Learn_Numpy.py 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911
  1. from pyecharts.components import Table #绘制表格
  2. from pyecharts import options as opts
  3. from pyecharts.charts import Tab,Page
  4. from pandas import DataFrame,read_csv
  5. import numpy as np
  6. from sklearn.model_selection import train_test_split
  7. from sklearn.linear_model import *
  8. from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
  9. from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor
  10. from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
  11. GradientBoostingRegressor)
  12. from sklearn.metrics import accuracy_score
  13. from sklearn.feature_selection import *
  14. from sklearn.preprocessing import *
  15. from sklearn.impute import SimpleImputer
  16. from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
  17. from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
  18. from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
  19. from sklearn.neural_network import MLPClassifier,MLPRegressor
  20. from sklearn.manifold import TSNE
  21. from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
  22. # import sklearn as sk
  23. #设置
  24. np.set_printoptions(threshold=np.inf)
  25. class Learner:
  26. def __init__(self,*args,**kwargs):
  27. self.numpy_Dic = {}#name:numpy
  28. def Add_Form(self,data:np.array,name):
  29. name = f'{name}[{len(self.numpy_Dic)}]'
  30. self.numpy_Dic[name] = data
  31. def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
  32. type_ = np.str if str_must else np.float
  33. pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
  34. try:
  35. data = pf_data.to_numpy(dtype=type_)
  36. except ValueError:
  37. data = pf_data.to_numpy(dtype=np.str)
  38. if data.ndim == 1: data = np.expand_dims(data, axis=1)
  39. self.Add_Form(data,name)
  40. return data
  41. def Add_Python(self, Text, sheet_name):
  42. name = {}
  43. name.update(globals().copy())
  44. name.update(locals().copy())
  45. exec(Text, name)
  46. exec('get = Creat()', name)
  47. if isinstance(name['get'], np.array): # 已经是DataFram
  48. get = name['get']
  49. else:
  50. try:
  51. get = np.array(name['get'])
  52. except:
  53. get = np.array([name['get']])
  54. self.Add_Form(get, sheet_name)
  55. return get
  56. def get_Form(self) -> dict:
  57. return self.numpy_Dic.copy()
  58. def get_Sheet(self,name) -> np.array:
  59. return self.numpy_Dic[name].copy()
  60. def to_CSV(self,Dic:str,name,sep) -> str:
  61. get = self.get_Sheet(name)
  62. np.savetxt(Dic, get, delimiter=sep)
  63. return Dic
  64. def to_Html_One(self,name,Dic=''):
  65. if Dic == '': Dic = f'{name}.html'
  66. get = self.get_Sheet(name)
  67. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  68. get = get.tolist()
  69. for i in range(len(get)):
  70. get[i] = [i+1] + get[i]
  71. headers = [i for i in range(len(get[0]))]
  72. table = Table()
  73. table.add(headers, get).set_global_opts(
  74. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  75. table.render(Dic)
  76. return Dic
  77. def to_Html(self, name, Dic='', type_=0):
  78. if Dic == '': Dic = f'{name}.html'
  79. # 把要画的sheet放到第一个
  80. Sheet_Dic = self.get_Form()
  81. del Sheet_Dic[name]
  82. Sheet_list = [name] + list(Sheet_Dic.keys())
  83. class TAB_F:
  84. def __init__(self, q):
  85. self.tab = q # 一个Tab
  86. def render(self, Dic):
  87. return self.tab.render(Dic)
  88. # 生成一个显示页面
  89. if type_ == 0:
  90. class TAB(TAB_F):
  91. def add(self, table, k, *f):
  92. self.tab.add(table, k)
  93. tab = TAB(Tab(page_title='CoTan:查看表格')) # 一个Tab
  94. elif type_ == 1:
  95. class TAB(TAB_F):
  96. def add(self, table, *k):
  97. self.tab.add(table)
  98. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
  99. else:
  100. class TAB(TAB_F):
  101. def add(self, table, *k):
  102. self.tab.add(table)
  103. tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
  104. # 迭代添加内容
  105. for name in Sheet_list:
  106. get = self.get_Sheet(name)
  107. if get.ndim == 1: get = np.expand_dims(get, axis=1)
  108. get = get.tolist()
  109. for i in range(len(get)):
  110. get[i] = [i+1] + get[i]
  111. headers = [i for i in range(len(get[0]))]
  112. table = Table()
  113. table.add(headers, get).set_global_opts(
  114. title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
  115. tab.add(table, f'表格:{name}')
  116. tab.render(Dic)
  117. return Dic
  118. class Study_MachineBase:
  119. def __init__(self,*args,**kwargs):
  120. self.Model = None
  121. self.have_Fit = False
  122. #记录这两个是为了克隆
  123. def Accuracy(self,y_Predict,y_Really):
  124. return accuracy_score(y_Predict, y_Really)
  125. def Fit(self,x_data,y_data,split=0.3,**kwargs):
  126. self.have_Fit = True
  127. y_data = y_data.ravel()
  128. x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
  129. self.Model.fit(x_data,y_data)
  130. train_score = self.Model.score(x_train,y_train)
  131. test_score = self.Model.score(x_test,y_test)
  132. return train_score,test_score
  133. def Score(self,x_data,y_data):
  134. Score = self.Model.score(x_data,y_data)
  135. return Score
  136. def Predict(self,x_data):
  137. y_Predict = self.Model.predict(x_data)
  138. return y_Predict,'预测'
  139. class prep_Base(Study_MachineBase):
  140. def __init__(self,*args,**kwargs):
  141. super(prep_Base, self).__init__(*args,**kwargs)
  142. self.Model = None
  143. def Fit(self, x_data,y_data, *args, **kwargs):
  144. if not self.have_Fit: # 不允许第二次训练
  145. self.Model.fit(x_data,y_data)
  146. return 'None', 'None'
  147. def Predict(self, x_data):
  148. x_Predict = self.Model.transform(x_data)
  149. return x_Predict,'特征工程'
  150. def Score(self, x_data, y_data):
  151. return 'None' # 没有score
  152. class Unsupervised(prep_Base):
  153. def Fit(self, x_data, *args, **kwargs):
  154. if not self.have_Fit: # 不允许第二次训练
  155. self.Model.fit(x_data)
  156. return 'None', 'None'
  157. class UnsupervisedModel(prep_Base):
  158. def Fit(self, x_data, *args, **kwargs):
  159. self.Model.fit(x_data)
  160. return 'None', 'None'
  161. class Line_Model(Study_MachineBase):
  162. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  163. super(Line_Model, self).__init__(*args,**kwargs)
  164. Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
  165. model]
  166. if model == 'Line':
  167. self.Model = Model()
  168. self.k = {}
  169. else:
  170. self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  171. self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
  172. #记录这两个是为了克隆
  173. self.Alpha = args_use['alpha']
  174. self.max_iter = args_use['max_iter']
  175. self.Model_Name = model
  176. class LogisticRegression_Model(Study_MachineBase):
  177. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  178. super(LogisticRegression_Model, self).__init__(*args,**kwargs)
  179. self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
  180. #记录这两个是为了克隆
  181. self.C = args_use['C']
  182. self.max_iter = args_use['max_iter']
  183. self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
  184. self.Model_Name = model
  185. class Knn_Model(Study_MachineBase):
  186. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  187. super(Knn_Model, self).__init__(*args,**kwargs)
  188. Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
  189. self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
  190. #记录这两个是为了克隆
  191. self.n_neighbors = args_use['n_neighbors']
  192. self.p = args_use['p']
  193. self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
  194. self.Model_Name = model
  195. class Tree_Model(Study_MachineBase):
  196. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  197. super(Tree_Model, self).__init__(*args,**kwargs)
  198. Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
  199. self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
  200. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  201. #记录这两个是为了克隆
  202. self.criterion = args_use['criterion']
  203. self.splitter = args_use['splitter']
  204. self.max_features = args_use['max_features']
  205. self.max_depth = args_use['max_depth']
  206. self.min_samples_split = args_use['min_samples_split']
  207. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  208. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  209. self.Model_Name = model
  210. class Forest_Model(Study_MachineBase):
  211. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  212. super(Forest_Model, self).__init__(*args,**kwargs)
  213. Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
  214. self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
  215. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  216. #记录这两个是为了克隆
  217. self.n_estimators = args_use['n_Tree']
  218. self.criterion = args_use['criterion']
  219. self.max_features = args_use['max_features']
  220. self.max_depth = args_use['max_depth']
  221. self.min_samples_split = args_use['min_samples_split']
  222. self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
  223. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  224. self.Model_Name = model
  225. class GradientTree_Model(Study_MachineBase):
  226. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  227. super(GradientTree_Model, self).__init__(*args,**kwargs)
  228. Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
  229. self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
  230. ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
  231. #记录这两个是为了克隆
  232. self.criterion = args_use['criterion']
  233. self.splitter = args_use['splitter']
  234. self.max_features = args_use['max_features']
  235. self.max_depth = args_use['max_depth']
  236. self.min_samples_split = args_use['min_samples_split']
  237. self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
  238. 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
  239. self.Model_Name = model
  240. class SVC_Model(Study_MachineBase):
  241. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  242. super(SVC_Model, self).__init__(*args,**kwargs)
  243. self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  244. #记录这两个是为了克隆
  245. self.C = args_use['C']
  246. self.gamma = args_use['gamma']
  247. self.kernel = args_use['kernel']
  248. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  249. self.Model_Name = model
  250. class SVR_Model(Study_MachineBase):
  251. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  252. super(SVR_Model, self).__init__(*args,**kwargs)
  253. self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
  254. #记录这两个是为了克隆
  255. self.C = args_use['C']
  256. self.gamma = args_use['gamma']
  257. self.kernel = args_use['kernel']
  258. self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
  259. self.Model_Name = model
  260. class Variance_Model(Unsupervised):#无监督
  261. def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
  262. super(Variance_Model, self).__init__(*args,**kwargs)
  263. self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
  264. #记录这两个是为了克隆
  265. self.threshold = args_use['P']
  266. self.k = {'threshold':args_use['P']}
  267. self.Model_Name = model
  268. class SelectKBest_Model(prep_Base):#有监督
  269. def __init__(self, args_use, model, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  270. super(SelectKBest_Model, self).__init__(*args, **kwargs)
  271. self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
  272. # 记录这两个是为了克隆
  273. self.k_ = args_use['k']
  274. self.score_func=args_use['score_func']
  275. self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
  276. self.Model_Name = model
  277. class SelectFrom_Model(prep_Base):#有监督
  278. def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
  279. super(SelectFrom_Model, self).__init__(*args, **kwargs)
  280. self.Model = Learner.Model
  281. self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
  282. self.max_features = args_use['k']
  283. self.estimator=Learner.Model
  284. self.k = {'max_features':args_use['k'],'estimator':Learner.Model}
  285. self.Model_Name = 'SelectFrom_Model'
  286. def Predict(self, x_data):
  287. try:
  288. x_Predict = self.Select_Model.transform(x_data)
  289. return x_Predict,'模型特征工程'
  290. except:
  291. return np.array([]),'无结果工程'
  292. class Standardization_Model(Unsupervised):#z-score标准化 无监督
  293. def __init__(self, args_use, model, *args, **kwargs):
  294. super(Standardization_Model, self).__init__(*args, **kwargs)
  295. self.Model = StandardScaler()
  296. self.k = {}
  297. self.Model_Name = 'StandardScaler'
  298. class MinMaxScaler_Model(Unsupervised):#离差标准化
  299. def __init__(self, args_use, model, *args, **kwargs):
  300. super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
  301. self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
  302. self.k = {}
  303. self.Model_Name = 'MinMaxScaler'
  304. class LogScaler_Model(prep_Base):#对数标准化
  305. def __init__(self, args_use, model, *args, **kwargs):
  306. super(LogScaler_Model, self).__init__(*args, **kwargs)
  307. self.Model = None
  308. self.k = {}
  309. self.Model_Name = 'LogScaler'
  310. def Fit(self, x_data, *args, **kwargs):
  311. if not self.have_Fit: # 不允许第二次训练
  312. self.max_logx = np.log(x_data.max())
  313. return 'None', 'None'
  314. def Predict(self, x_data):
  315. try:
  316. max_logx = self.max_logx
  317. except:
  318. self.have_Fit = False
  319. self.Fit(x_data)
  320. max_logx = self.max_logx
  321. x_Predict = (np.log(x_data)/max_logx)
  322. return x_Predict,'对数变换'
  323. class atanScaler_Model(prep_Base):#atan标准化
  324. def __init__(self, args_use, model, *args, **kwargs):
  325. super(atanScaler_Model, self).__init__(*args, **kwargs)
  326. self.Model = None
  327. self.k = {}
  328. self.Model_Name = 'atanScaler'
  329. def Fit(self, x_data, *args, **kwargs):
  330. return 'None', 'None'
  331. def Predict(self, x_data):
  332. x_Predict = (np.arctan(x_data)*(2/np.pi))
  333. return x_Predict,'atan变换'
  334. class decimalScaler_Model(prep_Base):#小数定标准化
  335. def __init__(self, args_use, model, *args, **kwargs):
  336. super(decimalScaler_Model, self).__init__(*args, **kwargs)
  337. self.Model = None
  338. self.k = {}
  339. self.Model_Name = 'Decimal_normalization'
  340. def Fit(self, x_data, *args, **kwargs):
  341. if not self.have_Fit: # 不允许第二次训练
  342. self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
  343. return 'None', 'None'
  344. def Predict(self, x_data):
  345. try:
  346. j = self.j
  347. except:
  348. self.have_Fit = False
  349. self.Fit(x_data)
  350. j = self.j
  351. x_Predict = (x_data/(10**j))
  352. return x_Predict,'小数定标标准化'
  353. class Mapzoom_Model(prep_Base):#映射标准化
  354. def __init__(self, args_use, model, *args, **kwargs):
  355. super(Mapzoom_Model, self).__init__(*args, **kwargs)
  356. self.Model = None
  357. self.feature_range = args_use['feature_range']
  358. self.k = {}
  359. self.Model_Name = 'Decimal_normalization'
  360. def Fit(self, x_data, *args, **kwargs):
  361. if not self.have_Fit: # 不允许第二次训练
  362. self.max = x_data.max()
  363. self.min = x_data.min()
  364. return 'None', 'None'
  365. def Predict(self, x_data):
  366. try:
  367. max = self.max
  368. min = self.min
  369. except:
  370. self.have_Fit = False
  371. self.Fit(x_data)
  372. max = self.max
  373. min = self.min
  374. x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
  375. return x_Predict,'映射标准化'
  376. class sigmodScaler_Model(prep_Base):#sigmod变换
  377. def __init__(self, args_use, model, *args, **kwargs):
  378. super(sigmodScaler_Model, self).__init__(*args, **kwargs)
  379. self.Model = None
  380. self.k = {}
  381. self.Model_Name = 'sigmodScaler_Model'
  382. def Fit(self, x_data, *args, **kwargs):
  383. return 'None', 'None'
  384. def Predict(self, x_data:np.array):
  385. x_Predict = (1/(1+np.exp(-x_data)))
  386. return x_Predict,'Sigmod变换'
  387. class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
  388. def __init__(self, args_use, model, *args, **kwargs):
  389. super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
  390. self.Model = None
  391. self.feature_range = args_use['feature_range']
  392. self.k = {}
  393. self.Model_Name = 'Fuzzy_quantization'
  394. def Fit(self, x_data, *args, **kwargs):
  395. if not self.have_Fit: # 不允许第二次训练
  396. self.max = x_data.max()
  397. self.min = x_data.min()
  398. return 'None', 'None'
  399. def Predict(self, x_data,*args,**kwargs):
  400. try:
  401. max = self.max
  402. min = self.min
  403. except:
  404. self.have_Fit = False
  405. self.Fit(x_data)
  406. max = self.max
  407. min = self.min
  408. x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
  409. return x_Predict,'映射标准化'
  410. class Regularization_Model(Unsupervised):#正则化
  411. def __init__(self, args_use, model, *args, **kwargs):
  412. super(Regularization_Model, self).__init__(*args, **kwargs)
  413. self.Model = Normalizer(norm=args_use['norm'])
  414. self.k = {'norm':args_use['norm']}
  415. self.Model_Name = 'Regularization'
  416. class Binarizer_Model(Unsupervised):#二值化
  417. def __init__(self, args_use, model, *args, **kwargs):
  418. super(Binarizer_Model, self).__init__(*args, **kwargs)
  419. self.Model = Binarizer(threshold=args_use['threshold'])
  420. self.k = {}
  421. self.Model_Name = 'Binarizer'
  422. class Discretization_Model(prep_Base):#n值离散
  423. def __init__(self, args_use, model, *args, **kwargs):
  424. super(Discretization_Model, self).__init__(*args, **kwargs)
  425. self.Model = None
  426. range_ = args_use['split_range']
  427. if range_ == []:raise Exception
  428. elif len(range_) == 1:range_.append(range_[0])
  429. self.range = range_
  430. self.k = {}
  431. self.Model_Name = 'Discretization'
  432. def Fit(self,*args,**kwargs):
  433. return 'None','None'
  434. def Predict(self,x_data):
  435. x_Predict = x_data.copy()#复制
  436. range_ = self.range
  437. bool_list = []
  438. max_ = len(range_) - 1
  439. o_t = None
  440. for i in range(len(range_)):
  441. try:
  442. t = float(range_[i])
  443. except:continue
  444. if o_t == None:#第一个参数
  445. bool_list.append(x_Predict <= t)
  446. else:
  447. bool_list.append((o_t <= x_Predict) == (x_Predict < t))
  448. if i == max_:
  449. bool_list.append(t <= x_Predict)
  450. o_t = t
  451. for i in range(len(bool_list)):
  452. x_Predict[bool_list[i]] = i
  453. return x_Predict,f'{len(bool_list)}值离散化'
  454. class Label_Model(prep_Base):#数字编码
  455. def __init__(self, args_use, model, *args, **kwargs):
  456. super(Label_Model, self).__init__(*args, **kwargs)
  457. self.Model = []
  458. self.k = {}
  459. self.Model_Name = 'LabelEncoder'
  460. def Fit(self,x_data,*args, **kwargs):
  461. if not self.have_Fit: # 不允许第二次训练
  462. if x_data.ndim == 1:x_data = np.array([x_data])
  463. for i in range(x_data.shape[1]):
  464. self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器
  465. return 'None', 'None'
  466. def Predict(self, x_data):
  467. x_Predict = x_data.copy()
  468. if x_data.ndim == 1: x_data = np.array([x_data])
  469. for i in range(x_data.shape[1]):
  470. x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
  471. return x_Predict,'数字编码'
  472. class OneHotEncoder_Model(prep_Base):#独热编码
  473. def __init__(self, args_use, model, *args, **kwargs):
  474. super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
  475. self.Model = []
  476. self.ndim_up = args_use['ndim_up']
  477. self.k = {}
  478. self.Model_Name = 'OneHotEncoder'
  479. def Fit(self,x_data,*args, **kwargs):
  480. if not self.have_Fit: # 不允许第二次训练
  481. if x_data.ndim == 1:x_data = [x_data]
  482. for i in range(x_data.shape[1]):
  483. data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
  484. self.Model.append(OneHotEncoder().fit(data))#训练机器
  485. return 'None', 'None'
  486. def Predict(self, x_data):
  487. x_new = []
  488. for i in range(x_data.shape[1]):
  489. data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
  490. oneHot = self.Model[i].transform(data).toarray().tolist()
  491. print(len(oneHot),oneHot)
  492. x_new.append(oneHot)#添加到列表中
  493. x_new = DataFrame(x_new).to_numpy()#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
  494. x_Predict = []
  495. for i in range(x_new.shape[1]):
  496. x_Predict.append(x_new[:,i])
  497. x_Predict = np.array(x_Predict)#转换回array
  498. if not self.ndim_up:#需要降维操作
  499. print('Q')
  500. new_xPredict = []
  501. for i in x_Predict:
  502. new_list = []
  503. list_ = i.tolist()
  504. for a in list_:
  505. new_list += a
  506. new = np.array(new_list)
  507. new_xPredict.append(new)
  508. return np.array(new_xPredict),'独热编码'
  509. return x_Predict,'独热编码'#不需要降维
  510. class Missed_Model(Unsupervised):#缺失数据补充
  511. def __init__(self, args_use, model, *args, **kwargs):
  512. super(Missed_Model, self).__init__(*args, **kwargs)
  513. self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
  514. fill_value=args_use['fill_value'])
  515. self.k = {}
  516. self.Model_Name = 'Missed'
  517. def Predict(self, x_data):
  518. x_Predict = self.Model.transform(x_data)
  519. return x_Predict,'填充缺失'
  520. class PCA_Model(Unsupervised):
  521. def __init__(self, args_use, model, *args, **kwargs):
  522. super(PCA_Model, self).__init__(*args, **kwargs)
  523. self.Model = PCA(n_components=args_use['n_components'])
  524. self.n_components = args_use['n_components']
  525. self.k = {'n_components':args_use['n_components']}
  526. self.Model_Name = 'PCA'
  527. def Predict(self, x_data):
  528. x_Predict = self.Model.transform(x_data)
  529. return x_Predict,'PCA'
  530. class RPCA_Model(Unsupervised):
  531. def __init__(self, args_use, model, *args, **kwargs):
  532. super(RPCA_Model, self).__init__(*args, **kwargs)
  533. self.Model = IncrementalPCA(n_components=args_use['n_components'])
  534. self.n_components = args_use['n_components']
  535. self.k = {'n_components': args_use['n_components']}
  536. self.Model_Name = 'RPCA'
  537. def Predict(self, x_data):
  538. x_Predict = self.Model.transform(x_data)
  539. return x_Predict,'RPCA'
  540. class KPCA_Model(Unsupervised):
  541. def __init__(self, args_use, model, *args, **kwargs):
  542. super(KPCA_Model, self).__init__(*args, **kwargs)
  543. self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
  544. self.n_components = args_use['n_components']
  545. self.kernel = args_use['kernel']
  546. self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
  547. self.Model_Name = 'KPCA'
  548. def Predict(self, x_data):
  549. x_Predict = self.Model.transform(x_data)
  550. return x_Predict,'KPCA'
  551. class LDA_Model(Unsupervised):
  552. def __init__(self, args_use, model, *args, **kwargs):
  553. super(LDA_Model, self).__init__(*args, **kwargs)
  554. self.Model = LDA(n_components=args_use['n_components'])
  555. self.n_components = args_use['n_components']
  556. self.k = {'n_components': args_use['n_components']}
  557. self.Model_Name = 'LDA'
  558. def Predict(self, x_data):
  559. x_Predict = self.Model.transform(x_data)
  560. return x_Predict,'LDA'
  561. class NMF_Model(Unsupervised):
  562. def __init__(self, args_use, model, *args, **kwargs):
  563. super(NMF_Model, self).__init__(*args, **kwargs)
  564. self.Model = NMF(n_components=args_use['n_components'])
  565. self.n_components = args_use['n_components']
  566. self.k = {'n_components':args_use['n_components']}
  567. self.Model_Name = 'NFM'
  568. def Predict(self, x_data):
  569. x_Predict = self.Model.transform(x_data)
  570. return x_Predict,'NMF'
  571. class TSNE_Model(Unsupervised):
  572. def __init__(self, args_use, model, *args, **kwargs):
  573. super(TSNE_Model, self).__init__(*args, **kwargs)
  574. self.Model = TSNE(n_components=args_use['n_components'])
  575. self.n_components = args_use['n_components']
  576. self.k = {'n_components':args_use['n_components']}
  577. self.Model_Name = 't-SNE'
  578. def Fit(self,*args, **kwargs):
  579. return 'None', 'None'
  580. def Predict(self, x_data):
  581. x_Predict = self.Model.fit_transform(x_data)
  582. return x_Predict,'SNE'
  583. class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
  584. def __init__(self,args_use,model,*args,**kwargs):
  585. super(MLP_Model, self).__init__(*args,**kwargs)
  586. Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
  587. self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
  588. solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
  589. #记录这两个是为了克隆
  590. self.hidden_layer_sizes = args_use['hidden_size']
  591. self.activation = args_use['activation']
  592. self.max_iter = args_use['max_iter']
  593. self.solver = args_use['solver']
  594. self.alpha = args_use['alpha']
  595. self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
  596. 'solver':args_use['solver'],'alpha':args_use['alpha']}
  597. self.Model_Name = model
  598. class kmeans_Model(UnsupervisedModel):
  599. def __init__(self, args_use, model, *args, **kwargs):
  600. super(kmeans_Model, self).__init__(*args, **kwargs)
  601. self.Model = KMeans(n_clusters=args_use['n_clusters'])
  602. self.n_clusters = args_use['n_clusters']
  603. self.k = {'n_clusters':args_use['n_clusters']}
  604. self.Model_Name = 'k-means'
  605. def Predict(self, x_data):
  606. y_Predict = self.Model.predict(x_data)
  607. return y_Predict,'k-means'
  608. class Agglomerative_Model(UnsupervisedModel):
  609. def __init__(self, args_use, model, *args, **kwargs):
  610. super(Agglomerative_Model, self).__init__(*args, **kwargs)
  611. self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
  612. self.n_clusters = args_use['n_clusters']
  613. self.k = {'n_clusters':args_use['n_clusters']}
  614. self.Model_Name = 'Agglomerative'
  615. def Predict(self, x_data):
  616. y_Predict = self.Model.fit_predict(x_data)
  617. return y_Predict,'Agglomerative'
  618. class DBSCAN_Model(UnsupervisedModel):
  619. def __init__(self, args_use, model, *args, **kwargs):
  620. super(DBSCAN_Model, self).__init__(*args, **kwargs)
  621. self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
  622. #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
  623. # min_samples
  624. self.eps = args_use['eps']
  625. self.min_samples = args_use['min_samples']
  626. self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
  627. self.Model_Name = 'DBSCAN'
  628. def Predict(self, x_data):
  629. y_Predict = self.Model.fit_predict(x_data)
  630. return y_Predict,'DBSCAN'
  631. class Machine_Learner(Learner):#数据处理者
  632. def __init__(self,*args, **kwargs):
  633. super().__init__(*args, **kwargs)
  634. self.Learner = {}#记录机器
  635. self.Learn_Dic = {'Line':Line_Model,
  636. 'Ridge':Line_Model,
  637. 'Lasso':Line_Model,
  638. 'LogisticRegression':LogisticRegression_Model,
  639. 'Knn_class':Knn_Model,
  640. 'Knn': Knn_Model,
  641. 'Tree_class': Tree_Model,
  642. 'Tree': Tree_Model,
  643. 'Forest':Forest_Model,
  644. 'Forest_class': Forest_Model,
  645. 'GradientTree_class':GradientTree_Model,
  646. 'GradientTree': GradientTree_Model,
  647. 'Variance':Variance_Model,
  648. 'SelectKBest':SelectKBest_Model,
  649. 'Z-Score':Standardization_Model,
  650. 'MinMaxScaler':MinMaxScaler_Model,
  651. 'LogScaler':LogScaler_Model,
  652. 'atanScaler':atanScaler_Model,
  653. 'decimalScaler':decimalScaler_Model,
  654. 'sigmodScaler':sigmodScaler_Model,
  655. 'Mapzoom':Mapzoom_Model,
  656. 'Fuzzy_quantization':Fuzzy_quantization_Model,
  657. 'Regularization':Regularization_Model,
  658. 'Binarizer':Binarizer_Model,
  659. 'Discretization':Discretization_Model,
  660. 'Label':Label_Model,
  661. 'OneHotEncoder':OneHotEncoder_Model,
  662. 'Missed':Missed_Model,
  663. 'PCA':PCA_Model,
  664. 'RPCA':RPCA_Model,
  665. 'KPCA':KPCA_Model,
  666. 'LDA':LDA_Model,
  667. 'SVC':SVC_Model,
  668. 'SVR':SVR_Model,
  669. 'MLP':MLP_Model,
  670. 'MLP_class': MLP_Model,
  671. 'NMF':NMF_Model,
  672. 't-SNE':TSNE_Model,
  673. 'k-means':kmeans_Model,
  674. 'Agglomerative':Agglomerative_Model,
  675. 'DBSCAN':DBSCAN_Model,
  676. }
  677. self.Learner_Type = {}#记录机器的类型
  678. def p_Args(self,Text,Type):#解析参数
  679. args = {}
  680. args_use = {}
  681. #输入数据
  682. exec(Text,args)
  683. #处理数据
  684. if Type in ('MLP','MLP_class'):
  685. args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
  686. else:
  687. args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
  688. args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
  689. if Type in ('MLP','MLP_class'):
  690. args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
  691. else:
  692. args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
  693. args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
  694. args_use['p'] = int(args.get('p', 2)) # 距离计算方式
  695. args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
  696. if Type in ('Tree','Forest','GradientTree'):
  697. args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
  698. else:
  699. args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
  700. args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
  701. args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
  702. args_use['max_depth'] = args.get('max_depth', None) # 最大深度
  703. args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
  704. args_use['P'] = float(args.get('min_samples_split', 0.8))
  705. args_use['k'] = args.get('k',1)
  706. args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
  707. 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
  708. get(args.get('score_func','f_classif'),f_classif))
  709. args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
  710. args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
  711. args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
  712. args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
  713. args_use['ndim_up'] = bool(args.get('ndim_up', True))
  714. args_use['miss_value'] = args.get('miss_value',np.nan)
  715. args_use['fill_method'] = args.get('fill_method','mean')
  716. args_use['fill_value'] = args.get('fill_value',None)
  717. args_use['n_components'] = args.get('n_components',1)
  718. args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVR') else 'linear')
  719. args_use['n_Tree'] = args.get('n_Tree',100)
  720. args_use['gamma'] = args.get('gamma',1)
  721. args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
  722. args_use['activation'] = str(args.get('activation','relu'))
  723. args_use['solver'] = str(args.get('solver','adam'))
  724. if Type in ('k-means',):
  725. args_use['n_clusters'] = int(args.get('n_clusters',8))
  726. else:
  727. args_use['n_clusters'] = int(args.get('n_clusters', 2))
  728. return args_use
  729. def Add_Learner(self,Learner,Text=''):
  730. get = self.Learn_Dic[Learner]
  731. name = f'Le[{len(self.Learner)}]{Learner}'
  732. #参数调节
  733. args_use = self.p_Args(Text,Learner)
  734. #生成学习器
  735. self.Learner[name] = get(model=Learner,args_use=args_use)
  736. self.Learner_Type[name] = Learner
  737. def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
  738. model = self.get_Learner(Learner)
  739. name = f'Le[{len(self.Learner)}]SelectFrom_Model'
  740. #参数调节
  741. args_use = self.p_Args(Text,'SelectFrom_Model')
  742. #生成学习器
  743. self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
  744. self.Learner_Type[name] = 'SelectFrom_Model'
  745. def Return_Learner(self):
  746. return self.Learner.copy()
  747. def get_Learner(self,name):
  748. return self.Learner[name]
  749. def get_Learner_Type(self,name):
  750. return self.Learner_Type[name]
  751. def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
  752. x_data = self.get_Sheet(x_name)
  753. y_data = self.get_Sheet(y_name)
  754. model = self.get_Learner(Learner)
  755. return model.Fit(x_data,y_data,split)
  756. def Predict(self,x_name,Learner,Text='',**kwargs):
  757. x_data = self.get_Sheet(x_name)
  758. model = self.get_Learner(Learner)
  759. y_data,name = model.Predict(x_data)
  760. self.Add_Form(y_data,f'{x_name}:{name}')
  761. return y_data
  762. def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
  763. model = self.get_Learner(Learner)
  764. x = self.get_Sheet(name_x)
  765. y = self.get_Sheet(name_y)
  766. return model.Score(x,y)
  767. def Show_Args(self,Learner,Dic):#显示参数
  768. pass
  769. def Del_Leaner(self,Leaner):
  770. del self.Learner[Leaner]
  771. del self.Learner_Type[Leaner]
  772. def judging_Digits(num:(int,float)):
  773. a = str(abs(num)).split('.')[0]
  774. if a == '':raise ValueError
  775. return len(a)