12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086 |
- from pyecharts.components import Table as Table_Fisrt#绘制表格
- from pyecharts.components import Image
- from pyecharts import options as opts
- from random import randint
- from pyecharts.charts import *
- from pyecharts.options.series_options import JsCode
- from scipy.cluster.hierarchy import dendrogram, ward
- import matplotlib.pyplot as plt
- from pandas import DataFrame,read_csv
- import numpy as np
- import re
- from sklearn.model_selection import train_test_split
- from sklearn.linear_model import *
- from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
- from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
- from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
- GradientBoostingRegressor)
- from sklearn.metrics import accuracy_score
- from sklearn.feature_selection import *
- from sklearn.preprocessing import *
- from sklearn.impute import SimpleImputer
- from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
- from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
- from sklearn.neural_network import MLPClassifier,MLPRegressor
- from sklearn.manifold import TSNE
- from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
- from pyecharts.charts import *
- # import sklearn as sk
- #设置
- np.set_printoptions(threshold=np.inf)
- global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
- global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
- Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
- class Table(Table_Fisrt):
- def add(self, headers, rows, attributes = None):
- if len(rows) == 1:
- new_headers = ['数据类型','数据']
- new_rows = list(zip(headers,rows[0]))
- return super().add(new_headers,new_rows,attributes)
- else:
- return super().add(headers, rows, attributes)
- def make_list(first,end,num=35):
- n = num / (end - first)
- if n == 0: n = 1
- re = []
- n_first = first * n
- n_end = end * n
- while n_first <= n_end:
- cul = n_first / n
- re.append(round(cul,2))
- n_first += 1
- return re
- def list_filter(list_,num=70):
- #假设列表已经不重复
- if len(list_) <= num:return list_
- n = int(num / len(list_))
- re = list_[::n]
- return re
- def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
- # a-特征x,b-特征x-1,c-其他特征
- o_cList = []
- if len(x_means) == 1:
- return Prediction_boundary(x_range,x_means,Predict_Func,Type)
- for i in range(len(x_means)):
- for j in range(len(x_means)):
- if j <= i:continue
- n_ra = x_range[j]
- Type_ra = Type[j]
- n_rb = x_range[i]
- Type_rb = Type[i]
- if Type_ra == 1:
- ra = make_list(n_ra[0],n_ra[1],70)
- else:
- ra = list_filter(n_ra)#可以接受最大为70
- if Type_rb == 1:
- rb = make_list(n_rb[0],n_rb[1],35)
- else:
- rb = list_filter(n_rb)#可以接受最大为70
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data = np.array([x_means for _ in ra for i in rb])
- data[:, j] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(np.unique(a))
- .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
- pos_right='3%'))#显示
- )
- o_cList.append(c)
- return o_cList
- def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
- # a-特征x,b-特征x-1,c-其他特征
- o_cList = []
- if len(x_means) == 1:
- return o_cList
- for i in range(len(x_means)):
- if i == 0:
- continue
- n_ra = x_range[i - 1]
- Type_ra = Type[i - 1]
- n_rb = x_range[i]
- Type_rb = Type[i]
- if Type_ra == 1:
- ra = make_list(n_ra[0],n_ra[1],70)
- else:
- ra = list_filter(n_ra)#可以接受最大为70
- if Type_rb == 1:
- rb = make_list(n_rb[0],n_rb[1],35)
- else:
- rb = list_filter(n_rb)#可以接受最大为70
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data = np.array([x_means for _ in ra for i in rb])
- data[:, i - 1] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(np.unique(a))
- .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
- pos_right='3%'))#显示
- )
- o_cList.append(c)
- return o_cList
- def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
- # a-特征x,b-特征x-1,c-其他特征
- #规定,i-1是x轴,a是x轴,x_1是x轴
- class_dict = dict(zip(class_,[i for i in range(len(class_))]))
- if not nono:
- v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
- else:v_dict = []
- for i in class_dict:
- v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
- o_cList = []
- if len(x_means) == 1:
- n_ra = x_range[0]
- if Type[0] == 1:
- ra = make_list(n_ra[0], n_ra[1], 70)
- else:
- ra = n_ra
- a = np.array([i for i in ra]).reshape(-1,1)
- y_data = Predict_Func(a)[0].tolist()
- value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(['None'])
- .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
- min_=-1,
- is_piecewise=True, pieces=v_dict,
- orient='horizontal', pos_bottom='3%'))
- )
- o_cList.append(c)
- return o_cList
- #如果x_means长度不等于1则执行下面
- for i in range(len(x_means)):
- if i == 0:
- continue
- n_ra = x_range[i-1]
- Type_ra = Type[i-1]
- n_rb = x_range[i]
- Type_rb = Type[i]
- if Type_ra == 1:
- ra = make_list(n_ra[0],n_ra[1],70)
- else:
- ra = n_ra
- if Type_rb == 1:
- rb = make_list(n_rb[0],n_rb[1],35)
- else:
- rb = n_rb
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data = np.array([x_means for _ in ra for i in rb])
- data[:, i - 1] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(np.unique(a))
- .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
- xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
- is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
- )
- o_cList.append(c)
- return o_cList
- def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
- #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
- # a-特征x,b-特征x-1,c-其他特征
- #规定,i-1是x轴,a是x轴,x_1是x轴
- class_dict = dict(zip(class_,[i for i in range(len(class_))]))
- if not nono:
- v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
- else:v_dict = []
- for i in class_dict:
- v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
- o_cList = []
- if len(x_means) == 1:
- return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono)
- #如果x_means长度不等于1则执行下面
- for i in range(len(x_means)):
- for j in range(len(x_means)):
- if j <= i:continue
- n_ra = x_range[j]
- Type_ra = Type[j]
- n_rb = x_range[i]
- Type_rb = Type[i]
- if Type_ra == 1:
- ra = make_list(n_ra[0],n_ra[1],70)
- else:
- ra = n_ra
- if Type_rb == 1:
- rb = make_list(n_rb[0],n_rb[1],35)
- else:
- rb = n_rb
- a = np.array([i for i in ra for _ in rb]).T
- b = np.array([i for _ in ra for i in rb]).T
- data = np.array([x_means for _ in ra for i in rb])
- data[:, j] = a
- data[:, i] = b
- y_data = Predict_Func(data)[0].tolist()
- value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
- c = (HeatMap()
- .add_xaxis(np.unique(a))
- .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
- xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
- is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
- )
- o_cList.append(c)
- return o_cList
- def SeeTree(Dic):
- node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
- link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
- node_Dict = {}
- link_list = []
- with open(Dic, 'r') as f: # 貌似必须分开w和r
- for i in f:
- try:
- get = re.findall(node_re, i)[0]
- if get[0] != '':
- try:
- v = float(get[0])
- except:
- v = 0
- node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
- continue
- except:
- pass
- try:
- get = re.findall(link_re, i)[0]
- if get[0] != '' and get[1] != '':
- link_list.append((get[0], get[1]))
- except:
- pass
- father_list = [] # 已经有父亲的list
- for i in link_list:
- father = i[0] # 父节点
- son = i[1] # 子节点
- try:
- node_Dict[father]['children'].append(node_Dict[son])
- father_list.append(son)
- if int(son) == 0: print('F')
- except:
- pass
- father = list(set(node_Dict.keys()) - set(father_list))
- c = (
- Tree()
- .add("", [node_Dict[father[0]]], is_roam=True)
- .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
- toolbox_opts=opts.ToolboxOpts(is_show=True))
- )
- return c
- def make_Tab(heard,row):
- return Table().add(headers=heard, rows=row)
- def scatter(w_heard,w):
- c = (
- Scatter()
- .add_xaxis(w_heard)
- .add_yaxis('', w, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
- )
- return c
- def bar(w_heard,w):
- c = (
- Bar()
- .add_xaxis(w_heard)
- .add_yaxis('', abs(w).tolist(), **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- return c
- # def line(w_sum,w,b):
- # x = np.arange(-5, 5, 1)
- # c = (
- # Line()
- # .add_xaxis(x.tolist())
- # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
- # )
- # for i in range(len(w)):
- # y = x * w[i] + b
- # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
- # return c
- def see_Line(x_trainData,y_trainData,w,w_sum,b):
- y = y_trainData.tolist()
- x_data = x_trainData.T
- re = []
- for i in range(len(x_data)):
- x = x_data[i]
- p = int(x.max() - x.min()) / 5
- x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
- y_num = x_num * w[i] + (w[i] / w_sum) * b
- c = (
- Line()
- .add_xaxis(x_num.tolist())
- .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
- )
- t = (
- Scatter()
- .add_xaxis(x.tolist())
- .add_yaxis(f'{i}特征', y, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
- )
- t.overlap(c)
- re.append(t)
- return re
- def get_Color():
- # 随机颜色,雷达图默认非随机颜色
- rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
- color = '#'
- for a in rgb:
- color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
- return color
- def is_continuous(data:np.array,f:float=0.1):
- data = data.tolist()
- l = np.unique(data).tolist()
- try:
- re = len(l)/len(data)>=f or len(data) <= 3
- return re
- except:return False
- def make_Cat(x_data):
- Cat = Categorical_Data()
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- Cat(x1)
- return Cat
- def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_)):
- n_class = class_[class_num]
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y == n_class].tolist()
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x_2)
- .add_yaxis(f'{n_class}', x_1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x_2_new)
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_)):
- n_class = class_[class_num]
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y == n_class].tolist()
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x_2)
- .add_yaxis(f'{n_class}', x_1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x_2_new)
- #添加簇中心
- try:
- center_x_2 = [center[class_num][a]]
- except:
- center_x_2 = [0]
- b = (Scatter()
- .add_xaxis(center_x_2)
- .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
- .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.overlap(b)
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- if i == 0:continue
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for n_class in class_:
- x_1 = x1[y == n_class].tolist()
- x_2 = x2[y == n_class]
- x_2_new = np.unique(x_2)
- x_2 = x2[y == n_class].tolist()
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x_2)
- .add_yaxis(f'{n_class}', x_1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x_2_new)
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- o_cList.append(o_c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- Cat = make_Cat(x_data)
- o_cList = []
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- if i == 0:continue
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- x2_new = np.unique(x2)
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis('', x1.tolist(), **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- o_cList = []
- means.append(0)
- means = np.array(means)
- for i in range(len(x_data)):
- if i == 0:continue
- x1_con = is_continuous(x_data[i])
- x2 = x_data[i - 1] # y坐标
- x2_con = is_continuous(x2)
- o_c = None # 旧的C
- for class_num in range(len(class_)):
- n_class = class_[class_num]
- x2_new = np.unique(x2[y == n_class])
- #x与散点图不同,这里是纵坐标
- #加入这个判断是为了解决sklearn历史遗留问题
- if len(class_) == 2:#二分类问题
- if class_num == 0:continue
- w = w_list[0]
- b = b_list[0]
- else:#多分类问题
- w = w_list[class_num]
- b = b_list[class_num]
- if x2_con:
- x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
- w = np.append(w, 0)
- y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
- c = (
- Line()
- .add_xaxis(x2_new)
- .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- if o_c == None:
- o_c = c
- else:
- o_c = o_c.overlap(c)
- #下面不要接任何代码,因为上面会continue
- o_cList.append(o_c)
- return o_cList
- def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- o_cList = []
- means.append(0)#确保mean[i+1]不会超出index
- means = np.array(means)
- w = np.append(w,0)
- for i in range(len(x_data)):
- x1 = x_data[i]
- x1_con = is_continuous(x1)
- if x1_con:
- x1 = np.array(make_list(x1.min(), x1.max(), 5))
- x1_new = np.unique(x1)
- y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
- y_con = is_continuous(y_data)
- c = (
- Line()
- .add_xaxis(x1_new)
- .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
- )
- o_cList.append(c)
- return o_cList
- def regress_visualization(x_trainData,y):#y-x数据图
- x_data = x_trainData.T
- y_con = is_continuous(y)
- Cat = make_Cat(x_data)
- o_cList = []
- try:
- visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()),
- pos_right='3%')
- except:
- visualmap_opts = None
- y_con = False
- for i in range(len(x_data)):
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
- if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的
- ry_con,x1_con = x1_con,y_con
- x1,ry = y,x1
- else:
- ry_con = y_con
- ry = y
- c = (
- Scatter()
- .add_xaxis(x1.tolist())#研究表明,这个是横轴
- .add_yaxis('数据',ry.tolist(),**Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
- yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- visualmap_opts=visualmap_opts
- )
- )
- c.add_xaxis(np.unique(x1))
- o_cList.append(c)
- means,x_range,Type = Cat.get()
- return o_cList,means,x_range,Type
- def Feature_visualization(x_trainData,data_name=''):#x-x数据图
- seeting = global_Set if data_name else global_Leg
- x_data = x_trainData.T
- only = False
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- only = True
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue#重复内容,跳过
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- x2_new = np.unique(x2)
- if only:x2_con = False
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis(data_name, x1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- return o_cList
- def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
- seeting = global_Set if data_name else global_Leg
- x_data = x_trainData.T
- only = False
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- only = True
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue#重复内容,跳过(a读取的是i后面的)
- x1 = x_data[i] # x坐标
- x1_con = is_continuous(x1)
- x2 = x_data[a] # y坐标
- x2_con = is_continuous(x2)
- x2_new = np.unique(x2)
- x1_list = x1.astype(np.str).tolist()
- for i in range(len(x1_list)):
- x1_list[i] = [x1_list[i],f'特征{i}']
- if only:x2_con = False
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis(data_name, x1_list, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
- yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
- tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- return o_cList
- def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
- seeting = global_Set if data_name else global_Leg
- x_data = x_trainData.T
- if len(x_data) == 1:
- x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
- o_cList = []
- for i in range(len(x_data)):
- for a in range(len(x_data)):
- if a <= i: continue#重复内容,跳过
- x1 = x_data[i] # x坐标
- x2 = x_data[a] # y坐标
- x2_new = np.unique(x2)
- #x与散点图不同,这里是纵坐标
- c = (Scatter()
- .add_xaxis(x2)
- .add_yaxis(data_name, x1, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
- yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
- xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
- )
- c.add_xaxis(x2_new)
- o_cList.append(c)
- return o_cList
- def Conversion_control(y_data,x_data,tab):#合并两x-x图
- if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
- get_x = Feature_visualization(x_data,'原数据')#原来
- get_y = Feature_visualization(y_data,'转换数据')#转换
- for i in range(len(get_x)):
- tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
- return tab
- def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
- if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
- get_x = Feature_visualization(x_data,'原数据')#原来
- get_y = Feature_visualization(y_data,'转换数据')#转换
- for i in range(len(get_x)):
- try:
- tab.add(get_x[i],f'[{i}]数据x-x散点图')
- except IndexError:pass
- try:
- tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
- except IndexError:pass
- return tab
- def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
- if type(y_data) is np.ndarray:
- get_y = Feature_visualization_Format(y_data,'转换数据')#转换
- for i in range(len(get_y)):
- tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
- return tab
- def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
- if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
- get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
- get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
- print(h_data)
- print(w_data)
- print(h_data.T)
- for i in range(len(get_x)):
- try:
- tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
- except IndexError:pass
- try:
- tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
- except IndexError:pass
- return tab
- def make_bar(name, value,tab):#绘制柱状图
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(value))])
- .add_yaxis(name, value, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c, name)
- def judging_Digits(num:(int,float)):#查看小数位数
- a = str(abs(num)).split('.')[0]
- if a == '':raise ValueError
- return len(a)
- class Learner:
- def __init__(self,*args,**kwargs):
- self.numpy_Dic = {}#name:numpy
- def Add_Form(self,data:np.array,name):
- name = f'{name}[{len(self.numpy_Dic)}]'
- self.numpy_Dic[name] = data
- def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
- type_ = np.str if str_must else np.float
- pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
- try:
- data = pf_data.to_numpy(dtype=type_)
- except ValueError:
- data = pf_data.to_numpy(dtype=np.str)
- if data.ndim == 1: data = np.expand_dims(data, axis=1)
- self.Add_Form(data,name)
- return data
- def Add_Python(self, Text, sheet_name):
- name = {}
- name.update(globals().copy())
- name.update(locals().copy())
- exec(Text, name)
- exec('get = Creat()', name)
- if isinstance(name['get'], np.array): # 已经是DataFram
- get = name['get']
- else:
- try:
- get = np.array(name['get'])
- except:
- get = np.array([name['get']])
- self.Add_Form(get, sheet_name)
- return get
- def get_Form(self) -> dict:
- return self.numpy_Dic.copy()
- def get_Sheet(self,name) -> np.array:
- return self.numpy_Dic[name].copy()
- def to_CSV(self,Dic:str,name,sep) -> str:
- get = self.get_Sheet(name)
- np.savetxt(Dic, get, delimiter=sep)
- return Dic
- def to_Html_One(self,name,Dic=''):
- if Dic == '': Dic = f'{name}.html'
- get = self.get_Sheet(name)
- if get.ndim == 1: get = np.expand_dims(get, axis=1)
- get = get.tolist()
- for i in range(len(get)):
- get[i] = [i+1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = Table()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
- table.render(Dic)
- return Dic
- def to_Html(self, name, Dic='', type_=0):
- if Dic == '': Dic = f'{name}.html'
- # 把要画的sheet放到第一个
- Sheet_Dic = self.get_Form()
- del Sheet_Dic[name]
- Sheet_list = [name] + list(Sheet_Dic.keys())
- class TAB_F:
- def __init__(self, q):
- self.tab = q # 一个Tab
- def render(self, Dic):
- return self.tab.render(Dic)
- # 生成一个显示页面
- if type_ == 0:
- class TAB(TAB_F):
- def add(self, table, k, *f):
- self.tab.add(table, k)
- tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
- elif type_ == 1:
- class TAB(TAB_F):
- def add(self, table, *k):
- self.tab.add(table)
- tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
- else:
- class TAB(TAB_F):
- def add(self, table, *k):
- self.tab.add(table)
- tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
- # 迭代添加内容
- for name in Sheet_list:
- get = self.get_Sheet(name)
- if get.ndim == 1: get = np.expand_dims(get, axis=1)
- get = get.tolist()
- for i in range(len(get)):
- get[i] = [i+1] + get[i]
- headers = [i for i in range(len(get[0]))]
- table = Table()
- table.add(headers, get).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
- tab.add(table, f'表格:{name}')
- tab.render(Dic)
- return Dic
- def Merge(self,name,axis=0):#aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
- sheet_list = []
- for i in name:
- sheet_list.append(self.get_Sheet(i))
- get = {0:np.hstack,1:np.vstack,2:np.dstack}[axis](sheet_list)
- self.Add_Form(np.array(get),f'{name[0]}合成')
- def Split(self,name,split=2,axis=0):#aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
- sheet = self.get_Sheet(name)
- get = {0:np.hsplit,1:np.vsplit,2:np.dsplit}[axis](sheet,split)
- for i in get:
- self.Add_Form(i,f'{name[0]}分割')
- def Two_Split(self,name,split,axis):#二分切割(0-横向,1-纵向)
- sheet = self.get_Sheet(name)
- try:
- split = float(eval(split))
- if split < 1:
- split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
- else:
- raise Exception
- except:
- split = int(split)
- if axis == 0:
- self.Add_Form(sheet[:,split:], f'{name[0]}分割')
- self.Add_Form(sheet[:,:split], f'{name[0]}分割')
- def Deep(self,sheet:np.ndarray):
- return sheet.ravel()
- def Down_Ndim(self,sheet:np.ndarray):#横向
- down_list = []
- for i in sheet:
- down_list.append(i.ravel())
- return np.array(down_list)
- def LongitudinalDown_Ndim(self,sheet:np.ndarray):#纵向
- down_list = []
- for i in range(len(sheet[0])):
- down_list.append(sheet[:,i].ravel())
- return np.array(down_list).T
- def Reval(self,name,axis):#axis:0-横向,1-纵向(带.T),2-深度
- sheet = self.get_Sheet(name)
- self.Add_Form({0:self.Down_Ndim,1:self.LongitudinalDown_Ndim,2:self.Deep}[axis](sheet).copy(),f'{name}伸展')
- def Del_Ndim(self,name):#删除无用维度
- sheet = self.get_Sheet(name)
- self.Add_Form(np.squeeze(sheet), f'{name}降维')
- def T(self,name,Func:list):
- sheet = self.get_Sheet(name)
- if sheet.ndim <= 2:
- self.Add_Form(sheet.T.copy(), f'{name}.T')
- else:
- self.Add_Form(np.transpose(sheet,Func).copy(), f'{name}.T')
- def reShape(self,name,shape:list):
- sheet = self.get_Sheet(name)
- self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r')
- class Study_MachineBase:
- def __init__(self,*args,**kwargs):
- self.Model = None
- self.have_Fit = False
- self.x_trainData = None
- self.y_trainData = None
- #有监督学习专有的testData
- self.x_testData = None
- self.y_testData = None
- #记录这两个是为了克隆
- def Accuracy(self,y_Predict,y_Really):
- return accuracy_score(y_Predict, y_Really)
- def Fit(self,x_data,y_data,split=0.3,**kwargs):
- self.have_Fit = True
- y_data = y_data.ravel()
- self.x_trainData = x_data
- self.y_trainData = y_data
- x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
- self.Model.fit(x_data,y_data)
- train_score = self.Model.score(x_train,y_train)
- test_score = self.Model.score(x_test,y_test)
- return train_score,test_score
- def Score(self,x_data,y_data):
- Score = self.Model.score(x_data,y_data)
- return Score
- def Predict(self,x_data,*args,**kwargs):
- self.x_testData = x_data.copy()
- y_Predict = self.Model.predict(x_data)
- self.y_testData = y_Predict.copy()
- return y_Predict,'预测'
- def Des(self,*args,**kwargs):
- return ()
- class prep_Base(Study_MachineBase):
- def __init__(self,*args,**kwargs):
- super(prep_Base, self).__init__(*args,**kwargs)
- self.Model = None
- def Fit(self, x_data,y_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.x_trainData = x_data
- self.y_trainData = y_data
- self.Model.fit(x_data,y_data)
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict
- return x_Predict,'特征工程'
- def Score(self, x_data, y_data):
- return 'None' # 没有score
- class Unsupervised(prep_Base):
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.x_trainData = x_data
- self.y_trainData = None
- self.Model.fit(x_data)
- return 'None', 'None'
- class UnsupervisedModel(prep_Base):
- def Fit(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- self.y_trainData = None
- self.Model.fit(x_data)
- return 'None', 'None'
- class To_PyeBase(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):
- super(To_PyeBase, self).__init__(*args,**kwargs)
- self.Model = None
- #记录这两个是为了克隆
- self.k = {}
- self.Model_Name = model
- def Fit(self, x_data,y_data, *args, **kwargs):
- self.x_trainData = x_data
- self.y_trainData = y_data.ravel()
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- return np.array([]),'请使用训练'
- def Score(self, x_data, y_data):
- return 'None' # 没有score
- class View_data(To_PyeBase):#绘制预测型热力图
- def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(View_data, self).__init__(args_use,Learner,*args, **kwargs)
- self.Model = Learner.Model
- self.Select_Model = None
- self.have_Fit = Learner.have_Fit
- self.Model_Name = 'Select_Model'
- self.Learner = Learner
- self.Learner_name = Learner.Model_Name
- def Fit(self,*args,**kwargs):
- return 'None','None'
- def Predict(self,x_data,Add_Func=None,*args, **kwargs):
- x_trainData = self.Learner.x_trainData
- y_trainData = self.Learner.y_trainData
- x_name = self.Learner_name
- if not x_trainData is None:
- Add_Func(x_trainData, f'{x_name}:x训练数据')
- try:
- x_testData = self.x_testData
- if not x_testData is None:
- Add_Func(x_testData, f'{x_name}:x测试数据')
- except:pass
- try:
- y_testData = self.y_testData
- if not y_testData is None:
- Add_Func(y_testData, f'{x_name}:y测试数据')
- except:pass
- if y_trainData is None:
- return np.array([]), 'y训练数据'
- return y_trainData,'y训练数据'
- def Des(self,Dic,*args,**kwargs):
- return Dic,
- class MatrixScatter(To_PyeBase):
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- data = self.x_trainData
- print(data.ndim)
- if data.ndim <= 2:#维度为2
- c = (Scatter()
- .add_xaxis([f'{i}' for i in range(data.shape[1])])
- .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg)
- )
- if data.ndim == 2:
- for num in range(len(data)):
- i = data[num]
- c.add_yaxis(f'{num}',[[f'{num}',x] for x in i],color='#FFFFFF')
- else:
- c.add_yaxis(f'0', [[0,x]for x in data],color='#FFFFFF')
- c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
- formatter=JsCode("function(params){return params.data[2];}"),
- ))
- tab.add(c,'矩阵散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Cluster_Tree(To_PyeBase):
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- x_data = self.x_trainData
- linkage_array = ward(x_data)#self.y_trainData是结果
- dendrogram(linkage_array)
- plt.savefig(Dic + r'/Cluster_graph.png')
- image = Image()
- image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图"))
- tab.add(image,'聚类树状图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Class_To_Bar(To_PyeBase):
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData.T
- y_data = self.y_trainData
- class_ = np.unique(y_data).tolist()#类型
- class_list = []
- for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
- class_list.append(y_data == n_class)
- for num_i in range(len(x_data)):#迭代每一个特征
- i = x_data[num_i]
- i_con = is_continuous(i)
- if i_con and len(i) >= 11:
- c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
- start = i.min()
- end = i.max()
- n = (end - start) / 10#生成10条柱子
- x_axis = []#x轴
- num_startEND = 0#迭代到第n个
- while num_startEND <= 9:#把每个特征分为10类进行迭代
- x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据
- try:
- if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有
- s = (start <= i) == (i < end)#布尔索引
- except:#因为start + n有超出end的风险
- s = (start <= i) == (i <= end)#布尔索引
- # n_data = i[s] # 取得现在的特征数据
- for num in range(len(class_list)):#根据类别进行迭代
- now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
- bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
- c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
- num_startEND += 1
- start += n
- else :
- iter_np = np.unique(i)
- c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
- x_axis = [] # 添加x轴数据
- for i_num in range(len(iter_np)):#迭代每一个i(不重复)
- i_data = iter_np[i_num]
- # n_data= i[i == i_data]#取得现在特征数据
- x_axis.append(f'[{i_data}]')
- for num in range(len(class_list)):# 根据类别进行迭代
- now_class = class_list[num]#取得class_list的布尔数组
- bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
- c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
- c = (
- Bar()
- .add_xaxis(x_axis)
- .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'),
- yaxis_opts=opts.AxisOpts(type_='value')))
- for i in range(len(c_list)):
- c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
- tab.add(c, f'类型-[{num_i}]特征统计柱状图')
- #未完成
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- data = self.x_trainData
- x = [f'横[{i}]' for i in range(len(data))]
- y = [f'纵[{i}]' for i in range(len(data[0]))]
- value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
- print(value)
- c = (HeatMap()
- .add_xaxis(x)
- .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
- min_=float(data.min()),
- pos_right='3%'))#显示
- )
- tab.add(c,'矩阵热力图')
- tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图
- def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs)
- self.Model = Learner.Model
- self.Select_Model = None
- self.have_Fit = Learner.have_Fit
- self.Model_Name = 'Select_Model'
- self.Learner = Learner
- self.x_trainData = Learner.x_trainData
- self.y_trainData = Learner.y_trainData
- self.means = []
- def Fit(self,x_data,*args,**kwargs):
- try:
- self.means = x_data.ravel()
- except:
- pass
- return 'None','None'
- def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- try:#如果没有class
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- #获取数据
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- #可使用自带的means,并且nan表示跳过
- for i in range(min([len(x_means),len(self.means)])):
- try:
- g = self.means[i]
- if g == np.nan:raise Exception
- x_means[i] = g
- except:pass
- print(x_means)
- get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- except:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图
- def Des(self,Dic,*args,**kwargs):
- return super().Des(Dic,Decision_boundary,Prediction_boundary)
- class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More
- def Des(self,Dic,*args,**kwargs):
- return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More)
- class Near_feature_scatter_class_More(To_PyeBase):
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- class_ = np.unique(y).ravel().tolist()
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter_More(To_PyeBase):
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- x_means = make_Cat(x_data).get()[0]
- get_y = Feature_visualization(x_data, '数据散点图') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x散点图')
- heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据
- def Des(self,Dic,*args,**kwargs):
- #获取数据
- class_ = np.unique(self.y_trainData).ravel().tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}临近特征散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData.T
- y = self.y_trainData
- get, x_means, x_range,Type = Training_visualization_NoClass(x_data)
- for i in range(len(get)):
- tab.add(get[i], f'{i}临近特征散点图')
- columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- tab.add(make_Tab(columns,[data]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Feature_scatter_YX(To_PyeBase):#y-x图
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- get, x_means, x_range,Type = regress_visualization(x_data,y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}特征x-y散点图')
- columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- tab.add(make_Tab(columns,[data]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Weight_curve(To_PyeBase):#权重曲线
- def Des(self,Dic,*args,**kwargs):
- w = self.x_trainData
- b = self.y_trainData
- class Line_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Line_Model, self).__init__(*args,**kwargs)
- Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
- model]
- if model == 'Line':
- self.Model = Model()
- self.k = {}
- else:
- self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
- self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
- #记录这两个是为了克隆
- self.Alpha = args_use['alpha']
- self.max_iter = args_use['max_iter']
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- w_list = self.Model.coef_.tolist()
- w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
- b = self.Model.intercept_.tolist()
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(scatter(w_heard,w_list),'系数w散点图')
- tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
- columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
- data = [f'{i}' for i in x_means] + w_list + [b]
- if self.Model_Name != 'Line':
- columns += ['阿尔法','最大迭代次数']
- data += [self.Model.alpha,self.Model.max_iter]
- tab.add(make_Tab(columns,[data]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class LogisticRegression_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(LogisticRegression_Model, self).__init__(*args,**kwargs)
- self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.max_iter = args_use['max_iter']
- self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
- self.Model_Name = model
- def Des(self,Dic='render.html',*args,**kwargs):
- #获取数据
- w_array = self.Model.coef_
- w_list = w_array.tolist() # 变为表格
- b = self.Model.intercept_
- c = self.Model.C
- max_iter = self.Model.max_iter
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
- get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
- for i in range(len(w_list)):
- w = w_list[i]
- w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
- tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
- tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
- columns = class_heard + ['截距b','C','最大迭代数']
- data = class_ + [b,c,max_iter]
- c = Table().add(headers=columns, rows=[data])
- tab.add(c, '数据表')
- c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
- tab.add(c, '系数数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Categorical_Data:#数据统计助手
- def __init__(self):
- self.x_means = []
- self.x_range = []
- self.Type = []
- def __call__(self,x1, *args, **kwargs):
- get = self.is_continuous(x1)
- return get
- def is_continuous(self,x1:np.array):
- try:
- x1_con = is_continuous(x1)
- if x1_con:
- self.x_means.append(np.mean(x1))
- self.add_Range(x1)
- else:
- raise Exception
- return x1_con
- except:#找出出现次数最多的元素
- new = np.unique(x1)#去除相同的元素
- count_list = []
- for i in new:
- count_list.append(np.sum(x1 == i))
- index = count_list.index(max(count_list))#找出最大值的索引
- self.x_means.append(x1[index])
- self.add_Range(x1,False)
- return False
- def add_Range(self,x1:np.array,range_=True):
- try:
- if not range_ : raise Exception
- min_ = int(x1.min()) - 1
- max_ = int(x1.max()) + 1
- #不需要复制列表
- self.x_range.append([min_,max_])
- self.Type.append(1)
- except:
- self.x_range.append(list(set(x1.tolist())))#去除多余元素
- self.Type.append(2)
- def get(self):
- return self.x_means,self.x_range,self.Type
- class Knn_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Knn_Model, self).__init__(*args,**kwargs)
- Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
- self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
- #记录这两个是为了克隆
- self.n_neighbors = args_use['n_neighbors']
- self.p = args_use['p']
- self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- y_test = self.y_testData
- x_test = self.x_testData
- if self.Model_Name == 'Knn_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- if not y_test is None:
- get = Training_visualization(x_test,class_,y_test)[0]
- for i in range(len(get)):
- tab.add(get[i],f'{i}测试数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- get = regress_visualization(x_test, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f'{i}测试数据类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Tree_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Tree_Model, self).__init__(*args,**kwargs)
- Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
- self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.criterion = args_use['criterion']
- self.splitter = args_use['splitter']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- importance = self.Model.feature_importances_.tolist()
- with open(Dic + r"\Tree_Gra.dot", 'w') as f:
- export_graphviz(self.Model, out_file=f)
- make_bar('特征重要性',importance,tab)
- tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
- y = self.y_trainData
- x_data = self.x_trainData
- y_test = self.y_testData
- x_test = self.x_testData
- if self.Model_Name == 'Tree_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Training_visualization(x_test, class_, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f'{i}测试数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
- [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- get = regress_visualization(x_test, y_test)[0]
- for i in range(len(get)):
- tab.add(get[i], f'{i}测试数据类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
- [[f'{i}' for i in x_means] + importance]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Forest_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Forest_Model, self).__init__(*args,**kwargs)
- Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
- self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.n_estimators = args_use['n_Tree']
- self.criterion = args_use['criterion']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- #多个决策树可视化
- for i in range(len(self.Model.estimators_)):
- with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
- export_graphviz(self.Model.estimators_[i], out_file=f)
- tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
- y = self.y_trainData
- x_data = self.x_trainData
- if self.Model_Name == 'Forest_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
- [class_ + [f'{i}' for i in x_means]]), '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
- Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
- self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
- ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
- #记录这两个是为了克隆
- self.criterion = args_use['criterion']
- self.splitter = args_use['splitter']
- self.max_features = args_use['max_features']
- self.max_depth = args_use['max_depth']
- self.min_samples_split = args_use['min_samples_split']
- self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
- 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- #多个决策树可视化
- for a in range(len(self.Model.estimators_)):
- for i in range(len(self.Model.estimators_[a])):
- with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
- export_graphviz(self.Model.estimators_[a][i], out_file=f)
- tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
- y = self.y_trainData
- x_data = self.x_trainData
- if self.Model_Name == 'Tree_class':
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
- [class_ + [f'{i}' for i in x_means]]), '数据表')
- else:
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SVC_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SVC_Model, self).__init__(*args,**kwargs)
- self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.gamma = args_use['gamma']
- self.kernel = args_use['kernel']
- self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
- self.Model_Name = model
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- w_list = self.Model.coef_.tolist()
- b = self.Model.intercept_.tolist()
- class_ = self.Model.classes_.tolist()
- class_heard = [f'类别[{i}]' for i in range(len(class_))]
- y = self.y_trainData
- x_data = self.x_trainData
- get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
- get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
- get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- dic = {2:'离散',1:'连续'}
- tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
- [class_ + [f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SVR_Model(Study_MachineBase):
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SVR_Model, self).__init__(*args,**kwargs)
- self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
- #记录这两个是为了克隆
- self.C = args_use['C']
- self.gamma = args_use['gamma']
- self.kernel = args_use['kernel']
- self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- x_data = self.x_trainData
- y = self.y_trainData
- try:
- w_list = self.Model.coef_.tolist()#未必有这个属性
- b = self.Model.intercept_.tolist()
- U = True
- except:
- U = False
- get, x_means, x_range,Type = regress_visualization(x_data, y)
- if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
- for i in range(len(get)):
- if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
- else:tab.add(get[i], f'{i}预测类型图')
- get = Prediction_boundary(x_range, x_means, self.Predict, Type)
- for i in range(len(get)):
- tab.add(get[i], f'{i}预测热力图')
- tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Variance_Model(Unsupervised):#无监督
- def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
- super(Variance_Model, self).__init__(*args,**kwargs)
- self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
- #记录这两个是为了克隆
- self.threshold = args_use['P']
- self.k = {'threshold':args_use['P']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- var = self.Model.variances_#标准差
- y_data = self.y_trainData
- if type(y_data) is np.ndarray:
- get = Feature_visualization(self.y_trainData)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]数据x-x散点图')
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(var))])
- .add_yaxis('标准差', var.tolist(), **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c,'数据标准差')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SelectKBest_Model(prep_Base):#无监督
- def __init__(self, args_use, model, *args, **kwargs):
- super(SelectKBest_Model, self).__init__(*args, **kwargs)
- self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
- # 记录这两个是为了克隆
- self.k_ = args_use['k']
- self.score_func=args_use['score_func']
- self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- score = self.Model.scores_.tolist()
- support = self.Model.get_support()
- y_data = self.y_trainData
- x_data = self.x_trainData
- if type(x_data) is np.ndarray:
- get = Feature_visualization(x_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]数据x-x散点图')
- if type(y_data) is np.ndarray:
- get = Feature_visualization(y_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]保留数据x-x散点图')
- Choose = []
- UnChoose = []
- for i in range(len(score)):
- if support[i]:
- Choose.append(score[i])
- UnChoose.append(0)#占位
- else:
- UnChoose.append(score[i])
- Choose.append(0)
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(score))])
- .add_yaxis('选中特征', Choose, **Label_Set)
- .add_yaxis('抛弃特征', UnChoose, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c,'单变量重要程度')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class SelectFrom_Model(prep_Base):#无监督
- def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
- super(SelectFrom_Model, self).__init__(*args, **kwargs)
- self.Model = Learner.Model
- self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
- self.max_features = args_use['k']
- self.estimator=Learner.Model
- self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
- self.have_Fit = Learner.have_Fit
- self.Model_Name = 'SelectFrom_Model'
- def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.Select_Model.fit(x_data, y_data)
- return 'None', 'None'
- return 'NONE','NONE'
- def Predict(self, x_data, *args, **kwargs):
- try:
- self.x_trainData = x_data
- x_Predict = self.Select_Model.transform(x_data)
- self.y_trainData = x_Predict
- print(self.y_trainData)
- print(self.x_trainData)
- return x_Predict,'模型特征工程'
- except:
- return np.array([]),'无结果工程'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- support = self.Select_Model.get_support()
- y_data = self.y_trainData
- x_data = self.x_trainData
- if type(x_data) is np.ndarray:
- get = Feature_visualization(x_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]数据x-x散点图')
- if type(y_data) is np.ndarray:
- get = Feature_visualization(y_data)
- for i in range(len(get)):
- tab.add(get[i],f'[{i}]保留数据x-x散点图')
- def make_Bar(score):
- Choose = []
- UnChoose = []
- for i in range(len(score)):
- if support[i]:
- Choose.append(abs(score[i]))
- UnChoose.append(0) # 占位
- else:
- UnChoose.append(abs(score[i]))
- Choose.append(0)
- c = (
- Bar()
- .add_xaxis([f'[{i}]特征' for i in range(len(score))])
- .add_yaxis('选中特征', Choose, **Label_Set)
- .add_yaxis('抛弃特征', UnChoose, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
- )
- tab.add(c,'单变量重要程度')
- try:
- make_Bar(self.Model.coef_)
- except:
- try:
- make_Bar(self.Model.feature_importances_)
- except:pass
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Standardization_Model(Unsupervised):#z-score标准化 无监督
- def __init__(self, args_use, model, *args, **kwargs):
- super(Standardization_Model, self).__init__(*args, **kwargs)
- self.Model = StandardScaler()
- self.k = {}
- self.Model_Name = 'StandardScaler'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- var = self.Model.var_.tolist()
- means = self.Model.mean_.tolist()
- scale = self.Model.scale_.tolist()
- Conversion_control(y_data,x_data,tab)
- make_bar('标准差',var,tab)
- make_bar('方差',means,tab)
- make_bar('Scale',scale,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class MinMaxScaler_Model(Unsupervised):#离差标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
- self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
- self.k = {}
- self.Model_Name = 'MinMaxScaler'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- scale = self.Model.scale_.tolist()
- max_ = self.Model.data_max_.tolist()
- min_ = self.Model.data_min_.tolist()
- Conversion_control(y_data,x_data,tab)
- make_bar('Scale',scale,tab)
- tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
- row=[max_ + min_]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class LogScaler_Model(prep_Base):#对数标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(LogScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'LogScaler'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max_logx = np.log(x_data.max())
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- try:
- max_logx = self.max_logx
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max_logx = self.max_logx
- self.x_trainData = x_data.copy()
- x_Predict = (np.log(x_data)/max_logx)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'对数变换'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class atanScaler_Model(prep_Base):#atan标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(atanScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'atanScaler'
- def Fit(self, x_data, *args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = (np.arctan(x_data)*(2/np.pi))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'atan变换'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class decimalScaler_Model(prep_Base):#小数定标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(decimalScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'Decimal_normalization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- try:
- j = self.j
- except:
- self.have_Fit = False
- self.Fit(x_data)
- j = self.j
- x_Predict = (x_data/(10**j))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'小数定标标准化'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- j = self.j
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Mapzoom_Model(prep_Base):#映射标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Mapzoom_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.feature_range = args_use['feature_range']
- self.k = {}
- self.Model_Name = 'Decimal_normalization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max = x_data.max()
- self.min = x_data.min()
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- try:
- max = self.max
- min = self.min
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max = self.max
- min = self.min
- x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'映射标准化'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- max = self.max
- min = self.min
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class sigmodScaler_Model(prep_Base):#sigmod变换
- def __init__(self, args_use, model, *args, **kwargs):
- super(sigmodScaler_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.k = {}
- self.Model_Name = 'sigmodScaler_Model'
- def Fit(self, x_data, *args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data:np.array):
- self.x_trainData = x_data.copy()
- x_Predict = (1/(1+np.exp(-x_data)))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'Sigmod变换'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
- self.Model = None
- self.feature_range = args_use['feature_range']
- self.k = {}
- self.Model_Name = 'Fuzzy_quantization'
- def Fit(self, x_data, *args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- self.max = x_data.max()
- self.min = x_data.min()
- return 'None', 'None'
- def Predict(self, x_data,*args,**kwargs):
- self.y_trainData = x_data.copy()
- try:
- max = self.max
- min = self.min
- except:
- self.have_Fit = False
- self.Fit(x_data)
- max = self.max
- min = self.min
- x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
- self.y_trainData = x_Predict.copy()
- return x_Predict,'映射标准化'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- max = self.max
- min = self.min
- Conversion_control(y_data,x_data,tab)
- tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Regularization_Model(Unsupervised):#正则化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Regularization_Model, self).__init__(*args, **kwargs)
- self.Model = Normalizer(norm=args_use['norm'])
- self.k = {'norm':args_use['norm']}
- self.Model_Name = 'Regularization'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- #离散数据
- class Binarizer_Model(Unsupervised):#二值化
- def __init__(self, args_use, model, *args, **kwargs):
- super(Binarizer_Model, self).__init__(*args, **kwargs)
- self.Model = Binarizer(threshold=args_use['threshold'])
- self.k = {}
- self.Model_Name = 'Binarizer'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
- for i in range(len(get_y)):
- tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Discretization_Model(prep_Base):#n值离散
- def __init__(self, args_use, model, *args, **kwargs):
- super(Discretization_Model, self).__init__(*args, **kwargs)
- self.Model = None
- range_ = args_use['split_range']
- if range_ == []:raise Exception
- elif len(range_) == 1:range_.append(range_[0])
- self.range = range_
- self.k = {}
- self.Model_Name = 'Discretization'
- def Fit(self,*args,**kwargs):
- return 'None','None'
- def Predict(self,x_data):
- self.x_trainData = x_data.copy()
- x_Predict = x_data.copy()#复制
- range_ = self.range
- bool_list = []
- max_ = len(range_) - 1
- o_t = None
- for i in range(len(range_)):
- try:
- t = float(range_[i])
- except:continue
- if o_t == None:#第一个参数
- bool_list.append(x_Predict <= t)
- else:
- bool_list.append((o_t <= x_Predict) == (x_Predict < t))
- if i == max_:
- bool_list.append(t <= x_Predict)
- o_t = t
- for i in range(len(bool_list)):
- x_Predict[bool_list[i]] = i
- self.y_trainData = x_Predict.copy()
- return x_Predict,f'{len(bool_list)}值离散化'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Label_Model(prep_Base):#数字编码
- def __init__(self, args_use, model, *args, **kwargs):
- super(Label_Model, self).__init__(*args, **kwargs)
- self.Model = []
- self.k = {}
- self.Model_Name = 'LabelEncoder'
- def Fit(self,x_data,*args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- if x_data.ndim == 1:x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- x_Predict = x_data.copy()
- if x_data.ndim == 1: x_data = np.array([x_data])
- for i in range(x_data.shape[1]):
- x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
- self.y_trainData = x_Predict.copy()
- return x_Predict,'数字编码'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class OneHotEncoder_Model(prep_Base):#独热编码
- def __init__(self, args_use, model, *args, **kwargs):
- super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
- self.Model = []
- self.ndim_up = args_use['ndim_up']
- self.k = {}
- self.Model_Name = 'OneHotEncoder'
- def Fit(self,x_data,*args, **kwargs):
- if not self.have_Fit: # 不允许第二次训练
- if x_data.ndim == 1:x_data = [x_data]
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
- self.Model.append(OneHotEncoder().fit(data))#训练机器
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_new = []
- for i in range(x_data.shape[1]):
- data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
- oneHot = self.Model[i].transform(data).toarray().tolist()
- x_new.append(oneHot)#添加到列表中
- x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
- x_Predict = []
- for i in range(x_new.shape[1]):
- x_Predict.append(x_new[:,i])
- x_Predict = np.array(x_Predict)#转换回array
- if not self.ndim_up:#压缩操作
- new_xPredict = []
- for i in x_Predict:
- new_list = []
- list_ = i.tolist()
- for a in list_:
- new_list += a
- new = np.array(new_list)
- new_xPredict.append(new)
- self.y_trainData = x_Predict.copy()
- return np.array(new_xPredict),'独热编码'
- #不保存y_trainData
- return x_Predict,'独热编码'#不需要降维
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
- for i in range(len(get_y)):
- tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Missed_Model(Unsupervised):#缺失数据补充
- def __init__(self, args_use, model, *args, **kwargs):
- super(Missed_Model, self).__init__(*args, **kwargs)
- self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
- fill_value=args_use['fill_value'])
- self.k = {}
- self.Model_Name = 'Missed'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'填充缺失'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_control(y_data,x_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class PCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(PCA_Model, self).__init__(*args, **kwargs)
- self.Model = PCA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 'PCA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'PCA'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- importance = self.Model.components_.tolist()
- var = self.Model.explained_variance_.tolist()#方量差
- Conversion_Separate_Format(y_data,tab)
- x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
- y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
- value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
- c = (HeatMap()
- .add_xaxis(x_data)
- .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
- min_=int(self.Model.components_.min()),
- pos_right='3%')) # 显示
- )
- tab.add(c,'成分热力图')
- c = (
- Bar()
- .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
- .add_yaxis('放量差', var, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
- )
- tab.add(c, '方量差柱状图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class RPCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(RPCA_Model, self).__init__(*args, **kwargs)
- self.Model = IncrementalPCA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components': args_use['n_components']}
- self.Model_Name = 'RPCA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'RPCA'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- importance = self.Model.components_.tolist()
- var = self.Model.explained_variance_.tolist() # 方量差
- Conversion_Separate_Format(y_data, tab)
- x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
- y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
- value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
- range(len(importance[i]))]
- c = (HeatMap()
- .add_xaxis(x_data)
- .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True),
- visualmap_opts=opts.VisualMapOpts(is_show=True,
- max_=int(self.Model.components_.max()) + 1,
- min_=int(self.Model.components_.min()),
- pos_right='3%')) # 显示
- )
- tab.add(c, '成分热力图')
- c = (
- Bar()
- .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
- .add_yaxis('放量差', var, **Label_Set)
- .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
- )
- tab.add(c, '方量差柱状图')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class KPCA_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(KPCA_Model, self).__init__(*args, **kwargs)
- self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
- self.n_components = args_use['n_components']
- self.kernel = args_use['kernel']
- self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
- self.Model_Name = 'KPCA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'KPCA'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y_data = self.y_trainData
- Conversion_Separate_Format(y_data, tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class LDA_Model(prep_Base):#有监督学习
- def __init__(self, args_use, model, *args, **kwargs):
- super(LDA_Model, self).__init__(*args, **kwargs)
- self.Model = LDA(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components': args_use['n_components']}
- self.Model_Name = 'LDA'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'LDA'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- Conversion_Separate_Format(y_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class NMF_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(NMF_Model, self).__init__(*args, **kwargs)
- self.Model = NMF(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 'NFM'
- self.h_trainData = None
- #x_trainData保存的是W,h_trainData和y_trainData是后来数据
- def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.transform(x_data)
- self.y_trainData = x_Predict.copy()
- self.h_trainData = self.Model.components_
- if Add_Func != None and x_name != '':
- Add_Func(self.h_trainData, f'{x_name}:V->NMF[H]')
- return x_Predict,'V->NMF[W]'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- x_data = self.x_trainData
- h_data = self.h_trainData
- Conversion_SeparateWH(y_data,h_data,tab)
- wh_data = np.matmul(y_data, h_data)
- difference_data = x_data - wh_data
- def make_HeatMap(data,name,max_,min_):
- x = [f'数据[{i}]' for i in range(len(data))] # 主成分
- y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
- value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
- c = (HeatMap()
- .add_xaxis(x)
- .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
- min_=min_,
- pos_right='3%'))#显示
- )
- tab.add(c,name)
- max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
- min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
- make_HeatMap(x_data,'原始数据热力图',max_,min_)
- make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
- make_HeatMap(difference_data,'数据差热力图',max_,min_)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class TSNE_Model(Unsupervised):
- def __init__(self, args_use, model, *args, **kwargs):
- super(TSNE_Model, self).__init__(*args, **kwargs)
- self.Model = TSNE(n_components=args_use['n_components'])
- self.n_components = args_use['n_components']
- self.k = {'n_components':args_use['n_components']}
- self.Model_Name = 't-SNE'
- def Fit(self,*args, **kwargs):
- return 'None', 'None'
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data.copy()
- x_Predict = self.Model.fit_transform(x_data)
- self.y_trainData = x_Predict.copy()
- return x_Predict,'SNE'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y_data = self.y_trainData
- Conversion_Separate_Format(y_data,tab)
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
- def __init__(self,args_use,model,*args,**kwargs):
- super(MLP_Model, self).__init__(*args,**kwargs)
- Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
- self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
- solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
- #记录这两个是为了克隆
- self.hidden_layer_sizes = args_use['hidden_size']
- self.activation = args_use['activation']
- self.max_iter = args_use['max_iter']
- self.solver = args_use['solver']
- self.alpha = args_use['alpha']
- self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
- 'solver':args_use['solver'],'alpha':args_use['alpha']}
- self.Model_Name = model
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- coefs = self.Model.coefs_
- def make_HeatMap(data,name):
- x = [f'特征(节点)[{i}]' for i in range(len(data))] # 主成分
- y = [f'节点[{i}]' for i in range(len(data[0]))] # 主成分
- value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
- c = (HeatMap()
- .add_xaxis(x)
- .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
- .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
- yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
- xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
- visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
- min_=float(data.min()),
- pos_right='3%'))#显示
- )
- tab.add(c,name)
- tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
- heard = ['神经网络层数']
- data = [self.Model.n_layers_]
- for i in range(len(coefs)):
- make_HeatMap(coefs[i],f'{i}层权重矩阵')
- heard.append(f'第{i}层节点数')
- data.append(len(coefs[i][0]))
- if self.Model_Name == 'MLP_class':
- heard += [f'[{i}]类型' for i in range(len(self.Model.classes_))]
- data += self.Model.classes_.tolist()
- tab.add(make_Tab(heard,[data]),'数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class kmeans_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(kmeans_Model, self).__init__(*args, **kwargs)
- self.Model = KMeans(n_clusters=args_use['n_clusters'])
- self.class_ = []
- self.n_clusters = args_use['n_clusters']
- self.k = {'n_clusters':args_use['n_clusters']}
- self.Model_Name = 'k-means'
- def Fit(self, x_data, *args, **kwargs):
- re = super().Fit(x_data,*args,**kwargs)
- self.class_ = list(set(self.Model.labels_.tolist()))
- return re
- def Predict(self, x_data, *args, **kwargs):
- self.x_trainData = x_data
- y_Predict = self.Model.predict(x_data)
- self.y_trainData = y_Predict
- return y_Predict,'k-means'
- def Des(self,Dic,*args,**kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = self.class_
- center = self.Model.cluster_centers_
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get,x_means,x_range,Type = Training_visualization_More(x_data,class_,y,center)
- for i in range(len(get)):
- tab.add(get[i],f'{i}训练数据散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Agglomerative_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(Agglomerative_Model, self).__init__(*args, **kwargs)
- self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
- self.class_ = []
- self.n_clusters = args_use['n_clusters']
- self.k = {'n_clusters':args_use['n_clusters']}
- self.Model_Name = 'Agglomerative'
- def Fit(self, x_data, *args, **kwargs):
- re = super().Fit(x_data,*args,**kwargs)
- self.class_ = list(set(self.Model.labels_.tolist()))
- return re
- def Predict(self, x_data, *args, **kwargs):
- y_Predict = self.Model.fit_predict(x_data)
- self.y_trainData = y_Predict
- return y_Predict,'Agglomerative'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = self.class_
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- linkage_array = ward(self.x_trainData)#self.y_trainData是结果
- dendrogram(linkage_array)
- plt.savefig(Dic + r'/Cluster_graph.png')
- image = Image()
- image.add(
- src=Dic + r'/Cluster_graph.png',
- ).set_global_opts(
- title_opts=opts.ComponentTitleOpts(title="聚类树状图")
- )
- tab.add(image,'聚类树状图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class DBSCAN_Model(UnsupervisedModel):
- def __init__(self, args_use, model, *args, **kwargs):
- super(DBSCAN_Model, self).__init__(*args, **kwargs)
- self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
- #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
- # min_samples
- self.eps = args_use['eps']
- self.min_samples = args_use['min_samples']
- self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
- self.class_ = []
- self.Model_Name = 'DBSCAN'
- def Fit(self, x_data, *args, **kwargs):
- re = super().Fit(x_data,*args,**kwargs)
- self.class_ = list(set(self.Model.labels_.tolist()))
- return re
- def Predict(self, x_data, *args, **kwargs):
- y_Predict = self.Model.fit_predict(x_data)
- self.y_trainData = y_Predict
- return y_Predict,'DBSCAN'
- def Des(self, Dic, *args, **kwargs):
- tab = Tab()
- y = self.y_trainData
- x_data = self.x_trainData
- class_ = self.class_
- class_heard = [f'簇[{i}]' for i in range(len(class_))]
- get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
- for i in range(len(get)):
- tab.add(get[i], f'{i}训练数据散点图')
- heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
- data = class_ + [f'{i}' for i in x_means]
- c = Table().add(headers=heard, rows=[data])
- tab.add(c, '数据表')
- save = Dic + r'/render.HTML'
- tab.render(save) # 生成HTML
- return save,
- class Machine_Learner(Learner):#数据处理者
- def __init__(self,*args, **kwargs):
- super().__init__(*args, **kwargs)
- self.Learner = {}#记录机器
- self.Learn_Dic = {'Line':Line_Model,
- 'Ridge':Line_Model,
- 'Lasso':Line_Model,
- 'LogisticRegression':LogisticRegression_Model,
- 'Knn_class':Knn_Model,
- 'Knn': Knn_Model,
- 'Tree_class': Tree_Model,
- 'Tree': Tree_Model,
- 'Forest':Forest_Model,
- 'Forest_class': Forest_Model,
- 'GradientTree_class':GradientTree_Model,
- 'GradientTree': GradientTree_Model,
- 'Variance':Variance_Model,
- 'SelectKBest':SelectKBest_Model,
- 'Z-Score':Standardization_Model,
- 'MinMaxScaler':MinMaxScaler_Model,
- 'LogScaler':LogScaler_Model,
- 'atanScaler':atanScaler_Model,
- 'decimalScaler':decimalScaler_Model,
- 'sigmodScaler':sigmodScaler_Model,
- 'Mapzoom':Mapzoom_Model,
- 'Fuzzy_quantization':Fuzzy_quantization_Model,
- 'Regularization':Regularization_Model,
- 'Binarizer':Binarizer_Model,
- 'Discretization':Discretization_Model,
- 'Label':Label_Model,
- 'OneHotEncoder':OneHotEncoder_Model,
- 'Missed':Missed_Model,
- 'PCA':PCA_Model,
- 'RPCA':RPCA_Model,
- 'KPCA':KPCA_Model,
- 'LDA':LDA_Model,
- 'SVC':SVC_Model,
- 'SVR':SVR_Model,
- 'MLP':MLP_Model,
- 'MLP_class': MLP_Model,
- 'NMF':NMF_Model,
- 't-SNE':TSNE_Model,
- 'k-means':kmeans_Model,
- 'Agglomerative':Agglomerative_Model,
- 'DBSCAN':DBSCAN_Model,
- 'ClassBar':Class_To_Bar,
- 'FeatureScatter':Near_feature_scatter,
- 'FeatureScatterClass': Near_feature_scatter_class,
- 'FeatureScatter_all':Near_feature_scatter_More,
- 'FeatureScatterClass_all':Near_feature_scatter_class_More,
- 'HeatMap':Numpy_To_HeatMap,
- 'FeatureY-X':Feature_scatter_YX,
- 'ClusterTree':Cluster_Tree,
- 'MatrixScatter':MatrixScatter,
- }
- self.Learner_Type = {}#记录机器的类型
- def p_Args(self,Text,Type):#解析参数
- args = {}
- args_use = {}
- #输入数据
- exec(Text,args)
- #处理数据
- if Type in ('MLP','MLP_class'):
- args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
- else:
- args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
- args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
- if Type in ('MLP','MLP_class'):
- args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
- else:
- args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
- args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
- args_use['p'] = int(args.get('p', 2)) # 距离计算方式
- args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
- if Type in ('Tree','Forest','GradientTree'):
- args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
- else:
- args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
- args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
- args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
- args_use['max_depth'] = args.get('max_depth', None) # 最大深度
- args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
- args_use['P'] = float(args.get('min_samples_split', 0.8))
- args_use['k'] = args.get('k',1)
- args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
- 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
- get(args.get('score_func','f_classif'),f_classif))
- args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
- args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
- args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
- args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
- args_use['ndim_up'] = bool(args.get('ndim_up', True))
- args_use['miss_value'] = args.get('miss_value',np.nan)
- args_use['fill_method'] = args.get('fill_method','mean')
- args_use['fill_value'] = args.get('fill_value',None)
- args_use['n_components'] = args.get('n_components',1)
- args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
- args_use['n_Tree'] = args.get('n_Tree',100)
- args_use['gamma'] = args.get('gamma',1)
- args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
- args_use['activation'] = str(args.get('activation','relu'))
- args_use['solver'] = str(args.get('solver','adam'))
- if Type in ('k-means',):
- args_use['n_clusters'] = int(args.get('n_clusters',8))
- else:
- args_use['n_clusters'] = int(args.get('n_clusters', 2))
- args_use['eps'] = float(args.get('n_clusters', 0.5))
- args_use['min_samples'] = int(args.get('n_clusters', 5))
- return args_use
- def Add_Learner(self,Learner,Text=''):
- get = self.Learn_Dic[Learner]
- name = f'Le[{len(self.Learner)}]{Learner}'
- #参数调节
- args_use = self.p_Args(Text,Learner)
- #生成学习器
- self.Learner[name] = get(model=Learner,args_use=args_use)
- self.Learner_Type[name] = Learner
- def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
- model = self.get_Learner(Learner)
- name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
- #参数调节
- args_use = self.p_Args(Text,'SelectFrom_Model')
- #生成学习器
- self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
- self.Learner_Type[name] = 'SelectFrom_Model'
- def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器
- model = self.get_Learner(Learner)
- name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
- #生成学习器
- args_use = self.p_Args(Text, 'Predictive_HeatMap')
- self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use)
- self.Learner_Type[name] = 'Predictive_HeatMap'
- def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器
- model = self.get_Learner(Learner)
- name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
- #生成学习器
- args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
- self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use)
- self.Learner_Type[name] = 'Predictive_HeatMap_More'
- def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器
- model = self.get_Learner(Learner)
- name = f'Le[{len(self.Learner)}]View_data:{Learner}'
- #生成学习器
- args_use = self.p_Args(Text, 'View_data')
- self.Learner[name] = View_data(Learner=model,args_use=args_use)
- self.Learner_Type[name] = 'View_data'
- def Return_Learner(self):
- return self.Learner.copy()
- def get_Learner(self,name):
- return self.Learner[name]
- def get_Learner_Type(self,name):
- return self.Learner_Type[name]
- def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
- x_data = self.get_Sheet(x_name)
- y_data = self.get_Sheet(y_name)
- model = self.get_Learner(Learner)
- return model.Fit(x_data,y_data,split)
- def Predict(self,x_name,Learner,Text='',**kwargs):
- x_data = self.get_Sheet(x_name)
- model = self.get_Learner(Learner)
- y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form)
- self.Add_Form(y_data,f'{x_name}:{name}')
- return y_data
- def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
- model = self.get_Learner(Learner)
- x = self.get_Sheet(name_x)
- y = self.get_Sheet(name_y)
- return model.Score(x,y)
- def Show_Args(self,Learner,Dic):#显示参数
- model = self.get_Learner(Learner)
- return model.Des(Dic)
- def Del_Leaner(self,Leaner):
- del self.Learner[Leaner]
- del self.Learner_Type[Leaner]
|