383. t = (
  384. Scatter()
  385. .add_xaxis(x.tolist())
  386. .add_yaxis(f'{i}特征', y, **Label_Set)
  387. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  388. )
  389. t.overlap(c)
  390. re.append(t)
  391. return re
  392. def get_Color():
  393. # 随机颜色,雷达图默认非随机颜色
  394. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  395. color = '#'
  396. for a in rgb:
  397. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  398. return color
  399. def is_continuous(data:np.array,f:float=0.1):
  400. data = data.tolist()
  401. l = np.unique(data).tolist()
  402. try:
  403. re = len(l)/len(data)>=f or len(data) <= 3
  404. return re
  405. except:return False
  406. def make_Cat(x_data):
  407. Cat = Categorical_Data()
  408. for i in range(len(x_data)):
  409. x1 = x_data[i] # x坐标
  410. Cat(x1)
  411. return Cat
  412. def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  413. x_data = x_trainData.T
  414. if len(x_data) == 1:
  415. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  416. Cat = make_Cat(x_data)
  417. o_cList = []
  418. for i in range(len(x_data)):
  419. for a in range(len(x_data)):
  420. if a <= i: continue
  421. x1 = x_data[i] # x坐标
  422. x1_con = is_continuous(x1)
  423. x2 = x_data[a] # y坐标
  424. x2_con = is_continuous(x2)
  425. o_c = None # 旧的C
  426. for class_num in range(len(class_)):
  427. n_class = class_[class_num]
  428. x_1 = x1[y == n_class].tolist()
  429. x_2 = x2[y == n_class]
  430. x_2_new = np.unique(x_2)
  431. x_2 = x2[y == n_class].tolist()
  432. #x与散点图不同,这里是纵坐标
  433. c = (Scatter()
  434. .add_xaxis(x_2)
  435. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  436. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  437. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  438. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  439. )
  440. c.add_xaxis(x_2_new)
  441. if o_c == None:
  442. o_c = c
  443. else:
  444. o_c = o_c.overlap(c)
  445. o_cList.append(o_c)
  446. means,x_range,Type = Cat.get()
  447. return o_cList,means,x_range,Type
  448. def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  449. x_data = x_trainData.T
  450. if len(x_data) == 1:
  451. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  452. Cat = make_Cat(x_data)
  453. o_cList = []
  454. for i in range(len(x_data)):
  455. for a in range(len(x_data)):
  456. if a <= i: continue
  457. x1 = x_data[i] # x坐标
  458. x1_con = is_continuous(x1)
  459. x2 = x_data[a] # y坐标
  460. x2_con = is_continuous(x2)
  461. o_c = None # 旧的C
  462. for class_num in range(len(class_)):
  463. n_class = class_[class_num]
  464. x_1 = x1[y == n_class].tolist()
  465. x_2 = x2[y == n_class]
  466. x_2_new = np.unique(x_2)
  467. x_2 = x2[y == n_class].tolist()
  468. #x与散点图不同,这里是纵坐标
  469. c = (Scatter()
  470. .add_xaxis(x_2)
  471. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  472. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  473. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  474. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  475. )
  476. c.add_xaxis(x_2_new)
  477. #添加簇中心
  478. try:
  479. center_x_2 = [center[class_num][a]]
  480. except:
  481. center_x_2 = [0]
  482. b = (Scatter()
  483. .add_xaxis(center_x_2)
  484. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  485. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  486. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  487. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  488. )
  489. c.overlap(b)
  490. if o_c == None:
  491. o_c = c
  492. else:
  493. o_c = o_c.overlap(c)
  494. o_cList.append(o_c)
  495. means,x_range,Type = Cat.get()
  496. return o_cList,means,x_range,Type
  497. def Training_visualization_Center(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  498. x_data = x_trainData.T
  499. if len(x_data) == 1:
  500. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  501. Cat = make_Cat(x_data)
  502. o_cList = []
  503. for i in range(len(x_data)):
  504. x1 = x_data[i] # x坐标
  505. x1_con = is_continuous(x1)
  506. if i == 0:continue
  507. x2 = x_data[i - 1] # y坐标
  508. x2_con = is_continuous(x2)
  509. o_c = None # 旧的C
  510. for class_num in range(len(class_)):
  511. n_class = class_[class_num]
  512. x_1 = x1[y == n_class].tolist()
  513. x_2 = x2[y == n_class]
  514. x_2_new = np.unique(x_2)
  515. x_2 = x2[y == n_class].tolist()
  516. #x与散点图不同,这里是纵坐标
  517. c = (Scatter()
  518. .add_xaxis(x_2)
  519. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  520. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i-1}-{i}]训练数据散点图'), **global_Set,
  521. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  522. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  523. )
  524. c.add_xaxis(x_2_new)
  525. #添加簇中心
  526. try:
  527. center_x_2 = [center[class_num][i-1]]
  528. except:
  529. center_x_2 = [0]
  530. b = (Scatter()
  531. .add_xaxis(center_x_2)
  532. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  533. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  534. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  535. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  536. )
  537. c.overlap(b)
  538. if o_c == None:
  539. o_c = c
  540. else:
  541. o_c = o_c.overlap(c)
  542. o_cList.append(o_c)
  543. means,x_range,Type = Cat.get()
  544. return o_cList,means,x_range,Type
  545. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  546. x_data = x_trainData.T
  547. if len(x_data) == 1:
  548. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  549. Cat = make_Cat(x_data)
  550. o_cList = []
  551. for i in range(len(x_data)):
  552. x1 = x_data[i] # x坐标
  553. x1_con = is_continuous(x1)
  554. if i == 0:continue
  555. x2 = x_data[i - 1] # y坐标
  556. x2_con = is_continuous(x2)
  557. o_c = None # 旧的C
  558. for n_class in class_:
  559. x_1 = x1[y == n_class].tolist()
  560. x_2 = x2[y == n_class]
  561. x_2_new = np.unique(x_2)
  562. x_2 = x2[y == n_class].tolist()
  563. #x与散点图不同,这里是纵坐标
  564. c = (Scatter()
  565. .add_xaxis(x_2)
  566. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  567. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  568. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  569. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  570. )
  571. c.add_xaxis(x_2_new)
  572. if o_c == None:
  573. o_c = c
  574. else:
  575. o_c = o_c.overlap(c)
  576. o_cList.append(o_c)
  577. means,x_range,Type = Cat.get()
  578. return o_cList,means,x_range,Type
  579. def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别)
  580. x_data = x_trainData.T
  581. if len(x_data) == 1:
  582. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  583. Cat = make_Cat(x_data)
  584. o_cList = []
  585. for i in range(len(x_data)):
  586. x1 = x_data[i] # x坐标
  587. x1_con = is_continuous(x1)
  588. if i == 0:continue
  589. x2 = x_data[i - 1] # y坐标
  590. x2_con = is_continuous(x2)
  591. x2_new = np.unique(x2)
  592. #x与散点图不同,这里是纵坐标
  593. c = (Scatter()
  594. .add_xaxis(x2)
  595. .add_yaxis('', x1.tolist(), **Label_Set)
  596. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg,
  597. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  598. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  599. )
  600. c.add_xaxis(x2_new)
  601. o_cList.append(c)
  602. means,x_range,Type = Cat.get()
  603. return o_cList,means,x_range,Type
  604. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  605. x_data = x_trainData.T
  606. if len(x_data) == 1:
  607. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  608. o_cList = []
  609. means.append(0)
  610. means = np.array(means)
  611. for i in range(len(x_data)):
  612. if i == 0:continue
  613. x1_con = is_continuous(x_data[i])
  614. x2 = x_data[i - 1] # y坐标
  615. x2_con = is_continuous(x2)
  616. o_c = None # 旧的C
  617. for class_num in range(len(class_)):
  618. n_class = class_[class_num]
  619. x2_new = np.unique(x2[y == n_class])
  620. #x与散点图不同,这里是纵坐标
  621. #加入这个判断是为了解决sklearn历史遗留问题
  622. if len(class_) == 2:#二分类问题
  623. if class_num == 0:continue
  624. w = w_list[0]
  625. b = b_list[0]
  626. else:#多分类问题
  627. w = w_list[class_num]
  628. b = b_list[class_num]
  629. if x2_con:
  630. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  631. w = np.append(w, 0)
  632. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  633. c = (
  634. line()
  635. .add_xaxis(x2_new)
  636. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  637. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  638. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  639. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  640. )
  641. if o_c == None:
  642. o_c = c
  643. else:
  644. o_c = o_c.overlap(c)
  645. #下面不要接任何代码,因为上面会continue
  646. o_cList.append(o_c)
  647. return o_cList
  648. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  649. x_data = x_trainData.T
  650. if len(x_data) == 1:
  651. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  652. o_cList = []
  653. means.append(0)#确保mean[i+1]不会超出index
  654. means = np.array(means)
  655. w = np.append(w,0)
  656. for i in range(len(x_data)):
  657. x1 = x_data[i]
  658. x1_con = is_continuous(x1)
  659. if x1_con:
  660. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  661. x1_new = np.unique(x1)
  662. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  663. y_con = is_continuous(y_data)
  664. c = (
  665. line()
  666. .add_xaxis(x1_new)
  667. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  668. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  669. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  670. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  671. )
  672. o_cList.append(c)
  673. return o_cList
  674. def regress_visualization(x_trainData,y):#y-x数据图
  675. x_data = x_trainData.T
  676. y_con = is_continuous(y)
  677. Cat = make_Cat(x_data)
  678. o_cList = []
  679. try:
  680. visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()),
  681. pos_right='3%')
  682. except:
  683. visualmap_opts = None
  684. y_con = False
  685. for i in range(len(x_data)):
  686. x1 = x_data[i] # x坐标
  687. x1_con = is_continuous(x1)
  688. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  689. if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的
  690. ry_con,x1_con = x1_con,y_con
  691. x1,ry = y,x1
  692. else:
  693. ry_con = y_con
  694. ry = y
  695. c = (
  696. Scatter()
  697. .add_xaxis(x1.tolist())#研究表明,这个是横轴
  698. .add_yaxis('数据',ry.tolist(),**Label_Set)
  699. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  700. yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True),
  701. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  702. visualmap_opts=visualmap_opts
  703. )
  704. )
  705. c.add_xaxis(np.unique(x1))
  706. o_cList.append(c)
  707. means,x_range,Type = Cat.get()
  708. return o_cList,means,x_range,Type
  709. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  710. seeting = global_Set if data_name else global_Leg
  711. x_data = x_trainData.T
  712. only = False
  713. if len(x_data) == 1:
  714. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  715. only = True
  716. o_cList = []
  717. for i in range(len(x_data)):
  718. for a in range(len(x_data)):
  719. if a <= i: continue#重复内容,跳过
  720. x1 = x_data[i] # x坐标
  721. x1_con = is_continuous(x1)
  722. x2 = x_data[a] # y坐标
  723. x2_con = is_continuous(x2)
  724. x2_new = np.unique(x2)
  725. if only:x2_con = False
  726. #x与散点图不同,这里是纵坐标
  727. c = (Scatter()
  728. .add_xaxis(x2)
  729. .add_yaxis(data_name, x1, **Label_Set)
  730. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  731. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  732. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  733. )
  734. c.add_xaxis(x2_new)
  735. o_cList.append(c)
  736. return o_cList
  737. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  738. seeting = global_Set if data_name else global_Leg
  739. x_data = x_trainData.T
  740. only = False
  741. if len(x_data) == 1:
  742. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  743. only = True
  744. o_cList = []
  745. for i in range(len(x_data)):
  746. for a in range(len(x_data)):
  747. if a <= i: continue#重复内容,跳过(a读取的是i后面的)
  748. x1 = x_data[i] # x坐标
  749. x1_con = is_continuous(x1)
  750. x2 = x_data[a] # y坐标
  751. x2_con = is_continuous(x2)
  752. x2_new = np.unique(x2)
  753. x1_list = x1.astype(np.str).tolist()
  754. for i in range(len(x1_list)):
  755. x1_list[i] = [x1_list[i],f'特征{i}']
  756. if only:x2_con = False
  757. #x与散点图不同,这里是纵坐标
  758. c = (Scatter()
  759. .add_xaxis(x2)
  760. .add_yaxis(data_name, x1_list, **Label_Set)
  761. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  762. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  763. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  764. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
  765. )
  766. c.add_xaxis(x2_new)
  767. o_cList.append(c)
  768. return o_cList
  769. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  770. seeting = global_Set if data_name else global_Leg
  771. x_data = x_trainData.T
  772. if len(x_data) == 1:
  773. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  774. o_cList = []
  775. for i in range(len(x_data)):
  776. for a in range(len(x_data)):
  777. if a <= i: continue#重复内容,跳过
  778. x1 = x_data[i] # x坐标
  779. x2 = x_data[a] # y坐标
  780. x2_new = np.unique(x2)
  781. #x与散点图不同,这里是纵坐标
  782. c = (Scatter()
  783. .add_xaxis(x2)
  784. .add_yaxis(data_name, x1, **Label_Set)
  785. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  786. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  787. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  788. )
  789. c.add_xaxis(x2_new)
  790. o_cList.append(c)
  791. return o_cList
  792. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  793. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  794. get_x = Feature_visualization(x_data,'原数据')#原来
  795. get_y = Feature_visualization(y_data,'转换数据')#转换
  796. for i in range(len(get_x)):
  797. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  798. return tab
  799. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  800. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  801. get_x = Feature_visualization(x_data,'原数据')#原来
  802. get_y = Feature_visualization(y_data,'转换数据')#转换
  803. for i in range(len(get_x)):
  804. try:
  805. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  806. except IndexError:pass
  807. try:
  808. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  809. except IndexError:pass
  810. return tab
  811. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  812. if type(y_data) is np.ndarray:
  813. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  814. for i in range(len(get_y)):
  815. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  816. return tab
  817. def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
  818. if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
  819. get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
  820. get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
  821. print(h_data)
  822. print(w_data)
  823. print(h_data.T)
  824. for i in range(len(get_x)):
  825. try:
  826. tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
  827. except IndexError:pass
  828. try:
  829. tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
  830. except IndexError:pass
  831. return tab
  832. def make_bar(name, value,tab):#绘制柱状图
  833. c = (
  834. Bar()
  835. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  836. .add_yaxis(name, value, **Label_Set)
  837. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  838. )
  839. tab.add(c, name)
  840. def judging_Digits(num:(int,float)):#查看小数位数
  841. a = str(abs(num)).split('.')[0]
  842. if a == '':raise ValueError
  843. return len(a)
  844. class Learner:
  845. def __init__(self,*args,**kwargs):
  846. self.numpy_Dic = {}#name:numpy
  847. self.Fucn_Add()#制作Func_Dic
  848. def Add_Form(self,data:np.array,name):
  849. name = f'{name}[{len(self.numpy_Dic)}]'
  850. self.numpy_Dic[name] = data
  851. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  852. type_ = np.str if str_must else np.float
  853. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  854. try:
  855. data = pf_data.to_numpy(dtype=type_)
  856. except ValueError:
  857. data = pf_data.to_numpy(dtype=np.str)
  858. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  859. self.Add_Form(data,name)
  860. return data
  861. def Add_Python(self, Text, sheet_name):
  862. name = {}
  863. name.update(globals().copy())
  864. name.update(locals().copy())
  865. exec(Text, name)
  866. exec('get = Creat()', name)
  867. if isinstance(name['get'], np.array): # 已经是DataFram
  868. get = name['get']
  869. else:
  870. try:
  871. get = np.array(name['get'])
  872. except:
  873. get = np.array([name['get']])
  874. self.Add_Form(get, sheet_name)
  875. return get
  876. def get_Form(self) -> dict:
  877. return self.numpy_Dic.copy()
  878. def get_Sheet(self,name) -> np.array:
  879. return self.numpy_Dic[name].copy()
  880. def to_CSV(self,Dic:str,name,sep) -> str:
  881. get = self.get_Sheet(name)
  882. np.savetxt(Dic, get, delimiter=sep)
  883. return Dic
  884. def to_Html_One(self,name,Dic=''):
  885. if Dic == '': Dic = f'{name}.html'
  886. get = self.get_Sheet(name)
  887. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  888. get = get.tolist()
  889. for i in range(len(get)):
  890. get[i] = [i+1] + get[i]
  891. headers = [i for i in range(len(get[0]))]
  892. table = Table_Fisrt()
  893. table.add(headers, get).set_global_opts(
  894. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  895. table.render(Dic)
  896. return Dic
  897. def to_Html(self, name, Dic='', type_=0):
  898. if Dic == '': Dic = f'{name}.html'
  899. # 把要画的sheet放到第一个
  900. Sheet_Dic = self.get_Form()
  901. del Sheet_Dic[name]
  902. Sheet_list = [name] + list(Sheet_Dic.keys())
  903. class TAB_F:
  904. def __init__(self, q):
  905. self.tab = q # 一个Tab
  906. def render(self, Dic):
  907. return self.tab.render(Dic)
  908. # 生成一个显示页面
  909. if type_ == 0:
  910. class TAB(TAB_F):
  911. def add(self, table, k, *f):
  912. self.tab.add(table, k)
  913. tab = TAB(tab_First(page_title='CoTan:查看表格')) # 一个Tab
  914. elif type_ == 1:
  915. class TAB(TAB_F):
  916. def add(self, table, *k):
  917. self.tab.add(table)
  918. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  919. else:
  920. class TAB(TAB_F):
  921. def add(self, table, *k):
  922. self.tab.add(table)
  923. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  924. # 迭代添加内容
  925. for name in Sheet_list:
  926. get = self.get_Sheet(name)
  927. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  928. get = get.tolist()
  929. for i in range(len(get)):
  930. get[i] = [i+1] + get[i]
  931. headers = [i for i in range(len(get[0]))]
  932. table = Table_Fisrt()
  933. table.add(headers, get).set_global_opts(
  934. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  935. tab.add(table, f'表格:{name}')
  936. tab.render(Dic)
  937. return Dic
  938. def Merge(self,name,axis=0):#aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
  939. sheet_list = []
  940. for i in name:
  941. sheet_list.append(self.get_Sheet(i))
  942. get = {0:np.hstack,1:np.vstack,2:np.dstack}[axis](sheet_list)
  943. self.Add_Form(np.array(get),f'{name[0]}合成')
  944. def Split(self,name,split=2,axis=0):#aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
  945. sheet = self.get_Sheet(name)
  946. get = {0:np.hsplit,1:np.vsplit,2:np.dsplit}[axis](sheet,split)
  947. for i in get:
  948. self.Add_Form(i,f'{name[0]}分割')
  949. def Two_Split(self,name,split,axis):#二分切割(0-横向,1-纵向)
  950. sheet = self.get_Sheet(name)
  951. try:
  952. split = float(eval(split))
  953. if split < 1:
  954. split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
  955. else:
  956. raise Exception
  957. except:
  958. split = int(split)
  959. if axis == 0:
  960. self.Add_Form(sheet[:,split:], f'{name[0]}分割')
  961. self.Add_Form(sheet[:,:split], f'{name[0]}分割')
  962. def Deep(self,sheet:np.ndarray):
  963. return sheet.ravel()
  964. def Down_Ndim(self,sheet:np.ndarray):#横向
  965. down_list = []
  966. for i in sheet:
  967. down_list.append(i.ravel())
  968. return np.array(down_list)
  969. def LongitudinalDown_Ndim(self,sheet:np.ndarray):#纵向
  970. down_list = []
  971. for i in range(len(sheet[0])):
  972. down_list.append(sheet[:,i].ravel())
  973. return np.array(down_list).T
  974. def Reval(self,name,axis):#axis:0-横向,1-纵向(带.T),2-深度
  975. sheet = self.get_Sheet(name)
  976. self.Add_Form({0:self.Down_Ndim,1:self.LongitudinalDown_Ndim,2:self.Deep}[axis](sheet).copy(),f'{name}伸展')
  977. def Del_Ndim(self,name):#删除无用维度
  978. sheet = self.get_Sheet(name)
  979. self.Add_Form(np.squeeze(sheet), f'{name}降维')
  980. def T(self,name,Func:list):
  981. sheet = self.get_Sheet(name)
  982. if sheet.ndim <= 2:
  983. self.Add_Form(sheet.T.copy(), f'{name}.T')
  984. else:
  985. self.Add_Form(np.transpose(sheet,Func).copy(), f'{name}.T')
  986. def reShape(self,name,shape:list):
  987. sheet = self.get_Sheet(name)
  988. self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r')
  989. def Fucn_Add(self):
  990. self.Func_Dic = {
  991. 'abs':lambda x,y:np.abs(x),
  992. 'sqrt':lambda x,y:np.sqrt(x),
  993. 'pow':lambda x,y:x**y,
  994. 'loge':lambda x,y:np.log(x),
  995. 'log10':lambda x,y:np.log10(x),
  996. 'ceil':lambda x,y:np.ceil(x),
  997. 'floor':lambda x,y:np.floor(x),
  998. 'rint':lambda x,y:np.rint(x),
  999. 'sin':lambda x,y:np.sin(x),
  1000. 'cos':lambda x,y:np.cos(x),
  1001. 'tan':lambda x,y:np.tan(x),
  1002. 'tanh':lambda x,y:np.tanh(x),
  1003. 'sinh':lambda x,y:np.sinh(x),
  1004. 'cosh':lambda x,y:np.cosh(x),
  1005. 'asin': lambda x, y: np.arcsin(x),
  1006. 'acos': lambda x, y: np.arccos(x),
  1007. 'atan': lambda x, y: np.arctan(x),
  1008. 'atanh': lambda x, y: np.arctanh(x),
  1009. 'asinh': lambda x, y: np.arcsinh(x),
  1010. 'acosh': lambda x, y: np.arccosh(x),
  1011. 'add': lambda x, y: x + y,#矩阵或元素
  1012. 'sub': lambda x, y: x - y,#矩阵或元素
  1013. 'mul': lambda x, y: np.multiply(x,y),#元素级别
  1014. 'matmul': lambda x, y: np.matmul(x,y),#矩阵
  1015. 'dot': lambda x, y: np.dot(x,y),#矩阵
  1016. 'div': lambda x, y: x / y,
  1017. 'div_floor': lambda x, y: np.floor_divide(x,y),
  1018. 'power': lambda x, y: np.power(x,y),#元素级
  1019. }
  1020. def Cul_Numpy(self,data,data_type,Func):
  1021. if not 1 in data_type:raise Exception
  1022. func = self.Func_Dic.get(Func,lambda x,y:x)
  1023. args_data = []
  1024. for i in range(len(data)):
  1025. if data_type[i] == 0:
  1026. args_data.append(data[i])
  1027. else:
  1028. args_data.append(self.get_Sheet(data[i]))
  1029. get = func(*args_data)
  1030. self.Add_Form(get,f'{Func}({data[0]},{data[1]})')
  1031. return get
  1032. class Study_MachineBase:
  1033. def __init__(self,*args,**kwargs):
  1034. self.Model = None
  1035. self.have_Fit = False
  1036. self.have_Predict = False
  1037. self.x_trainData = None
  1038. self.y_trainData = None
  1039. #有监督学习专有的testData
  1040. self.x_testData = None
  1041. self.y_testData = None
  1042. #记录这两个是为了克隆
  1043. def Fit(self,x_data,y_data,split=0.3,Increment=True,**kwargs):
  1044. y_data = y_data.ravel()
  1045. try:
  1046. if self.x_trainData is None or not Increment:raise Exception
  1047. self.x_trainData = np.vstack(x_data,self.x_trainData)
  1048. self.y_trainData = np.vstack(y_data,self.y_trainData)
  1049. except:
  1050. self.x_trainData = x_data.copy()
  1051. self.y_trainData = y_data.copy()
  1052. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  1053. try:#增量式训练
  1054. if not Increment:raise Exception
  1055. self.Model.partial_fit(x_data,y_data)
  1056. except:
  1057. self.Model.fit(self.x_trainData, self.y_trainData)
  1058. train_score = self.Model.score(x_train,y_train)
  1059. test_score = self.Model.score(x_test,y_test)
  1060. self.have_Fit = True
  1061. return train_score,test_score
  1062. def Score(self,x_data,y_data):
  1063. Score = self.Model.score(x_data,y_data)
  1064. return Score
  1065. def Class_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray):
  1066. y_Really = y_Really.ravel()
  1067. y_Predict = self.Predict(x_data)[0]
  1068. Accuracy = self._Accuracy(y_Predict,y_Really)
  1069. Recall,class_ = self._Macro(y_Predict,y_Really)
  1070. Precision,class_ = self._Macro(y_Predict,y_Really,1)
  1071. F1,class_ = self._Macro(y_Predict,y_Really,2)
  1072. Confusion_matrix,class_ = self._Confusion_matrix(y_Predict,y_Really)
  1073. kappa = self._Kappa_score(y_Predict,y_Really)
  1074. tab = Tab()
  1075. def gauge_base(name:str,value:float) -> Gauge:
  1076. c = (
  1077. Gauge()
  1078. .add("", [(name, round(value*100,2))],min_ = 0, max_ = 100)
  1079. .set_global_opts(title_opts=opts.TitleOpts(title=name))
  1080. )
  1081. return c
  1082. tab.add(gauge_base('准确率',Accuracy),'准确率')
  1083. tab.add(gauge_base('kappa',kappa),'kappa')
  1084. def Bar_base(name,value) -> Bar:
  1085. c = (
  1086. Bar()
  1087. .add_xaxis(class_)
  1088. .add_yaxis(name, value, **Label_Set)
  1089. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set)
  1090. )
  1091. return c
  1092. tab.add(Bar_base('精确率',Precision.tolist()),'精确率')
  1093. tab.add(Bar_base('召回率',Recall.tolist()),'召回率')
  1094. tab.add(Bar_base('F1',F1.tolist()),'F1')
  1095. def heatmap_base(name,value,max_,min_,show) -> HeatMap:
  1096. c = (
  1097. HeatMap()
  1098. .add_xaxis(class_)
  1099. .add_yaxis(name, class_, value, label_opts=opts.LabelOpts(is_show=show,position='inside'))
  1100. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set,visualmap_opts=
  1101. opts.VisualMapOpts(max_=max_,min_=min_,pos_right='3%'))
  1102. )
  1103. return c
  1104. value = [[class_[i],class_[j],float(Confusion_matrix[i,j])] for i in range(len(class_)) for j in range(len(class_))]
  1105. tab.add(heatmap_base('混淆矩阵',value,float(Confusion_matrix.max()),float(Confusion_matrix.min()),len(class_)<7), '混淆矩阵')
  1106. desTo_CSV(Dic,'混淆矩阵',Confusion_matrix,class_,class_)
  1107. desTo_CSV(Dic,'评分',[Precision,Recall,F1],class_,['精确率','召回率','F1'])
  1108. save = Dic + r'/分类模型评估.HTML'
  1109. tab.render(save)
  1110. return save,
  1111. def _Accuracy(self,y_Predict,y_Really):#准确率
  1112. return accuracy_score(y_Really, y_Predict)
  1113. def _Macro(self,y_Predict,y_Really,func=0):
  1114. Func = [recall_score,precision_score,f1_score]#召回率,精确率和f1
  1115. class_ = np.unique(y_Really).tolist()
  1116. result = (Func[func](y_Really,y_Predict,class_,average=None))
  1117. return result,class_
  1118. def _Confusion_matrix(self,y_Predict,y_Really):#混淆矩阵
  1119. class_ = np.unique(y_Really).tolist()
  1120. return confusion_matrix(y_Really, y_Predict),class_
  1121. def _Kappa_score(self,y_Predict,y_Really):
  1122. return cohen_kappa_score(y_Really, y_Predict)
  1123. def Regression_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray):
  1124. y_Really = y_Really.ravel()
  1125. y_Predict = self.Predict(x_data)[0]
  1126. tab = Tab()
  1127. MSE = self._MSE(y_Predict,y_Really)
  1128. MAE = self._MAE(y_Predict,y_Really)
  1129. r2_Score = self._R2_Score(y_Predict,y_Really)
  1130. RMSE = self._RMSE(y_Predict,y_Really)
  1131. tab.add(make_Tab(['MSE','MAE','RMSE','r2_Score'],[[MSE,MAE,RMSE,r2_Score]]), '评估数据')
  1132. save = Dic + r'/回归模型评估.HTML'
  1133. tab.render(save)
  1134. return save,
  1135. def Clusters_Score(self,Dic,x_data:np.ndarray,*args):
  1136. y_Predict = self.Predict(x_data)[0]
  1137. tab = Tab()
  1138. Coefficient,Coefficient_array = self._Coefficient_clustering(x_data,y_Predict)
  1139. def gauge_base(name:str,value:float) -> Gauge:
  1140. c = (
  1141. Gauge()
  1142. .add("", [(name, round(value*100,2))],min_ = 0, max_ = 10**(judging_Digits(value*100)))
  1143. .set_global_opts(title_opts=opts.TitleOpts(title=name))
  1144. )
  1145. return c
  1146. def Bar_base(name,value,xaxis) -> Bar:
  1147. c = (
  1148. Bar()
  1149. .add_xaxis(xaxis)
  1150. .add_yaxis(name, value, **Label_Set)
  1151. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set)
  1152. )
  1153. return c
  1154. tab.add(gauge_base('平均轮廓系数', Coefficient),'平均轮廓系数')
  1155. def Bar_(Coefficient_array,name='数据轮廓系数'):
  1156. xaxis = [f'数据{i}' for i in range(len(Coefficient_array))]
  1157. value = Coefficient_array.tolist()
  1158. tab.add(Bar_base(name,value,xaxis),name)
  1159. n = 20
  1160. if len(Coefficient_array) <= n:
  1161. Bar_(Coefficient_array)
  1162. elif len(Coefficient_array) <= n**2:
  1163. a = 0
  1164. while a <= len(Coefficient_array):
  1165. b = a + n
  1166. if b >= len(Coefficient_array):b = len(Coefficient_array) + 1
  1167. Cofe_array = Coefficient_array[a:b]
  1168. Bar_(Cofe_array,f'{a}-{b}数据轮廓系数')
  1169. a += n
  1170. else:
  1171. split = np.hsplit(Coefficient_array,n)
  1172. a = 0
  1173. for Cofe_array in split:
  1174. Bar_(Cofe_array, f'{a}%-{a + n}%数据轮廓系数')
  1175. a += n
  1176. save = Dic + r'/聚类模型评估.HTML'
  1177. tab.render(save)
  1178. return save,
  1179. def _MSE(self,y_Predict,y_Really):#均方误差
  1180. return mean_squared_error(y_Really, y_Predict)
  1181. def _MAE(self,y_Predict,y_Really):#中值绝对误差
  1182. return median_absolute_error(y_Really, y_Predict)
  1183. def _R2_Score(self,y_Predict,y_Really):#中值绝对误差
  1184. return r2_score(y_Really, y_Predict)
  1185. def _RMSE(self,y_Predict,y_Really):#中值绝对误差
  1186. return self._MSE(y_Predict,y_Really) ** 0.5
  1187. def _Coefficient_clustering(self,x_data,y_Predict):
  1188. means_score = silhouette_score(x_data,y_Predict)
  1189. outline_score = silhouette_samples(x_data,y_Predict)
  1190. return means_score, outline_score
  1191. def Predict(self,x_data,*args,**kwargs):
  1192. self.x_testData = x_data.copy()
  1193. y_Predict = self.Model.predict(x_data)
  1194. self.y_testData = y_Predict.copy()
  1195. self.have_Predict = True
  1196. return y_Predict,'预测'
  1197. def Des(self,Dic,*args,**kwargs):
  1198. return (Dic,)
  1199. class prep_Base(Study_MachineBase):#不允许第二次训练
  1200. def __init__(self,*args,**kwargs):
  1201. super(prep_Base, self).__init__(*args,**kwargs)
  1202. self.Model = None
  1203. def Fit(self, x_data,y_data,Increment=True, *args, **kwargs):
  1204. if not self.have_Predict: # 不允许第二次训练
  1205. y_data = y_data.ravel()
  1206. try:
  1207. if self.x_trainData is None or not Increment: raise Exception
  1208. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1209. self.y_trainData = np.vstack(y_data, self.y_trainData)
  1210. except:
  1211. self.x_trainData = x_data.copy()
  1212. self.y_trainData = y_data.copy()
  1213. try: # 增量式训练
  1214. if not Increment: raise Exception
  1215. self.Model.partial_fit(x_data, y_data)
  1216. except:
  1217. self.Model.fit(self.x_trainData, self.y_trainData)
  1218. self.have_Fit = True
  1219. return 'None', 'None'
  1220. def Predict(self, x_data, *args, **kwargs):
  1221. self.x_testData = x_data.copy()
  1222. x_Predict = self.Model.transform(x_data)
  1223. self.y_testData = x_Predict.copy()
  1224. self.have_Predict = True
  1225. return x_Predict,'特征工程'
  1226. def Score(self, x_data, y_data):
  1227. return 'None' # 没有score
  1228. class Unsupervised(prep_Base):#无监督,不允许第二次训练
  1229. def Fit(self, x_data,Increment=True, *args, **kwargs):
  1230. if not self.have_Predict: # 不允许第二次训练
  1231. self.y_trainData = None
  1232. try:
  1233. if self.x_trainData is None or not Increment: raise Exception
  1234. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1235. except:
  1236. self.x_trainData = x_data.copy()
  1237. try: # 增量式训练
  1238. if not Increment: raise Exception
  1239. self.Model.partial_fit(x_data)
  1240. except:
  1241. self.Model.fit(self.x_trainData, self.y_trainData)
  1242. self.have_Fit = True
  1243. return 'None', 'None'
  1244. class UnsupervisedModel(prep_Base):#无监督
  1245. def Fit(self, x_data, Increment=True,*args, **kwargs):
  1246. self.y_trainData = None
  1247. try:
  1248. if self.x_trainData is None or not Increment: raise Exception
  1249. self.x_trainData = np.vstack(x_data, self.x_trainData)
  1250. except:
  1251. self.x_trainData = x_data.copy()
  1252. try: # 增量式训练
  1253. if not Increment: raise Exception
  1254. self.Model.partial_fit(x_data)
  1255. except:
  1256. self.Model.fit(self.x_trainData, self.y_trainData)
  1257. self.have_Fit = True
  1258. return 'None', 'None'
  1259. class To_PyeBase(Study_MachineBase):
  1260. def __init__(self,args_use,model,*args,**kwargs):
  1261. super(To_PyeBase, self).__init__(*args,**kwargs)
  1262. self.Model = None
  1263. #记录这两个是为了克隆
  1264. self.k = {}
  1265. self.Model_Name = model
  1266. def Fit(self, x_data,y_data, *args, **kwargs):
  1267. self.x_trainData = x_data.copy()
  1268. self.y_trainData = y_data.ravel().copy()
  1269. self.have_Fit = True
  1270. return 'None', 'None'
  1271. def Predict(self, x_data, *args, **kwargs):
  1272. self.have_Predict = True
  1273. return np.array([]),'请使用训练'
  1274. def Score(self, x_data, y_data):
  1275. return 'None' # 没有score
  1276. def num_str(num,f):
  1277. num = str(round(float(num),f))
  1278. if len(num.replace('.','')) == f:
  1279. return num
  1280. n = num.split('.')
  1281. if len(n) == 0:#无小数
  1282. return num + '.' + '0' * (f - len(num))
  1283. else:
  1284. return num + '0' * (f - len(num) + 1)#len(num)多算了一位小数点
  1285. def desTo_CSV(Dic,name,data,columns=None,row=None):
  1286. Dic = Dic + '/' + name + '.csv'
  1287. DataFrame(data,columns=columns,index=row).to_csv(Dic,header=False if columns is None else True,
  1288. index=False if row is None else True)
  1289. return data
  1290. class Des(To_PyeBase):#数据分析
  1291. def Des(self, Dic, *args, **kwargs):
  1292. tab = Tab()
  1293. data = self.x_trainData
  1294. def Cumulative_calculation(data,func,name,tab):
  1295. sum_list = []
  1296. for i in range(len(data)):#按行迭代数据
  1297. sum_list.append([])
  1298. for a in range(len(data[i])):
  1299. s = num_str(func(data[:i+1,a]),8)
  1300. sum_list[-1].append(s)
  1301. desTo_CSV(Dic,f'{name}',sum_list)
  1302. tab.add(make_Tab([f'[{i}]' for i in range(len(sum_list[0]))],sum_list),f'{name}')
  1303. Geometric_mean = lambda x:np.power(np.prod(x),1/len(x))#几何平均数
  1304. Square_mean = lambda x:np.sqrt(np.sum(np.power(x,2)) / len(x))#平方平均数
  1305. Harmonic_mean = lambda x:len(x)/np.sum(np.power(x,-1))#调和平均数
  1306. Cumulative_calculation(data,np.sum,'累计求和',tab)
  1307. Cumulative_calculation(data,np.var,'累计方差',tab)
  1308. Cumulative_calculation(data,np.std,'累计标准差',tab)
  1309. Cumulative_calculation(data,np.mean,'累计算术平均值',tab)
  1310. Cumulative_calculation(data,Geometric_mean,'累计几何平均值',tab)
  1311. Cumulative_calculation(data,Square_mean,'累计平方平均值',tab)
  1312. Cumulative_calculation(data,Harmonic_mean,'累计调和平均值',tab)
  1313. Cumulative_calculation(data,np.median,'累计中位数',tab)
  1314. Cumulative_calculation(data,np.max,'累计最大值',tab)
  1315. Cumulative_calculation(data,np.min,'累计最小值',tab)
  1316. save = Dic + r'/数据分析.HTML'
  1317. tab.render(save) # 生成HTML
  1318. return save,
  1319. class CORR(To_PyeBase):#相关性和协方差
  1320. def Des(self, Dic, *args, **kwargs):
  1321. tab = Tab()
  1322. data = DataFrame(self.x_trainData)
  1323. corr = data.corr().to_numpy()#相关性
  1324. cov = data.cov().to_numpy()#协方差
  1325. def HeatMAP(data,name:str,max_,min_):
  1326. x = [f'特征[{i}]' for i in range(len(data))]
  1327. y = [f'特征[{i}]' for i in range(len(data[0]))]
  1328. value = [(f'特征[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1329. c = (HeatMap()
  1330. .add_xaxis(x)
  1331. .add_yaxis(f'数据', y, value, label_opts=opts.LabelOpts(is_show= True if len(x) <= 10 else False,position='inside'))#如果特征太多则不显示标签
  1332. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1333. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1334. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1335. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,min_=min_,pos_right='3%'))#显示
  1336. )
  1337. tab.add(c,name)
  1338. HeatMAP(corr,'相关性热力图',1,-1)
  1339. HeatMAP(cov,'协方差热力图',float(cov.max()),float(cov.min()))
  1340. desTo_CSV(Dic, f'相关性矩阵', corr)
  1341. desTo_CSV(Dic, f'协方差矩阵', cov)
  1342. save = Dic + r'/数据相关性.HTML'
  1343. tab.render(save) # 生成HTML
  1344. return save,
  1345. class View_data(To_PyeBase):#绘制预测型热力图
  1346. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1347. super(View_data, self).__init__(args_use,Learner,*args, **kwargs)
  1348. self.Model = Learner.Model
  1349. self.Select_Model = None
  1350. self.have_Fit = Learner.have_Fit
  1351. self.Model_Name = 'Select_Model'
  1352. self.Learner = Learner
  1353. self.Learner_name = Learner.Model_Name
  1354. def Fit(self,*args,**kwargs):
  1355. self.have_Fit = True
  1356. return 'None','None'
  1357. def Predict(self,x_data,Add_Func=None,*args, **kwargs):
  1358. x_trainData = self.Learner.x_trainData
  1359. y_trainData = self.Learner.y_trainData
  1360. x_name = self.Learner_name
  1361. if not x_trainData is None:
  1362. Add_Func(x_trainData, f'{x_name}:x训练数据')
  1363. try:
  1364. x_testData = self.x_testData
  1365. if not x_testData is None:
  1366. Add_Func(x_testData, f'{x_name}:x测试数据')
  1367. except:pass
  1368. try:
  1369. y_testData = self.y_testData.copy()
  1370. if not y_testData is None:
  1371. Add_Func(y_testData, f'{x_name}:y测试数据')
  1372. except:pass
  1373. self.have_Fit = True
  1374. if y_trainData is None:
  1375. return np.array([]), 'y训练数据'
  1376. return y_trainData,'y训练数据'
  1377. def Des(self,Dic,*args,**kwargs):
  1378. return Dic,
  1379. class MatrixScatter(To_PyeBase):#矩阵散点图
  1380. def Des(self, Dic, *args, **kwargs):
  1381. tab = Tab()
  1382. data = self.x_trainData
  1383. if data.ndim <= 2:#维度为2
  1384. c = (Scatter()
  1385. .add_xaxis([f'{i}' for i in range(data.shape[1])])
  1386. .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg)
  1387. )
  1388. if data.ndim == 2:
  1389. for num in range(len(data)):
  1390. i = data[num]
  1391. c.add_yaxis(f'{num}',[[f'{num}',x] for x in i],color='#FFFFFF')
  1392. else:
  1393. c.add_yaxis(f'0', [[0,x]for x in data],color='#FFFFFF')
  1394. c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
  1395. formatter=JsCode("function(params){return params.data[2];}"),
  1396. ))
  1397. elif data.ndim == 3:
  1398. c = (Scatter3D()
  1399. .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'),**global_Leg)
  1400. )
  1401. for num in range(len(data)):
  1402. i = data[num]
  1403. for s_num in range(len(i)):
  1404. s = i[s_num]
  1405. y_data = [[num,s_num,x,float(s[x])] for x in range(len(s))]
  1406. c.add(f'{num}',y_data,zaxis3d_opts = opts.Axis3DOpts(type_="category"))
  1407. c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
  1408. formatter=JsCode("function(params){return params.data[3];}")))
  1409. else:
  1410. c = Scatter()
  1411. tab.add(c,'矩阵散点图')
  1412. save = Dic + r'/矩阵散点图.HTML'
  1413. tab.render(save) # 生成HTML
  1414. return save,
  1415. class Cluster_Tree(To_PyeBase):#聚类树状图
  1416. def Des(self, Dic, *args, **kwargs):
  1417. tab = Tab()
  1418. x_data = self.x_trainData
  1419. linkage_array = ward(x_data)#self.y_trainData是结果
  1420. dendrogram(linkage_array)
  1421. plt.savefig(Dic + r'/Cluster_graph.png')
  1422. image = Image()
  1423. image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图"))
  1424. tab.add(image,'聚类树状图')
  1425. save = Dic + r'/聚类树状图.HTML'
  1426. tab.render(save) # 生成HTML
  1427. return save,
  1428. class Class_To_Bar(To_PyeBase):#类型柱状图
  1429. def Des(self,Dic,*args,**kwargs):
  1430. tab = Tab()
  1431. x_data = self.x_trainData.T
  1432. y_data = self.y_trainData
  1433. class_ = np.unique(y_data).tolist()#类型
  1434. class_list = []
  1435. for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
  1436. class_list.append(y_data == n_class)
  1437. for num_i in range(len(x_data)):#迭代每一个特征
  1438. i = x_data[num_i]
  1439. i_con = is_continuous(i)
  1440. if i_con and len(i) >= 11:
  1441. c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1442. start = i.min()
  1443. end = i.max()
  1444. n = (end - start) / 10#生成10条柱子
  1445. x_axis = []#x轴
  1446. num_startEND = 0#迭代到第n个
  1447. while num_startEND <= 9:#把每个特征分为10类进行迭代
  1448. x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据
  1449. try:
  1450. if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有
  1451. s = (start <= i) == (i < end)#布尔索引
  1452. except:#因为start + n有超出end的风险
  1453. s = (start <= i) == (i <= end)#布尔索引
  1454. # n_data = i[s] # 取得现在的特征数据
  1455. for num in range(len(class_list)):#根据类别进行迭代
  1456. now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
  1457. bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1458. c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1459. num_startEND += 1
  1460. start += n
  1461. else :
  1462. iter_np = np.unique(i)
  1463. c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1464. x_axis = [] # 添加x轴数据
  1465. for i_num in range(len(iter_np)):#迭代每一个i(不重复)
  1466. i_data = iter_np[i_num]
  1467. # n_data= i[i == i_data]#取得现在特征数据
  1468. x_axis.append(f'[{i_data}]')
  1469. for num in range(len(class_list)):# 根据类别进行迭代
  1470. now_class = class_list[num]#取得class_list的布尔数组
  1471. bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1472. c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1473. c = (
  1474. Bar()
  1475. .add_xaxis(x_axis)
  1476. .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'),
  1477. yaxis_opts=opts.AxisOpts(type_='value')))
  1478. y_axis = []
  1479. for i in range(len(c_list)):
  1480. y_axis.append(f'{class_[i]}')
  1481. c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
  1482. desTo_CSV(Dic, f'类型-[{num_i}]特征统计柱状图', c_list, x_axis, y_axis)
  1483. tab.add(c, f'类型-[{num_i}]特征统计柱状图')
  1484. #未完成
  1485. save = Dic + r'/特征统计.HTML'
  1486. tab.render(save) # 生成HTML
  1487. return save,
  1488. class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图
  1489. def Des(self,Dic,*args,**kwargs):
  1490. tab = Tab()
  1491. data = self.x_trainData
  1492. x = [f'横[{i}]' for i in range(len(data))]
  1493. y = [f'纵[{i}]' for i in range(len(data[0]))]
  1494. value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1495. c = (HeatMap()
  1496. .add_xaxis(x)
  1497. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1498. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1499. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1500. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1501. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  1502. min_=float(data.min()),
  1503. pos_right='3%'))#显示
  1504. )
  1505. tab.add(c,'矩阵热力图')
  1506. tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格')
  1507. save = Dic + r'/矩阵热力图.HTML'
  1508. tab.render(save) # 生成HTML
  1509. return save,
  1510. class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图
  1511. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1512. super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs)
  1513. self.Model = Learner.Model
  1514. self.Select_Model = None
  1515. self.have_Fit = Learner.have_Fit
  1516. self.Model_Name = 'Select_Model'
  1517. self.Learner = Learner
  1518. self.x_trainData = Learner.x_trainData.copy()
  1519. self.y_trainData = Learner.y_trainData.copy()
  1520. self.means = []
  1521. def Fit(self,x_data,*args,**kwargs):
  1522. try:
  1523. self.means = x_data.ravel()
  1524. except:
  1525. pass
  1526. self.have_Fit = True
  1527. return 'None','None'
  1528. def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs):
  1529. tab = Tab()
  1530. y = self.y_trainData
  1531. x_data = self.x_trainData
  1532. try:#如果没有class
  1533. class_ = self.Model.classes_.tolist()
  1534. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1535. #获取数据
  1536. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1537. #可使用自带的means,并且nan表示跳过
  1538. for i in range(min([len(x_means),len(self.means)])):
  1539. try:
  1540. g = self.means[i]
  1541. if g == np.nan:raise Exception
  1542. x_means[i] = g
  1543. except:pass
  1544. get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type)
  1545. for i in range(len(get)):
  1546. tab.add(get[i], f'{i}预测热力图')
  1547. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1548. data = class_ + [f'{i}' for i in x_means]
  1549. c = Table().add(headers=heard, rows=[data])
  1550. tab.add(c, '数据表')
  1551. except:
  1552. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1553. get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type)
  1554. for i in range(len(get)):
  1555. tab.add(get[i], f'{i}预测热力图')
  1556. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1557. data = [f'{i}' for i in x_means]
  1558. c = Table().add(headers=heard, rows=[data])
  1559. tab.add(c, '数据表')
  1560. save = Dic + r'/预测热力图.HTML'
  1561. tab.render(save) # 生成HTML
  1562. return save,
  1563. class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图
  1564. def Des(self,Dic,*args,**kwargs):
  1565. return super().Des(Dic,Decision_boundary,Prediction_boundary)
  1566. class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More
  1567. def Des(self,Dic,*args,**kwargs):
  1568. return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More)
  1569. class Near_feature_scatter_class_More(To_PyeBase):
  1570. def Des(self, Dic, *args, **kwargs):
  1571. tab = Tab()
  1572. x_data = self.x_trainData
  1573. y = self.y_trainData
  1574. class_ = np.unique(y).ravel().tolist()
  1575. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  1576. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  1577. for i in range(len(get)):
  1578. tab.add(get[i], f'{i}训练数据散点图')
  1579. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1580. data = class_ + [f'{i}' for i in x_means]
  1581. c = Table().add(headers=heard, rows=[data])
  1582. tab.add(c, '数据表')
  1583. save = Dic + r'/数据特征散点图(分类).HTML'
  1584. tab.render(save) # 生成HTML
  1585. return save,
  1586. class Near_feature_scatter_More(To_PyeBase):
  1587. def Des(self,Dic,*args,**kwargs):
  1588. tab = Tab()
  1589. x_data = self.x_trainData
  1590. x_means = make_Cat(x_data).get()[0]
  1591. get_y = Feature_visualization(x_data, '数据散点图') # 转换
  1592. for i in range(len(get_y)):
  1593. tab.add(get_y[i], f'[{i}]数据x-x散点图')
  1594. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1595. data = [f'{i}' for i in x_means]
  1596. c = Table().add(headers=heard, rows=[data])
  1597. tab.add(c, '数据表')
  1598. save = Dic + r'/数据特征散点图.HTML'
  1599. tab.render(save) # 生成HTML
  1600. return save,
  1601. class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据
  1602. def Des(self,Dic,*args,**kwargs):
  1603. #获取数据
  1604. class_ = np.unique(self.y_trainData).ravel().tolist()
  1605. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1606. tab = Tab()
  1607. y = self.y_trainData
  1608. x_data = self.x_trainData
  1609. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1610. for i in range(len(get)):
  1611. tab.add(get[i], f'{i}临近特征散点图')
  1612. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1613. data = class_ + [f'{i}' for i in x_means]
  1614. c = Table().add(headers=heard, rows=[data])
  1615. tab.add(c, '数据表')
  1616. save = Dic + r'/临近数据特征散点图(分类).HTML'
  1617. tab.render(save) # 生成HTML
  1618. return save,
  1619. class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据
  1620. def Des(self,Dic,*args,**kwargs):
  1621. tab = Tab()
  1622. x_data = self.x_trainData.T
  1623. y = self.y_trainData
  1624. get, x_means, x_range,Type = Training_visualization_NoClass(x_data)
  1625. for i in range(len(get)):
  1626. tab.add(get[i], f'{i}临近特征散点图')
  1627. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1628. data = [f'{i}' for i in x_means]
  1629. tab.add(make_Tab(columns,[data]), '数据表')
  1630. save = Dic + r'/临近数据特征散点图.HTML'
  1631. tab.render(save) # 生成HTML
  1632. return save,
  1633. class Feature_scatter_YX(To_PyeBase):#y-x图
  1634. def Des(self,Dic,*args,**kwargs):
  1635. tab = Tab()
  1636. x_data = self.x_trainData
  1637. y = self.y_trainData
  1638. get, x_means, x_range,Type = regress_visualization(x_data,y)
  1639. for i in range(len(get)):
  1640. tab.add(get[i], f'{i}特征x-y散点图')
  1641. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1642. data = [f'{i}' for i in x_means]
  1643. tab.add(make_Tab(columns,[data]), '数据表')
  1644. save = Dic + r'/特征y-x图像.HTML'
  1645. tab.render(save) # 生成HTML
  1646. return save,
  1647. class Line_Model(Study_MachineBase):
  1648. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1649. super(Line_Model, self).__init__(*args,**kwargs)
  1650. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  1651. model]
  1652. if model == 'Line':
  1653. self.Model = Model()
  1654. self.k = {}
  1655. else:
  1656. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1657. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  1658. #记录这两个是为了克隆
  1659. self.Alpha = args_use['alpha']
  1660. self.max_iter = args_use['max_iter']
  1661. self.Model_Name = model
  1662. def Des(self,Dic,*args,**kwargs):
  1663. tab = Tab()
  1664. x_data = self.x_trainData
  1665. y = self.y_trainData
  1666. w_list = self.Model.coef_.tolist()
  1667. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  1668. b = self.Model.intercept_.tolist()
  1669. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1670. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1671. for i in range(len(get)):
  1672. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1673. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1674. for i in range(len(get)):
  1675. tab.add(get[i], f'{i}预测热力图')
  1676. tab.add(scatter(w_heard,w_list),'系数w散点图')
  1677. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  1678. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  1679. data = [f'{i}' for i in x_means] + w_list + [b]
  1680. if self.Model_Name != 'Line':
  1681. columns += ['阿尔法','最大迭代次数']
  1682. data += [self.Model.alpha,self.Model.max_iter]
  1683. tab.add(make_Tab(columns,[data]), '数据表')
  1684. desTo_CSV(Dic, '系数表', [w_list] + [b], [f'系数W[{i}]' for i in range(len(w_list))] + ['截距'])
  1685. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1686. save = Dic + r'/线性回归模型.HTML'
  1687. tab.render(save) # 生成HTML
  1688. return save,
  1689. class LogisticRegression_Model(Study_MachineBase):
  1690. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1691. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  1692. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  1693. #记录这两个是为了克隆
  1694. self.C = args_use['C']
  1695. self.max_iter = args_use['max_iter']
  1696. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  1697. self.Model_Name = model
  1698. def Des(self,Dic='render.html',*args,**kwargs):
  1699. #获取数据
  1700. w_array = self.Model.coef_
  1701. w_list = w_array.tolist() # 变为表格
  1702. b = self.Model.intercept_
  1703. c = self.Model.C
  1704. max_iter = self.Model.max_iter
  1705. class_ = self.Model.classes_.tolist()
  1706. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1707. tab = Tab()
  1708. y = self.y_trainData
  1709. x_data = self.x_trainData
  1710. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1711. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1712. for i in range(len(get)):
  1713. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1714. for i in range(len(w_list)):
  1715. w = w_list[i]
  1716. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  1717. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  1718. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  1719. columns = class_heard + [f'截距{i}' for i in range(len(b))] + ['C', '最大迭代数']
  1720. data = class_ + b.tolist() + [c, max_iter]
  1721. c = Table().add(headers=columns, rows=[data])
  1722. tab.add(c, '数据表')
  1723. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  1724. tab.add(c, '系数数据表')
  1725. c = Table().add(headers=[f'普适预测第{i}特征' for i in range(len(x_means))], rows=[[f'{i}' for i in x_means]])
  1726. tab.add(c, '普适预测数据表')
  1727. desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
  1728. desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  1729. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1730. save = Dic + r'/逻辑回归.HTML'
  1731. tab.render(save) # 生成HTML
  1732. return save,
  1733. class Categorical_Data:#数据统计助手
  1734. def __init__(self):
  1735. self.x_means = []
  1736. self.x_range = []
  1737. self.Type = []
  1738. def __call__(self,x1, *args, **kwargs):
  1739. get = self.is_continuous(x1)
  1740. return get
  1741. def is_continuous(self,x1:np.array):
  1742. try:
  1743. x1_con = is_continuous(x1)
  1744. if x1_con:
  1745. self.x_means.append(np.mean(x1))
  1746. self.add_Range(x1)
  1747. else:
  1748. raise Exception
  1749. return x1_con
  1750. except:#找出出现次数最多的元素
  1751. new = np.unique(x1)#去除相同的元素
  1752. count_list = []
  1753. for i in new:
  1754. count_list.append(np.sum(x1 == i))
  1755. index = count_list.index(max(count_list))#找出最大值的索引
  1756. self.x_means.append(x1[index])
  1757. self.add_Range(x1,False)
  1758. return False
  1759. def add_Range(self,x1:np.array,range_=True):
  1760. try:
  1761. if not range_ : raise Exception
  1762. min_ = int(x1.min()) - 1
  1763. max_ = int(x1.max()) + 1
  1764. #不需要复制列表
  1765. self.x_range.append([min_,max_])
  1766. self.Type.append(1)
  1767. except:
  1768. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  1769. self.Type.append(2)
  1770. def get(self):
  1771. return self.x_means,self.x_range,self.Type
  1772. class Knn_Model(Study_MachineBase):
  1773. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1774. super(Knn_Model, self).__init__(*args,**kwargs)
  1775. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  1776. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  1777. #记录这两个是为了克隆
  1778. self.n_neighbors = args_use['n_neighbors']
  1779. self.p = args_use['p']
  1780. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  1781. self.Model_Name = model
  1782. def Des(self,Dic,*args,**kwargs):
  1783. tab = Tab()
  1784. y = self.y_trainData
  1785. x_data = self.x_trainData
  1786. y_test = self.y_testData
  1787. x_test = self.x_testData
  1788. if self.Model_Name == 'Knn_class':
  1789. class_ = self.Model.classes_.tolist()
  1790. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1791. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1792. for i in range(len(get)):
  1793. tab.add(get[i],f'{i}训练数据散点图')
  1794. if not y_test is None:
  1795. get = Training_visualization(x_test,class_,y_test)[0]
  1796. for i in range(len(get)):
  1797. tab.add(get[i],f'{i}测试数据散点图')
  1798. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1799. for i in range(len(get)):
  1800. tab.add(get[i], f'{i}预测热力图')
  1801. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1802. data = class_ + [f'{i}' for i in x_means]
  1803. c = Table().add(headers=heard, rows=[data])
  1804. tab.add(c, '数据表')
  1805. else:
  1806. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1807. for i in range(len(get)):
  1808. tab.add(get[i], f'{i}训练数据散点图')
  1809. get = regress_visualization(x_test, y_test)[0]
  1810. for i in range(len(get)):
  1811. tab.add(get[i], f'{i}测试数据类型图')
  1812. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1813. for i in range(len(get)):
  1814. tab.add(get[i], f'{i}预测热力图')
  1815. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1816. data = [f'{i}' for i in x_means]
  1817. c = Table().add(headers=heard, rows=[data])
  1818. tab.add(c, '数据表')
  1819. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1820. save = Dic + r'/K.HTML'
  1821. tab.render(save) # 生成HTML
  1822. return save,
  1823. class Tree_Model(Study_MachineBase):
  1824. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1825. super(Tree_Model, self).__init__(*args,**kwargs)
  1826. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  1827. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  1828. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1829. #记录这两个是为了克隆
  1830. self.criterion = args_use['criterion']
  1831. self.splitter = args_use['splitter']
  1832. self.max_features = args_use['max_features']
  1833. self.max_depth = args_use['max_depth']
  1834. self.min_samples_split = args_use['min_samples_split']
  1835. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1836. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1837. self.Model_Name = model
  1838. def Des(self, Dic, *args, **kwargs):
  1839. tab = Tab()
  1840. importance = self.Model.feature_importances_.tolist()
  1841. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  1842. export_graphviz(self.Model, out_file=f)
  1843. make_bar('特征重要性',importance,tab)
  1844. desTo_CSV(Dic, '特征重要性', [importance], [f'[{i}]特征' for i in range(len(importance))])
  1845. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  1846. y = self.y_trainData
  1847. x_data = self.x_trainData
  1848. y_test = self.y_testData
  1849. x_test = self.x_testData
  1850. if self.Model_Name == 'Tree_class':
  1851. class_ = self.Model.classes_.tolist()
  1852. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1853. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1854. for i in range(len(get)):
  1855. tab.add(get[i],f'{i}训练数据散点图')
  1856. get = Training_visualization(x_test, class_, y_test)[0]
  1857. for i in range(len(get)):
  1858. tab.add(get[i], f'{i}测试数据散点图')
  1859. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1860. for i in range(len(get)):
  1861. tab.add(get[i], f'{i}预测热力图')
  1862. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1863. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  1864. else:
  1865. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1866. for i in range(len(get)):
  1867. tab.add(get[i], f'{i}训练数据散点图')
  1868. get = regress_visualization(x_test, y_test)[0]
  1869. for i in range(len(get)):
  1870. tab.add(get[i], f'{i}测试数据类型图')
  1871. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1872. for i in range(len(get)):
  1873. tab.add(get[i], f'{i}预测热力图')
  1874. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1875. [[f'{i}' for i in x_means] + importance]), '数据表')
  1876. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1877. save = Dic + r'/决策树.HTML'
  1878. tab.render(save) # 生成HTML
  1879. return save,
  1880. class Forest_Model(Study_MachineBase):
  1881. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1882. super(Forest_Model, self).__init__(*args,**kwargs)
  1883. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  1884. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  1885. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1886. #记录这两个是为了克隆
  1887. self.n_estimators = args_use['n_Tree']
  1888. self.criterion = args_use['criterion']
  1889. self.max_features = args_use['max_features']
  1890. self.max_depth = args_use['max_depth']
  1891. self.min_samples_split = args_use['min_samples_split']
  1892. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  1893. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1894. self.Model_Name = model
  1895. def Des(self, Dic, *args, **kwargs):
  1896. tab = Tab()
  1897. #多个决策树可视化
  1898. for i in range(len(self.Model.estimators_)):
  1899. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  1900. export_graphviz(self.Model.estimators_[i], out_file=f)
  1901. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  1902. y = self.y_trainData
  1903. x_data = self.x_trainData
  1904. if self.Model_Name == 'Forest_class':
  1905. class_ = self.Model.classes_.tolist()
  1906. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1907. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1908. for i in range(len(get)):
  1909. tab.add(get[i],f'{i}训练数据散点图')
  1910. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1911. for i in range(len(get)):
  1912. tab.add(get[i], f'{i}预测热力图')
  1913. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1914. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1915. else:
  1916. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1917. for i in range(len(get)):
  1918. tab.add(get[i], f'{i}预测类型图')
  1919. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1920. for i in range(len(get)):
  1921. tab.add(get[i], f'{i}预测热力图')
  1922. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1923. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1924. save = Dic + r'/随机森林.HTML'
  1925. tab.render(save) # 生成HTML
  1926. return save,
  1927. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  1928. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1929. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  1930. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  1931. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  1932. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1933. #记录这两个是为了克隆
  1934. self.criterion = args_use['criterion']
  1935. self.splitter = args_use['splitter']
  1936. self.max_features = args_use['max_features']
  1937. self.max_depth = args_use['max_depth']
  1938. self.min_samples_split = args_use['min_samples_split']
  1939. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1940. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1941. self.Model_Name = model
  1942. def Des(self, Dic, *args, **kwargs):
  1943. tab = Tab()
  1944. #多个决策树可视化
  1945. for a in range(len(self.Model.estimators_)):
  1946. for i in range(len(self.Model.estimators_[a])):
  1947. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  1948. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  1949. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  1950. y = self.y_trainData
  1951. x_data = self.x_trainData
  1952. if self.Model_Name == 'Tree_class':
  1953. class_ = self.Model.classes_.tolist()
  1954. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1955. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1956. for i in range(len(get)):
  1957. tab.add(get[i],f'{i}训练数据散点图')
  1958. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1959. for i in range(len(get)):
  1960. tab.add(get[i], f'{i}预测热力图')
  1961. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1962. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1963. else:
  1964. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1965. for i in range(len(get)):
  1966. tab.add(get[i], f'{i}预测类型图')
  1967. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1968. for i in range(len(get)):
  1969. tab.add(get[i], f'{i}预测热力图')
  1970. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1971. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  1972. save = Dic + r'/梯度提升回归树.HTML'
  1973. tab.render(save) # 生成HTML
  1974. return save,
  1975. class SVC_Model(Study_MachineBase):
  1976. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1977. super(SVC_Model, self).__init__(*args,**kwargs)
  1978. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1979. #记录这两个是为了克隆
  1980. self.C = args_use['C']
  1981. self.gamma = args_use['gamma']
  1982. self.kernel = args_use['kernel']
  1983. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1984. self.Model_Name = model
  1985. def Des(self, Dic, *args, **kwargs):
  1986. tab = Tab()
  1987. try:
  1988. w_list = self.Model.coef_.tolist() # 未必有这个属性
  1989. b = self.Model.intercept_.tolist()
  1990. U = True
  1991. except:
  1992. U = False
  1993. class_ = self.Model.classes_.tolist()
  1994. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1995. y = self.y_trainData
  1996. x_data = self.x_trainData
  1997. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1998. if U:get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1999. for i in range(len(get)):
  2000. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  2001. else:tab.add(get[i], f'{i}决策边界散点图')
  2002. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2003. for i in range(len(get)):
  2004. tab.add(get[i], f'{i}预测热力图')
  2005. dic = {2:'离散',1:'连续'}
  2006. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  2007. [class_ + [f'{i}' for i in x_means]]), '数据表')
  2008. if U:desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
  2009. if U:desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2010. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2011. save = Dic + r'/支持向量机分类.HTML'
  2012. tab.render(save) # 生成HTML
  2013. return save,
  2014. class SVR_Model(Study_MachineBase):
  2015. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  2016. super(SVR_Model, self).__init__(*args,**kwargs)
  2017. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  2018. #记录这两个是为了克隆
  2019. self.C = args_use['C']
  2020. self.gamma = args_use['gamma']
  2021. self.kernel = args_use['kernel']
  2022. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  2023. self.Model_Name = model
  2024. def Des(self,Dic,*args,**kwargs):
  2025. tab = Tab()
  2026. x_data = self.x_trainData
  2027. y = self.y_trainData
  2028. try:
  2029. w_list = self.Model.coef_.tolist()#未必有这个属性
  2030. b = self.Model.intercept_.tolist()
  2031. U = True
  2032. except:
  2033. U = False
  2034. get, x_means, x_range,Type = regress_visualization(x_data, y)
  2035. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  2036. for i in range(len(get)):
  2037. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  2038. else:tab.add(get[i], f'{i}预测类型图')
  2039. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2040. for i in range(len(get)):
  2041. tab.add(get[i], f'{i}预测热力图')
  2042. if U: desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
  2043. if U: desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
  2044. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2045. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  2046. save = Dic + r'/支持向量机回归.HTML'
  2047. tab.render(save) # 生成HTML
  2048. return save,
  2049. class Variance_Model(Unsupervised):#无监督
  2050. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  2051. super(Variance_Model, self).__init__(*args,**kwargs)
  2052. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  2053. #记录这两个是为了克隆
  2054. self.threshold = args_use['P']
  2055. self.k = {'threshold':args_use['P']}
  2056. self.Model_Name = model
  2057. def Des(self,Dic,*args,**kwargs):
  2058. tab = Tab()
  2059. var = self.Model.variances_#标准差
  2060. y_data = self.y_testData
  2061. if type(y_data) is np.ndarray:
  2062. get = Feature_visualization(self.y_testData)
  2063. for i in range(len(get)):
  2064. tab.add(get[i],f'[{i}]数据x-x散点图')
  2065. c = (
  2066. Bar()
  2067. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  2068. .add_yaxis('标准差', var.tolist(), **Label_Set)
  2069. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2070. )
  2071. tab.add(c,'数据标准差')
  2072. save = Dic + r'/方差特征选择.HTML'
  2073. tab.render(save) # 生成HTML
  2074. return save,
  2075. class SelectKBest_Model(prep_Base):#有监督
  2076. def __init__(self, args_use, model, *args, **kwargs):
  2077. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  2078. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  2079. # 记录这两个是为了克隆
  2080. self.k_ = args_use['k']
  2081. self.score_func=args_use['score_func']
  2082. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  2083. self.Model_Name = model
  2084. def Des(self,Dic,*args,**kwargs):
  2085. tab = Tab()
  2086. score = self.Model.scores_.tolist()
  2087. support = self.Model.get_support()
  2088. y_data = self.y_trainData
  2089. x_data = self.x_trainData
  2090. if type(x_data) is np.ndarray:
  2091. get = Feature_visualization(x_data)
  2092. for i in range(len(get)):
  2093. tab.add(get[i],f'[{i}]训练数据x-x散点图')
  2094. if type(y_data) is np.ndarray:
  2095. get = Feature_visualization(y_data)
  2096. for i in range(len(get)):
  2097. tab.add(get[i],f'[{i}]保留训练数据x-x散点图')
  2098. y_data = self.y_testData
  2099. x_data = self.x_testData
  2100. if type(x_data) is np.ndarray:
  2101. get = Feature_visualization(x_data)
  2102. for i in range(len(get)):
  2103. tab.add(get[i],f'[{i}]数据x-x散点图')
  2104. if type(y_data) is np.ndarray:
  2105. get = Feature_visualization(y_data)
  2106. for i in range(len(get)):
  2107. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  2108. Choose = []
  2109. UnChoose = []
  2110. for i in range(len(score)):
  2111. if support[i]:
  2112. Choose.append(score[i])
  2113. UnChoose.append(0)#占位
  2114. else:
  2115. UnChoose.append(score[i])
  2116. Choose.append(0)
  2117. c = (
  2118. Bar()
  2119. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  2120. .add_yaxis('选中特征', Choose, **Label_Set)
  2121. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  2122. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2123. )
  2124. tab.add(c,'单变量重要程度')
  2125. save = Dic + r'/单一变量特征选择.HTML'
  2126. tab.render(save) # 生成HTML
  2127. return save,
  2128. class SelectFrom_Model(prep_Base):#有监督
  2129. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  2130. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  2131. self.Model = Learner.Model
  2132. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  2133. self.max_features = args_use['k']
  2134. self.estimator=Learner.Model
  2135. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  2136. self.have_Fit = Learner.have_Fit
  2137. self.Model_Name = 'SelectFrom_Model'
  2138. self.Learner = Learner
  2139. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  2140. y_data = y_data.ravel()
  2141. if not self.have_Fit: # 不允许第二次训练
  2142. self.Select_Model.fit(x_data, y_data)
  2143. self.have_Fit = True
  2144. return 'None','None'
  2145. def Predict(self, x_data, *args, **kwargs):
  2146. try:
  2147. self.x_testData = x_data.copy()
  2148. x_Predict = self.Select_Model.transform(x_data)
  2149. self.y_testData = x_Predict.copy()
  2150. self.have_Predict = True
  2151. return x_Predict,'模型特征工程'
  2152. except:
  2153. self.have_Predict = True
  2154. return np.array([]),'无结果工程'
  2155. def Des(self,Dic,*args,**kwargs):
  2156. tab = Tab()
  2157. support = self.Select_Model.get_support()
  2158. y_data = self.y_testData
  2159. x_data = self.x_testData
  2160. if type(x_data) is np.ndarray:
  2161. get = Feature_visualization(x_data)
  2162. for i in range(len(get)):
  2163. tab.add(get[i],f'[{i}]数据x-x散点图')
  2164. if type(y_data) is np.ndarray:
  2165. get = Feature_visualization(y_data)
  2166. for i in range(len(get)):
  2167. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  2168. def make_Bar(score):
  2169. Choose = []
  2170. UnChoose = []
  2171. for i in range(len(score)):
  2172. if support[i]:
  2173. Choose.append(abs(score[i]))
  2174. UnChoose.append(0) # 占位
  2175. else:
  2176. UnChoose.append(abs(score[i]))
  2177. Choose.append(0)
  2178. c = (
  2179. Bar()
  2180. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  2181. .add_yaxis('选中特征', Choose, **Label_Set)
  2182. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  2183. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  2184. )
  2185. tab.add(c,'单变量重要程度')
  2186. try:
  2187. make_Bar(self.Model.coef_)
  2188. except:
  2189. try:
  2190. make_Bar(self.Model.feature_importances_)
  2191. except:pass
  2192. save = Dic + r'/模型特征选择.HTML'
  2193. tab.render(save) # 生成HTML
  2194. return save,
  2195. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  2196. def __init__(self, args_use, model, *args, **kwargs):
  2197. super(Standardization_Model, self).__init__(*args, **kwargs)
  2198. self.Model = StandardScaler()
  2199. self.k = {}
  2200. self.Model_Name = 'StandardScaler'
  2201. def Des(self,Dic,*args,**kwargs):
  2202. tab = Tab()
  2203. y_data = self.y_testData
  2204. x_data = self.x_testData
  2205. var = self.Model.var_.tolist()
  2206. means = self.Model.mean_.tolist()
  2207. scale = self.Model.scale_.tolist()
  2208. Conversion_control(y_data,x_data,tab)
  2209. make_bar('标准差',var,tab)
  2210. make_bar('方差',means,tab)
  2211. make_bar('Scale',scale,tab)
  2212. save = Dic + r'/z-score标准化.HTML'
  2213. tab.render(save) # 生成HTML
  2214. return save,
  2215. class MinMaxScaler_Model(Unsupervised):#离差标准化
  2216. def __init__(self, args_use, model, *args, **kwargs):
  2217. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  2218. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  2219. self.k = {}
  2220. self.Model_Name = 'MinMaxScaler'
  2221. def Des(self,Dic,*args,**kwargs):
  2222. tab = Tab()
  2223. y_data = self.y_testData
  2224. x_data = self.x_testData
  2225. scale = self.Model.scale_.tolist()
  2226. max_ = self.Model.data_max_.tolist()
  2227. min_ = self.Model.data_min_.tolist()
  2228. Conversion_control(y_data,x_data,tab)
  2229. make_bar('Scale',scale,tab)
  2230. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  2231. row=[max_ + min_]), '数据表格')
  2232. save = Dic + r'/离差标准化.HTML'
  2233. tab.render(save) # 生成HTML
  2234. return save,
  2235. class LogScaler_Model(prep_Base):#对数标准化
  2236. def __init__(self, args_use, model, *args, **kwargs):
  2237. super(LogScaler_Model, self).__init__(*args, **kwargs)
  2238. self.Model = None
  2239. self.k = {}
  2240. self.Model_Name = 'LogScaler'
  2241. def Fit(self, x_data, *args, **kwargs):
  2242. if not self.have_Predict: # 不允许第二次训练
  2243. self.max_logx = np.log(x_data.max())
  2244. self.have_Fit = True
  2245. return 'None', 'None'
  2246. def Predict(self, x_data, *args, **kwargs):
  2247. try:
  2248. max_logx = self.max_logx
  2249. except:
  2250. self.have_Fit = False
  2251. self.Fit(x_data)
  2252. max_logx = self.max_logx
  2253. self.x_testData = x_data.copy()
  2254. x_Predict = (np.log(x_data)/max_logx)
  2255. self.y_testData = x_Predict.copy()
  2256. self.have_Predict = True
  2257. return x_Predict,'对数变换'
  2258. def Des(self,Dic,*args,**kwargs):
  2259. tab = Tab()
  2260. y_data = self.y_testData
  2261. x_data = self.x_testData
  2262. Conversion_control(y_data,x_data,tab)
  2263. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  2264. save = Dic + r'/对数标准化.HTML'
  2265. tab.render(save) # 生成HTML
  2266. return save,
  2267. class atanScaler_Model(prep_Base):#atan标准化
  2268. def __init__(self, args_use, model, *args, **kwargs):
  2269. super(atanScaler_Model, self).__init__(*args, **kwargs)
  2270. self.Model = None
  2271. self.k = {}
  2272. self.Model_Name = 'atanScaler'
  2273. def Fit(self, x_data, *args, **kwargs):
  2274. self.have_Fit = True
  2275. return 'None', 'None'
  2276. def Predict(self, x_data, *args, **kwargs):
  2277. self.x_testData = x_data.copy()
  2278. x_Predict = (np.arctan(x_data)*(2/np.pi))
  2279. self.y_testData = x_Predict.copy()
  2280. self.have_Predict = True
  2281. return x_Predict,'atan变换'
  2282. def Des(self,Dic,*args,**kwargs):
  2283. tab = Tab()
  2284. y_data = self.y_testData
  2285. x_data = self.x_testData
  2286. Conversion_control(y_data,x_data,tab)
  2287. save = Dic + r'/反正切函数标准化.HTML'
  2288. tab.render(save) # 生成HTML
  2289. return save,
  2290. class decimalScaler_Model(prep_Base):#小数定标准化
  2291. def __init__(self, args_use, model, *args, **kwargs):
  2292. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  2293. self.Model = None
  2294. self.k = {}
  2295. self.Model_Name = 'Decimal_normalization'
  2296. def Fit(self, x_data, *args, **kwargs):
  2297. if not self.have_Predict: # 不允许第二次训练
  2298. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  2299. self.have_Fit = True
  2300. return 'None', 'None'
  2301. def Predict(self, x_data, *args, **kwargs):
  2302. self.x_testData = x_data.copy()
  2303. try:
  2304. j = self.j
  2305. except:
  2306. self.have_Fit = False
  2307. self.Fit(x_data)
  2308. j = self.j
  2309. x_Predict = (x_data/(10**j))
  2310. self.y_testData = x_Predict.copy()
  2311. self.have_Predict = True
  2312. return x_Predict,'小数定标标准化'
  2313. def Des(self,Dic,*args,**kwargs):
  2314. tab = Tab()
  2315. y_data = self.y_testData
  2316. x_data = self.x_testData
  2317. j = self.j
  2318. Conversion_control(y_data,x_data,tab)
  2319. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  2320. save = Dic + r'/小数定标标准化.HTML'
  2321. tab.render(save) # 生成HTML
  2322. return save,
  2323. class Mapzoom_Model(prep_Base):#映射标准化
  2324. def __init__(self, args_use, model, *args, **kwargs):
  2325. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  2326. self.Model = None
  2327. self.feature_range = args_use['feature_range']
  2328. self.k = {}
  2329. self.Model_Name = 'Decimal_normalization'
  2330. def Fit(self, x_data, *args, **kwargs):
  2331. if not self.have_Predict: # 不允许第二次训练
  2332. self.max = x_data.max()
  2333. self.min = x_data.min()
  2334. self.have_Fit = True
  2335. return 'None', 'None'
  2336. def Predict(self, x_data, *args, **kwargs):
  2337. self.x_testData = x_data.copy()
  2338. try:
  2339. max = self.max
  2340. min = self.min
  2341. except:
  2342. self.have_Fit = False
  2343. self.Fit(x_data)
  2344. max = self.max
  2345. min = self.min
  2346. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  2347. self.y_testData = x_Predict.copy()
  2348. self.have_Predict = True
  2349. return x_Predict,'映射标准化'
  2350. def Des(self,Dic,*args,**kwargs):
  2351. tab = Tab()
  2352. y_data = self.y_testData
  2353. x_data = self.x_testData
  2354. max = self.max
  2355. min = self.min
  2356. Conversion_control(y_data,x_data,tab)
  2357. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  2358. save = Dic + r'/映射标准化.HTML'
  2359. tab.render(save) # 生成HTML
  2360. return save,
  2361. class sigmodScaler_Model(prep_Base):#sigmod变换
  2362. def __init__(self, args_use, model, *args, **kwargs):
  2363. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  2364. self.Model = None
  2365. self.k = {}
  2366. self.Model_Name = 'sigmodScaler_Model'
  2367. def Fit(self, x_data, *args, **kwargs):
  2368. self.have_Fit = True
  2369. return 'None', 'None'
  2370. def Predict(self, x_data:np.array,*args,**kwargs):
  2371. self.x_testData = x_data.copy()
  2372. x_Predict = (1/(1+np.exp(-x_data)))
  2373. self.y_testData = x_Predict.copy()
  2374. self.have_Predict = True
  2375. return x_Predict,'Sigmod变换'
  2376. def Des(self,Dic,*args,**kwargs):
  2377. tab = Tab()
  2378. y_data = self.y_testData
  2379. x_data = self.x_testData
  2380. Conversion_control(y_data,x_data,tab)
  2381. save = Dic + r'/Sigmoid变换.HTML'
  2382. tab.render(save) # 生成HTML
  2383. return save,
  2384. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  2385. def __init__(self, args_use, model, *args, **kwargs):
  2386. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  2387. self.Model = None
  2388. self.feature_range = args_use['feature_range']
  2389. self.k = {}
  2390. self.Model_Name = 'Fuzzy_quantization'
  2391. def Fit(self, x_data, *args, **kwargs):
  2392. if not self.have_Predict: # 不允许第二次训练
  2393. self.max = x_data.max()
  2394. self.min = x_data.min()
  2395. self.have_Fit = True
  2396. return 'None', 'None'
  2397. def Predict(self, x_data,*args,**kwargs):
  2398. self.x_testData = x_data.copy()
  2399. try:
  2400. max = self.max
  2401. min = self.min
  2402. except:
  2403. self.have_Fit = False
  2404. self.Fit(x_data)
  2405. max = self.max
  2406. min = self.min
  2407. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  2408. self.y_testData = x_Predict.copy()
  2409. self.have_Predict = True
  2410. return x_Predict,'模糊量化标准化'
  2411. def Des(self,Dic,*args,**kwargs):
  2412. tab = Tab()
  2413. y_data = self.y_trainData
  2414. x_data = self.x_trainData
  2415. max = self.max
  2416. min = self.min
  2417. Conversion_control(y_data,x_data,tab)
  2418. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  2419. save = Dic + r'/模糊量化标准化.HTML'
  2420. tab.render(save) # 生成HTML
  2421. return save,
  2422. class Regularization_Model(Unsupervised):#正则化
  2423. def __init__(self, args_use, model, *args, **kwargs):
  2424. super(Regularization_Model, self).__init__(*args, **kwargs)
  2425. self.Model = Normalizer(norm=args_use['norm'])
  2426. self.k = {'norm':args_use['norm']}
  2427. self.Model_Name = 'Regularization'
  2428. def Des(self,Dic,*args,**kwargs):
  2429. tab = Tab()
  2430. y_data = self.y_testData.copy()
  2431. x_data = self.x_testData.copy()
  2432. Conversion_control(y_data,x_data,tab)
  2433. save = Dic + r'/正则化.HTML'
  2434. tab.render(save) # 生成HTML
  2435. return save,
  2436. #离散数据
  2437. class Binarizer_Model(Unsupervised):#二值化
  2438. def __init__(self, args_use, model, *args, **kwargs):
  2439. super(Binarizer_Model, self).__init__(*args, **kwargs)
  2440. self.Model = Binarizer(threshold=args_use['threshold'])
  2441. self.k = {}
  2442. self.Model_Name = 'Binarizer'
  2443. def Des(self,Dic,*args,**kwargs):
  2444. tab = Tab()
  2445. y_data = self.y_testData
  2446. x_data = self.x_testData
  2447. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  2448. for i in range(len(get_y)):
  2449. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  2450. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2451. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2452. tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
  2453. tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
  2454. save = Dic + r'/二值离散化.HTML'
  2455. tab.render(save) # 生成HTML
  2456. return save,
  2457. class Discretization_Model(prep_Base):#n值离散
  2458. def __init__(self, args_use, model, *args, **kwargs):
  2459. super(Discretization_Model, self).__init__(*args, **kwargs)
  2460. self.Model = None
  2461. range_ = args_use['split_range']
  2462. if range_ == []:raise Exception
  2463. elif len(range_) == 1:range_.append(range_[0])
  2464. self.range = range_
  2465. self.k = {}
  2466. self.Model_Name = 'Discretization'
  2467. def Fit(self,*args,**kwargs):
  2468. #t值在模型创建时已经保存
  2469. self.have_Fit = True
  2470. return 'None','None'
  2471. def Predict(self,x_data,*args,**kwargs):
  2472. self.x_testData = x_data.copy()
  2473. x_Predict = x_data.copy()#复制
  2474. range_ = self.range
  2475. bool_list = []
  2476. max_ = len(range_) - 1
  2477. o_t = None
  2478. for i in range(len(range_)):
  2479. try:
  2480. t = float(range_[i])
  2481. except:continue
  2482. if o_t == None:#第一个参数
  2483. bool_list.append(x_Predict <= t)
  2484. else:
  2485. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  2486. if i == max_:
  2487. bool_list.append(t <= x_Predict)
  2488. o_t = t
  2489. for i in range(len(bool_list)):
  2490. x_Predict[bool_list[i]] = i
  2491. self.y_testData = x_Predict.copy()
  2492. self.have_Predict = True
  2493. return x_Predict,f'{len(bool_list)}值离散化'
  2494. def Des(self, Dic, *args, **kwargs):
  2495. tab = Tab()
  2496. y_data = self.y_testData
  2497. x_data = self.x_testData
  2498. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2499. for i in range(len(get_y)):
  2500. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2501. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2502. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2503. tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
  2504. tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
  2505. save = Dic + r'/多值离散化.HTML'
  2506. tab.render(save) # 生成HTML
  2507. return save,
  2508. class Label_Model(prep_Base):#数字编码
  2509. def __init__(self, args_use, model, *args, **kwargs):
  2510. super(Label_Model, self).__init__(*args, **kwargs)
  2511. self.Model = []
  2512. self.k = {}
  2513. self.Model_Name = 'LabelEncoder'
  2514. def Fit(self,x_data,*args, **kwargs):
  2515. if not self.have_Predict: # 不允许第二次训练
  2516. self.Model = []
  2517. if x_data.ndim == 1:x_data = np.array([x_data])
  2518. for i in range(x_data.shape[1]):
  2519. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器(每个特征一个学习器)
  2520. self.have_Fit = True
  2521. return 'None', 'None'
  2522. def Predict(self, x_data, *args, **kwargs):
  2523. self.x_testData = x_data.copy()
  2524. x_Predict = x_data.copy()
  2525. if x_data.ndim == 1: x_data = np.array([x_data])
  2526. for i in range(x_data.shape[1]):
  2527. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  2528. self.y_testData = x_Predict.copy()
  2529. self.have_Predict = True
  2530. return x_Predict,'数字编码'
  2531. def Des(self, Dic, *args, **kwargs):
  2532. tab = Tab()
  2533. x_data = self.x_testData
  2534. y_data = self.y_testData
  2535. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2536. for i in range(len(get_y)):
  2537. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2538. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2539. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2540. tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
  2541. tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
  2542. save = Dic + r'/数字编码.HTML'
  2543. tab.render(save) # 生成HTML
  2544. return save,
  2545. class OneHotEncoder_Model(prep_Base):#独热编码
  2546. def __init__(self, args_use, model, *args, **kwargs):
  2547. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  2548. self.Model = []
  2549. self.ndim_up = args_use['ndim_up']
  2550. self.k = {}
  2551. self.Model_Name = 'OneHotEncoder'
  2552. self.OneHot_Data = None#三维独热编码
  2553. def Fit(self,x_data,*args, **kwargs):
  2554. if not self.have_Predict: # 不允许第二次训练
  2555. if x_data.ndim == 1:x_data = [x_data]
  2556. for i in range(x_data.shape[1]):
  2557. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  2558. self.Model.append(OneHotEncoder().fit(data))#训练机器
  2559. self.have_Fit = True
  2560. return 'None', 'None'
  2561. def Predict(self, x_data, *args, **kwargs):
  2562. self.x_testData = x_data.copy()
  2563. x_new = []
  2564. for i in range(x_data.shape[1]):
  2565. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  2566. oneHot = self.Model[i].transform(data).toarray().tolist()
  2567. x_new.append(oneHot)#添加到列表中
  2568. x_new = np.array(x_new)#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  2569. x_Predict = []
  2570. for i in range(x_new.shape[1]):
  2571. x_Predict.append(x_new[:,i])
  2572. x_Predict = np.array(x_Predict)#转换回array
  2573. self.OneHot_Data = x_Predict.copy() # 保存未降维数据
  2574. if not self.ndim_up:#压缩操作
  2575. new_xPredict = []
  2576. for i in x_Predict:
  2577. new_list = []
  2578. list_ = i.tolist()
  2579. for a in list_:
  2580. new_list += a
  2581. new = np.array(new_list)
  2582. new_xPredict.append(new)
  2583. self.y_testData = np.array(new_xPredict)
  2584. return self.y_testData.copy(),'独热编码'
  2585. self.y_testData = self.OneHot_Data
  2586. self.have_Predict = True
  2587. return x_Predict,'独热编码'
  2588. def Des(self, Dic, *args, **kwargs):
  2589. tab = Tab()
  2590. y_data = self.y_testData
  2591. x_data = self.x_testData
  2592. oh_data = self.OneHot_Data
  2593. if not self.ndim_up:
  2594. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2595. for i in range(len(get_y)):
  2596. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2597. heard = [f'特征:{i}' for i in range(len(x_data[0]))]
  2598. tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
  2599. tab.add(make_Tab(heard,oh_data.tolist()), f'编码数据')
  2600. tab.add(make_Tab(heard,np.dstack((oh_data,x_data)).tolist()), f'合成[原数据,编码]数据')
  2601. tab.add(make_Tab([f'编码:{i}' for i in range(len(y_data[0]))], y_data.tolist()), f'数据')
  2602. save = Dic + r'/独热编码.HTML'
  2603. tab.render(save) # 生成HTML
  2604. return save,
  2605. class Missed_Model(Unsupervised):#缺失数据补充
  2606. def __init__(self, args_use, model, *args, **kwargs):
  2607. super(Missed_Model, self).__init__(*args, **kwargs)
  2608. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  2609. fill_value=args_use['fill_value'])
  2610. self.k = {}
  2611. self.Model_Name = 'Missed'
  2612. def Predict(self, x_data, *args, **kwargs):
  2613. self.x_testData = x_data.copy()
  2614. x_Predict = self.Model.transform(x_data)
  2615. self.y_testData = x_Predict.copy()
  2616. self.have_Predict = True
  2617. return x_Predict,'填充缺失'
  2618. def Des(self,Dic,*args,**kwargs):
  2619. tab = Tab()
  2620. y_data = self.y_testData
  2621. x_data = self.x_testData
  2622. statistics = self.Model.statistics_.tolist()
  2623. Conversion_control(y_data,x_data,tab)
  2624. tab.add(make_Tab([f'特征[{i}]' for i in range(len(statistics))],[statistics]),'填充值')
  2625. save = Dic + r'/缺失数据填充.HTML'
  2626. tab.render(save) # 生成HTML
  2627. return save,
  2628. class PCA_Model(Unsupervised):
  2629. def __init__(self, args_use, model, *args, **kwargs):
  2630. super(PCA_Model, self).__init__(*args, **kwargs)
  2631. self.Model = PCA(n_components=args_use['n_components'],whiten=args_use['white_PCA'])
  2632. self.whiten=args_use['white_PCA']
  2633. self.n_components = args_use['n_components']
  2634. self.k = {'n_components':args_use['n_components'],'whiten':args_use['white_PCA']}
  2635. self.Model_Name = 'PCA'
  2636. def Predict(self, x_data, *args, **kwargs):
  2637. self.x_testData = x_data.copy()
  2638. x_Predict = self.Model.transform(x_data)
  2639. self.y_testData = x_Predict.copy()
  2640. self.have_Predict = True
  2641. return x_Predict,'PCA'
  2642. def Des(self,Dic,*args,**kwargs):
  2643. tab = Tab()
  2644. y_data = self.y_testData
  2645. importance = self.Model.components_.tolist()
  2646. var = self.Model.explained_variance_.tolist()#方量差
  2647. Conversion_Separate_Format(y_data,tab)
  2648. x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
  2649. y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
  2650. value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
  2651. c = (HeatMap()
  2652. .add_xaxis(x_data)
  2653. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2654. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2655. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2656. xaxis_opts=opts.AxisOpts(is_scale=True),
  2657. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  2658. min_=int(self.Model.components_.min()),
  2659. pos_right='3%')) # 显示
  2660. )
  2661. tab.add(c,'成分热力图')
  2662. c = (
  2663. Bar()
  2664. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2665. .add_yaxis('方量差', var, **Label_Set)
  2666. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2667. )
  2668. desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data])
  2669. desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
  2670. tab.add(c, '方量差柱状图')
  2671. save = Dic + r'/主成分分析.HTML'
  2672. tab.render(save) # 生成HTML
  2673. return save,
  2674. class RPCA_Model(Unsupervised):
  2675. def __init__(self, args_use, model, *args, **kwargs):
  2676. super(RPCA_Model, self).__init__(*args, **kwargs)
  2677. self.Model = IncrementalPCA(n_components=args_use['n_components'],whiten=args_use['white_PCA'])
  2678. self.n_components = args_use['n_components']
  2679. self.whiten=args_use['white_PCA']
  2680. self.k = {'n_components': args_use['n_components'],'whiten':args_use['white_PCA']}
  2681. self.Model_Name = 'RPCA'
  2682. def Predict(self, x_data, *args, **kwargs):
  2683. self.x_testData = x_data.copy()
  2684. x_Predict = self.Model.transform(x_data)
  2685. self.y_testData = x_Predict.copy()
  2686. self.have_Predict = True
  2687. return x_Predict,'RPCA'
  2688. def Des(self, Dic, *args, **kwargs):
  2689. tab = Tab()
  2690. y_data = self.y_trainData
  2691. importance = self.Model.components_.tolist()
  2692. var = self.Model.explained_variance_.tolist() # 方量差
  2693. Conversion_Separate_Format(y_data, tab)
  2694. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  2695. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  2696. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
  2697. range(len(importance[i]))]
  2698. c = (HeatMap()
  2699. .add_xaxis(x_data)
  2700. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2701. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2702. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2703. xaxis_opts=opts.AxisOpts(is_scale=True),
  2704. visualmap_opts=opts.VisualMapOpts(is_show=True,
  2705. max_=int(self.Model.components_.max()) + 1,
  2706. min_=int(self.Model.components_.min()),
  2707. pos_right='3%')) # 显示
  2708. )
  2709. tab.add(c, '成分热力图')
  2710. c = (
  2711. Bar()
  2712. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2713. .add_yaxis('放量差', var, **Label_Set)
  2714. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2715. )
  2716. tab.add(c, '方量差柱状图')
  2717. desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data])
  2718. desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
  2719. save = Dic + r'/RPCA(主成分分析).HTML'
  2720. tab.render(save) # 生成HTML
  2721. return save,
  2722. class KPCA_Model(Unsupervised):
  2723. def __init__(self, args_use, model, *args, **kwargs):
  2724. super(KPCA_Model, self).__init__(*args, **kwargs)
  2725. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  2726. self.n_components = args_use['n_components']
  2727. self.kernel = args_use['kernel']
  2728. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  2729. self.Model_Name = 'KPCA'
  2730. def Predict(self, x_data, *args, **kwargs):
  2731. self.x_testData = x_data.copy()
  2732. x_Predict = self.Model.transform(x_data)
  2733. self.y_testData = x_Predict.copy()
  2734. self.have_Predict = True
  2735. return x_Predict,'KPCA'
  2736. def Des(self, Dic, *args, **kwargs):
  2737. tab = Tab()
  2738. y_data = self.y_testData
  2739. Conversion_Separate_Format(y_data, tab)
  2740. save = Dic + r'/KPCA(主成分分析).HTML'
  2741. tab.render(save) # 生成HTML
  2742. return save,
  2743. class LDA_Model(prep_Base):#有监督学习
  2744. def __init__(self, args_use, model, *args, **kwargs):
  2745. super(LDA_Model, self).__init__(*args, **kwargs)
  2746. self.Model = LDA(n_components=args_use['n_components'])
  2747. self.n_components = args_use['n_components']
  2748. self.k = {'n_components': args_use['n_components']}
  2749. self.Model_Name = 'LDA'
  2750. def Predict(self, x_data, *args, **kwargs):
  2751. self.x_testData = x_data.copy()
  2752. x_Predict = self.Model.transform(x_data)
  2753. self.y_testData = x_Predict.copy()
  2754. self.have_Predict = True
  2755. return x_Predict,'LDA'
  2756. def Des(self,Dic,*args,**kwargs):
  2757. tab = Tab()
  2758. x_data = self.x_testData
  2759. y_data = self.y_testData
  2760. Conversion_Separate_Format(y_data,tab)
  2761. w_list = self.Model.coef_.tolist() # 变为表格
  2762. b = self.Model.intercept_
  2763. tab = Tab()
  2764. x_means = make_Cat(x_data).get()[0]
  2765. get = Regress_W(x_data, None, w_list, b, x_means.copy())#回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据)
  2766. for i in range(len(get)):
  2767. tab.add(get[i].overlap(get[i]), f'类别:{i}LDA映射曲线')
  2768. save = Dic + r'/render.HTML'
  2769. tab.render(save) # 生成HTML
  2770. return save,
  2771. class NMF_Model(Unsupervised):
  2772. def __init__(self, args_use, model, *args, **kwargs):
  2773. super(NMF_Model, self).__init__(*args, **kwargs)
  2774. self.Model = NMF(n_components=args_use['n_components'])
  2775. self.n_components = args_use['n_components']
  2776. self.k = {'n_components':args_use['n_components']}
  2777. self.Model_Name = 'NFM'
  2778. self.h_testData = None
  2779. #x_trainData保存的是W,h_trainData和y_trainData是后来数据
  2780. def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
  2781. self.x_testData = x_data.copy()
  2782. x_Predict = self.Model.transform(x_data)
  2783. self.y_testData = x_Predict.copy()
  2784. self.h_testData = self.Model.components_
  2785. if Add_Func != None and x_name != '':
  2786. Add_Func(self.h_testData, f'{x_name}:V->NMF[H]')
  2787. self.have_Predict = True
  2788. return x_Predict,'V->NMF[W]'
  2789. def Des(self,Dic,*args,**kwargs):
  2790. tab = Tab()
  2791. y_data = self.y_testData
  2792. x_data = self.x_testData
  2793. h_data = self.h_testData
  2794. Conversion_SeparateWH(y_data,h_data,tab)
  2795. wh_data = np.matmul(y_data, h_data)
  2796. difference_data = x_data - wh_data
  2797. def make_HeatMap(data,name,max_,min_):
  2798. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  2799. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  2800. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2801. c = (HeatMap()
  2802. .add_xaxis(x)
  2803. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2804. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  2805. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2806. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2807. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  2808. min_=min_,
  2809. pos_right='3%'))#显示
  2810. )
  2811. tab.add(c,name)
  2812. max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
  2813. min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
  2814. make_HeatMap(x_data,'原始数据热力图',max_,min_)
  2815. make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
  2816. make_HeatMap(difference_data,'数据差热力图',max_,min_)
  2817. desTo_CSV(Dic, '权重矩阵', y_data)
  2818. desTo_CSV(Dic, '系数矩阵', h_data)
  2819. desTo_CSV(Dic, '系数*权重矩阵', wh_data)
  2820. save = Dic + r'/非负矩阵分解.HTML'
  2821. tab.render(save) # 生成HTML
  2822. return save,
  2823. class TSNE_Model(Unsupervised):
  2824. def __init__(self, args_use, model, *args, **kwargs):
  2825. super(TSNE_Model, self).__init__(*args, **kwargs)
  2826. self.Model = TSNE(n_components=args_use['n_components'])
  2827. self.n_components = args_use['n_components']
  2828. self.k = {'n_components':args_use['n_components']}
  2829. self.Model_Name = 't-SNE'
  2830. def Fit(self,*args, **kwargs):
  2831. self.have_Fit = True
  2832. return 'None', 'None'
  2833. def Predict(self, x_data, *args, **kwargs):
  2834. self.x_testData = x_data.copy()
  2835. x_Predict = self.Model.fit_transform(x_data)
  2836. self.y_testData = x_Predict.copy()
  2837. self.have_Predict = True
  2838. return x_Predict,'SNE'
  2839. def Des(self,Dic,*args,**kwargs):
  2840. tab = Tab()
  2841. y_data = self.y_testData
  2842. Conversion_Separate_Format(y_data,tab)
  2843. save = Dic + r'/T-SNE.HTML'
  2844. tab.render(save) # 生成HTML
  2845. return save,
  2846. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  2847. def __init__(self,args_use,model,*args,**kwargs):
  2848. super(MLP_Model, self).__init__(*args,**kwargs)
  2849. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  2850. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  2851. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  2852. #记录这两个是为了克隆
  2853. self.hidden_layer_sizes = args_use['hidden_size']
  2854. self.activation = args_use['activation']
  2855. self.max_iter = args_use['max_iter']
  2856. self.solver = args_use['solver']
  2857. self.alpha = args_use['alpha']
  2858. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  2859. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  2860. self.Model_Name = model
  2861. def Des(self,Dic,*args,**kwargs):
  2862. tab = Tab()
  2863. x_data = self.x_testData
  2864. y_data = self.y_testData
  2865. coefs = self.Model.coefs_
  2866. class_ = self.Model.classes_
  2867. n_layers_ = self.Model.n_layers_
  2868. def make_HeatMap(data,name):
  2869. x = [f'特征(节点)[{i}]' for i in range(len(data))]
  2870. y = [f'节点[{i}]' for i in range(len(data[0]))]
  2871. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2872. c = (HeatMap()
  2873. .add_xaxis(x)
  2874. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2875. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  2876. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2877. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2878. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  2879. min_=float(data.min()),
  2880. pos_right='3%'))#显示
  2881. )
  2882. tab.add(c,name)
  2883. tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
  2884. desTo_CSV(Dic,f'{name}:表格',data.T.tolist(),x,y)
  2885. get, x_means, x_range, Type = regress_visualization(x_data, y_data)
  2886. for i in range(len(get)):
  2887. tab.add(get[i], f'{i}训练数据散点图')
  2888. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  2889. for i in range(len(get)):
  2890. tab.add(get[i], f'{i}预测热力图')
  2891. heard = ['神经网络层数']
  2892. data = [n_layers_]
  2893. for i in range(len(coefs)):
  2894. make_HeatMap(coefs[i],f'{i}层权重矩阵')
  2895. heard.append(f'第{i}层节点数')
  2896. data.append(len(coefs[i][0]))
  2897. if self.Model_Name == 'MLP_class':
  2898. heard += [f'[{i}]类型' for i in range(len(class_))]
  2899. data += class_.tolist()
  2900. tab.add(make_Tab(heard,[data]),'数据表')
  2901. save = Dic + r'/多层感知机.HTML'
  2902. tab.render(save) # 生成HTML
  2903. return save,
  2904. class kmeans_Model(UnsupervisedModel):
  2905. def __init__(self, args_use, model, *args, **kwargs):
  2906. super(kmeans_Model, self).__init__(*args, **kwargs)
  2907. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  2908. self.class_ = []
  2909. self.n_clusters = args_use['n_clusters']
  2910. self.k = {'n_clusters':args_use['n_clusters']}
  2911. self.Model_Name = 'k-means'
  2912. def Fit(self, x_data, *args, **kwargs):
  2913. re = super().Fit(x_data,*args,**kwargs)
  2914. self.class_ = list(set(self.Model.labels_.tolist()))
  2915. self.have_Fit = True
  2916. return re
  2917. def Predict(self, x_data, *args, **kwargs):
  2918. self.x_testData = x_data.copy()
  2919. y_Predict = self.Model.predict(x_data)
  2920. self.y_testData = y_Predict.copy()
  2921. self.have_Predict = True
  2922. return y_Predict,'k-means'
  2923. def Des(self,Dic,*args,**kwargs):
  2924. tab = Tab()
  2925. y = self.y_testData
  2926. x_data = self.x_testData
  2927. class_ = self.class_
  2928. center = self.Model.cluster_centers_
  2929. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2930. Func = Training_visualization_More if More_Global else Training_visualization_Center
  2931. get,x_means,x_range,Type = Func(x_data,class_,y,center)
  2932. for i in range(len(get)):
  2933. tab.add(get[i],f'{i}数据散点图')
  2934. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2935. for i in range(len(get)):
  2936. tab.add(get[i], f'{i}预测热力图')
  2937. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2938. data = class_ + [f'{i}' for i in x_means]
  2939. c = Table().add(headers=heard, rows=[data])
  2940. tab.add(c, '数据表')
  2941. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2942. save = Dic + r'/k-means聚类.HTML'
  2943. tab.render(save) # 生成HTML
  2944. return save,
  2945. class Agglomerative_Model(UnsupervisedModel):
  2946. def __init__(self, args_use, model, *args, **kwargs):
  2947. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  2948. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  2949. self.class_ = []
  2950. self.n_clusters = args_use['n_clusters']
  2951. self.k = {'n_clusters':args_use['n_clusters']}
  2952. self.Model_Name = 'Agglomerative'
  2953. def Fit(self, x_data, *args, **kwargs):
  2954. re = super().Fit(x_data,*args,**kwargs)
  2955. self.class_ = list(set(self.Model.labels_.tolist()))
  2956. self.have_Fit = True
  2957. return re
  2958. def Predict(self, x_data, *args, **kwargs):
  2959. self.x_testData = x_data.copy()
  2960. y_Predict = self.Model.fit_predict(x_data)
  2961. self.y_trainData = y_Predict.copy()
  2962. self.have_Predict = True
  2963. return y_Predict,'Agglomerative'
  2964. def Des(self, Dic, *args, **kwargs):
  2965. tab = Tab()
  2966. y = self.y_testData
  2967. x_data = self.x_testData
  2968. class_ = self.class_
  2969. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2970. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  2971. get, x_means, x_range, Type = Func(x_data, class_, y)
  2972. for i in range(len(get)):
  2973. tab.add(get[i], f'{i}训练数据散点图')
  2974. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  2975. for i in range(len(get)):
  2976. tab.add(get[i], f'{i}预测热力图')
  2977. linkage_array = ward(self.x_trainData)#self.y_trainData是结果
  2978. dendrogram(linkage_array)
  2979. plt.savefig(Dic + r'/Cluster_graph.png')
  2980. image = Image()
  2981. image.add(
  2982. src=Dic + r'/Cluster_graph.png',
  2983. ).set_global_opts(
  2984. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  2985. )
  2986. tab.add(image,'聚类树状图')
  2987. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2988. data = class_ + [f'{i}' for i in x_means]
  2989. c = Table().add(headers=heard, rows=[data])
  2990. tab.add(c, '数据表')
  2991. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  2992. save = Dic + r'/层次聚类.HTML'
  2993. tab.render(save) # 生成HTML
  2994. return save,
  2995. class DBSCAN_Model(UnsupervisedModel):
  2996. def __init__(self, args_use, model, *args, **kwargs):
  2997. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  2998. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  2999. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  3000. # min_samples
  3001. self.eps = args_use['eps']
  3002. self.min_samples = args_use['min_samples']
  3003. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  3004. self.class_ = []
  3005. self.Model_Name = 'DBSCAN'
  3006. def Fit(self, x_data, *args, **kwargs):
  3007. re = super().Fit(x_data,*args,**kwargs)
  3008. self.class_ = list(set(self.Model.labels_.tolist()))
  3009. self.have_Fit = True
  3010. return re
  3011. def Predict(self, x_data, *args, **kwargs):
  3012. self.x_testData = x_data.copy()
  3013. y_Predict = self.Model.fit_predict(x_data)
  3014. self.y_testData = y_Predict.copy()
  3015. self.have_Predict = True
  3016. return y_Predict,'DBSCAN'
  3017. def Des(self, Dic, *args, **kwargs):
  3018. #DBSCAN没有预测的必要
  3019. tab = Tab()
  3020. y = self.y_testData.copy()
  3021. x_data = self.x_testData.copy()
  3022. class_ = self.class_
  3023. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  3024. Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
  3025. get, x_means, x_range, Type = Func(x_data, class_, y)
  3026. for i in range(len(get)):
  3027. tab.add(get[i], f'{i}训练数据散点图')
  3028. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  3029. data = class_ + [f'{i}' for i in x_means]
  3030. c = Table().add(headers=heard, rows=[data])
  3031. tab.add(c, '数据表')
  3032. desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
  3033. save = Dic + r'/密度聚类.HTML'
  3034. tab.render(save) # 生成HTML
  3035. return save,
  3036. class Fast_Fourier(Study_MachineBase):#快速傅里叶变换
  3037. def __init__(self, args_use, model, *args, **kwargs):
  3038. super(Fast_Fourier, self).__init__(*args, **kwargs)
  3039. self.Model = None
  3040. self.Fourier = None#fft复数
  3041. self.Frequency = None#频率range
  3042. self.angular_Frequency = None#角频率range
  3043. self.Phase = None#相位range
  3044. self.Breadth = None#震幅range
  3045. self.N = None#样本数
  3046. def Fit(self, y_data, *args, **kwargs):
  3047. y_data = y_data.ravel() # 扯平为一维数组
  3048. try:
  3049. if self.y_trainData is None:raise Exception
  3050. self.y_trainData = np.hstack(y_data,self.x_trainData)
  3051. except:
  3052. self.y_trainData = y_data.copy()
  3053. Fourier = fft(y_data)
  3054. self.N = len(y_data)
  3055. self.Frequency = np.linspace(0,1,self.N)#频率N_range
  3056. self.angular_Frequency = self.Frequency / ( np.pi * 2 )#角频率w
  3057. self.Phase = np.angle(Fourier)
  3058. self.Breadth = np.abs(Fourier)
  3059. self.Fourier = Fourier
  3060. self.have_Fit = True
  3061. return 'None','None'
  3062. def Predict(self, x_data, *args, **kwargs):
  3063. return np.array([]),''
  3064. def Des(self, Dic, *args, **kwargs):
  3065. #DBSCAN没有预测的必要
  3066. tab = Tab()
  3067. y = self.y_trainData.copy()
  3068. N = self.N
  3069. Phase = self.Phase#相位range
  3070. Breadth = self.Breadth#震幅range
  3071. normalization_Breadth = Breadth/N
  3072. def line(name,value,s=slice(0,None)) -> line:
  3073. c = (
  3074. line()
  3075. .add_xaxis(self.Frequency[s].tolist())
  3076. .add_yaxis('', value,**Label_Set,symbol='none' if self.N >= 500 else None)
  3077. .set_global_opts(title_opts=opts.TitleOpts(title=name),**global_Leg,
  3078. xaxis_opts=opts.AxisOpts(type_='value'),
  3079. yaxis_opts=opts.AxisOpts(type_='value'))
  3080. )
  3081. return c
  3082. tab.add(line('原始数据',y.tolist()),'原始数据')
  3083. tab.add(line('双边振幅谱',Breadth.tolist()),'双边振幅谱')
  3084. tab.add(line('双边振幅谱(归一化)',normalization_Breadth.tolist()),'双边振幅谱(归一化)')
  3085. tab.add(line('单边相位谱',Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱')
  3086. tab.add(line('单边相位谱(归一化)',normalization_Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱(归一化)')
  3087. tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱')
  3088. tab.add(line('单边相位谱', Phase[:int(N/2)].tolist(),slice(0,int(N/2))), '单边相位谱')
  3089. tab.add(make_Tab(self.Frequency.tolist(),[Breadth.tolist()]),'双边振幅谱')
  3090. tab.add(make_Tab(self.Frequency.tolist(),[Phase.tolist()]),'双边相位谱')
  3091. tab.add(make_Tab(self.Frequency.tolist(),[self.Fourier.tolist()]),'快速傅里叶变换')
  3092. save = Dic + r'/快速傅里叶.HTML'
  3093. tab.render(save) # 生成HTML
  3094. return save,
  3095. class Reverse_Fast_Fourier(Study_MachineBase):#快速傅里叶变换
  3096. def __init__(self, args_use, model, *args, **kwargs):
  3097. super(Reverse_Fast_Fourier, self).__init__(*args, **kwargs)
  3098. self.Model = None
  3099. self.N = None
  3100. self.y_testData_real = None
  3101. self.Phase = None
  3102. self.Breadth = None
  3103. def Fit(self, y_data, *args, **kwargs):
  3104. return 'None','None'
  3105. def Predict(self, x_data,x_name='', Add_Func=None, *args, **kwargs):
  3106. self.x_testData = x_data.ravel().astype(np.complex_)
  3107. Fourier = ifft(self.x_testData)
  3108. self.y_testData = Fourier.copy()
  3109. self.y_testData_real = np.real(Fourier)
  3110. self.N = len(self.y_testData_real)
  3111. self.Phase = np.angle(self.x_testData)
  3112. self.Breadth = np.abs(self.x_testData)
  3113. Add_Func(self.y_testData_real.copy(), f'{x_name}:逆向快速傅里叶变换[实数]')
  3114. return Fourier,'逆向快速傅里叶变换'
  3115. def Des(self, Dic, *args, **kwargs):
  3116. #DBSCAN没有预测的必要
  3117. tab = Tab()
  3118. y = self.y_testData_real.copy()
  3119. y_data = self.y_testData.copy()
  3120. N = self.N
  3121. range_N = np.linspace(0,1,N).tolist()
  3122. Phase = self.Phase#相位range
  3123. Breadth = self.Breadth#震幅range
  3124. def line(name,value,s=slice(0,None)) -> line:
  3125. c = (
  3126. line()
  3127. .add_xaxis(range_N[s])
  3128. .add_yaxis('', value,**Label_Set,symbol='none' if N >= 500 else None)
  3129. .set_global_opts(title_opts=opts.TitleOpts(title=name),**global_Leg,
  3130. xaxis_opts=opts.AxisOpts(type_='value'),
  3131. yaxis_opts=opts.AxisOpts(type_='value'))
  3132. )
  3133. return c
  3134. tab.add(line('逆向傅里叶变换', y.tolist()), '逆向傅里叶变换[实数]')
  3135. tab.add(make_Tab(range_N,[y_data.tolist()]),'逆向傅里叶变换数据')
  3136. tab.add(make_Tab(range_N,[y.tolist()]),'逆向傅里叶变换数据[实数]')
  3137. tab.add(line('双边振幅谱',Breadth.tolist()),'双边振幅谱')
  3138. tab.add(line('单边相位谱',Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱')
  3139. tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱')
  3140. tab.add(line('单边相位谱', Phase[:int(N/2)].tolist(),slice(0,int(N/2))), '单边相位谱')
  3141. save = Dic + r'/快速傅里叶.HTML'
  3142. tab.render(save) # 生成HTML
  3143. return save,
  3144. class Reverse_Fast_Fourier_TwoNumpy(Reverse_Fast_Fourier):#2快速傅里叶变换
  3145. def Fit(self, x_data,y_data=None,x_name='', Add_Func=None, *args, **kwargs):
  3146. r = np.multiply(np.cos(x_data),y_data)
  3147. j = np.multiply(np.sin(x_data),y_data) * 1j
  3148. super(Reverse_Fast_Fourier_TwoNumpy, self).Predict(r + j,x_name=x_name, Add_Func=Add_Func, *args, **kwargs)
  3149. return 'None','None'
  3150. class Curve_fitting(Study_MachineBase):#曲线拟合
  3151. def __init__(self,Name, str_, model, *args, **kwargs):
  3152. super(Curve_fitting, self).__init__(*args, **kwargs)
  3153. def ndimDown(data:np.ndarray):
  3154. if data.ndim == 1:return data
  3155. new_data = []
  3156. for i in data:
  3157. new_data.append(np.sum(i))
  3158. return np.array(new_data)
  3159. NAME = {'np':np,'Func':model,'ndimDown':ndimDown}
  3160. DEF = f'''
  3161. def FUNC({",".join(model.__code__.co_varnames)}):
  3162. answer = Func({",".join(model.__code__.co_varnames)})
  3163. return ndimDown(answer)
  3164. '''
  3165. exec(DEF,NAME)
  3166. self.Func = NAME['FUNC']
  3167. self.Fit_data = None
  3168. self.Name = Name
  3169. self.Func_Str = str_
  3170. def Fit(self, x_data:np.ndarray,y_data:np.ndarray, *args, **kwargs):
  3171. y_data = y_data.ravel()
  3172. x_data = x_data.astype(np.float64)
  3173. try:
  3174. if self.x_trainData is None:raise Exception
  3175. self.x_trainData = np.vstack(x_data,self.x_trainData)
  3176. self.y_trainData = np.vstack(y_data,self.y_trainData)
  3177. except:
  3178. self.x_trainData = x_data.copy()
  3179. self.y_trainData = y_data.copy()
  3180. self.Fit_data = optimize.curve_fit(self.Func,self.x_trainData,self.y_trainData)
  3181. self.Model = self.Fit_data[0].copy()
  3182. return 'None','None'
  3183. def Predict(self, x_data, *args, **kwargs):
  3184. self.x_testData = x_data.copy()
  3185. Predict = self.Func(x_data,*self.Model)
  3186. y_Predict = []
  3187. for i in Predict:
  3188. y_Predict.append(np.sum(i))
  3189. y_Predict = np.array(y_Predict)
  3190. self.y_testData = y_Predict.copy()
  3191. self.have_Predict = True
  3192. return y_Predict,self.Name
  3193. def Des(self, Dic, *args, **kwargs):
  3194. #DBSCAN没有预测的必要
  3195. tab = Tab()
  3196. y = self.y_testData.copy()
  3197. x_data = self.x_testData.copy()
  3198. get, x_means, x_range,Type = regress_visualization(x_data, y)
  3199. for i in range(len(get)):
  3200. tab.add(get[i], f'{i}预测类型图')
  3201. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  3202. for i in range(len(get)):
  3203. tab.add(get[i], f'{i}预测热力图')
  3204. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [[f'{i}' for i in x_means]]),'普适预测特征数据')
  3205. tab.add(make_Tab([f'参数[{i}]' for i in range(len(self.Model))], [[f'{i}' for i in self.Model]]), '拟合参数')
  3206. save = Dic + r'/曲线拟合.HTML'
  3207. tab.render(save) # 生成HTML
  3208. return save,
  3209. class Machine_Learner(Learner):#数据处理者
  3210. def __init__(self,*args, **kwargs):
  3211. super().__init__(*args, **kwargs)
  3212. self.Learner = {}#记录机器
  3213. self.Learn_Dic = {'Line':Line_Model,
  3214. 'Ridge':Line_Model,
  3215. 'Lasso':Line_Model,
  3216. 'LogisticRegression':LogisticRegression_Model,
  3217. 'Knn_class':Knn_Model,
  3218. 'Knn': Knn_Model,
  3219. 'Tree_class': Tree_Model,
  3220. 'Tree': Tree_Model,
  3221. 'Forest':Forest_Model,
  3222. 'Forest_class': Forest_Model,
  3223. 'GradientTree_class':GradientTree_Model,
  3224. 'GradientTree': GradientTree_Model,
  3225. 'Variance':Variance_Model,
  3226. 'SelectKBest':SelectKBest_Model,
  3227. 'Z-Score':Standardization_Model,
  3228. 'MinMaxScaler':MinMaxScaler_Model,
  3229. 'LogScaler':LogScaler_Model,
  3230. 'atanScaler':atanScaler_Model,
  3231. 'decimalScaler':decimalScaler_Model,
  3232. 'sigmodScaler':sigmodScaler_Model,
  3233. 'Mapzoom':Mapzoom_Model,
  3234. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  3235. 'Regularization':Regularization_Model,
  3236. 'Binarizer':Binarizer_Model,
  3237. 'Discretization':Discretization_Model,
  3238. 'Label':Label_Model,
  3239. 'OneHotEncoder':OneHotEncoder_Model,
  3240. 'Missed':Missed_Model,
  3241. 'PCA':PCA_Model,
  3242. 'RPCA':RPCA_Model,
  3243. 'KPCA':KPCA_Model,
  3244. 'LDA':LDA_Model,
  3245. 'SVC':SVC_Model,
  3246. 'SVR':SVR_Model,
  3247. 'MLP':MLP_Model,
  3248. 'MLP_class': MLP_Model,
  3249. 'NMF':NMF_Model,
  3250. 't-SNE':TSNE_Model,
  3251. 'k-means':kmeans_Model,
  3252. 'Agglomerative':Agglomerative_Model,
  3253. 'DBSCAN':DBSCAN_Model,
  3254. 'ClassBar':Class_To_Bar,
  3255. 'FeatureScatter':Near_feature_scatter,
  3256. 'FeatureScatterClass': Near_feature_scatter_class,
  3257. 'FeatureScatter_all':Near_feature_scatter_More,
  3258. 'FeatureScatterClass_all':Near_feature_scatter_class_More,
  3259. 'HeatMap':Numpy_To_HeatMap,
  3260. 'FeatureY-X':Feature_scatter_YX,
  3261. 'ClusterTree':Cluster_Tree,
  3262. 'MatrixScatter':MatrixScatter,
  3263. 'Correlation':CORR,
  3264. 'Statistics':Des,
  3265. 'Fast_Fourier':Fast_Fourier,
  3266. 'Reverse_Fast_Fourier':Reverse_Fast_Fourier,
  3267. '[2]Reverse_Fast_Fourier':Reverse_Fast_Fourier_TwoNumpy,
  3268. }
  3269. self.Learner_Type = {}#记录机器的类型
  3270. def p_Args(self,Text,Type):#解析参数
  3271. args = {}
  3272. args_use = {}
  3273. #输入数据
  3274. exec(Text,args)
  3275. #处理数据
  3276. if Type in ('MLP','MLP_class'):
  3277. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  3278. else:
  3279. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  3280. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  3281. if Type in ('MLP','MLP_class'):
  3282. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  3283. else:
  3284. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  3285. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  3286. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  3287. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  3288. if Type in ('Tree','Forest','GradientTree'):
  3289. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  3290. else:
  3291. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  3292. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  3293. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  3294. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  3295. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  3296. args_use['P'] = float(args.get('min_samples_split', 0.8))
  3297. args_use['k'] = args.get('k',1)
  3298. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  3299. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  3300. get(args.get('score_func','f_classif'),f_classif))
  3301. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  3302. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  3303. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  3304. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  3305. args_use['ndim_up'] = bool(args.get('ndim_up', False))
  3306. args_use['miss_value'] = args.get('miss_value',np.nan)
  3307. args_use['fill_method'] = args.get('fill_method','mean')
  3308. args_use['fill_value'] = args.get('fill_value',None)
  3309. args_use['n_components'] = args.get('n_components',1)
  3310. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVC') else 'linear')
  3311. args_use['n_Tree'] = args.get('n_Tree',100)
  3312. args_use['gamma'] = args.get('gamma',1)
  3313. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  3314. args_use['activation'] = str(args.get('activation','relu'))
  3315. args_use['solver'] = str(args.get('solver','adam'))
  3316. if Type in ('k-means',):
  3317. args_use['n_clusters'] = int(args.get('n_clusters',8))
  3318. else:
  3319. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  3320. args_use['eps'] = float(args.get('n_clusters', 0.5))
  3321. args_use['min_samples'] = int(args.get('n_clusters', 5))
  3322. args_use['white_PCA'] = bool(args.get('white_PCA', False))
  3323. return args_use
  3324. def Add_Learner(self,Learner,Text=''):
  3325. get = self.Learn_Dic[Learner]
  3326. name = f'Le[{len(self.Learner)}]{Learner}'
  3327. #参数调节
  3328. args_use = self.p_Args(Text,Learner)
  3329. #生成学习器
  3330. self.Learner[name] = get(model=Learner,args_use=args_use)
  3331. self.Learner_Type[name] = Learner
  3332. def Add_Curve_Fitting(self,Learner_text,Text=''):
  3333. NAME = {}
  3334. exec(Learner_text,NAME)
  3335. name = f'Le[{len(self.Learner)}]{NAME.get("name","SELF")}'
  3336. func = NAME.get('f',lambda x,k,b:k * x + b)
  3337. self.Learner[name] = Curve_fitting(name,Learner_text,func)
  3338. self.Learner_Type[name] = 'Curve_fitting'
  3339. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  3340. model = self.get_Learner(Learner)
  3341. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  3342. #参数调节
  3343. args_use = self.p_Args(Text,'SelectFrom_Model')
  3344. #生成学习器
  3345. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  3346. self.Learner_Type[name] = 'SelectFrom_Model'
  3347. def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器
  3348. model = self.get_Learner(Learner)
  3349. name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
  3350. #生成学习器
  3351. args_use = self.p_Args(Text, 'Predictive_HeatMap')
  3352. self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use)
  3353. self.Learner_Type[name] = 'Predictive_HeatMap'
  3354. def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器
  3355. model = self.get_Learner(Learner)
  3356. name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
  3357. #生成学习器
  3358. args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
  3359. self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use)
  3360. self.Learner_Type[name] = 'Predictive_HeatMap_More'
  3361. def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器
  3362. model = self.get_Learner(Learner)
  3363. name = f'Le[{len(self.Learner)}]View_data:{Learner}'
  3364. #生成学习器
  3365. args_use = self.p_Args(Text, 'View_data')
  3366. self.Learner[name] = View_data(Learner=model,args_use=args_use)
  3367. self.Learner_Type[name] = 'View_data'
  3368. def Return_Learner(self):
  3369. return self.Learner.copy()
  3370. def get_Learner(self,name):
  3371. return self.Learner[name]
  3372. def get_Learner_Type(self,name):
  3373. return self.Learner_Type[name]
  3374. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  3375. x_data = self.get_Sheet(x_name)
  3376. y_data = self.get_Sheet(y_name)
  3377. model = self.get_Learner(Learner)
  3378. return model.Fit(x_data,y_data,split = split, x_name=x_name, Add_Func=self.Add_Form)
  3379. def Predict(self,x_name,Learner,Text='',**kwargs):
  3380. x_data = self.get_Sheet(x_name)
  3381. model = self.get_Learner(Learner)
  3382. y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form)
  3383. self.Add_Form(y_data,f'{x_name}:{name}')
  3384. return y_data
  3385. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  3386. model = self.get_Learner(Learner)
  3387. x = self.get_Sheet(name_x)
  3388. y = self.get_Sheet(name_y)
  3389. return model.Score(x,y)
  3390. def Show_Score(self,Learner,Dic,name_x,name_y,Func=0):#显示参数
  3391. x = self.get_Sheet(name_x)
  3392. y = self.get_Sheet(name_y)
  3393. if NEW_Global:
  3394. dic = Dic + f'/{Learner}分类评分[CoTan]'
  3395. new_dic = dic
  3396. a = 0
  3397. while exists(new_dic):#直到他不存在 —— False
  3398. new_dic = dic + f'[{a}]'
  3399. a += 1
  3400. mkdir(new_dic)
  3401. else:
  3402. new_dic = Dic
  3403. model = self.get_Learner(Learner)
  3404. #打包
  3405. func = [model.Class_Score, model.Regression_Score, model.Clusters_Score][Func]
  3406. save = func(new_dic,x,y)[0]
  3407. if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic)
  3408. return save,new_dic
  3409. def Show_Args(self,Learner,Dic):#显示参数
  3410. if NEW_Global:
  3411. dic = Dic + f'/{Learner}数据[CoTan]'
  3412. new_dic = dic
  3413. a = 0
  3414. while exists(new_dic):#直到他不存在 —— False
  3415. new_dic = dic + f'[{a}]'
  3416. a += 1
  3417. mkdir(new_dic)
  3418. else:
  3419. new_dic = Dic
  3420. model = self.get_Learner(Learner)
  3421. if (not(model.Model is None) or not(model.Model is list)) and CLF_Global:
  3422. joblib.dump(model.Model,new_dic + '/MODEL.model')#保存模型
  3423. # pickle.dump(model,new_dic + f'/{Learner}.pkl')#保存学习器
  3424. #打包
  3425. save = model.Des(new_dic)[0]
  3426. if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic)
  3427. return save,new_dic
  3428. def Del_Leaner(self,Leaner):
  3429. del self.Learner[Leaner]
  3430. del self.Learner_Type[Leaner]
  3431. def make_targz(output_filename, source_dir):
  3432. with tarfile.open(output_filename, "w:gz") as tar:
  3433. tar.add(source_dir, arcname=basename(source_dir))
  3434. return output_filename
  3435. def set_Global(More=More_Global,All=All_Global,CSV=CSV_Global,CLF=CLF_Global,TAR=TAR_Global,NEW=NEW_Global):
  3436. global More_Global,All_Global,CSV_Global,CLF_Global,TAR_Global,NEW_Global
  3437. More_Global = More # 是否使用全部特征绘图
  3438. All_Global = All # 是否导出charts
  3439. CSV_Global = CSV # 是否导出CSV
  3440. CLF_Global = CLF # 是否导出模型
  3441. TAR_Global = TAR # 是否打包tar
  3442. NEW_Global = NEW # 是否新建目录