Learn_Numpy.py 125 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086
  1. from pyecharts.components import Table as Table_Fisrt#绘制表格
  2. from pyecharts.components import Image
  3. from pyecharts import options as opts
  4. from random import randint
  5. from pyecharts.charts import *
  6. from pyecharts.options.series_options import JsCode
  7. from scipy.cluster.hierarchy import dendrogram, ward
  8. import matplotlib.pyplot as plt
  9. from pandas import DataFrame,read_csv
  10. import numpy as np
  11. import re
  12. from sklearn.model_selection import train_test_split
  13. from sklearn.linear_model import *
  14. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  15. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
  16. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  17. GradientBoostingRegressor)
  18. from sklearn.metrics import accuracy_score
  19. from sklearn.feature_selection import *
  20. from sklearn.preprocessing import *
  21. from sklearn.impute import SimpleImputer
  22. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  23. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  24. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  25. from sklearn.neural_network import MLPClassifier,MLPRegressor
  26. from sklearn.manifold import TSNE
  27. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  28. from pyecharts.charts import *
  29. # import sklearn as sk
  30. #设置
  31. np.set_printoptions(threshold=np.inf)
  32. global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
  33. global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
  34. Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
  35. class Table(Table_Fisrt):
  36. def add(self, headers, rows, attributes = None):
  37. if len(rows) == 1:
  38. new_headers = ['数据类型','数据']
  39. new_rows = list(zip(headers,rows[0]))
  40. return super().add(new_headers,new_rows,attributes)
  41. else:
  42. return super().add(headers, rows, attributes)
  43. def make_list(first,end,num=35):
  44. n = num / (end - first)
  45. if n == 0: n = 1
  46. re = []
  47. n_first = first * n
  48. n_end = end * n
  49. while n_first <= n_end:
  50. cul = n_first / n
  51. re.append(round(cul,2))
  52. n_first += 1
  53. return re
  54. def list_filter(list_,num=70):
  55. #假设列表已经不重复
  56. if len(list_) <= num:return list_
  57. n = int(num / len(list_))
  58. re = list_[::n]
  59. return re
  60. def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  61. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  62. # a-特征x,b-特征x-1,c-其他特征
  63. o_cList = []
  64. if len(x_means) == 1:
  65. return Prediction_boundary(x_range,x_means,Predict_Func,Type)
  66. for i in range(len(x_means)):
  67. for j in range(len(x_means)):
  68. if j <= i:continue
  69. n_ra = x_range[j]
  70. Type_ra = Type[j]
  71. n_rb = x_range[i]
  72. Type_rb = Type[i]
  73. if Type_ra == 1:
  74. ra = make_list(n_ra[0],n_ra[1],70)
  75. else:
  76. ra = list_filter(n_ra)#可以接受最大为70
  77. if Type_rb == 1:
  78. rb = make_list(n_rb[0],n_rb[1],35)
  79. else:
  80. rb = list_filter(n_rb)#可以接受最大为70
  81. a = np.array([i for i in ra for _ in rb]).T
  82. b = np.array([i for _ in ra for i in rb]).T
  83. data = np.array([x_means for _ in ra for i in rb])
  84. data[:, j] = a
  85. data[:, i] = b
  86. y_data = Predict_Func(data)[0].tolist()
  87. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  88. c = (HeatMap()
  89. .add_xaxis(np.unique(a))
  90. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  91. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  92. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  93. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  94. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  95. pos_right='3%'))#显示
  96. )
  97. o_cList.append(c)
  98. return o_cList
  99. def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
  100. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
  101. # a-特征x,b-特征x-1,c-其他特征
  102. o_cList = []
  103. if len(x_means) == 1:
  104. return o_cList
  105. for i in range(len(x_means)):
  106. if i == 0:
  107. continue
  108. n_ra = x_range[i - 1]
  109. Type_ra = Type[i - 1]
  110. n_rb = x_range[i]
  111. Type_rb = Type[i]
  112. if Type_ra == 1:
  113. ra = make_list(n_ra[0],n_ra[1],70)
  114. else:
  115. ra = list_filter(n_ra)#可以接受最大为70
  116. if Type_rb == 1:
  117. rb = make_list(n_rb[0],n_rb[1],35)
  118. else:
  119. rb = list_filter(n_rb)#可以接受最大为70
  120. a = np.array([i for i in ra for _ in rb]).T
  121. b = np.array([i for _ in ra for i in rb]).T
  122. data = np.array([x_means for _ in ra for i in rb])
  123. data[:, i - 1] = a
  124. data[:, i] = b
  125. y_data = Predict_Func(data)[0].tolist()
  126. value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
  127. c = (HeatMap()
  128. .add_xaxis(np.unique(a))
  129. .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
  130. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  131. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  132. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  133. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
  134. pos_right='3%'))#显示
  135. )
  136. o_cList.append(c)
  137. return o_cList
  138. def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  139. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  140. # a-特征x,b-特征x-1,c-其他特征
  141. #规定,i-1是x轴,a是x轴,x_1是x轴
  142. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  143. if not nono:
  144. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  145. else:v_dict = []
  146. for i in class_dict:
  147. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  148. o_cList = []
  149. if len(x_means) == 1:
  150. n_ra = x_range[0]
  151. if Type[0] == 1:
  152. ra = make_list(n_ra[0], n_ra[1], 70)
  153. else:
  154. ra = n_ra
  155. a = np.array([i for i in ra]).reshape(-1,1)
  156. y_data = Predict_Func(a)[0].tolist()
  157. value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
  158. c = (HeatMap()
  159. .add_xaxis(['None'])
  160. .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
  161. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  162. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  163. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  164. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
  165. min_=-1,
  166. is_piecewise=True, pieces=v_dict,
  167. orient='horizontal', pos_bottom='3%'))
  168. )
  169. o_cList.append(c)
  170. return o_cList
  171. #如果x_means长度不等于1则执行下面
  172. for i in range(len(x_means)):
  173. if i == 0:
  174. continue
  175. n_ra = x_range[i-1]
  176. Type_ra = Type[i-1]
  177. n_rb = x_range[i]
  178. Type_rb = Type[i]
  179. if Type_ra == 1:
  180. ra = make_list(n_ra[0],n_ra[1],70)
  181. else:
  182. ra = n_ra
  183. if Type_rb == 1:
  184. rb = make_list(n_rb[0],n_rb[1],35)
  185. else:
  186. rb = n_rb
  187. a = np.array([i for i in ra for _ in rb]).T
  188. b = np.array([i for _ in ra for i in rb]).T
  189. data = np.array([x_means for _ in ra for i in rb])
  190. data[:, i - 1] = a
  191. data[:, i] = b
  192. y_data = Predict_Func(data)[0].tolist()
  193. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  194. c = (HeatMap()
  195. .add_xaxis(np.unique(a))
  196. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  197. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  198. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  199. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  200. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  201. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  202. )
  203. o_cList.append(c)
  204. return o_cList
  205. def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
  206. #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
  207. # a-特征x,b-特征x-1,c-其他特征
  208. #规定,i-1是x轴,a是x轴,x_1是x轴
  209. class_dict = dict(zip(class_,[i for i in range(len(class_))]))
  210. if not nono:
  211. v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
  212. else:v_dict = []
  213. for i in class_dict:
  214. v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
  215. o_cList = []
  216. if len(x_means) == 1:
  217. return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono)
  218. #如果x_means长度不等于1则执行下面
  219. for i in range(len(x_means)):
  220. for j in range(len(x_means)):
  221. if j <= i:continue
  222. n_ra = x_range[j]
  223. Type_ra = Type[j]
  224. n_rb = x_range[i]
  225. Type_rb = Type[i]
  226. if Type_ra == 1:
  227. ra = make_list(n_ra[0],n_ra[1],70)
  228. else:
  229. ra = n_ra
  230. if Type_rb == 1:
  231. rb = make_list(n_rb[0],n_rb[1],35)
  232. else:
  233. rb = n_rb
  234. a = np.array([i for i in ra for _ in rb]).T
  235. b = np.array([i for _ in ra for i in rb]).T
  236. data = np.array([x_means for _ in ra for i in rb])
  237. data[:, j] = a
  238. data[:, i] = b
  239. y_data = Predict_Func(data)[0].tolist()
  240. value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
  241. c = (HeatMap()
  242. .add_xaxis(np.unique(a))
  243. .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
  244. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  245. yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
  246. xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
  247. visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
  248. is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
  249. )
  250. o_cList.append(c)
  251. return o_cList
  252. def SeeTree(Dic):
  253. node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
  254. link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
  255. node_Dict = {}
  256. link_list = []
  257. with open(Dic, 'r') as f: # 貌似必须分开w和r
  258. for i in f:
  259. try:
  260. get = re.findall(node_re, i)[0]
  261. if get[0] != '':
  262. try:
  263. v = float(get[0])
  264. except:
  265. v = 0
  266. node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
  267. continue
  268. except:
  269. pass
  270. try:
  271. get = re.findall(link_re, i)[0]
  272. if get[0] != '' and get[1] != '':
  273. link_list.append((get[0], get[1]))
  274. except:
  275. pass
  276. father_list = [] # 已经有父亲的list
  277. for i in link_list:
  278. father = i[0] # 父节点
  279. son = i[1] # 子节点
  280. try:
  281. node_Dict[father]['children'].append(node_Dict[son])
  282. father_list.append(son)
  283. if int(son) == 0: print('F')
  284. except:
  285. pass
  286. father = list(set(node_Dict.keys()) - set(father_list))
  287. c = (
  288. Tree()
  289. .add("", [node_Dict[father[0]]], is_roam=True)
  290. .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
  291. toolbox_opts=opts.ToolboxOpts(is_show=True))
  292. )
  293. return c
  294. def make_Tab(heard,row):
  295. return Table().add(headers=heard, rows=row)
  296. def scatter(w_heard,w):
  297. c = (
  298. Scatter()
  299. .add_xaxis(w_heard)
  300. .add_yaxis('', w, **Label_Set)
  301. .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
  302. )
  303. return c
  304. def bar(w_heard,w):
  305. c = (
  306. Bar()
  307. .add_xaxis(w_heard)
  308. .add_yaxis('', abs(w).tolist(), **Label_Set)
  309. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  310. )
  311. return c
  312. # def line(w_sum,w,b):
  313. # x = np.arange(-5, 5, 1)
  314. # c = (
  315. # Line()
  316. # .add_xaxis(x.tolist())
  317. # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  318. # )
  319. # for i in range(len(w)):
  320. # y = x * w[i] + b
  321. # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
  322. # return c
  323. def see_Line(x_trainData,y_trainData,w,w_sum,b):
  324. y = y_trainData.tolist()
  325. x_data = x_trainData.T
  326. re = []
  327. for i in range(len(x_data)):
  328. x = x_data[i]
  329. p = int(x.max() - x.min()) / 5
  330. x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
  331. y_num = x_num * w[i] + (w[i] / w_sum) * b
  332. c = (
  333. Line()
  334. .add_xaxis(x_num.tolist())
  335. .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
  336. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
  337. )
  338. t = (
  339. Scatter()
  340. .add_xaxis(x.tolist())
  341. .add_yaxis(f'{i}特征', y, **Label_Set)
  342. .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
  343. )
  344. t.overlap(c)
  345. re.append(t)
  346. return re
  347. def get_Color():
  348. # 随机颜色,雷达图默认非随机颜色
  349. rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
  350. color = '#'
  351. for a in rgb:
  352. color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
  353. return color
  354. def is_continuous(data:np.array,f:float=0.1):
  355. data = data.tolist()
  356. l = np.unique(data).tolist()
  357. try:
  358. re = len(l)/len(data)>=f or len(data) <= 3
  359. return re
  360. except:return False
  361. def make_Cat(x_data):
  362. Cat = Categorical_Data()
  363. for i in range(len(x_data)):
  364. x1 = x_data[i] # x坐标
  365. Cat(x1)
  366. return Cat
  367. def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  368. x_data = x_trainData.T
  369. if len(x_data) == 1:
  370. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  371. Cat = make_Cat(x_data)
  372. o_cList = []
  373. for i in range(len(x_data)):
  374. for a in range(len(x_data)):
  375. if a <= i: continue
  376. x1 = x_data[i] # x坐标
  377. x1_con = is_continuous(x1)
  378. x2 = x_data[a] # y坐标
  379. x2_con = is_continuous(x2)
  380. o_c = None # 旧的C
  381. for class_num in range(len(class_)):
  382. n_class = class_[class_num]
  383. x_1 = x1[y == n_class].tolist()
  384. x_2 = x2[y == n_class]
  385. x_2_new = np.unique(x_2)
  386. x_2 = x2[y == n_class].tolist()
  387. #x与散点图不同,这里是纵坐标
  388. c = (Scatter()
  389. .add_xaxis(x_2)
  390. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  391. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  392. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  393. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  394. )
  395. c.add_xaxis(x_2_new)
  396. if o_c == None:
  397. o_c = c
  398. else:
  399. o_c = o_c.overlap(c)
  400. o_cList.append(o_c)
  401. means,x_range,Type = Cat.get()
  402. return o_cList,means,x_range,Type
  403. def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
  404. x_data = x_trainData.T
  405. if len(x_data) == 1:
  406. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  407. Cat = make_Cat(x_data)
  408. o_cList = []
  409. for i in range(len(x_data)):
  410. for a in range(len(x_data)):
  411. if a <= i: continue
  412. x1 = x_data[i] # x坐标
  413. x1_con = is_continuous(x1)
  414. x2 = x_data[a] # y坐标
  415. x2_con = is_continuous(x2)
  416. o_c = None # 旧的C
  417. for class_num in range(len(class_)):
  418. n_class = class_[class_num]
  419. x_1 = x1[y == n_class].tolist()
  420. x_2 = x2[y == n_class]
  421. x_2_new = np.unique(x_2)
  422. x_2 = x2[y == n_class].tolist()
  423. #x与散点图不同,这里是纵坐标
  424. c = (Scatter()
  425. .add_xaxis(x_2)
  426. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  427. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
  428. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  429. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  430. )
  431. c.add_xaxis(x_2_new)
  432. #添加簇中心
  433. try:
  434. center_x_2 = [center[class_num][a]]
  435. except:
  436. center_x_2 = [0]
  437. b = (Scatter()
  438. .add_xaxis(center_x_2)
  439. .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
  440. .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
  441. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  442. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  443. )
  444. c.overlap(b)
  445. if o_c == None:
  446. o_c = c
  447. else:
  448. o_c = o_c.overlap(c)
  449. o_cList.append(o_c)
  450. means,x_range,Type = Cat.get()
  451. return o_cList,means,x_range,Type
  452. def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
  453. x_data = x_trainData.T
  454. if len(x_data) == 1:
  455. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  456. Cat = make_Cat(x_data)
  457. o_cList = []
  458. for i in range(len(x_data)):
  459. x1 = x_data[i] # x坐标
  460. x1_con = is_continuous(x1)
  461. if i == 0:continue
  462. x2 = x_data[i - 1] # y坐标
  463. x2_con = is_continuous(x2)
  464. o_c = None # 旧的C
  465. for n_class in class_:
  466. x_1 = x1[y == n_class].tolist()
  467. x_2 = x2[y == n_class]
  468. x_2_new = np.unique(x_2)
  469. x_2 = x2[y == n_class].tolist()
  470. #x与散点图不同,这里是纵坐标
  471. c = (Scatter()
  472. .add_xaxis(x_2)
  473. .add_yaxis(f'{n_class}', x_1, **Label_Set)
  474. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
  475. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  476. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  477. )
  478. c.add_xaxis(x_2_new)
  479. if o_c == None:
  480. o_c = c
  481. else:
  482. o_c = o_c.overlap(c)
  483. o_cList.append(o_c)
  484. means,x_range,Type = Cat.get()
  485. return o_cList,means,x_range,Type
  486. def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别)
  487. x_data = x_trainData.T
  488. if len(x_data) == 1:
  489. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  490. Cat = make_Cat(x_data)
  491. o_cList = []
  492. for i in range(len(x_data)):
  493. x1 = x_data[i] # x坐标
  494. x1_con = is_continuous(x1)
  495. if i == 0:continue
  496. x2 = x_data[i - 1] # y坐标
  497. x2_con = is_continuous(x2)
  498. x2_new = np.unique(x2)
  499. #x与散点图不同,这里是纵坐标
  500. c = (Scatter()
  501. .add_xaxis(x2)
  502. .add_yaxis('', x1.tolist(), **Label_Set)
  503. .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg,
  504. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  505. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  506. )
  507. c.add_xaxis(x2_new)
  508. o_cList.append(c)
  509. means,x_range,Type = Cat.get()
  510. return o_cList,means,x_range,Type
  511. def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
  512. x_data = x_trainData.T
  513. if len(x_data) == 1:
  514. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  515. o_cList = []
  516. means.append(0)
  517. means = np.array(means)
  518. for i in range(len(x_data)):
  519. if i == 0:continue
  520. x1_con = is_continuous(x_data[i])
  521. x2 = x_data[i - 1] # y坐标
  522. x2_con = is_continuous(x2)
  523. o_c = None # 旧的C
  524. for class_num in range(len(class_)):
  525. n_class = class_[class_num]
  526. x2_new = np.unique(x2[y == n_class])
  527. #x与散点图不同,这里是纵坐标
  528. #加入这个判断是为了解决sklearn历史遗留问题
  529. if len(class_) == 2:#二分类问题
  530. if class_num == 0:continue
  531. w = w_list[0]
  532. b = b_list[0]
  533. else:#多分类问题
  534. w = w_list[class_num]
  535. b = b_list[class_num]
  536. if x2_con:
  537. x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
  538. w = np.append(w, 0)
  539. y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  540. c = (
  541. Line()
  542. .add_xaxis(x2_new)
  543. .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  544. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  545. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  546. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  547. )
  548. if o_c == None:
  549. o_c = c
  550. else:
  551. o_c = o_c.overlap(c)
  552. #下面不要接任何代码,因为上面会continue
  553. o_cList.append(o_c)
  554. return o_cList
  555. def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
  556. x_data = x_trainData.T
  557. if len(x_data) == 1:
  558. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  559. o_cList = []
  560. means.append(0)#确保mean[i+1]不会超出index
  561. means = np.array(means)
  562. w = np.append(w,0)
  563. for i in range(len(x_data)):
  564. x1 = x_data[i]
  565. x1_con = is_continuous(x1)
  566. if x1_con:
  567. x1 = np.array(make_list(x1.min(), x1.max(), 5))
  568. x1_new = np.unique(x1)
  569. y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
  570. y_con = is_continuous(y_data)
  571. c = (
  572. Line()
  573. .add_xaxis(x1_new)
  574. .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
  575. .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
  576. yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
  577. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
  578. )
  579. o_cList.append(c)
  580. return o_cList
  581. def regress_visualization(x_trainData,y):#y-x数据图
  582. x_data = x_trainData.T
  583. y_con = is_continuous(y)
  584. Cat = make_Cat(x_data)
  585. o_cList = []
  586. try:
  587. visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()),
  588. pos_right='3%')
  589. except:
  590. visualmap_opts = None
  591. y_con = False
  592. for i in range(len(x_data)):
  593. x1 = x_data[i] # x坐标
  594. x1_con = is_continuous(x1)
  595. #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
  596. if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的
  597. ry_con,x1_con = x1_con,y_con
  598. x1,ry = y,x1
  599. else:
  600. ry_con = y_con
  601. ry = y
  602. c = (
  603. Scatter()
  604. .add_xaxis(x1.tolist())#研究表明,这个是横轴
  605. .add_yaxis('数据',ry.tolist(),**Label_Set)
  606. .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
  607. yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True),
  608. xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  609. visualmap_opts=visualmap_opts
  610. )
  611. )
  612. c.add_xaxis(np.unique(x1))
  613. o_cList.append(c)
  614. means,x_range,Type = Cat.get()
  615. return o_cList,means,x_range,Type
  616. def Feature_visualization(x_trainData,data_name=''):#x-x数据图
  617. seeting = global_Set if data_name else global_Leg
  618. x_data = x_trainData.T
  619. only = False
  620. if len(x_data) == 1:
  621. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  622. only = True
  623. o_cList = []
  624. for i in range(len(x_data)):
  625. for a in range(len(x_data)):
  626. if a <= i: continue#重复内容,跳过
  627. x1 = x_data[i] # x坐标
  628. x1_con = is_continuous(x1)
  629. x2 = x_data[a] # y坐标
  630. x2_con = is_continuous(x2)
  631. x2_new = np.unique(x2)
  632. if only:x2_con = False
  633. #x与散点图不同,这里是纵坐标
  634. c = (Scatter()
  635. .add_xaxis(x2)
  636. .add_yaxis(data_name, x1, **Label_Set)
  637. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  638. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  639. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
  640. )
  641. c.add_xaxis(x2_new)
  642. o_cList.append(c)
  643. return o_cList
  644. def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
  645. seeting = global_Set if data_name else global_Leg
  646. x_data = x_trainData.T
  647. only = False
  648. if len(x_data) == 1:
  649. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  650. only = True
  651. o_cList = []
  652. for i in range(len(x_data)):
  653. for a in range(len(x_data)):
  654. if a <= i: continue#重复内容,跳过(a读取的是i后面的)
  655. x1 = x_data[i] # x坐标
  656. x1_con = is_continuous(x1)
  657. x2 = x_data[a] # y坐标
  658. x2_con = is_continuous(x2)
  659. x2_new = np.unique(x2)
  660. x1_list = x1.astype(np.str).tolist()
  661. for i in range(len(x1_list)):
  662. x1_list[i] = [x1_list[i],f'特征{i}']
  663. if only:x2_con = False
  664. #x与散点图不同,这里是纵坐标
  665. c = (Scatter()
  666. .add_xaxis(x2)
  667. .add_yaxis(data_name, x1_list, **Label_Set)
  668. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  669. yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
  670. xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
  671. tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
  672. )
  673. c.add_xaxis(x2_new)
  674. o_cList.append(c)
  675. return o_cList
  676. def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
  677. seeting = global_Set if data_name else global_Leg
  678. x_data = x_trainData.T
  679. if len(x_data) == 1:
  680. x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
  681. o_cList = []
  682. for i in range(len(x_data)):
  683. for a in range(len(x_data)):
  684. if a <= i: continue#重复内容,跳过
  685. x1 = x_data[i] # x坐标
  686. x2 = x_data[a] # y坐标
  687. x2_new = np.unique(x2)
  688. #x与散点图不同,这里是纵坐标
  689. c = (Scatter()
  690. .add_xaxis(x2)
  691. .add_yaxis(data_name, x1, **Label_Set)
  692. .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
  693. yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
  694. xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
  695. )
  696. c.add_xaxis(x2_new)
  697. o_cList.append(c)
  698. return o_cList
  699. def Conversion_control(y_data,x_data,tab):#合并两x-x图
  700. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  701. get_x = Feature_visualization(x_data,'原数据')#原来
  702. get_y = Feature_visualization(y_data,'转换数据')#转换
  703. for i in range(len(get_x)):
  704. tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
  705. return tab
  706. def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
  707. if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
  708. get_x = Feature_visualization(x_data,'原数据')#原来
  709. get_y = Feature_visualization(y_data,'转换数据')#转换
  710. for i in range(len(get_x)):
  711. try:
  712. tab.add(get_x[i],f'[{i}]数据x-x散点图')
  713. except IndexError:pass
  714. try:
  715. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  716. except IndexError:pass
  717. return tab
  718. def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
  719. if type(y_data) is np.ndarray:
  720. get_y = Feature_visualization_Format(y_data,'转换数据')#转换
  721. for i in range(len(get_y)):
  722. tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
  723. return tab
  724. def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
  725. if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
  726. get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
  727. get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
  728. print(h_data)
  729. print(w_data)
  730. print(h_data.T)
  731. for i in range(len(get_x)):
  732. try:
  733. tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
  734. except IndexError:pass
  735. try:
  736. tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
  737. except IndexError:pass
  738. return tab
  739. def make_bar(name, value,tab):#绘制柱状图
  740. c = (
  741. Bar()
  742. .add_xaxis([f'[{i}]特征' for i in range(len(value))])
  743. .add_yaxis(name, value, **Label_Set)
  744. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  745. )
  746. tab.add(c, name)
  747. def judging_Digits(num:(int,float)):#查看小数位数
  748. a = str(abs(num)).split('.')[0]
  749. if a == '':raise ValueError
  750. return len(a)
  751. class Learner:
  752. def __init__(self,*args,**kwargs):
  753. self.numpy_Dic = {}#name:numpy
  754. def Add_Form(self,data:np.array,name):
  755. name = f'{name}[{len(self.numpy_Dic)}]'
  756. self.numpy_Dic[name] = data
  757. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  758. type_ = np.str if str_must else np.float
  759. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  760. try:
  761. data = pf_data.to_numpy(dtype=type_)
  762. except ValueError:
  763. data = pf_data.to_numpy(dtype=np.str)
  764. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  765. self.Add_Form(data,name)
  766. return data
  767. def Add_Python(self, Text, sheet_name):
  768. name = {}
  769. name.update(globals().copy())
  770. name.update(locals().copy())
  771. exec(Text, name)
  772. exec('get = Creat()', name)
  773. if isinstance(name['get'], np.array): # 已经是DataFram
  774. get = name['get']
  775. else:
  776. try:
  777. get = np.array(name['get'])
  778. except:
  779. get = np.array([name['get']])
  780. self.Add_Form(get, sheet_name)
  781. return get
  782. def get_Form(self) -> dict:
  783. return self.numpy_Dic.copy()
  784. def get_Sheet(self,name) -> np.array:
  785. return self.numpy_Dic[name].copy()
  786. def to_CSV(self,Dic:str,name,sep) -> str:
  787. get = self.get_Sheet(name)
  788. np.savetxt(Dic, get, delimiter=sep)
  789. return Dic
  790. def to_Html_One(self,name,Dic=''):
  791. if Dic == '': Dic = f'{name}.html'
  792. get = self.get_Sheet(name)
  793. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  794. get = get.tolist()
  795. for i in range(len(get)):
  796. get[i] = [i+1] + get[i]
  797. headers = [i for i in range(len(get[0]))]
  798. table = Table()
  799. table.add(headers, get).set_global_opts(
  800. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  801. table.render(Dic)
  802. return Dic
  803. def to_Html(self, name, Dic='', type_=0):
  804. if Dic == '': Dic = f'{name}.html'
  805. # 把要画的sheet放到第一个
  806. Sheet_Dic = self.get_Form()
  807. del Sheet_Dic[name]
  808. Sheet_list = [name] + list(Sheet_Dic.keys())
  809. class TAB_F:
  810. def __init__(self, q):
  811. self.tab = q # 一个Tab
  812. def render(self, Dic):
  813. return self.tab.render(Dic)
  814. # 生成一个显示页面
  815. if type_ == 0:
  816. class TAB(TAB_F):
  817. def add(self, table, k, *f):
  818. self.tab.add(table, k)
  819. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  820. elif type_ == 1:
  821. class TAB(TAB_F):
  822. def add(self, table, *k):
  823. self.tab.add(table)
  824. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  825. else:
  826. class TAB(TAB_F):
  827. def add(self, table, *k):
  828. self.tab.add(table)
  829. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  830. # 迭代添加内容
  831. for name in Sheet_list:
  832. get = self.get_Sheet(name)
  833. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  834. get = get.tolist()
  835. for i in range(len(get)):
  836. get[i] = [i+1] + get[i]
  837. headers = [i for i in range(len(get[0]))]
  838. table = Table()
  839. table.add(headers, get).set_global_opts(
  840. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  841. tab.add(table, f'表格:{name}')
  842. tab.render(Dic)
  843. return Dic
  844. def Merge(self,name,axis=0):#aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
  845. sheet_list = []
  846. for i in name:
  847. sheet_list.append(self.get_Sheet(i))
  848. get = {0:np.hstack,1:np.vstack,2:np.dstack}[axis](sheet_list)
  849. self.Add_Form(np.array(get),f'{name[0]}合成')
  850. def Split(self,name,split=2,axis=0):#aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
  851. sheet = self.get_Sheet(name)
  852. get = {0:np.hsplit,1:np.vsplit,2:np.dsplit}[axis](sheet,split)
  853. for i in get:
  854. self.Add_Form(i,f'{name[0]}分割')
  855. def Two_Split(self,name,split,axis):#二分切割(0-横向,1-纵向)
  856. sheet = self.get_Sheet(name)
  857. try:
  858. split = float(eval(split))
  859. if split < 1:
  860. split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
  861. else:
  862. raise Exception
  863. except:
  864. split = int(split)
  865. if axis == 0:
  866. self.Add_Form(sheet[:,split:], f'{name[0]}分割')
  867. self.Add_Form(sheet[:,:split], f'{name[0]}分割')
  868. def Deep(self,sheet:np.ndarray):
  869. return sheet.ravel()
  870. def Down_Ndim(self,sheet:np.ndarray):#横向
  871. down_list = []
  872. for i in sheet:
  873. down_list.append(i.ravel())
  874. return np.array(down_list)
  875. def LongitudinalDown_Ndim(self,sheet:np.ndarray):#纵向
  876. down_list = []
  877. for i in range(len(sheet[0])):
  878. down_list.append(sheet[:,i].ravel())
  879. return np.array(down_list).T
  880. def Reval(self,name,axis):#axis:0-横向,1-纵向(带.T),2-深度
  881. sheet = self.get_Sheet(name)
  882. self.Add_Form({0:self.Down_Ndim,1:self.LongitudinalDown_Ndim,2:self.Deep}[axis](sheet).copy(),f'{name}伸展')
  883. def Del_Ndim(self,name):#删除无用维度
  884. sheet = self.get_Sheet(name)
  885. self.Add_Form(np.squeeze(sheet), f'{name}降维')
  886. def T(self,name,Func:list):
  887. sheet = self.get_Sheet(name)
  888. if sheet.ndim <= 2:
  889. self.Add_Form(sheet.T.copy(), f'{name}.T')
  890. else:
  891. self.Add_Form(np.transpose(sheet,Func).copy(), f'{name}.T')
  892. def reShape(self,name,shape:list):
  893. sheet = self.get_Sheet(name)
  894. self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r')
  895. class Study_MachineBase:
  896. def __init__(self,*args,**kwargs):
  897. self.Model = None
  898. self.have_Fit = False
  899. self.x_trainData = None
  900. self.y_trainData = None
  901. #有监督学习专有的testData
  902. self.x_testData = None
  903. self.y_testData = None
  904. #记录这两个是为了克隆
  905. def Accuracy(self,y_Predict,y_Really):
  906. return accuracy_score(y_Predict, y_Really)
  907. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  908. self.have_Fit = True
  909. y_data = y_data.ravel()
  910. self.x_trainData = x_data
  911. self.y_trainData = y_data
  912. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  913. self.Model.fit(x_data,y_data)
  914. train_score = self.Model.score(x_train,y_train)
  915. test_score = self.Model.score(x_test,y_test)
  916. return train_score,test_score
  917. def Score(self,x_data,y_data):
  918. Score = self.Model.score(x_data,y_data)
  919. return Score
  920. def Predict(self,x_data,*args,**kwargs):
  921. self.x_testData = x_data.copy()
  922. y_Predict = self.Model.predict(x_data)
  923. self.y_testData = y_Predict.copy()
  924. return y_Predict,'预测'
  925. def Des(self,*args,**kwargs):
  926. return ()
  927. class prep_Base(Study_MachineBase):
  928. def __init__(self,*args,**kwargs):
  929. super(prep_Base, self).__init__(*args,**kwargs)
  930. self.Model = None
  931. def Fit(self, x_data,y_data, *args, **kwargs):
  932. if not self.have_Fit: # 不允许第二次训练
  933. self.x_trainData = x_data
  934. self.y_trainData = y_data
  935. self.Model.fit(x_data,y_data)
  936. return 'None', 'None'
  937. def Predict(self, x_data, *args, **kwargs):
  938. self.x_trainData = x_data
  939. x_Predict = self.Model.transform(x_data)
  940. self.y_trainData = x_Predict
  941. return x_Predict,'特征工程'
  942. def Score(self, x_data, y_data):
  943. return 'None' # 没有score
  944. class Unsupervised(prep_Base):
  945. def Fit(self, x_data, *args, **kwargs):
  946. if not self.have_Fit: # 不允许第二次训练
  947. self.x_trainData = x_data
  948. self.y_trainData = None
  949. self.Model.fit(x_data)
  950. return 'None', 'None'
  951. class UnsupervisedModel(prep_Base):
  952. def Fit(self, x_data, *args, **kwargs):
  953. self.x_trainData = x_data
  954. self.y_trainData = None
  955. self.Model.fit(x_data)
  956. return 'None', 'None'
  957. class To_PyeBase(Study_MachineBase):
  958. def __init__(self,args_use,model,*args,**kwargs):
  959. super(To_PyeBase, self).__init__(*args,**kwargs)
  960. self.Model = None
  961. #记录这两个是为了克隆
  962. self.k = {}
  963. self.Model_Name = model
  964. def Fit(self, x_data,y_data, *args, **kwargs):
  965. self.x_trainData = x_data
  966. self.y_trainData = y_data.ravel()
  967. return 'None', 'None'
  968. def Predict(self, x_data, *args, **kwargs):
  969. return np.array([]),'请使用训练'
  970. def Score(self, x_data, y_data):
  971. return 'None' # 没有score
  972. class View_data(To_PyeBase):#绘制预测型热力图
  973. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  974. super(View_data, self).__init__(args_use,Learner,*args, **kwargs)
  975. self.Model = Learner.Model
  976. self.Select_Model = None
  977. self.have_Fit = Learner.have_Fit
  978. self.Model_Name = 'Select_Model'
  979. self.Learner = Learner
  980. self.Learner_name = Learner.Model_Name
  981. def Fit(self,*args,**kwargs):
  982. return 'None','None'
  983. def Predict(self,x_data,Add_Func=None,*args, **kwargs):
  984. x_trainData = self.Learner.x_trainData
  985. y_trainData = self.Learner.y_trainData
  986. x_name = self.Learner_name
  987. if not x_trainData is None:
  988. Add_Func(x_trainData, f'{x_name}:x训练数据')
  989. try:
  990. x_testData = self.x_testData
  991. if not x_testData is None:
  992. Add_Func(x_testData, f'{x_name}:x测试数据')
  993. except:pass
  994. try:
  995. y_testData = self.y_testData
  996. if not y_testData is None:
  997. Add_Func(y_testData, f'{x_name}:y测试数据')
  998. except:pass
  999. if y_trainData is None:
  1000. return np.array([]), 'y训练数据'
  1001. return y_trainData,'y训练数据'
  1002. def Des(self,Dic,*args,**kwargs):
  1003. return Dic,
  1004. class MatrixScatter(To_PyeBase):
  1005. def Des(self, Dic, *args, **kwargs):
  1006. tab = Tab()
  1007. data = self.x_trainData
  1008. print(data.ndim)
  1009. if data.ndim <= 2:#维度为2
  1010. c = (Scatter()
  1011. .add_xaxis([f'{i}' for i in range(data.shape[1])])
  1012. .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg)
  1013. )
  1014. if data.ndim == 2:
  1015. for num in range(len(data)):
  1016. i = data[num]
  1017. c.add_yaxis(f'{num}',[[f'{num}',x] for x in i],color='#FFFFFF')
  1018. else:
  1019. c.add_yaxis(f'0', [[0,x]for x in data],color='#FFFFFF')
  1020. c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
  1021. formatter=JsCode("function(params){return params.data[2];}"),
  1022. ))
  1023. tab.add(c,'矩阵散点图')
  1024. save = Dic + r'/render.HTML'
  1025. tab.render(save) # 生成HTML
  1026. return save,
  1027. class Cluster_Tree(To_PyeBase):
  1028. def Des(self, Dic, *args, **kwargs):
  1029. tab = Tab()
  1030. x_data = self.x_trainData
  1031. linkage_array = ward(x_data)#self.y_trainData是结果
  1032. dendrogram(linkage_array)
  1033. plt.savefig(Dic + r'/Cluster_graph.png')
  1034. image = Image()
  1035. image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图"))
  1036. tab.add(image,'聚类树状图')
  1037. save = Dic + r'/render.HTML'
  1038. tab.render(save) # 生成HTML
  1039. return save,
  1040. class Class_To_Bar(To_PyeBase):
  1041. def Des(self,Dic,*args,**kwargs):
  1042. tab = Tab()
  1043. x_data = self.x_trainData.T
  1044. y_data = self.y_trainData
  1045. class_ = np.unique(y_data).tolist()#类型
  1046. class_list = []
  1047. for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
  1048. class_list.append(y_data == n_class)
  1049. for num_i in range(len(x_data)):#迭代每一个特征
  1050. i = x_data[num_i]
  1051. i_con = is_continuous(i)
  1052. if i_con and len(i) >= 11:
  1053. c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1054. start = i.min()
  1055. end = i.max()
  1056. n = (end - start) / 10#生成10条柱子
  1057. x_axis = []#x轴
  1058. num_startEND = 0#迭代到第n个
  1059. while num_startEND <= 9:#把每个特征分为10类进行迭代
  1060. x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据
  1061. try:
  1062. if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有
  1063. s = (start <= i) == (i < end)#布尔索引
  1064. except:#因为start + n有超出end的风险
  1065. s = (start <= i) == (i <= end)#布尔索引
  1066. # n_data = i[s] # 取得现在的特征数据
  1067. for num in range(len(class_list)):#根据类别进行迭代
  1068. now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
  1069. bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1070. c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1071. num_startEND += 1
  1072. start += n
  1073. else :
  1074. iter_np = np.unique(i)
  1075. c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
  1076. x_axis = [] # 添加x轴数据
  1077. for i_num in range(len(iter_np)):#迭代每一个i(不重复)
  1078. i_data = iter_np[i_num]
  1079. # n_data= i[i == i_data]#取得现在特征数据
  1080. x_axis.append(f'[{i_data}]')
  1081. for num in range(len(class_list)):# 根据类别进行迭代
  1082. now_class = class_list[num]#取得class_list的布尔数组
  1083. bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
  1084. c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
  1085. c = (
  1086. Bar()
  1087. .add_xaxis(x_axis)
  1088. .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'),
  1089. yaxis_opts=opts.AxisOpts(type_='value')))
  1090. for i in range(len(c_list)):
  1091. c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
  1092. tab.add(c, f'类型-[{num_i}]特征统计柱状图')
  1093. #未完成
  1094. save = Dic + r'/render.HTML'
  1095. tab.render(save) # 生成HTML
  1096. return save,
  1097. class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图
  1098. def Des(self,Dic,*args,**kwargs):
  1099. tab = Tab()
  1100. data = self.x_trainData
  1101. x = [f'横[{i}]' for i in range(len(data))]
  1102. y = [f'纵[{i}]' for i in range(len(data[0]))]
  1103. value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  1104. print(value)
  1105. c = (HeatMap()
  1106. .add_xaxis(x)
  1107. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  1108. .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
  1109. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  1110. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  1111. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  1112. min_=float(data.min()),
  1113. pos_right='3%'))#显示
  1114. )
  1115. tab.add(c,'矩阵热力图')
  1116. tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格')
  1117. save = Dic + r'/render.HTML'
  1118. tab.render(save) # 生成HTML
  1119. return save,
  1120. class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图
  1121. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1122. super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs)
  1123. self.Model = Learner.Model
  1124. self.Select_Model = None
  1125. self.have_Fit = Learner.have_Fit
  1126. self.Model_Name = 'Select_Model'
  1127. self.Learner = Learner
  1128. self.x_trainData = Learner.x_trainData
  1129. self.y_trainData = Learner.y_trainData
  1130. self.means = []
  1131. def Fit(self,x_data,*args,**kwargs):
  1132. try:
  1133. self.means = x_data.ravel()
  1134. except:
  1135. pass
  1136. return 'None','None'
  1137. def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs):
  1138. tab = Tab()
  1139. y = self.y_trainData
  1140. x_data = self.x_trainData
  1141. try:#如果没有class
  1142. class_ = self.Model.classes_.tolist()
  1143. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1144. #获取数据
  1145. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1146. #可使用自带的means,并且nan表示跳过
  1147. for i in range(min([len(x_means),len(self.means)])):
  1148. try:
  1149. g = self.means[i]
  1150. if g == np.nan:raise Exception
  1151. x_means[i] = g
  1152. except:pass
  1153. print(x_means)
  1154. get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type)
  1155. for i in range(len(get)):
  1156. tab.add(get[i], f'{i}预测热力图')
  1157. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1158. data = class_ + [f'{i}' for i in x_means]
  1159. c = Table().add(headers=heard, rows=[data])
  1160. tab.add(c, '数据表')
  1161. except:
  1162. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1163. get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type)
  1164. for i in range(len(get)):
  1165. tab.add(get[i], f'{i}预测热力图')
  1166. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1167. data = [f'{i}' for i in x_means]
  1168. c = Table().add(headers=heard, rows=[data])
  1169. tab.add(c, '数据表')
  1170. save = Dic + r'/render.HTML'
  1171. tab.render(save) # 生成HTML
  1172. return save,
  1173. class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图
  1174. def Des(self,Dic,*args,**kwargs):
  1175. return super().Des(Dic,Decision_boundary,Prediction_boundary)
  1176. class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More
  1177. def Des(self,Dic,*args,**kwargs):
  1178. return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More)
  1179. class Near_feature_scatter_class_More(To_PyeBase):
  1180. def Des(self, Dic, *args, **kwargs):
  1181. tab = Tab()
  1182. x_data = self.x_trainData
  1183. y = self.y_trainData
  1184. class_ = np.unique(y).ravel().tolist()
  1185. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  1186. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  1187. for i in range(len(get)):
  1188. tab.add(get[i], f'{i}训练数据散点图')
  1189. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1190. data = class_ + [f'{i}' for i in x_means]
  1191. c = Table().add(headers=heard, rows=[data])
  1192. tab.add(c, '数据表')
  1193. save = Dic + r'/render.HTML'
  1194. tab.render(save) # 生成HTML
  1195. return save,
  1196. class Near_feature_scatter_More(To_PyeBase):
  1197. def Des(self,Dic,*args,**kwargs):
  1198. tab = Tab()
  1199. x_data = self.x_trainData
  1200. x_means = make_Cat(x_data).get()[0]
  1201. get_y = Feature_visualization(x_data, '数据散点图') # 转换
  1202. for i in range(len(get_y)):
  1203. tab.add(get_y[i], f'[{i}]数据x-x散点图')
  1204. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1205. data = [f'{i}' for i in x_means]
  1206. c = Table().add(headers=heard, rows=[data])
  1207. tab.add(c, '数据表')
  1208. save = Dic + r'/render.HTML'
  1209. tab.render(save) # 生成HTML
  1210. return save,
  1211. class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据
  1212. def Des(self,Dic,*args,**kwargs):
  1213. #获取数据
  1214. class_ = np.unique(self.y_trainData).ravel().tolist()
  1215. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1216. tab = Tab()
  1217. y = self.y_trainData
  1218. x_data = self.x_trainData
  1219. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1220. for i in range(len(get)):
  1221. tab.add(get[i], f'{i}临近特征散点图')
  1222. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1223. data = class_ + [f'{i}' for i in x_means]
  1224. c = Table().add(headers=heard, rows=[data])
  1225. tab.add(c, '数据表')
  1226. save = Dic + r'/render.HTML'
  1227. tab.render(save) # 生成HTML
  1228. return save,
  1229. class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据
  1230. def Des(self,Dic,*args,**kwargs):
  1231. tab = Tab()
  1232. x_data = self.x_trainData.T
  1233. y = self.y_trainData
  1234. get, x_means, x_range,Type = Training_visualization_NoClass(x_data)
  1235. for i in range(len(get)):
  1236. tab.add(get[i], f'{i}临近特征散点图')
  1237. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1238. data = [f'{i}' for i in x_means]
  1239. tab.add(make_Tab(columns,[data]), '数据表')
  1240. save = Dic + r'/render.HTML'
  1241. tab.render(save) # 生成HTML
  1242. return save,
  1243. class Feature_scatter_YX(To_PyeBase):#y-x图
  1244. def Des(self,Dic,*args,**kwargs):
  1245. tab = Tab()
  1246. x_data = self.x_trainData
  1247. y = self.y_trainData
  1248. get, x_means, x_range,Type = regress_visualization(x_data,y)
  1249. for i in range(len(get)):
  1250. tab.add(get[i], f'{i}特征x-y散点图')
  1251. columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1252. data = [f'{i}' for i in x_means]
  1253. tab.add(make_Tab(columns,[data]), '数据表')
  1254. save = Dic + r'/render.HTML'
  1255. tab.render(save) # 生成HTML
  1256. return save,
  1257. class Weight_curve(To_PyeBase):#权重曲线
  1258. def Des(self,Dic,*args,**kwargs):
  1259. w = self.x_trainData
  1260. b = self.y_trainData
  1261. class Line_Model(Study_MachineBase):
  1262. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1263. super(Line_Model, self).__init__(*args,**kwargs)
  1264. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  1265. model]
  1266. if model == 'Line':
  1267. self.Model = Model()
  1268. self.k = {}
  1269. else:
  1270. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  1271. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  1272. #记录这两个是为了克隆
  1273. self.Alpha = args_use['alpha']
  1274. self.max_iter = args_use['max_iter']
  1275. self.Model_Name = model
  1276. def Des(self,Dic,*args,**kwargs):
  1277. tab = Tab()
  1278. x_data = self.x_trainData
  1279. y = self.y_trainData
  1280. w_list = self.Model.coef_.tolist()
  1281. w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
  1282. b = self.Model.intercept_.tolist()
  1283. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1284. get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1285. for i in range(len(get)):
  1286. tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1287. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1288. for i in range(len(get)):
  1289. tab.add(get[i], f'{i}预测热力图')
  1290. tab.add(scatter(w_heard,w_list),'系数w散点图')
  1291. tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
  1292. columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
  1293. data = [f'{i}' for i in x_means] + w_list + [b]
  1294. if self.Model_Name != 'Line':
  1295. columns += ['阿尔法','最大迭代次数']
  1296. data += [self.Model.alpha,self.Model.max_iter]
  1297. tab.add(make_Tab(columns,[data]), '数据表')
  1298. save = Dic + r'/render.HTML'
  1299. tab.render(save) # 生成HTML
  1300. return save,
  1301. class LogisticRegression_Model(Study_MachineBase):
  1302. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1303. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  1304. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  1305. #记录这两个是为了克隆
  1306. self.C = args_use['C']
  1307. self.max_iter = args_use['max_iter']
  1308. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  1309. self.Model_Name = model
  1310. def Des(self,Dic='render.html',*args,**kwargs):
  1311. #获取数据
  1312. w_array = self.Model.coef_
  1313. w_list = w_array.tolist() # 变为表格
  1314. b = self.Model.intercept_
  1315. c = self.Model.C
  1316. max_iter = self.Model.max_iter
  1317. class_ = self.Model.classes_.tolist()
  1318. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1319. tab = Tab()
  1320. y = self.y_trainData
  1321. x_data = self.x_trainData
  1322. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1323. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1324. for i in range(len(get)):
  1325. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1326. for i in range(len(w_list)):
  1327. w = w_list[i]
  1328. w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
  1329. tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
  1330. tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
  1331. columns = class_heard + ['截距b','C','最大迭代数']
  1332. data = class_ + [b,c,max_iter]
  1333. c = Table().add(headers=columns, rows=[data])
  1334. tab.add(c, '数据表')
  1335. c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
  1336. tab.add(c, '系数数据表')
  1337. save = Dic + r'/render.HTML'
  1338. tab.render(save) # 生成HTML
  1339. return save,
  1340. class Categorical_Data:#数据统计助手
  1341. def __init__(self):
  1342. self.x_means = []
  1343. self.x_range = []
  1344. self.Type = []
  1345. def __call__(self,x1, *args, **kwargs):
  1346. get = self.is_continuous(x1)
  1347. return get
  1348. def is_continuous(self,x1:np.array):
  1349. try:
  1350. x1_con = is_continuous(x1)
  1351. if x1_con:
  1352. self.x_means.append(np.mean(x1))
  1353. self.add_Range(x1)
  1354. else:
  1355. raise Exception
  1356. return x1_con
  1357. except:#找出出现次数最多的元素
  1358. new = np.unique(x1)#去除相同的元素
  1359. count_list = []
  1360. for i in new:
  1361. count_list.append(np.sum(x1 == i))
  1362. index = count_list.index(max(count_list))#找出最大值的索引
  1363. self.x_means.append(x1[index])
  1364. self.add_Range(x1,False)
  1365. return False
  1366. def add_Range(self,x1:np.array,range_=True):
  1367. try:
  1368. if not range_ : raise Exception
  1369. min_ = int(x1.min()) - 1
  1370. max_ = int(x1.max()) + 1
  1371. #不需要复制列表
  1372. self.x_range.append([min_,max_])
  1373. self.Type.append(1)
  1374. except:
  1375. self.x_range.append(list(set(x1.tolist())))#去除多余元素
  1376. self.Type.append(2)
  1377. def get(self):
  1378. return self.x_means,self.x_range,self.Type
  1379. class Knn_Model(Study_MachineBase):
  1380. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1381. super(Knn_Model, self).__init__(*args,**kwargs)
  1382. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  1383. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  1384. #记录这两个是为了克隆
  1385. self.n_neighbors = args_use['n_neighbors']
  1386. self.p = args_use['p']
  1387. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  1388. self.Model_Name = model
  1389. def Des(self,Dic,*args,**kwargs):
  1390. tab = Tab()
  1391. y = self.y_trainData
  1392. x_data = self.x_trainData
  1393. y_test = self.y_testData
  1394. x_test = self.x_testData
  1395. if self.Model_Name == 'Knn_class':
  1396. class_ = self.Model.classes_.tolist()
  1397. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1398. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1399. for i in range(len(get)):
  1400. tab.add(get[i],f'{i}训练数据散点图')
  1401. if not y_test is None:
  1402. get = Training_visualization(x_test,class_,y_test)[0]
  1403. for i in range(len(get)):
  1404. tab.add(get[i],f'{i}测试数据散点图')
  1405. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1406. for i in range(len(get)):
  1407. tab.add(get[i], f'{i}预测热力图')
  1408. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  1409. data = class_ + [f'{i}' for i in x_means]
  1410. c = Table().add(headers=heard, rows=[data])
  1411. tab.add(c, '数据表')
  1412. else:
  1413. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1414. for i in range(len(get)):
  1415. tab.add(get[i], f'{i}训练数据散点图')
  1416. get = regress_visualization(x_test, y_test)[0]
  1417. for i in range(len(get)):
  1418. tab.add(get[i], f'{i}测试数据类型图')
  1419. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1420. for i in range(len(get)):
  1421. tab.add(get[i], f'{i}预测热力图')
  1422. heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
  1423. data = [f'{i}' for i in x_means]
  1424. c = Table().add(headers=heard, rows=[data])
  1425. tab.add(c, '数据表')
  1426. save = Dic + r'/render.HTML'
  1427. tab.render(save) # 生成HTML
  1428. return save,
  1429. class Tree_Model(Study_MachineBase):
  1430. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1431. super(Tree_Model, self).__init__(*args,**kwargs)
  1432. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  1433. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  1434. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1435. #记录这两个是为了克隆
  1436. self.criterion = args_use['criterion']
  1437. self.splitter = args_use['splitter']
  1438. self.max_features = args_use['max_features']
  1439. self.max_depth = args_use['max_depth']
  1440. self.min_samples_split = args_use['min_samples_split']
  1441. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1442. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1443. self.Model_Name = model
  1444. def Des(self, Dic, *args, **kwargs):
  1445. tab = Tab()
  1446. importance = self.Model.feature_importances_.tolist()
  1447. with open(Dic + r"\Tree_Gra.dot", 'w') as f:
  1448. export_graphviz(self.Model, out_file=f)
  1449. make_bar('特征重要性',importance,tab)
  1450. tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
  1451. y = self.y_trainData
  1452. x_data = self.x_trainData
  1453. y_test = self.y_testData
  1454. x_test = self.x_testData
  1455. if self.Model_Name == 'Tree_class':
  1456. class_ = self.Model.classes_.tolist()
  1457. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1458. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1459. for i in range(len(get)):
  1460. tab.add(get[i],f'{i}训练数据散点图')
  1461. get = Training_visualization(x_test, class_, y_test)[0]
  1462. for i in range(len(get)):
  1463. tab.add(get[i], f'{i}测试数据散点图')
  1464. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1465. for i in range(len(get)):
  1466. tab.add(get[i], f'{i}预测热力图')
  1467. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1468. [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
  1469. else:
  1470. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1471. for i in range(len(get)):
  1472. tab.add(get[i], f'{i}训练数据散点图')
  1473. get = regress_visualization(x_test, y_test)[0]
  1474. for i in range(len(get)):
  1475. tab.add(get[i], f'{i}测试数据类型图')
  1476. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1477. for i in range(len(get)):
  1478. tab.add(get[i], f'{i}预测热力图')
  1479. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
  1480. [[f'{i}' for i in x_means] + importance]), '数据表')
  1481. save = Dic + r'/render.HTML'
  1482. tab.render(save) # 生成HTML
  1483. return save,
  1484. class Forest_Model(Study_MachineBase):
  1485. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1486. super(Forest_Model, self).__init__(*args,**kwargs)
  1487. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  1488. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  1489. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1490. #记录这两个是为了克隆
  1491. self.n_estimators = args_use['n_Tree']
  1492. self.criterion = args_use['criterion']
  1493. self.max_features = args_use['max_features']
  1494. self.max_depth = args_use['max_depth']
  1495. self.min_samples_split = args_use['min_samples_split']
  1496. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  1497. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1498. self.Model_Name = model
  1499. def Des(self, Dic, *args, **kwargs):
  1500. tab = Tab()
  1501. #多个决策树可视化
  1502. for i in range(len(self.Model.estimators_)):
  1503. with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
  1504. export_graphviz(self.Model.estimators_[i], out_file=f)
  1505. tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
  1506. y = self.y_trainData
  1507. x_data = self.x_trainData
  1508. if self.Model_Name == 'Forest_class':
  1509. class_ = self.Model.classes_.tolist()
  1510. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1511. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1512. for i in range(len(get)):
  1513. tab.add(get[i],f'{i}训练数据散点图')
  1514. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1515. for i in range(len(get)):
  1516. tab.add(get[i], f'{i}预测热力图')
  1517. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1518. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1519. else:
  1520. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1521. for i in range(len(get)):
  1522. tab.add(get[i], f'{i}预测类型图')
  1523. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1524. for i in range(len(get)):
  1525. tab.add(get[i], f'{i}预测热力图')
  1526. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1527. save = Dic + r'/render.HTML'
  1528. tab.render(save) # 生成HTML
  1529. return save,
  1530. class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
  1531. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1532. super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
  1533. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  1534. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  1535. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  1536. #记录这两个是为了克隆
  1537. self.criterion = args_use['criterion']
  1538. self.splitter = args_use['splitter']
  1539. self.max_features = args_use['max_features']
  1540. self.max_depth = args_use['max_depth']
  1541. self.min_samples_split = args_use['min_samples_split']
  1542. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  1543. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  1544. self.Model_Name = model
  1545. def Des(self, Dic, *args, **kwargs):
  1546. tab = Tab()
  1547. #多个决策树可视化
  1548. for a in range(len(self.Model.estimators_)):
  1549. for i in range(len(self.Model.estimators_[a])):
  1550. with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
  1551. export_graphviz(self.Model.estimators_[a][i], out_file=f)
  1552. tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
  1553. y = self.y_trainData
  1554. x_data = self.x_trainData
  1555. if self.Model_Name == 'Tree_class':
  1556. class_ = self.Model.classes_.tolist()
  1557. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1558. get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
  1559. for i in range(len(get)):
  1560. tab.add(get[i],f'{i}训练数据散点图')
  1561. get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
  1562. for i in range(len(get)):
  1563. tab.add(get[i], f'{i}预测热力图')
  1564. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
  1565. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1566. else:
  1567. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1568. for i in range(len(get)):
  1569. tab.add(get[i], f'{i}预测类型图')
  1570. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1571. for i in range(len(get)):
  1572. tab.add(get[i], f'{i}预测热力图')
  1573. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1574. save = Dic + r'/render.HTML'
  1575. tab.render(save) # 生成HTML
  1576. return save,
  1577. class SVC_Model(Study_MachineBase):
  1578. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1579. super(SVC_Model, self).__init__(*args,**kwargs)
  1580. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1581. #记录这两个是为了克隆
  1582. self.C = args_use['C']
  1583. self.gamma = args_use['gamma']
  1584. self.kernel = args_use['kernel']
  1585. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1586. self.Model_Name = model
  1587. def Des(self, Dic, *args, **kwargs):
  1588. tab = Tab()
  1589. w_list = self.Model.coef_.tolist()
  1590. b = self.Model.intercept_.tolist()
  1591. class_ = self.Model.classes_.tolist()
  1592. class_heard = [f'类别[{i}]' for i in range(len(class_))]
  1593. y = self.y_trainData
  1594. x_data = self.x_trainData
  1595. get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
  1596. get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
  1597. for i in range(len(get)):
  1598. tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
  1599. get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
  1600. for i in range(len(get)):
  1601. tab.add(get[i], f'{i}预测热力图')
  1602. dic = {2:'离散',1:'连续'}
  1603. tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
  1604. [class_ + [f'{i}' for i in x_means]]), '数据表')
  1605. save = Dic + r'/render.HTML'
  1606. tab.render(save) # 生成HTML
  1607. return save,
  1608. class SVR_Model(Study_MachineBase):
  1609. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1610. super(SVR_Model, self).__init__(*args,**kwargs)
  1611. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  1612. #记录这两个是为了克隆
  1613. self.C = args_use['C']
  1614. self.gamma = args_use['gamma']
  1615. self.kernel = args_use['kernel']
  1616. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  1617. self.Model_Name = model
  1618. def Des(self,Dic,*args,**kwargs):
  1619. tab = Tab()
  1620. x_data = self.x_trainData
  1621. y = self.y_trainData
  1622. try:
  1623. w_list = self.Model.coef_.tolist()#未必有这个属性
  1624. b = self.Model.intercept_.tolist()
  1625. U = True
  1626. except:
  1627. U = False
  1628. get, x_means, x_range,Type = regress_visualization(x_data, y)
  1629. if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
  1630. for i in range(len(get)):
  1631. if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
  1632. else:tab.add(get[i], f'{i}预测类型图')
  1633. get = Prediction_boundary(x_range, x_means, self.Predict, Type)
  1634. for i in range(len(get)):
  1635. tab.add(get[i], f'{i}预测热力图')
  1636. tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
  1637. save = Dic + r'/render.HTML'
  1638. tab.render(save) # 生成HTML
  1639. return save,
  1640. class Variance_Model(Unsupervised):#无监督
  1641. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  1642. super(Variance_Model, self).__init__(*args,**kwargs)
  1643. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  1644. #记录这两个是为了克隆
  1645. self.threshold = args_use['P']
  1646. self.k = {'threshold':args_use['P']}
  1647. self.Model_Name = model
  1648. def Des(self,Dic,*args,**kwargs):
  1649. tab = Tab()
  1650. var = self.Model.variances_#标准差
  1651. y_data = self.y_trainData
  1652. if type(y_data) is np.ndarray:
  1653. get = Feature_visualization(self.y_trainData)
  1654. for i in range(len(get)):
  1655. tab.add(get[i],f'[{i}]数据x-x散点图')
  1656. c = (
  1657. Bar()
  1658. .add_xaxis([f'[{i}]特征' for i in range(len(var))])
  1659. .add_yaxis('标准差', var.tolist(), **Label_Set)
  1660. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1661. )
  1662. tab.add(c,'数据标准差')
  1663. save = Dic + r'/render.HTML'
  1664. tab.render(save) # 生成HTML
  1665. return save,
  1666. class SelectKBest_Model(prep_Base):#无监督
  1667. def __init__(self, args_use, model, *args, **kwargs):
  1668. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  1669. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  1670. # 记录这两个是为了克隆
  1671. self.k_ = args_use['k']
  1672. self.score_func=args_use['score_func']
  1673. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  1674. self.Model_Name = model
  1675. def Des(self,Dic,*args,**kwargs):
  1676. tab = Tab()
  1677. score = self.Model.scores_.tolist()
  1678. support = self.Model.get_support()
  1679. y_data = self.y_trainData
  1680. x_data = self.x_trainData
  1681. if type(x_data) is np.ndarray:
  1682. get = Feature_visualization(x_data)
  1683. for i in range(len(get)):
  1684. tab.add(get[i],f'[{i}]数据x-x散点图')
  1685. if type(y_data) is np.ndarray:
  1686. get = Feature_visualization(y_data)
  1687. for i in range(len(get)):
  1688. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1689. Choose = []
  1690. UnChoose = []
  1691. for i in range(len(score)):
  1692. if support[i]:
  1693. Choose.append(score[i])
  1694. UnChoose.append(0)#占位
  1695. else:
  1696. UnChoose.append(score[i])
  1697. Choose.append(0)
  1698. c = (
  1699. Bar()
  1700. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1701. .add_yaxis('选中特征', Choose, **Label_Set)
  1702. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1703. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1704. )
  1705. tab.add(c,'单变量重要程度')
  1706. save = Dic + r'/render.HTML'
  1707. tab.render(save) # 生成HTML
  1708. return save,
  1709. class SelectFrom_Model(prep_Base):#无监督
  1710. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  1711. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  1712. self.Model = Learner.Model
  1713. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  1714. self.max_features = args_use['k']
  1715. self.estimator=Learner.Model
  1716. self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
  1717. self.have_Fit = Learner.have_Fit
  1718. self.Model_Name = 'SelectFrom_Model'
  1719. def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
  1720. if not self.have_Fit: # 不允许第二次训练
  1721. self.Select_Model.fit(x_data, y_data)
  1722. return 'None', 'None'
  1723. return 'NONE','NONE'
  1724. def Predict(self, x_data, *args, **kwargs):
  1725. try:
  1726. self.x_trainData = x_data
  1727. x_Predict = self.Select_Model.transform(x_data)
  1728. self.y_trainData = x_Predict
  1729. print(self.y_trainData)
  1730. print(self.x_trainData)
  1731. return x_Predict,'模型特征工程'
  1732. except:
  1733. return np.array([]),'无结果工程'
  1734. def Des(self,Dic,*args,**kwargs):
  1735. tab = Tab()
  1736. support = self.Select_Model.get_support()
  1737. y_data = self.y_trainData
  1738. x_data = self.x_trainData
  1739. if type(x_data) is np.ndarray:
  1740. get = Feature_visualization(x_data)
  1741. for i in range(len(get)):
  1742. tab.add(get[i],f'[{i}]数据x-x散点图')
  1743. if type(y_data) is np.ndarray:
  1744. get = Feature_visualization(y_data)
  1745. for i in range(len(get)):
  1746. tab.add(get[i],f'[{i}]保留数据x-x散点图')
  1747. def make_Bar(score):
  1748. Choose = []
  1749. UnChoose = []
  1750. for i in range(len(score)):
  1751. if support[i]:
  1752. Choose.append(abs(score[i]))
  1753. UnChoose.append(0) # 占位
  1754. else:
  1755. UnChoose.append(abs(score[i]))
  1756. Choose.append(0)
  1757. c = (
  1758. Bar()
  1759. .add_xaxis([f'[{i}]特征' for i in range(len(score))])
  1760. .add_yaxis('选中特征', Choose, **Label_Set)
  1761. .add_yaxis('抛弃特征', UnChoose, **Label_Set)
  1762. .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
  1763. )
  1764. tab.add(c,'单变量重要程度')
  1765. try:
  1766. make_Bar(self.Model.coef_)
  1767. except:
  1768. try:
  1769. make_Bar(self.Model.feature_importances_)
  1770. except:pass
  1771. save = Dic + r'/render.HTML'
  1772. tab.render(save) # 生成HTML
  1773. return save,
  1774. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  1775. def __init__(self, args_use, model, *args, **kwargs):
  1776. super(Standardization_Model, self).__init__(*args, **kwargs)
  1777. self.Model = StandardScaler()
  1778. self.k = {}
  1779. self.Model_Name = 'StandardScaler'
  1780. def Des(self,Dic,*args,**kwargs):
  1781. tab = Tab()
  1782. y_data = self.y_trainData
  1783. x_data = self.x_trainData
  1784. var = self.Model.var_.tolist()
  1785. means = self.Model.mean_.tolist()
  1786. scale = self.Model.scale_.tolist()
  1787. Conversion_control(y_data,x_data,tab)
  1788. make_bar('标准差',var,tab)
  1789. make_bar('方差',means,tab)
  1790. make_bar('Scale',scale,tab)
  1791. save = Dic + r'/render.HTML'
  1792. tab.render(save) # 生成HTML
  1793. return save,
  1794. class MinMaxScaler_Model(Unsupervised):#离差标准化
  1795. def __init__(self, args_use, model, *args, **kwargs):
  1796. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  1797. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  1798. self.k = {}
  1799. self.Model_Name = 'MinMaxScaler'
  1800. def Des(self,Dic,*args,**kwargs):
  1801. tab = Tab()
  1802. y_data = self.y_trainData
  1803. x_data = self.x_trainData
  1804. scale = self.Model.scale_.tolist()
  1805. max_ = self.Model.data_max_.tolist()
  1806. min_ = self.Model.data_min_.tolist()
  1807. Conversion_control(y_data,x_data,tab)
  1808. make_bar('Scale',scale,tab)
  1809. tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
  1810. row=[max_ + min_]), '数据表格')
  1811. save = Dic + r'/render.HTML'
  1812. tab.render(save) # 生成HTML
  1813. return save,
  1814. class LogScaler_Model(prep_Base):#对数标准化
  1815. def __init__(self, args_use, model, *args, **kwargs):
  1816. super(LogScaler_Model, self).__init__(*args, **kwargs)
  1817. self.Model = None
  1818. self.k = {}
  1819. self.Model_Name = 'LogScaler'
  1820. def Fit(self, x_data, *args, **kwargs):
  1821. if not self.have_Fit: # 不允许第二次训练
  1822. self.max_logx = np.log(x_data.max())
  1823. return 'None', 'None'
  1824. def Predict(self, x_data, *args, **kwargs):
  1825. try:
  1826. max_logx = self.max_logx
  1827. except:
  1828. self.have_Fit = False
  1829. self.Fit(x_data)
  1830. max_logx = self.max_logx
  1831. self.x_trainData = x_data.copy()
  1832. x_Predict = (np.log(x_data)/max_logx)
  1833. self.y_trainData = x_Predict.copy()
  1834. return x_Predict,'对数变换'
  1835. def Des(self,Dic,*args,**kwargs):
  1836. tab = Tab()
  1837. y_data = self.y_trainData
  1838. x_data = self.x_trainData
  1839. Conversion_control(y_data,x_data,tab)
  1840. tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
  1841. save = Dic + r'/render.HTML'
  1842. tab.render(save) # 生成HTML
  1843. return save,
  1844. class atanScaler_Model(prep_Base):#atan标准化
  1845. def __init__(self, args_use, model, *args, **kwargs):
  1846. super(atanScaler_Model, self).__init__(*args, **kwargs)
  1847. self.Model = None
  1848. self.k = {}
  1849. self.Model_Name = 'atanScaler'
  1850. def Fit(self, x_data, *args, **kwargs):
  1851. return 'None', 'None'
  1852. def Predict(self, x_data, *args, **kwargs):
  1853. self.x_trainData = x_data.copy()
  1854. x_Predict = (np.arctan(x_data)*(2/np.pi))
  1855. self.y_trainData = x_Predict.copy()
  1856. return x_Predict,'atan变换'
  1857. def Des(self,Dic,*args,**kwargs):
  1858. tab = Tab()
  1859. y_data = self.y_trainData
  1860. x_data = self.x_trainData
  1861. Conversion_control(y_data,x_data,tab)
  1862. save = Dic + r'/render.HTML'
  1863. tab.render(save) # 生成HTML
  1864. return save,
  1865. class decimalScaler_Model(prep_Base):#小数定标准化
  1866. def __init__(self, args_use, model, *args, **kwargs):
  1867. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  1868. self.Model = None
  1869. self.k = {}
  1870. self.Model_Name = 'Decimal_normalization'
  1871. def Fit(self, x_data, *args, **kwargs):
  1872. if not self.have_Fit: # 不允许第二次训练
  1873. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  1874. return 'None', 'None'
  1875. def Predict(self, x_data, *args, **kwargs):
  1876. self.x_trainData = x_data.copy()
  1877. try:
  1878. j = self.j
  1879. except:
  1880. self.have_Fit = False
  1881. self.Fit(x_data)
  1882. j = self.j
  1883. x_Predict = (x_data/(10**j))
  1884. self.y_trainData = x_Predict.copy()
  1885. return x_Predict,'小数定标标准化'
  1886. def Des(self,Dic,*args,**kwargs):
  1887. tab = Tab()
  1888. y_data = self.y_trainData
  1889. x_data = self.x_trainData
  1890. j = self.j
  1891. Conversion_control(y_data,x_data,tab)
  1892. tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
  1893. save = Dic + r'/render.HTML'
  1894. tab.render(save) # 生成HTML
  1895. return save,
  1896. class Mapzoom_Model(prep_Base):#映射标准化
  1897. def __init__(self, args_use, model, *args, **kwargs):
  1898. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  1899. self.Model = None
  1900. self.feature_range = args_use['feature_range']
  1901. self.k = {}
  1902. self.Model_Name = 'Decimal_normalization'
  1903. def Fit(self, x_data, *args, **kwargs):
  1904. if not self.have_Fit: # 不允许第二次训练
  1905. self.max = x_data.max()
  1906. self.min = x_data.min()
  1907. return 'None', 'None'
  1908. def Predict(self, x_data, *args, **kwargs):
  1909. self.x_trainData = x_data.copy()
  1910. try:
  1911. max = self.max
  1912. min = self.min
  1913. except:
  1914. self.have_Fit = False
  1915. self.Fit(x_data)
  1916. max = self.max
  1917. min = self.min
  1918. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  1919. self.y_trainData = x_Predict.copy()
  1920. return x_Predict,'映射标准化'
  1921. def Des(self,Dic,*args,**kwargs):
  1922. tab = Tab()
  1923. y_data = self.y_trainData
  1924. x_data = self.x_trainData
  1925. max = self.max
  1926. min = self.min
  1927. Conversion_control(y_data,x_data,tab)
  1928. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1929. save = Dic + r'/render.HTML'
  1930. tab.render(save) # 生成HTML
  1931. return save,
  1932. class sigmodScaler_Model(prep_Base):#sigmod变换
  1933. def __init__(self, args_use, model, *args, **kwargs):
  1934. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  1935. self.Model = None
  1936. self.k = {}
  1937. self.Model_Name = 'sigmodScaler_Model'
  1938. def Fit(self, x_data, *args, **kwargs):
  1939. return 'None', 'None'
  1940. def Predict(self, x_data:np.array):
  1941. self.x_trainData = x_data.copy()
  1942. x_Predict = (1/(1+np.exp(-x_data)))
  1943. self.y_trainData = x_Predict.copy()
  1944. return x_Predict,'Sigmod变换'
  1945. def Des(self,Dic,*args,**kwargs):
  1946. tab = Tab()
  1947. y_data = self.y_trainData
  1948. x_data = self.x_trainData
  1949. Conversion_control(y_data,x_data,tab)
  1950. save = Dic + r'/render.HTML'
  1951. tab.render(save) # 生成HTML
  1952. return save,
  1953. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  1954. def __init__(self, args_use, model, *args, **kwargs):
  1955. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  1956. self.Model = None
  1957. self.feature_range = args_use['feature_range']
  1958. self.k = {}
  1959. self.Model_Name = 'Fuzzy_quantization'
  1960. def Fit(self, x_data, *args, **kwargs):
  1961. if not self.have_Fit: # 不允许第二次训练
  1962. self.max = x_data.max()
  1963. self.min = x_data.min()
  1964. return 'None', 'None'
  1965. def Predict(self, x_data,*args,**kwargs):
  1966. self.y_trainData = x_data.copy()
  1967. try:
  1968. max = self.max
  1969. min = self.min
  1970. except:
  1971. self.have_Fit = False
  1972. self.Fit(x_data)
  1973. max = self.max
  1974. min = self.min
  1975. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  1976. self.y_trainData = x_Predict.copy()
  1977. return x_Predict,'映射标准化'
  1978. def Des(self,Dic,*args,**kwargs):
  1979. tab = Tab()
  1980. y_data = self.y_trainData
  1981. x_data = self.x_trainData
  1982. max = self.max
  1983. min = self.min
  1984. Conversion_control(y_data,x_data,tab)
  1985. tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
  1986. save = Dic + r'/render.HTML'
  1987. tab.render(save) # 生成HTML
  1988. return save,
  1989. class Regularization_Model(Unsupervised):#正则化
  1990. def __init__(self, args_use, model, *args, **kwargs):
  1991. super(Regularization_Model, self).__init__(*args, **kwargs)
  1992. self.Model = Normalizer(norm=args_use['norm'])
  1993. self.k = {'norm':args_use['norm']}
  1994. self.Model_Name = 'Regularization'
  1995. def Des(self,Dic,*args,**kwargs):
  1996. tab = Tab()
  1997. y_data = self.y_trainData
  1998. x_data = self.x_trainData
  1999. Conversion_control(y_data,x_data,tab)
  2000. save = Dic + r'/render.HTML'
  2001. tab.render(save) # 生成HTML
  2002. return save,
  2003. #离散数据
  2004. class Binarizer_Model(Unsupervised):#二值化
  2005. def __init__(self, args_use, model, *args, **kwargs):
  2006. super(Binarizer_Model, self).__init__(*args, **kwargs)
  2007. self.Model = Binarizer(threshold=args_use['threshold'])
  2008. self.k = {}
  2009. self.Model_Name = 'Binarizer'
  2010. def Des(self,Dic,*args,**kwargs):
  2011. tab = Tab()
  2012. y_data = self.y_trainData
  2013. get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
  2014. for i in range(len(get_y)):
  2015. tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
  2016. save = Dic + r'/render.HTML'
  2017. tab.render(save) # 生成HTML
  2018. return save,
  2019. class Discretization_Model(prep_Base):#n值离散
  2020. def __init__(self, args_use, model, *args, **kwargs):
  2021. super(Discretization_Model, self).__init__(*args, **kwargs)
  2022. self.Model = None
  2023. range_ = args_use['split_range']
  2024. if range_ == []:raise Exception
  2025. elif len(range_) == 1:range_.append(range_[0])
  2026. self.range = range_
  2027. self.k = {}
  2028. self.Model_Name = 'Discretization'
  2029. def Fit(self,*args,**kwargs):
  2030. return 'None','None'
  2031. def Predict(self,x_data):
  2032. self.x_trainData = x_data.copy()
  2033. x_Predict = x_data.copy()#复制
  2034. range_ = self.range
  2035. bool_list = []
  2036. max_ = len(range_) - 1
  2037. o_t = None
  2038. for i in range(len(range_)):
  2039. try:
  2040. t = float(range_[i])
  2041. except:continue
  2042. if o_t == None:#第一个参数
  2043. bool_list.append(x_Predict <= t)
  2044. else:
  2045. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  2046. if i == max_:
  2047. bool_list.append(t <= x_Predict)
  2048. o_t = t
  2049. for i in range(len(bool_list)):
  2050. x_Predict[bool_list[i]] = i
  2051. self.y_trainData = x_Predict.copy()
  2052. return x_Predict,f'{len(bool_list)}值离散化'
  2053. def Des(self, Dic, *args, **kwargs):
  2054. tab = Tab()
  2055. y_data = self.y_trainData
  2056. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2057. for i in range(len(get_y)):
  2058. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2059. save = Dic + r'/render.HTML'
  2060. tab.render(save) # 生成HTML
  2061. return save,
  2062. class Label_Model(prep_Base):#数字编码
  2063. def __init__(self, args_use, model, *args, **kwargs):
  2064. super(Label_Model, self).__init__(*args, **kwargs)
  2065. self.Model = []
  2066. self.k = {}
  2067. self.Model_Name = 'LabelEncoder'
  2068. def Fit(self,x_data,*args, **kwargs):
  2069. if not self.have_Fit: # 不允许第二次训练
  2070. if x_data.ndim == 1:x_data = np.array([x_data])
  2071. for i in range(x_data.shape[1]):
  2072. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  2073. return 'None', 'None'
  2074. def Predict(self, x_data, *args, **kwargs):
  2075. x_Predict = x_data.copy()
  2076. if x_data.ndim == 1: x_data = np.array([x_data])
  2077. for i in range(x_data.shape[1]):
  2078. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  2079. self.y_trainData = x_Predict.copy()
  2080. return x_Predict,'数字编码'
  2081. def Des(self, Dic, *args, **kwargs):
  2082. tab = Tab()
  2083. y_data = self.y_trainData
  2084. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2085. for i in range(len(get_y)):
  2086. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2087. save = Dic + r'/render.HTML'
  2088. tab.render(save) # 生成HTML
  2089. return save,
  2090. class OneHotEncoder_Model(prep_Base):#独热编码
  2091. def __init__(self, args_use, model, *args, **kwargs):
  2092. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  2093. self.Model = []
  2094. self.ndim_up = args_use['ndim_up']
  2095. self.k = {}
  2096. self.Model_Name = 'OneHotEncoder'
  2097. def Fit(self,x_data,*args, **kwargs):
  2098. if not self.have_Fit: # 不允许第二次训练
  2099. if x_data.ndim == 1:x_data = [x_data]
  2100. for i in range(x_data.shape[1]):
  2101. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  2102. self.Model.append(OneHotEncoder().fit(data))#训练机器
  2103. return 'None', 'None'
  2104. def Predict(self, x_data, *args, **kwargs):
  2105. self.x_trainData = x_data.copy()
  2106. x_new = []
  2107. for i in range(x_data.shape[1]):
  2108. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  2109. oneHot = self.Model[i].transform(data).toarray().tolist()
  2110. x_new.append(oneHot)#添加到列表中
  2111. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  2112. x_Predict = []
  2113. for i in range(x_new.shape[1]):
  2114. x_Predict.append(x_new[:,i])
  2115. x_Predict = np.array(x_Predict)#转换回array
  2116. if not self.ndim_up:#压缩操作
  2117. new_xPredict = []
  2118. for i in x_Predict:
  2119. new_list = []
  2120. list_ = i.tolist()
  2121. for a in list_:
  2122. new_list += a
  2123. new = np.array(new_list)
  2124. new_xPredict.append(new)
  2125. self.y_trainData = x_Predict.copy()
  2126. return np.array(new_xPredict),'独热编码'
  2127. #不保存y_trainData
  2128. return x_Predict,'独热编码'#不需要降维
  2129. def Des(self, Dic, *args, **kwargs):
  2130. tab = Tab()
  2131. y_data = self.y_trainData
  2132. get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
  2133. for i in range(len(get_y)):
  2134. tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
  2135. save = Dic + r'/render.HTML'
  2136. tab.render(save) # 生成HTML
  2137. return save,
  2138. class Missed_Model(Unsupervised):#缺失数据补充
  2139. def __init__(self, args_use, model, *args, **kwargs):
  2140. super(Missed_Model, self).__init__(*args, **kwargs)
  2141. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  2142. fill_value=args_use['fill_value'])
  2143. self.k = {}
  2144. self.Model_Name = 'Missed'
  2145. def Predict(self, x_data, *args, **kwargs):
  2146. self.x_trainData = x_data.copy()
  2147. x_Predict = self.Model.transform(x_data)
  2148. self.y_trainData = x_Predict.copy()
  2149. return x_Predict,'填充缺失'
  2150. def Des(self,Dic,*args,**kwargs):
  2151. tab = Tab()
  2152. y_data = self.y_trainData
  2153. x_data = self.x_trainData
  2154. Conversion_control(y_data,x_data,tab)
  2155. save = Dic + r'/render.HTML'
  2156. tab.render(save) # 生成HTML
  2157. return save,
  2158. class PCA_Model(Unsupervised):
  2159. def __init__(self, args_use, model, *args, **kwargs):
  2160. super(PCA_Model, self).__init__(*args, **kwargs)
  2161. self.Model = PCA(n_components=args_use['n_components'])
  2162. self.n_components = args_use['n_components']
  2163. self.k = {'n_components':args_use['n_components']}
  2164. self.Model_Name = 'PCA'
  2165. def Predict(self, x_data, *args, **kwargs):
  2166. self.x_trainData = x_data.copy()
  2167. x_Predict = self.Model.transform(x_data)
  2168. self.y_trainData = x_Predict.copy()
  2169. return x_Predict,'PCA'
  2170. def Des(self,Dic,*args,**kwargs):
  2171. tab = Tab()
  2172. y_data = self.y_trainData
  2173. importance = self.Model.components_.tolist()
  2174. var = self.Model.explained_variance_.tolist()#方量差
  2175. Conversion_Separate_Format(y_data,tab)
  2176. x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
  2177. y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
  2178. value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
  2179. c = (HeatMap()
  2180. .add_xaxis(x_data)
  2181. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2182. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2183. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2184. xaxis_opts=opts.AxisOpts(is_scale=True),
  2185. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
  2186. min_=int(self.Model.components_.min()),
  2187. pos_right='3%')) # 显示
  2188. )
  2189. tab.add(c,'成分热力图')
  2190. c = (
  2191. Bar()
  2192. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2193. .add_yaxis('放量差', var, **Label_Set)
  2194. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2195. )
  2196. tab.add(c, '方量差柱状图')
  2197. save = Dic + r'/render.HTML'
  2198. tab.render(save) # 生成HTML
  2199. return save,
  2200. class RPCA_Model(Unsupervised):
  2201. def __init__(self, args_use, model, *args, **kwargs):
  2202. super(RPCA_Model, self).__init__(*args, **kwargs)
  2203. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  2204. self.n_components = args_use['n_components']
  2205. self.k = {'n_components': args_use['n_components']}
  2206. self.Model_Name = 'RPCA'
  2207. def Predict(self, x_data, *args, **kwargs):
  2208. self.x_trainData = x_data.copy()
  2209. x_Predict = self.Model.transform(x_data)
  2210. self.y_trainData = x_Predict.copy()
  2211. return x_Predict,'RPCA'
  2212. def Des(self, Dic, *args, **kwargs):
  2213. tab = Tab()
  2214. y_data = self.y_trainData
  2215. importance = self.Model.components_.tolist()
  2216. var = self.Model.explained_variance_.tolist() # 方量差
  2217. Conversion_Separate_Format(y_data, tab)
  2218. x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
  2219. y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
  2220. value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
  2221. range(len(importance[i]))]
  2222. c = (HeatMap()
  2223. .add_xaxis(x_data)
  2224. .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
  2225. .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
  2226. yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
  2227. xaxis_opts=opts.AxisOpts(is_scale=True),
  2228. visualmap_opts=opts.VisualMapOpts(is_show=True,
  2229. max_=int(self.Model.components_.max()) + 1,
  2230. min_=int(self.Model.components_.min()),
  2231. pos_right='3%')) # 显示
  2232. )
  2233. tab.add(c, '成分热力图')
  2234. c = (
  2235. Bar()
  2236. .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
  2237. .add_yaxis('放量差', var, **Label_Set)
  2238. .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
  2239. )
  2240. tab.add(c, '方量差柱状图')
  2241. save = Dic + r'/render.HTML'
  2242. tab.render(save) # 生成HTML
  2243. return save,
  2244. class KPCA_Model(Unsupervised):
  2245. def __init__(self, args_use, model, *args, **kwargs):
  2246. super(KPCA_Model, self).__init__(*args, **kwargs)
  2247. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  2248. self.n_components = args_use['n_components']
  2249. self.kernel = args_use['kernel']
  2250. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  2251. self.Model_Name = 'KPCA'
  2252. def Predict(self, x_data, *args, **kwargs):
  2253. self.x_trainData = x_data.copy()
  2254. x_Predict = self.Model.transform(x_data)
  2255. self.y_trainData = x_Predict.copy()
  2256. return x_Predict,'KPCA'
  2257. def Des(self, Dic, *args, **kwargs):
  2258. tab = Tab()
  2259. y_data = self.y_trainData
  2260. Conversion_Separate_Format(y_data, tab)
  2261. save = Dic + r'/render.HTML'
  2262. tab.render(save) # 生成HTML
  2263. return save,
  2264. class LDA_Model(prep_Base):#有监督学习
  2265. def __init__(self, args_use, model, *args, **kwargs):
  2266. super(LDA_Model, self).__init__(*args, **kwargs)
  2267. self.Model = LDA(n_components=args_use['n_components'])
  2268. self.n_components = args_use['n_components']
  2269. self.k = {'n_components': args_use['n_components']}
  2270. self.Model_Name = 'LDA'
  2271. def Predict(self, x_data, *args, **kwargs):
  2272. self.x_trainData = x_data.copy()
  2273. x_Predict = self.Model.transform(x_data)
  2274. self.y_trainData = x_Predict.copy()
  2275. return x_Predict,'LDA'
  2276. def Des(self,Dic,*args,**kwargs):
  2277. tab = Tab()
  2278. y_data = self.y_trainData
  2279. x_data = self.x_trainData
  2280. Conversion_Separate_Format(y_data,tab)
  2281. save = Dic + r'/render.HTML'
  2282. tab.render(save) # 生成HTML
  2283. return save,
  2284. class NMF_Model(Unsupervised):
  2285. def __init__(self, args_use, model, *args, **kwargs):
  2286. super(NMF_Model, self).__init__(*args, **kwargs)
  2287. self.Model = NMF(n_components=args_use['n_components'])
  2288. self.n_components = args_use['n_components']
  2289. self.k = {'n_components':args_use['n_components']}
  2290. self.Model_Name = 'NFM'
  2291. self.h_trainData = None
  2292. #x_trainData保存的是W,h_trainData和y_trainData是后来数据
  2293. def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
  2294. self.x_trainData = x_data.copy()
  2295. x_Predict = self.Model.transform(x_data)
  2296. self.y_trainData = x_Predict.copy()
  2297. self.h_trainData = self.Model.components_
  2298. if Add_Func != None and x_name != '':
  2299. Add_Func(self.h_trainData, f'{x_name}:V->NMF[H]')
  2300. return x_Predict,'V->NMF[W]'
  2301. def Des(self,Dic,*args,**kwargs):
  2302. tab = Tab()
  2303. y_data = self.y_trainData
  2304. x_data = self.x_trainData
  2305. h_data = self.h_trainData
  2306. Conversion_SeparateWH(y_data,h_data,tab)
  2307. wh_data = np.matmul(y_data, h_data)
  2308. difference_data = x_data - wh_data
  2309. def make_HeatMap(data,name,max_,min_):
  2310. x = [f'数据[{i}]' for i in range(len(data))] # 主成分
  2311. y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
  2312. value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2313. c = (HeatMap()
  2314. .add_xaxis(x)
  2315. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2316. .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
  2317. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2318. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2319. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
  2320. min_=min_,
  2321. pos_right='3%'))#显示
  2322. )
  2323. tab.add(c,name)
  2324. max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
  2325. min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
  2326. make_HeatMap(x_data,'原始数据热力图',max_,min_)
  2327. make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
  2328. make_HeatMap(difference_data,'数据差热力图',max_,min_)
  2329. save = Dic + r'/render.HTML'
  2330. tab.render(save) # 生成HTML
  2331. return save,
  2332. class TSNE_Model(Unsupervised):
  2333. def __init__(self, args_use, model, *args, **kwargs):
  2334. super(TSNE_Model, self).__init__(*args, **kwargs)
  2335. self.Model = TSNE(n_components=args_use['n_components'])
  2336. self.n_components = args_use['n_components']
  2337. self.k = {'n_components':args_use['n_components']}
  2338. self.Model_Name = 't-SNE'
  2339. def Fit(self,*args, **kwargs):
  2340. return 'None', 'None'
  2341. def Predict(self, x_data, *args, **kwargs):
  2342. self.x_trainData = x_data.copy()
  2343. x_Predict = self.Model.fit_transform(x_data)
  2344. self.y_trainData = x_Predict.copy()
  2345. return x_Predict,'SNE'
  2346. def Des(self,Dic,*args,**kwargs):
  2347. tab = Tab()
  2348. y_data = self.y_trainData
  2349. Conversion_Separate_Format(y_data,tab)
  2350. save = Dic + r'/render.HTML'
  2351. tab.render(save) # 生成HTML
  2352. return save,
  2353. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  2354. def __init__(self,args_use,model,*args,**kwargs):
  2355. super(MLP_Model, self).__init__(*args,**kwargs)
  2356. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  2357. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  2358. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  2359. #记录这两个是为了克隆
  2360. self.hidden_layer_sizes = args_use['hidden_size']
  2361. self.activation = args_use['activation']
  2362. self.max_iter = args_use['max_iter']
  2363. self.solver = args_use['solver']
  2364. self.alpha = args_use['alpha']
  2365. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  2366. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  2367. self.Model_Name = model
  2368. def Des(self,Dic,*args,**kwargs):
  2369. tab = Tab()
  2370. coefs = self.Model.coefs_
  2371. def make_HeatMap(data,name):
  2372. x = [f'特征(节点)[{i}]' for i in range(len(data))] # 主成分
  2373. y = [f'节点[{i}]' for i in range(len(data[0]))] # 主成分
  2374. value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
  2375. c = (HeatMap()
  2376. .add_xaxis(x)
  2377. .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
  2378. .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
  2379. yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
  2380. xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
  2381. visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
  2382. min_=float(data.min()),
  2383. pos_right='3%'))#显示
  2384. )
  2385. tab.add(c,name)
  2386. tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
  2387. heard = ['神经网络层数']
  2388. data = [self.Model.n_layers_]
  2389. for i in range(len(coefs)):
  2390. make_HeatMap(coefs[i],f'{i}层权重矩阵')
  2391. heard.append(f'第{i}层节点数')
  2392. data.append(len(coefs[i][0]))
  2393. if self.Model_Name == 'MLP_class':
  2394. heard += [f'[{i}]类型' for i in range(len(self.Model.classes_))]
  2395. data += self.Model.classes_.tolist()
  2396. tab.add(make_Tab(heard,[data]),'数据表')
  2397. save = Dic + r'/render.HTML'
  2398. tab.render(save) # 生成HTML
  2399. return save,
  2400. class kmeans_Model(UnsupervisedModel):
  2401. def __init__(self, args_use, model, *args, **kwargs):
  2402. super(kmeans_Model, self).__init__(*args, **kwargs)
  2403. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  2404. self.class_ = []
  2405. self.n_clusters = args_use['n_clusters']
  2406. self.k = {'n_clusters':args_use['n_clusters']}
  2407. self.Model_Name = 'k-means'
  2408. def Fit(self, x_data, *args, **kwargs):
  2409. re = super().Fit(x_data,*args,**kwargs)
  2410. self.class_ = list(set(self.Model.labels_.tolist()))
  2411. return re
  2412. def Predict(self, x_data, *args, **kwargs):
  2413. self.x_trainData = x_data
  2414. y_Predict = self.Model.predict(x_data)
  2415. self.y_trainData = y_Predict
  2416. return y_Predict,'k-means'
  2417. def Des(self,Dic,*args,**kwargs):
  2418. tab = Tab()
  2419. y = self.y_trainData
  2420. x_data = self.x_trainData
  2421. class_ = self.class_
  2422. center = self.Model.cluster_centers_
  2423. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2424. get,x_means,x_range,Type = Training_visualization_More(x_data,class_,y,center)
  2425. for i in range(len(get)):
  2426. tab.add(get[i],f'{i}训练数据散点图')
  2427. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2428. data = class_ + [f'{i}' for i in x_means]
  2429. c = Table().add(headers=heard, rows=[data])
  2430. tab.add(c, '数据表')
  2431. save = Dic + r'/render.HTML'
  2432. tab.render(save) # 生成HTML
  2433. return save,
  2434. class Agglomerative_Model(UnsupervisedModel):
  2435. def __init__(self, args_use, model, *args, **kwargs):
  2436. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  2437. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  2438. self.class_ = []
  2439. self.n_clusters = args_use['n_clusters']
  2440. self.k = {'n_clusters':args_use['n_clusters']}
  2441. self.Model_Name = 'Agglomerative'
  2442. def Fit(self, x_data, *args, **kwargs):
  2443. re = super().Fit(x_data,*args,**kwargs)
  2444. self.class_ = list(set(self.Model.labels_.tolist()))
  2445. return re
  2446. def Predict(self, x_data, *args, **kwargs):
  2447. y_Predict = self.Model.fit_predict(x_data)
  2448. self.y_trainData = y_Predict
  2449. return y_Predict,'Agglomerative'
  2450. def Des(self, Dic, *args, **kwargs):
  2451. tab = Tab()
  2452. y = self.y_trainData
  2453. x_data = self.x_trainData
  2454. class_ = self.class_
  2455. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2456. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2457. for i in range(len(get)):
  2458. tab.add(get[i], f'{i}训练数据散点图')
  2459. linkage_array = ward(self.x_trainData)#self.y_trainData是结果
  2460. dendrogram(linkage_array)
  2461. plt.savefig(Dic + r'/Cluster_graph.png')
  2462. image = Image()
  2463. image.add(
  2464. src=Dic + r'/Cluster_graph.png',
  2465. ).set_global_opts(
  2466. title_opts=opts.ComponentTitleOpts(title="聚类树状图")
  2467. )
  2468. tab.add(image,'聚类树状图')
  2469. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2470. data = class_ + [f'{i}' for i in x_means]
  2471. c = Table().add(headers=heard, rows=[data])
  2472. tab.add(c, '数据表')
  2473. save = Dic + r'/render.HTML'
  2474. tab.render(save) # 生成HTML
  2475. return save,
  2476. class DBSCAN_Model(UnsupervisedModel):
  2477. def __init__(self, args_use, model, *args, **kwargs):
  2478. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  2479. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  2480. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  2481. # min_samples
  2482. self.eps = args_use['eps']
  2483. self.min_samples = args_use['min_samples']
  2484. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  2485. self.class_ = []
  2486. self.Model_Name = 'DBSCAN'
  2487. def Fit(self, x_data, *args, **kwargs):
  2488. re = super().Fit(x_data,*args,**kwargs)
  2489. self.class_ = list(set(self.Model.labels_.tolist()))
  2490. return re
  2491. def Predict(self, x_data, *args, **kwargs):
  2492. y_Predict = self.Model.fit_predict(x_data)
  2493. self.y_trainData = y_Predict
  2494. return y_Predict,'DBSCAN'
  2495. def Des(self, Dic, *args, **kwargs):
  2496. tab = Tab()
  2497. y = self.y_trainData
  2498. x_data = self.x_trainData
  2499. class_ = self.class_
  2500. class_heard = [f'簇[{i}]' for i in range(len(class_))]
  2501. get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
  2502. for i in range(len(get)):
  2503. tab.add(get[i], f'{i}训练数据散点图')
  2504. heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
  2505. data = class_ + [f'{i}' for i in x_means]
  2506. c = Table().add(headers=heard, rows=[data])
  2507. tab.add(c, '数据表')
  2508. save = Dic + r'/render.HTML'
  2509. tab.render(save) # 生成HTML
  2510. return save,
  2511. class Machine_Learner(Learner):#数据处理者
  2512. def __init__(self,*args, **kwargs):
  2513. super().__init__(*args, **kwargs)
  2514. self.Learner = {}#记录机器
  2515. self.Learn_Dic = {'Line':Line_Model,
  2516. 'Ridge':Line_Model,
  2517. 'Lasso':Line_Model,
  2518. 'LogisticRegression':LogisticRegression_Model,
  2519. 'Knn_class':Knn_Model,
  2520. 'Knn': Knn_Model,
  2521. 'Tree_class': Tree_Model,
  2522. 'Tree': Tree_Model,
  2523. 'Forest':Forest_Model,
  2524. 'Forest_class': Forest_Model,
  2525. 'GradientTree_class':GradientTree_Model,
  2526. 'GradientTree': GradientTree_Model,
  2527. 'Variance':Variance_Model,
  2528. 'SelectKBest':SelectKBest_Model,
  2529. 'Z-Score':Standardization_Model,
  2530. 'MinMaxScaler':MinMaxScaler_Model,
  2531. 'LogScaler':LogScaler_Model,
  2532. 'atanScaler':atanScaler_Model,
  2533. 'decimalScaler':decimalScaler_Model,
  2534. 'sigmodScaler':sigmodScaler_Model,
  2535. 'Mapzoom':Mapzoom_Model,
  2536. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  2537. 'Regularization':Regularization_Model,
  2538. 'Binarizer':Binarizer_Model,
  2539. 'Discretization':Discretization_Model,
  2540. 'Label':Label_Model,
  2541. 'OneHotEncoder':OneHotEncoder_Model,
  2542. 'Missed':Missed_Model,
  2543. 'PCA':PCA_Model,
  2544. 'RPCA':RPCA_Model,
  2545. 'KPCA':KPCA_Model,
  2546. 'LDA':LDA_Model,
  2547. 'SVC':SVC_Model,
  2548. 'SVR':SVR_Model,
  2549. 'MLP':MLP_Model,
  2550. 'MLP_class': MLP_Model,
  2551. 'NMF':NMF_Model,
  2552. 't-SNE':TSNE_Model,
  2553. 'k-means':kmeans_Model,
  2554. 'Agglomerative':Agglomerative_Model,
  2555. 'DBSCAN':DBSCAN_Model,
  2556. 'ClassBar':Class_To_Bar,
  2557. 'FeatureScatter':Near_feature_scatter,
  2558. 'FeatureScatterClass': Near_feature_scatter_class,
  2559. 'FeatureScatter_all':Near_feature_scatter_More,
  2560. 'FeatureScatterClass_all':Near_feature_scatter_class_More,
  2561. 'HeatMap':Numpy_To_HeatMap,
  2562. 'FeatureY-X':Feature_scatter_YX,
  2563. 'ClusterTree':Cluster_Tree,
  2564. 'MatrixScatter':MatrixScatter,
  2565. }
  2566. self.Learner_Type = {}#记录机器的类型
  2567. def p_Args(self,Text,Type):#解析参数
  2568. args = {}
  2569. args_use = {}
  2570. #输入数据
  2571. exec(Text,args)
  2572. #处理数据
  2573. if Type in ('MLP','MLP_class'):
  2574. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  2575. else:
  2576. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  2577. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  2578. if Type in ('MLP','MLP_class'):
  2579. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  2580. else:
  2581. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  2582. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  2583. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  2584. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  2585. if Type in ('Tree','Forest','GradientTree'):
  2586. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  2587. else:
  2588. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  2589. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  2590. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  2591. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  2592. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  2593. args_use['P'] = float(args.get('min_samples_split', 0.8))
  2594. args_use['k'] = args.get('k',1)
  2595. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  2596. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  2597. get(args.get('score_func','f_classif'),f_classif))
  2598. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  2599. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  2600. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  2601. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  2602. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  2603. args_use['miss_value'] = args.get('miss_value',np.nan)
  2604. args_use['fill_method'] = args.get('fill_method','mean')
  2605. args_use['fill_value'] = args.get('fill_value',None)
  2606. args_use['n_components'] = args.get('n_components',1)
  2607. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  2608. args_use['n_Tree'] = args.get('n_Tree',100)
  2609. args_use['gamma'] = args.get('gamma',1)
  2610. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  2611. args_use['activation'] = str(args.get('activation','relu'))
  2612. args_use['solver'] = str(args.get('solver','adam'))
  2613. if Type in ('k-means',):
  2614. args_use['n_clusters'] = int(args.get('n_clusters',8))
  2615. else:
  2616. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  2617. args_use['eps'] = float(args.get('n_clusters', 0.5))
  2618. args_use['min_samples'] = int(args.get('n_clusters', 5))
  2619. return args_use
  2620. def Add_Learner(self,Learner,Text=''):
  2621. get = self.Learn_Dic[Learner]
  2622. name = f'Le[{len(self.Learner)}]{Learner}'
  2623. #参数调节
  2624. args_use = self.p_Args(Text,Learner)
  2625. #生成学习器
  2626. self.Learner[name] = get(model=Learner,args_use=args_use)
  2627. self.Learner_Type[name] = Learner
  2628. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  2629. model = self.get_Learner(Learner)
  2630. name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
  2631. #参数调节
  2632. args_use = self.p_Args(Text,'SelectFrom_Model')
  2633. #生成学习器
  2634. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  2635. self.Learner_Type[name] = 'SelectFrom_Model'
  2636. def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器
  2637. model = self.get_Learner(Learner)
  2638. name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
  2639. #生成学习器
  2640. args_use = self.p_Args(Text, 'Predictive_HeatMap')
  2641. self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use)
  2642. self.Learner_Type[name] = 'Predictive_HeatMap'
  2643. def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器
  2644. model = self.get_Learner(Learner)
  2645. name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
  2646. #生成学习器
  2647. args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
  2648. self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use)
  2649. self.Learner_Type[name] = 'Predictive_HeatMap_More'
  2650. def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器
  2651. model = self.get_Learner(Learner)
  2652. name = f'Le[{len(self.Learner)}]View_data:{Learner}'
  2653. #生成学习器
  2654. args_use = self.p_Args(Text, 'View_data')
  2655. self.Learner[name] = View_data(Learner=model,args_use=args_use)
  2656. self.Learner_Type[name] = 'View_data'
  2657. def Return_Learner(self):
  2658. return self.Learner.copy()
  2659. def get_Learner(self,name):
  2660. return self.Learner[name]
  2661. def get_Learner_Type(self,name):
  2662. return self.Learner_Type[name]
  2663. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  2664. x_data = self.get_Sheet(x_name)
  2665. y_data = self.get_Sheet(y_name)
  2666. model = self.get_Learner(Learner)
  2667. return model.Fit(x_data,y_data,split)
  2668. def Predict(self,x_name,Learner,Text='',**kwargs):
  2669. x_data = self.get_Sheet(x_name)
  2670. model = self.get_Learner(Learner)
  2671. y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form)
  2672. self.Add_Form(y_data,f'{x_name}:{name}')
  2673. return y_data
  2674. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  2675. model = self.get_Learner(Learner)
  2676. x = self.get_Sheet(name_x)
  2677. y = self.get_Sheet(name_y)
  2678. return model.Score(x,y)
  2679. def Show_Args(self,Learner,Dic):#显示参数
  2680. model = self.get_Learner(Learner)
  2681. return model.Des(Dic)
  2682. def Del_Leaner(self,Leaner):
  2683. del self.Learner[Leaner]
  2684. del self.Learner_Type[Leaner]