from os.path import split as path_split from os.path import exists,basename,splitext from os import mkdir,getcwd import tarfile import pickle import joblib from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = f"{getcwd()}/assets/" from pyecharts.components import Table as Table_Fisrt#绘制表格 from pyecharts.components import Image from pyecharts import options as opts from random import randint from pyecharts.charts import * from pyecharts.charts import Tab as tab_First from pyecharts.options.series_options import JsCode from scipy.cluster.hierarchy import dendrogram, ward import matplotlib.pyplot as plt from pandas import DataFrame,read_csv import numpy as np import re from sklearn.model_selection import train_test_split from sklearn.linear_model import * from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier, GradientBoostingRegressor) from sklearn.metrics import * from sklearn.feature_selection import * from sklearn.preprocessing import * from sklearn.impute import SimpleImputer from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归 from sklearn.neural_network import MLPClassifier,MLPRegressor from sklearn.manifold import TSNE from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN from scipy import optimize from scipy.fftpack import fft,ifft,ifftn,fftn#快速傅里叶变换 #设置 np.set_printoptions(threshold=np.inf) global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll')) global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False)) Label_Set = dict(label_opts=opts.LabelOpts(is_show=False)) More_Global = False#是否使用全部特征绘图 All_Global = True#是否导出charts CSV_Global = True#是否导出CSV CLF_Global = True#是否导出模型 TAR_Global = True#是否打包tar NEW_Global = True#是否新建目录 class Tab(tab_First): def __init__(self, *args,**kwargs): super(Tab, self).__init__(*args,**kwargs) self.element = {}#记录tab组成元素 name:charts def add(self, chart, tab_name): self.element[tab_name] = chart return super(Tab, self).add(chart, tab_name) def render(self,path: str = "render.html",template_name: str = "simple_tab.html",*args,**kwargs,) -> str: if All_Global: Dic = path_split(path)[0] for i in self.element: self.element[i].render(Dic + '/' + i + '.html') return super(Tab, self).render(path,template_name,*args,**kwargs) class Table(Table_Fisrt): def __init__(self,*args,**kwargs): super(Table, self).__init__(*args,**kwargs) self.HEADERS = [] self.ROWS = [[]] def add(self, headers, rows, attributes = None): if len(rows) == 1: new_headers = ['数据类型','数据'] new_rows = list(zip(headers,rows[0])) self.HEADERS = new_headers self.ROWS = new_rows return super().add(new_headers,new_rows,attributes) else: self.HEADERS = headers self.ROWS = rows return super().add(headers, rows, attributes) def render(self,path= "render.html",*args,**kwargs,) -> str: if CSV_Global: Dic,name = path_split(path) name = splitext(name)[0] try: DataFrame(self.ROWS,columns = self.HEADERS).to_csv(Dic + '/' + name + '.csv') except: pass return super().render(path,*args,**kwargs) def make_list(first,end,num=35): n = num / (end - first) if n == 0: n = 1 re = [] n_first = first * n n_end = end * n while n_first <= n_end: cul = n_first / n re.append(round(cul,2)) n_first += 1 return re def list_filter(list_,num=70): #假设列表已经不重复 if len(list_) <= num:return list_ n = int(num / len(list_)) re = list_[::n] return re def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图 #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调 # a-特征x,b-特征x-1,c-其他特征 o_cList = [] if len(x_means) == 1: return o_cList for i in range(len(x_means)): for j in range(len(x_means)): if j <= i:continue n_ra = x_range[j] Type_ra = Type[j] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0],n_ra[1],70) else: ra = list_filter(n_ra)#可以接受最大为70 if Type_rb == 1: rb = make_list(n_rb[0],n_rb[1],35) else: rb = list_filter(n_rb)#可以接受最大为70 a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, j] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)), pos_right='3%'))#显示 ) o_cList.append(c) return o_cList def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图 #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调 # a-特征x,b-特征x-1,c-其他特征 o_cList = [] if len(x_means) == 1: return o_cList for i in range(len(x_means)): if i == 0: continue n_ra = x_range[i - 1] Type_ra = Type[i - 1] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0],n_ra[1],70) else: ra = list_filter(n_ra)#可以接受最大为70 if Type_rb == 1: rb = make_list(n_rb[0],n_rb[1],35) else: rb = list_filter(n_rb)#可以接受最大为70 a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, i - 1] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)), pos_right='3%'))#显示 ) o_cList.append(c) return o_cList def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图 #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图 # a-特征x,b-特征x-1,c-其他特征 #规定,i-1是x轴,a是x轴,x_1是x轴 class_dict = dict(zip(class_,[i for i in range(len(class_))])) if not nono: v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示 else:v_dict = [] for i in class_dict: v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)}) o_cList = [] if len(x_means) == 1: n_ra = x_range[0] if Type[0] == 1: ra = make_list(n_ra[0], n_ra[1], 70) else: ra = n_ra a = np.array([i for i in ra]).reshape(-1,1) y_data = Predict_Func(a)[0].tolist() value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(['None']) .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()), min_=-1, is_piecewise=True, pieces=v_dict, orient='horizontal', pos_bottom='3%')) ) o_cList.append(c) return o_cList #如果x_means长度不等于1则执行下面 for i in range(len(x_means)): if i == 0: continue n_ra = x_range[i-1] Type_ra = Type[i-1] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0],n_ra[1],70) else: ra = n_ra if Type_rb == 1: rb = make_list(n_rb[0],n_rb[1],35) else: rb = n_rb a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, i - 1] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category' xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1, is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%')) ) o_cList.append(c) return o_cList def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图 #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图 # a-特征x,b-特征x-1,c-其他特征 #规定,i-1是x轴,a是x轴,x_1是x轴 class_dict = dict(zip(class_,[i for i in range(len(class_))])) if not nono: v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示 else:v_dict = [] for i in class_dict: v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)}) o_cList = [] if len(x_means) == 1: return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono) #如果x_means长度不等于1则执行下面 for i in range(len(x_means)): for j in range(len(x_means)): if j <= i:continue n_ra = x_range[j] Type_ra = Type[j] n_rb = x_range[i] Type_rb = Type[i] if Type_ra == 1: ra = make_list(n_ra[0],n_ra[1],70) else: ra = n_ra if Type_rb == 1: rb = make_list(n_rb[0],n_rb[1],35) else: rb = n_rb a = np.array([i for i in ra for _ in rb]).T b = np.array([i for _ in ra for i in rb]).T data = np.array([x_means for _ in ra for i in rb]) data[:, j] = a data[:, i] = b y_data = Predict_Func(data)[0].tolist() value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))] c = (HeatMap() .add_xaxis(np.unique(a)) .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category' xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1, is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%')) ) o_cList.append(c) return o_cList def SeeTree(Dic): node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式 link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式 node_Dict = {} link_list = [] with open(Dic, 'r') as f: # 貌似必须分开w和r for i in f: try: get = re.findall(node_re, i)[0] if get[0] != '': try: v = float(get[0]) except: v = 0 node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []} continue except: pass try: get = re.findall(link_re, i)[0] if get[0] != '' and get[1] != '': link_list.append((get[0], get[1])) except: pass father_list = [] # 已经有父亲的list for i in link_list: father = i[0] # 父节点 son = i[1] # 子节点 try: node_Dict[father]['children'].append(node_Dict[son]) father_list.append(son) if int(son) == 0: print('F') except: pass father = list(set(node_Dict.keys()) - set(father_list)) c = ( Tree() .add("", [node_Dict[father[0]]], is_roam=True) .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"), toolbox_opts=opts.ToolboxOpts(is_show=True)) ) return c def make_Tab(heard,row): return Table().add(headers=heard, rows=row) def scatter(w_heard,w): c = ( Scatter() .add_xaxis(w_heard) .add_yaxis('', w, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set) ) return c def bar(w_heard,w): c = ( Bar() .add_xaxis(w_heard) .add_yaxis('', abs(w).tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) return c # def line(w_sum,w,b): # x = np.arange(-5, 5, 1) # c = ( # Line() # .add_xaxis(x.tolist()) # .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set) # ) # for i in range(len(w)): # y = x * w[i] + b # c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set) # return c def see_Line(x_trainData,y_trainData,w,w_sum,b): y = y_trainData.tolist() x_data = x_trainData.T re = [] for i in range(len(x_data)): x = x_data[i] p = int(x.max() - x.min()) / 5 x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点 y_num = x_num * w[i] + (w[i] / w_sum) * b c = ( Line() .add_xaxis(x_num.tolist()) .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set) ) t = ( Scatter() .add_xaxis(x.tolist()) .add_yaxis(f'{i}特征', y, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set) ) t.overlap(c) re.append(t) return re def get_Color(): # 随机颜色,雷达图默认非随机颜色 rgb = [randint(0, 255), randint(0, 255), randint(0, 255)] color = '#' for a in rgb: color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化) return color def is_continuous(data:np.array,f:float=0.1): data = data.tolist() l = np.unique(data).tolist() try: re = len(l)/len(data)>=f or len(data) <= 3 return re except:return False def make_Cat(x_data): Cat = Categorical_Data() for i in range(len(x_data)): x1 = x_data[i] # x坐标 Cat(x1) return Cat def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图) x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x_2) .add_yaxis(f'{n_class}', x_1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.add_xaxis(x_2_new) if o_c == None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图) x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x_2) .add_yaxis(f'{n_class}', x_1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.add_xaxis(x_2_new) #添加簇中心 try: center_x_2 = [center[class_num][a]] except: center_x_2 = [0] b = (Scatter() .add_xaxis(center_x_2) .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle') .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.overlap(b) if o_c == None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Training_visualization_Center(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图) x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) if i == 0:continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x_2) .add_yaxis(f'{n_class}', x_1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i-1}-{i}]训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.add_xaxis(x_2_new) #添加簇中心 try: center_x_2 = [center[class_num][i-1]] except: center_x_2 = [0] b = (Scatter() .add_xaxis(center_x_2) .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle') .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.overlap(b) if o_c == None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图 x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) if i == 0:continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for n_class in class_: x_1 = x1[y == n_class].tolist() x_2 = x2[y == n_class] x_2_new = np.unique(x_2) x_2 = x2[y == n_class].tolist() #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x_2) .add_yaxis(f'{n_class}', x_1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.add_xaxis(x_2_new) if o_c == None: o_c = c else: o_c = o_c.overlap(c) o_cList.append(o_c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别) x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) Cat = make_Cat(x_data) o_cList = [] for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) if i == 0:continue x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x2) .add_yaxis('', x1.tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.add_xaxis(x2_new) o_cList.append(c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界 x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) o_cList = [] means.append(0) means = np.array(means) for i in range(len(x_data)): if i == 0:continue x1_con = is_continuous(x_data[i]) x2 = x_data[i - 1] # y坐标 x2_con = is_continuous(x2) o_c = None # 旧的C for class_num in range(len(class_)): n_class = class_[class_num] x2_new = np.unique(x2[y == n_class]) #x与散点图不同,这里是纵坐标 #加入这个判断是为了解决sklearn历史遗留问题 if len(class_) == 2:#二分类问题 if class_num == 0:continue w = w_list[0] b = b_list[0] else:#多分类问题 w = w_list[class_num] b = b_list[class_num] if x2_con: x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5)) w = np.append(w, 0) y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值 c = ( Line() .add_xaxis(x2_new) .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) if o_c == None: o_c = c else: o_c = o_c.overlap(c) #下面不要接任何代码,因为上面会continue o_cList.append(o_c) return o_cList def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图) x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) o_cList = [] means.append(0)#确保mean[i+1]不会超出index means = np.array(means) w = np.append(w,0) for i in range(len(x_data)): x1 = x_data[i] x1_con = is_continuous(x1) if x1_con: x1 = np.array(make_list(x1.min(), x1.max(), 5)) x1_new = np.unique(x1) y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值 y_con = is_continuous(y_data) c = ( Line() .add_xaxis(x1_new) .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set, yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True)) ) o_cList.append(c) return o_cList def regress_visualization(x_trainData,y):#y-x数据图 x_data = x_trainData.T y_con = is_continuous(y) Cat = make_Cat(x_data) o_cList = [] try: visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()), pos_right='3%') except: visualmap_opts = None y_con = False for i in range(len(x_data)): x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复) if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的 ry_con,x1_con = x1_con,y_con x1,ry = y,x1 else: ry_con = y_con ry = y c = ( Scatter() .add_xaxis(x1.tolist())#研究表明,这个是横轴 .add_yaxis('数据',ry.tolist(),**Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set, yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), visualmap_opts=visualmap_opts ) ) c.add_xaxis(np.unique(x1)) o_cList.append(c) means,x_range,Type = Cat.get() return o_cList,means,x_range,Type def Feature_visualization(x_trainData,data_name=''):#x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.T only = False if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) only = True o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue#重复内容,跳过 x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) if only:x2_con = False #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x2) .add_yaxis(data_name, x1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True)) ) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.T only = False if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) only = True o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue#重复内容,跳过(a读取的是i后面的) x1 = x_data[i] # x坐标 x1_con = is_continuous(x1) x2 = x_data[a] # y坐标 x2_con = is_continuous(x2) x2_new = np.unique(x2) x1_list = x1.astype(np.str).tolist() for i in range(len(x1_list)): x1_list[i] = [x1_list[i],f'特征{i}'] if only:x2_con = False #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x2) .add_yaxis(data_name, x1_list, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True), tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}")) ) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图 seeting = global_Set if data_name else global_Leg x_data = x_trainData.T if len(x_data) == 1: x_data = np.array([x_data[0],np.zeros(len(x_data[0]))]) o_cList = [] for i in range(len(x_data)): for a in range(len(x_data)): if a <= i: continue#重复内容,跳过 x1 = x_data[i] # x坐标 x2 = x_data[a] # y坐标 x2_new = np.unique(x2) #x与散点图不同,这里是纵坐标 c = (Scatter() .add_xaxis(x2) .add_yaxis(data_name, x1, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting, yaxis_opts=opts.AxisOpts(type_='category',is_scale=True), xaxis_opts=opts.AxisOpts(type_='category',is_scale=True)) ) c.add_xaxis(x2_new) o_cList.append(c) return o_cList def Conversion_control(y_data,x_data,tab):#合并两x-x图 if type(x_data) is np.ndarray and type(y_data) is np.ndarray: get_x = Feature_visualization(x_data,'原数据')#原来 get_y = Feature_visualization(y_data,'转换数据')#转换 for i in range(len(get_x)): tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图') return tab def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图 if type(x_data) is np.ndarray and type(y_data) is np.ndarray: get_x = Feature_visualization(x_data,'原数据')#原来 get_y = Feature_visualization(y_data,'转换数据')#转换 for i in range(len(get_x)): try: tab.add(get_x[i],f'[{i}]数据x-x散点图') except IndexError:pass try: tab.add(get_y[i],f'[{i}]变维数据x-x散点图') except IndexError:pass return tab def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图 if type(y_data) is np.ndarray: get_y = Feature_visualization_Format(y_data,'转换数据')#转换 for i in range(len(get_y)): tab.add(get_y[i],f'[{i}]变维数据x-x散点图') return tab def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图 if type(w_data) is np.ndarray and type(w_data) is np.ndarray: get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来 get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列) print(h_data) print(w_data) print(h_data.T) for i in range(len(get_x)): try: tab.add(get_x[i],f'[{i}]W矩阵x-x散点图') except IndexError:pass try: tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图') except IndexError:pass return tab def make_bar(name, value,tab):#绘制柱状图 c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(value))]) .add_yaxis(name, value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c, name) def judging_Digits(num:(int,float)):#查看小数位数 a = str(abs(num)).split('.')[0] if a == '':raise ValueError return len(a) class Learner: def __init__(self,*args,**kwargs): self.numpy_Dic = {}#name:numpy self.Fucn_Add()#制作Func_Dic def Add_Form(self,data:np.array,name): name = f'{name}[{len(self.numpy_Dic)}]' self.numpy_Dic[name] = data def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','): type_ = np.str if str_must else np.float pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None) try: data = pf_data.to_numpy(dtype=type_) except ValueError: data = pf_data.to_numpy(dtype=np.str) if data.ndim == 1: data = np.expand_dims(data, axis=1) self.Add_Form(data,name) return data def Add_Python(self, Text, sheet_name): name = {} name.update(globals().copy()) name.update(locals().copy()) exec(Text, name) exec('get = Creat()', name) if isinstance(name['get'], np.array): # 已经是DataFram get = name['get'] else: try: get = np.array(name['get']) except: get = np.array([name['get']]) self.Add_Form(get, sheet_name) return get def get_Form(self) -> dict: return self.numpy_Dic.copy() def get_Sheet(self,name) -> np.array: return self.numpy_Dic[name].copy() def to_CSV(self,Dic:str,name,sep) -> str: get = self.get_Sheet(name) np.savetxt(Dic, get, delimiter=sep) return Dic def to_Html_One(self,name,Dic=''): if Dic == '': Dic = f'{name}.html' get = self.get_Sheet(name) if get.ndim == 1: get = np.expand_dims(get, axis=1) get = get.tolist() for i in range(len(get)): get[i] = [i+1] + get[i] headers = [i for i in range(len(get[0]))] table = Table_Fisrt() table.add(headers, get).set_global_opts( title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据")) table.render(Dic) return Dic def to_Html(self, name, Dic='', type_=0): if Dic == '': Dic = f'{name}.html' # 把要画的sheet放到第一个 Sheet_Dic = self.get_Form() del Sheet_Dic[name] Sheet_list = [name] + list(Sheet_Dic.keys()) class TAB_F: def __init__(self, q): self.tab = q # 一个Tab def render(self, Dic): return self.tab.render(Dic) # 生成一个显示页面 if type_ == 0: class TAB(TAB_F): def add(self, table, k, *f): self.tab.add(table, k) tab = TAB(tab_First(page_title='CoTan:查看表格')) # 一个Tab elif type_ == 1: class TAB(TAB_F): def add(self, table, *k): self.tab.add(table) tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout)) else: class TAB(TAB_F): def add(self, table, *k): self.tab.add(table) tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout)) # 迭代添加内容 for name in Sheet_list: get = self.get_Sheet(name) if get.ndim == 1: get = np.expand_dims(get, axis=1) get = get.tolist() for i in range(len(get)): get[i] = [i+1] + get[i] headers = [i for i in range(len(get[0]))] table = Table_Fisrt() table.add(headers, get).set_global_opts( title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据")) tab.add(table, f'表格:{name}') tab.render(Dic) return Dic def Merge(self,name,axis=0):#aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并 sheet_list = [] for i in name: sheet_list.append(self.get_Sheet(i)) get = {0:np.hstack,1:np.vstack,2:np.dstack}[axis](sheet_list) self.Add_Form(np.array(get),f'{name[0]}合成') def Split(self,name,split=2,axis=0):#aiis:0-横向分割(hsplit),1-纵向分割(vsplit) sheet = self.get_Sheet(name) get = {0:np.hsplit,1:np.vsplit,2:np.dsplit}[axis](sheet,split) for i in get: self.Add_Form(i,f'{name[0]}分割') def Two_Split(self,name,split,axis):#二分切割(0-横向,1-纵向) sheet = self.get_Sheet(name) try: split = float(eval(split)) if split < 1: split = int(split * len(sheet) if axis == 1 else len(sheet[0])) else: raise Exception except: split = int(split) if axis == 0: self.Add_Form(sheet[:,split:], f'{name[0]}分割') self.Add_Form(sheet[:,:split], f'{name[0]}分割') def Deep(self,sheet:np.ndarray): return sheet.ravel() def Down_Ndim(self,sheet:np.ndarray):#横向 down_list = [] for i in sheet: down_list.append(i.ravel()) return np.array(down_list) def LongitudinalDown_Ndim(self,sheet:np.ndarray):#纵向 down_list = [] for i in range(len(sheet[0])): down_list.append(sheet[:,i].ravel()) return np.array(down_list).T def Reval(self,name,axis):#axis:0-横向,1-纵向(带.T),2-深度 sheet = self.get_Sheet(name) self.Add_Form({0:self.Down_Ndim,1:self.LongitudinalDown_Ndim,2:self.Deep}[axis](sheet).copy(),f'{name}伸展') def Del_Ndim(self,name):#删除无用维度 sheet = self.get_Sheet(name) self.Add_Form(np.squeeze(sheet), f'{name}降维') def T(self,name,Func:list): sheet = self.get_Sheet(name) if sheet.ndim <= 2: self.Add_Form(sheet.T.copy(), f'{name}.T') else: self.Add_Form(np.transpose(sheet,Func).copy(), f'{name}.T') def reShape(self,name,shape:list): sheet = self.get_Sheet(name) self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r') def Fucn_Add(self): self.Func_Dic = { 'abs':lambda x,y:np.abs(x), 'sqrt':lambda x,y:np.sqrt(x), 'pow':lambda x,y:x**y, 'loge':lambda x,y:np.log(x), 'log10':lambda x,y:np.log10(x), 'ceil':lambda x,y:np.ceil(x), 'floor':lambda x,y:np.floor(x), 'rint':lambda x,y:np.rint(x), 'sin':lambda x,y:np.sin(x), 'cos':lambda x,y:np.cos(x), 'tan':lambda x,y:np.tan(x), 'tanh':lambda x,y:np.tanh(x), 'sinh':lambda x,y:np.sinh(x), 'cosh':lambda x,y:np.cosh(x), 'asin': lambda x, y: np.arcsin(x), 'acos': lambda x, y: np.arccos(x), 'atan': lambda x, y: np.arctan(x), 'atanh': lambda x, y: np.arctanh(x), 'asinh': lambda x, y: np.arcsinh(x), 'acosh': lambda x, y: np.arccosh(x), 'add': lambda x, y: x + y,#矩阵或元素 'sub': lambda x, y: x - y,#矩阵或元素 'mul': lambda x, y: np.multiply(x,y),#元素级别 'matmul': lambda x, y: np.matmul(x,y),#矩阵 'dot': lambda x, y: np.dot(x,y),#矩阵 'div': lambda x, y: x / y, 'div_floor': lambda x, y: np.floor_divide(x,y), 'power': lambda x, y: np.power(x,y),#元素级 } def Cul_Numpy(self,data,data_type,Func): if not 1 in data_type:raise Exception func = self.Func_Dic.get(Func,lambda x,y:x) args_data = [] for i in range(len(data)): if data_type[i] == 0: args_data.append(data[i]) else: args_data.append(self.get_Sheet(data[i])) get = func(*args_data) self.Add_Form(get,f'{Func}({data[0]},{data[1]})') return get class Study_MachineBase: def __init__(self,*args,**kwargs): self.Model = None self.have_Fit = False self.have_Predict = False self.x_trainData = None self.y_trainData = None #有监督学习专有的testData self.x_testData = None self.y_testData = None #记录这两个是为了克隆 def Fit(self,x_data,y_data,split=0.3,Increment=True,**kwargs): y_data = y_data.ravel() try: if self.x_trainData is None or not Increment:raise Exception self.x_trainData = np.vstack(x_data,self.x_trainData) self.y_trainData = np.vstack(y_data,self.y_trainData) except: self.x_trainData = x_data.copy() self.y_trainData = y_data.copy() x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split) try:#增量式训练 if not Increment:raise Exception self.Model.partial_fit(x_data,y_data) except: self.Model.fit(self.x_trainData, self.y_trainData) train_score = self.Model.score(x_train,y_train) test_score = self.Model.score(x_test,y_test) self.have_Fit = True return train_score,test_score def Score(self,x_data,y_data): Score = self.Model.score(x_data,y_data) return Score def Class_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray): y_Really = y_Really.ravel() y_Predict = self.Predict(x_data)[0] Accuracy = self._Accuracy(y_Predict,y_Really) Recall,class_ = self._Macro(y_Predict,y_Really) Precision,class_ = self._Macro(y_Predict,y_Really,1) F1,class_ = self._Macro(y_Predict,y_Really,2) Confusion_matrix,class_ = self._Confusion_matrix(y_Predict,y_Really) kappa = self._Kappa_score(y_Predict,y_Really) tab = Tab() def gauge_base(name:str,value:float) -> Gauge: c = ( Gauge() .add("", [(name, round(value*100,2))],min_ = 0, max_ = 100) .set_global_opts(title_opts=opts.TitleOpts(title=name)) ) return c tab.add(gauge_base('准确率',Accuracy),'准确率') tab.add(gauge_base('kappa',kappa),'kappa') def Bar_base(name,value) -> Bar: c = ( Bar() .add_xaxis(class_) .add_yaxis(name, value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set) ) return c tab.add(Bar_base('精确率',Precision.tolist()),'精确率') tab.add(Bar_base('召回率',Recall.tolist()),'召回率') tab.add(Bar_base('F1',F1.tolist()),'F1') def heatmap_base(name,value,max_,min_,show) -> HeatMap: c = ( HeatMap() .add_xaxis(class_) .add_yaxis(name, class_, value, label_opts=opts.LabelOpts(is_show=show,position='inside')) .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set,visualmap_opts= opts.VisualMapOpts(max_=max_,min_=min_,pos_right='3%')) ) return c value = [[class_[i],class_[j],float(Confusion_matrix[i,j])] for i in range(len(class_)) for j in range(len(class_))] tab.add(heatmap_base('混淆矩阵',value,float(Confusion_matrix.max()),float(Confusion_matrix.min()),len(class_)<7), '混淆矩阵') desTo_CSV(Dic,'混淆矩阵',Confusion_matrix,class_,class_) desTo_CSV(Dic,'评分',[Precision,Recall,F1],class_,['精确率','召回率','F1']) save = Dic + r'/分类模型评估.HTML' tab.render(save) return save, def _Accuracy(self,y_Predict,y_Really):#准确率 return accuracy_score(y_Really, y_Predict) def _Macro(self,y_Predict,y_Really,func=0): Func = [recall_score,precision_score,f1_score]#召回率,精确率和f1 class_ = np.unique(y_Really).tolist() result = (Func[func](y_Really,y_Predict,class_,average=None)) return result,class_ def _Confusion_matrix(self,y_Predict,y_Really):#混淆矩阵 class_ = np.unique(y_Really).tolist() return confusion_matrix(y_Really, y_Predict),class_ def _Kappa_score(self,y_Predict,y_Really): return cohen_kappa_score(y_Really, y_Predict) def Regression_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray): y_Really = y_Really.ravel() y_Predict = self.Predict(x_data)[0] tab = Tab() MSE = self._MSE(y_Predict,y_Really) MAE = self._MAE(y_Predict,y_Really) r2_Score = self._R2_Score(y_Predict,y_Really) RMSE = self._RMSE(y_Predict,y_Really) tab.add(make_Tab(['MSE','MAE','RMSE','r2_Score'],[[MSE,MAE,RMSE,r2_Score]]), '评估数据') save = Dic + r'/回归模型评估.HTML' tab.render(save) return save, def Clusters_Score(self,Dic,x_data:np.ndarray,*args): y_Predict = self.Predict(x_data)[0] tab = Tab() Coefficient,Coefficient_array = self._Coefficient_clustering(x_data,y_Predict) def gauge_base(name:str,value:float) -> Gauge: c = ( Gauge() .add("", [(name, round(value*100,2))],min_ = 0, max_ = 10**(judging_Digits(value*100))) .set_global_opts(title_opts=opts.TitleOpts(title=name)) ) return c def Bar_base(name,value,xaxis) -> Bar: c = ( Bar() .add_xaxis(xaxis) .add_yaxis(name, value, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set) ) return c tab.add(gauge_base('平均轮廓系数', Coefficient),'平均轮廓系数') def Bar_(Coefficient_array,name='数据轮廓系数'): xaxis = [f'数据{i}' for i in range(len(Coefficient_array))] value = Coefficient_array.tolist() tab.add(Bar_base(name,value,xaxis),name) n = 20 if len(Coefficient_array) <= n: Bar_(Coefficient_array) elif len(Coefficient_array) <= n**2: a = 0 while a <= len(Coefficient_array): b = a + n if b >= len(Coefficient_array):b = len(Coefficient_array) + 1 Cofe_array = Coefficient_array[a:b] Bar_(Cofe_array,f'{a}-{b}数据轮廓系数') a += n else: split = np.hsplit(Coefficient_array,n) a = 0 for Cofe_array in split: Bar_(Cofe_array, f'{a}%-{a + n}%数据轮廓系数') a += n save = Dic + r'/聚类模型评估.HTML' tab.render(save) return save, def _MSE(self,y_Predict,y_Really):#均方误差 return mean_squared_error(y_Really, y_Predict) def _MAE(self,y_Predict,y_Really):#中值绝对误差 return median_absolute_error(y_Really, y_Predict) def _R2_Score(self,y_Predict,y_Really):#中值绝对误差 return r2_score(y_Really, y_Predict) def _RMSE(self,y_Predict,y_Really):#中值绝对误差 return self._MSE(y_Predict,y_Really) ** 0.5 def _Coefficient_clustering(self,x_data,y_Predict): means_score = silhouette_score(x_data,y_Predict) outline_score = silhouette_samples(x_data,y_Predict) return means_score, outline_score def Predict(self,x_data,*args,**kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.predict(x_data) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict,'预测' def Des(self,Dic,*args,**kwargs): return (Dic,) class prep_Base(Study_MachineBase):#不允许第二次训练 def __init__(self,*args,**kwargs): super(prep_Base, self).__init__(*args,**kwargs) self.Model = None def Fit(self, x_data,y_data,Increment=True, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 y_data = y_data.ravel() try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) self.y_trainData = np.vstack(y_data, self.y_trainData) except: self.x_trainData = x_data.copy() self.y_trainData = y_data.copy() try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data, y_data) except: self.Model.fit(self.x_trainData, self.y_trainData) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'特征工程' def Score(self, x_data, y_data): return 'None' # 没有score class Unsupervised(prep_Base):#无监督,不允许第二次训练 def Fit(self, x_data,Increment=True, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.y_trainData = None try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) except: self.x_trainData = x_data.copy() try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data) except: self.Model.fit(self.x_trainData, self.y_trainData) self.have_Fit = True return 'None', 'None' class UnsupervisedModel(prep_Base):#无监督 def Fit(self, x_data, Increment=True,*args, **kwargs): self.y_trainData = None try: if self.x_trainData is None or not Increment: raise Exception self.x_trainData = np.vstack(x_data, self.x_trainData) except: self.x_trainData = x_data.copy() try: # 增量式训练 if not Increment: raise Exception self.Model.partial_fit(x_data) except: self.Model.fit(self.x_trainData, self.y_trainData) self.have_Fit = True return 'None', 'None' class To_PyeBase(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs): super(To_PyeBase, self).__init__(*args,**kwargs) self.Model = None #记录这两个是为了克隆 self.k = {} self.Model_Name = model def Fit(self, x_data,y_data, *args, **kwargs): self.x_trainData = x_data.copy() self.y_trainData = y_data.ravel().copy() self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.have_Predict = True return np.array([]),'请使用训练' def Score(self, x_data, y_data): return 'None' # 没有score def num_str(num,f): num = str(round(float(num),f)) if len(num.replace('.','')) == f: return num n = num.split('.') if len(n) == 0:#无小数 return num + '.' + '0' * (f - len(num)) else: return num + '0' * (f - len(num) + 1)#len(num)多算了一位小数点 def desTo_CSV(Dic,name,data,columns=None,row=None): Dic = Dic + '/' + name + '.csv' DataFrame(data,columns=columns,index=row).to_csv(Dic,header=False if columns is None else True, index=False if row is None else True) return data class Des(To_PyeBase):#数据分析 def Des(self, Dic, *args, **kwargs): tab = Tab() data = self.x_trainData def Cumulative_calculation(data,func,name,tab): sum_list = [] for i in range(len(data)):#按行迭代数据 sum_list.append([]) for a in range(len(data[i])): s = num_str(func(data[:i+1,a]),8) sum_list[-1].append(s) desTo_CSV(Dic,f'{name}',sum_list) tab.add(make_Tab([f'[{i}]' for i in range(len(sum_list[0]))],sum_list),f'{name}') Geometric_mean = lambda x:np.power(np.prod(x),1/len(x))#几何平均数 Square_mean = lambda x:np.sqrt(np.sum(np.power(x,2)) / len(x))#平方平均数 Harmonic_mean = lambda x:len(x)/np.sum(np.power(x,-1))#调和平均数 Cumulative_calculation(data,np.sum,'累计求和',tab) Cumulative_calculation(data,np.var,'累计方差',tab) Cumulative_calculation(data,np.std,'累计标准差',tab) Cumulative_calculation(data,np.mean,'累计算术平均值',tab) Cumulative_calculation(data,Geometric_mean,'累计几何平均值',tab) Cumulative_calculation(data,Square_mean,'累计平方平均值',tab) Cumulative_calculation(data,Harmonic_mean,'累计调和平均值',tab) Cumulative_calculation(data,np.median,'累计中位数',tab) Cumulative_calculation(data,np.max,'累计最大值',tab) Cumulative_calculation(data,np.min,'累计最小值',tab) save = Dic + r'/数据分析.HTML' tab.render(save) # 生成HTML return save, class CORR(To_PyeBase):#相关性和协方差 def Des(self, Dic, *args, **kwargs): tab = Tab() data = DataFrame(self.x_trainData) corr = data.corr().to_numpy()#相关性 cov = data.cov().to_numpy()#协方差 def HeatMAP(data,name:str,max_,min_): x = [f'特征[{i}]' for i in range(len(data))] y = [f'特征[{i}]' for i in range(len(data[0]))] value = [(f'特征[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, label_opts=opts.LabelOpts(is_show= True if len(x) <= 10 else False,position='inside'))#如果特征太多则不显示标签 .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,min_=min_,pos_right='3%'))#显示 ) tab.add(c,name) HeatMAP(corr,'相关性热力图',1,-1) HeatMAP(cov,'协方差热力图',float(cov.max()),float(cov.min())) desTo_CSV(Dic, f'相关性矩阵', corr) desTo_CSV(Dic, f'协方差矩阵', cov) save = Dic + r'/数据相关性.HTML' tab.render(save) # 生成HTML return save, class View_data(To_PyeBase):#绘制预测型热力图 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(View_data, self).__init__(args_use,Learner,*args, **kwargs) self.Model = Learner.Model self.Select_Model = None self.have_Fit = Learner.have_Fit self.Model_Name = 'Select_Model' self.Learner = Learner self.Learner_name = Learner.Model_Name def Fit(self,*args,**kwargs): self.have_Fit = True return 'None','None' def Predict(self,x_data,Add_Func=None,*args, **kwargs): x_trainData = self.Learner.x_trainData y_trainData = self.Learner.y_trainData x_name = self.Learner_name if not x_trainData is None: Add_Func(x_trainData, f'{x_name}:x训练数据') try: x_testData = self.x_testData if not x_testData is None: Add_Func(x_testData, f'{x_name}:x测试数据') except:pass try: y_testData = self.y_testData.copy() if not y_testData is None: Add_Func(y_testData, f'{x_name}:y测试数据') except:pass self.have_Fit = True if y_trainData is None: return np.array([]), 'y训练数据' return y_trainData,'y训练数据' def Des(self,Dic,*args,**kwargs): return Dic, class MatrixScatter(To_PyeBase):#矩阵散点图 def Des(self, Dic, *args, **kwargs): tab = Tab() data = self.x_trainData if data.ndim <= 2:#维度为2 c = (Scatter() .add_xaxis([f'{i}' for i in range(data.shape[1])]) .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg) ) if data.ndim == 2: for num in range(len(data)): i = data[num] c.add_yaxis(f'{num}',[[f'{num}',x] for x in i],color='#FFFFFF') else: c.add_yaxis(f'0', [[0,x]for x in data],color='#FFFFFF') c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside', formatter=JsCode("function(params){return params.data[2];}"), )) elif data.ndim == 3: c = (Scatter3D() .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'),**global_Leg) ) for num in range(len(data)): i = data[num] for s_num in range(len(i)): s = i[s_num] y_data = [[num,s_num,x,float(s[x])] for x in range(len(s))] c.add(f'{num}',y_data,zaxis3d_opts = opts.Axis3DOpts(type_="category")) c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside', formatter=JsCode("function(params){return params.data[3];}"))) else: c = Scatter() tab.add(c,'矩阵散点图') save = Dic + r'/矩阵散点图.HTML' tab.render(save) # 生成HTML return save, class Cluster_Tree(To_PyeBase):#聚类树状图 def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData linkage_array = ward(x_data)#self.y_trainData是结果 dendrogram(linkage_array) plt.savefig(Dic + r'/Cluster_graph.png') image = Image() image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图")) tab.add(image,'聚类树状图') save = Dic + r'/聚类树状图.HTML' tab.render(save) # 生成HTML return save, class Class_To_Bar(To_PyeBase):#类型柱状图 def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData.T y_data = self.y_trainData class_ = np.unique(y_data).tolist()#类型 class_list = [] for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维) class_list.append(y_data == n_class) for num_i in range(len(x_data)):#迭代每一个特征 i = x_data[num_i] i_con = is_continuous(i) if i_con and len(i) >= 11: c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data start = i.min() end = i.max() n = (end - start) / 10#生成10条柱子 x_axis = []#x轴 num_startEND = 0#迭代到第n个 while num_startEND <= 9:#把每个特征分为10类进行迭代 x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据 try: if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有 s = (start <= i) == (i < end)#布尔索引 except:#因为start + n有超出end的风险 s = (start <= i) == (i <= end)#布尔索引 # n_data = i[s] # 取得现在的特征数据 for num in range(len(class_list)):#根据类别进行迭代 now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片 bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵) c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]] num_startEND += 1 start += n else : iter_np = np.unique(i) c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data x_axis = [] # 添加x轴数据 for i_num in range(len(iter_np)):#迭代每一个i(不重复) i_data = iter_np[i_num] # n_data= i[i == i_data]#取得现在特征数据 x_axis.append(f'[{i_data}]') for num in range(len(class_list)):# 根据类别进行迭代 now_class = class_list[num]#取得class_list的布尔数组 bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵) c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]] c = ( Bar() .add_xaxis(x_axis) .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'), yaxis_opts=opts.AxisOpts(type_='value'))) y_axis = [] for i in range(len(c_list)): y_axis.append(f'{class_[i]}') c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set) desTo_CSV(Dic, f'类型-[{num_i}]特征统计柱状图', c_list, x_axis, y_axis) tab.add(c, f'类型-[{num_i}]特征统计柱状图') #未完成 save = Dic + r'/特征统计.HTML' tab.render(save) # 生成HTML return save, class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图 def Des(self,Dic,*args,**kwargs): tab = Tab() data = self.x_trainData x = [f'横[{i}]' for i in range(len(data))] y = [f'纵[{i}]' for i in range(len(data[0]))] value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()), min_=float(data.min()), pos_right='3%'))#显示 ) tab.add(c,'矩阵热力图') tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格') save = Dic + r'/矩阵热力图.HTML' tab.render(save) # 生成HTML return save, class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs) self.Model = Learner.Model self.Select_Model = None self.have_Fit = Learner.have_Fit self.Model_Name = 'Select_Model' self.Learner = Learner self.x_trainData = Learner.x_trainData.copy() self.y_trainData = Learner.y_trainData.copy() self.means = [] def Fit(self,x_data,*args,**kwargs): try: self.means = x_data.ravel() except: pass self.have_Fit = True return 'None','None' def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs): tab = Tab() y = self.y_trainData x_data = self.x_trainData try:#如果没有class class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] #获取数据 get,x_means,x_range,Type = Training_visualization(x_data,class_,y) #可使用自带的means,并且nan表示跳过 for i in range(min([len(x_means),len(self.means)])): try: g = self.means[i] if g == np.nan:raise Exception x_means[i] = g except:pass get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') except: get, x_means, x_range,Type = regress_visualization(x_data, y) get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/预测热力图.HTML' tab.render(save) # 生成HTML return save, class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图 def Des(self,Dic,*args,**kwargs): return super().Des(Dic,Decision_boundary,Prediction_boundary) class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More def Des(self,Dic,*args,**kwargs): return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More) class Near_feature_scatter_class_More(To_PyeBase): def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData class_ = np.unique(y).ravel().tolist() class_heard = [f'簇[{i}]' for i in range(len(class_))] get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/数据特征散点图(分类).HTML' tab.render(save) # 生成HTML return save, class Near_feature_scatter_More(To_PyeBase): def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData x_means = make_Cat(x_data).get()[0] get_y = Feature_visualization(x_data, '数据散点图') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x散点图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/数据特征散点图.HTML' tab.render(save) # 生成HTML return save, class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据 def Des(self,Dic,*args,**kwargs): #获取数据 class_ = np.unique(self.y_trainData).ravel().tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] tab = Tab() y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}临近特征散点图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') save = Dic + r'/临近数据特征散点图(分类).HTML' tab.render(save) # 生成HTML return save, class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据 def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData.T y = self.y_trainData get, x_means, x_range,Type = Training_visualization_NoClass(x_data) for i in range(len(get)): tab.add(get[i], f'{i}临近特征散点图') columns = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] tab.add(make_Tab(columns,[data]), '数据表') save = Dic + r'/临近数据特征散点图.HTML' tab.render(save) # 生成HTML return save, class Feature_scatter_YX(To_PyeBase):#y-x图 def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData get, x_means, x_range,Type = regress_visualization(x_data,y) for i in range(len(get)): tab.add(get[i], f'{i}特征x-y散点图') columns = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] tab.add(make_Tab(columns,[data]), '数据表') save = Dic + r'/特征y-x图像.HTML' tab.render(save) # 生成HTML return save, class Line_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Line_Model, self).__init__(*args,**kwargs) Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[ model] if model == 'Line': self.Model = Model() self.k = {} else: self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter']) self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']} #记录这两个是为了克隆 self.Alpha = args_use['alpha'] self.max_iter = args_use['max_iter'] self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData w_list = self.Model.coef_.tolist() w_heard = [f'系数w[{i}]' for i in range(len(w_list))] b = self.Model.intercept_.tolist() get, x_means, x_range,Type = regress_visualization(x_data, y) get_Line = Regress_W(x_data, y, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(scatter(w_heard,w_list),'系数w散点图') tab.add(bar(w_heard,self.Model.coef_),'系数柱状图') columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b'] data = [f'{i}' for i in x_means] + w_list + [b] if self.Model_Name != 'Line': columns += ['阿尔法','最大迭代次数'] data += [self.Model.alpha,self.Model.max_iter] tab.add(make_Tab(columns,[data]), '数据表') desTo_CSV(Dic, '系数表', [w_list] + [b], [f'系数W[{i}]' for i in range(len(w_list))] + ['截距']) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/线性回归模型.HTML' tab.render(save) # 生成HTML return save, class LogisticRegression_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(LogisticRegression_Model, self).__init__(*args,**kwargs) self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter']) #记录这两个是为了克隆 self.C = args_use['C'] self.max_iter = args_use['max_iter'] self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']} self.Model_Name = model def Des(self,Dic='render.html',*args,**kwargs): #获取数据 w_array = self.Model.coef_ w_list = w_array.tolist() # 变为表格 b = self.Model.intercept_ c = self.Model.C max_iter = self.Model.max_iter class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] tab = Tab() y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy()) for i in range(len(get)): tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图') for i in range(len(w_list)): w = w_list[i] w_heard = [f'系数w[{i},{j}]' for j in range(len(w))] tab.add(scatter(w_heard, w), f'系数w[{i}]散点图') tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图') columns = class_heard + [f'截距{i}' for i in range(len(b))] + ['C', '最大迭代数'] data = class_ + b.tolist() + [c, max_iter] c = Table().add(headers=columns, rows=[data]) tab.add(c, '数据表') c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list) tab.add(c, '系数数据表') c = Table().add(headers=[f'普适预测第{i}特征' for i in range(len(x_means))], rows=[[f'{i}' for i in x_means]]) tab.add(c, '普适预测数据表') desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))]) desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))]) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/逻辑回归.HTML' tab.render(save) # 生成HTML return save, class Categorical_Data:#数据统计助手 def __init__(self): self.x_means = [] self.x_range = [] self.Type = [] def __call__(self,x1, *args, **kwargs): get = self.is_continuous(x1) return get def is_continuous(self,x1:np.array): try: x1_con = is_continuous(x1) if x1_con: self.x_means.append(np.mean(x1)) self.add_Range(x1) else: raise Exception return x1_con except:#找出出现次数最多的元素 new = np.unique(x1)#去除相同的元素 count_list = [] for i in new: count_list.append(np.sum(x1 == i)) index = count_list.index(max(count_list))#找出最大值的索引 self.x_means.append(x1[index]) self.add_Range(x1,False) return False def add_Range(self,x1:np.array,range_=True): try: if not range_ : raise Exception min_ = int(x1.min()) - 1 max_ = int(x1.max()) + 1 #不需要复制列表 self.x_range.append([min_,max_]) self.Type.append(1) except: self.x_range.append(list(set(x1.tolist())))#去除多余元素 self.Type.append(2) def get(self): return self.x_means,self.x_range,self.Type class Knn_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Knn_Model, self).__init__(*args,**kwargs) Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model] self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors']) #记录这两个是为了克隆 self.n_neighbors = args_use['n_neighbors'] self.p = args_use['p'] self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() y = self.y_trainData x_data = self.x_trainData y_test = self.y_testData x_test = self.x_testData if self.Model_Name == 'Knn_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') if not y_test is None: get = Training_visualization(x_test,class_,y_test)[0] for i in range(len(get)): tab.add(get[i],f'{i}测试数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = regress_visualization(x_test, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = [f'普适预测第{i}特征' for i in range(len(x_means))] data = [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/K.HTML' tab.render(save) # 生成HTML return save, class Tree_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Tree_Model, self).__init__(*args,**kwargs) Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model] self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features'] ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split']) #记录这两个是为了克隆 self.criterion = args_use['criterion'] self.splitter = args_use['splitter'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'], 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() importance = self.Model.feature_importances_.tolist() with open(Dic + r"\Tree_Gra.dot", 'w') as f: export_graphviz(self.Model, out_file=f) make_bar('特征重要性',importance,tab) desTo_CSV(Dic, '特征重要性', [importance], [f'[{i}]特征' for i in range(len(importance))]) tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化') y = self.y_trainData x_data = self.x_trainData y_test = self.y_testData x_test = self.x_testData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Training_visualization(x_test, class_, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))], [class_ + [f'{i}' for i in x_means] + importance]), '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = regress_visualization(x_test, y_test)[0] for i in range(len(get)): tab.add(get[i], f'{i}测试数据类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))], [[f'{i}' for i in x_means] + importance]), '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/决策树.HTML' tab.render(save) # 生成HTML return save, class Forest_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Forest_Model, self).__init__(*args,**kwargs) Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model] self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features'] ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split']) #记录这两个是为了克隆 self.n_estimators = args_use['n_Tree'] self.criterion = args_use['criterion'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'], 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() #多个决策树可视化 for i in range(len(self.Model.estimators_)): with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f: export_graphviz(self.Model.estimators_[i], out_file=f) tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Forest_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/随机森林.HTML' tab.render(save) # 生成HTML return save, class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化 Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model] self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features'] ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split']) #记录这两个是为了克隆 self.criterion = args_use['criterion'] self.splitter = args_use['splitter'] self.max_features = args_use['max_features'] self.max_depth = args_use['max_depth'] self.min_samples_split = args_use['min_samples_split'] self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'], 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() #多个决策树可视化 for a in range(len(self.Model.estimators_)): for i in range(len(self.Model.estimators_[a])): with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f: export_graphviz(self.Model.estimators_[a][i], out_file=f) tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化') y = self.y_trainData x_data = self.x_trainData if self.Model_Name == 'Tree_class': class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] get,x_means,x_range,Type = Training_visualization(x_data,class_,y) for i in range(len(get)): tab.add(get[i],f'{i}训练数据散点图') get = Decision_boundary(x_range,x_means,self.Predict,class_,Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') else: get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/梯度提升回归树.HTML' tab.render(save) # 生成HTML return save, class SVC_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(SVC_Model, self).__init__(*args,**kwargs) self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel']) #记录这两个是为了克隆 self.C = args_use['C'] self.gamma = args_use['gamma'] self.kernel = args_use['kernel'] self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']} self.Model_Name = model def Des(self, Dic, *args, **kwargs): tab = Tab() try: w_list = self.Model.coef_.tolist() # 未必有这个属性 b = self.Model.intercept_.tolist() U = True except: U = False class_ = self.Model.classes_.tolist() class_heard = [f'类别[{i}]' for i in range(len(class_))] y = self.y_trainData x_data = self.x_trainData get, x_means, x_range, Type = Training_visualization(x_data, class_, y) if U:get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy()) for i in range(len(get)): if U:tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图') else:tab.add(get[i], f'{i}决策边界散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') dic = {2:'离散',1:'连续'} tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))], [class_ + [f'{i}' for i in x_means]]), '数据表') if U:desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))]) if U:desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))]) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/支持向量机分类.HTML' tab.render(save) # 生成HTML return save, class SVR_Model(Study_MachineBase): def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(SVR_Model, self).__init__(*args,**kwargs) self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel']) #记录这两个是为了克隆 self.C = args_use['C'] self.gamma = args_use['gamma'] self.kernel = args_use['kernel'] self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_trainData y = self.y_trainData try: w_list = self.Model.coef_.tolist()#未必有这个属性 b = self.Model.intercept_.tolist() U = True except: U = False get, x_means, x_range,Type = regress_visualization(x_data, y) if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy()) for i in range(len(get)): if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图') else:tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') if U: desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))]) if U: desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))]) desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表') save = Dic + r'/支持向量机回归.HTML' tab.render(save) # 生成HTML return save, class Variance_Model(Unsupervised):#无监督 def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数 super(Variance_Model, self).__init__(*args,**kwargs) self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P']))) #记录这两个是为了克隆 self.threshold = args_use['P'] self.k = {'threshold':args_use['P']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() var = self.Model.variances_#标准差 y_data = self.y_testData if type(y_data) is np.ndarray: get = Feature_visualization(self.y_testData) for i in range(len(get)): tab.add(get[i],f'[{i}]数据x-x散点图') c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(var))]) .add_yaxis('标准差', var.tolist(), **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c,'数据标准差') save = Dic + r'/方差特征选择.HTML' tab.render(save) # 生成HTML return save, class SelectKBest_Model(prep_Base):#有监督 def __init__(self, args_use, model, *args, **kwargs): super(SelectKBest_Model, self).__init__(*args, **kwargs) self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func']) # 记录这两个是为了克隆 self.k_ = args_use['k'] self.score_func=args_use['score_func'] self.k = {'k':args_use['k'],'score_func':args_use['score_func']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() score = self.Model.scores_.tolist() support = self.Model.get_support() y_data = self.y_trainData x_data = self.x_trainData if type(x_data) is np.ndarray: get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i],f'[{i}]训练数据x-x散点图') if type(y_data) is np.ndarray: get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i],f'[{i}]保留训练数据x-x散点图') y_data = self.y_testData x_data = self.x_testData if type(x_data) is np.ndarray: get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i],f'[{i}]数据x-x散点图') if type(y_data) is np.ndarray: get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i],f'[{i}]保留数据x-x散点图') Choose = [] UnChoose = [] for i in range(len(score)): if support[i]: Choose.append(score[i]) UnChoose.append(0)#占位 else: UnChoose.append(score[i]) Choose.append(0) c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(score))]) .add_yaxis('选中特征', Choose, **Label_Set) .add_yaxis('抛弃特征', UnChoose, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c,'单变量重要程度') save = Dic + r'/单一变量特征选择.HTML' tab.render(save) # 生成HTML return save, class SelectFrom_Model(prep_Base):#有监督 def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数 super(SelectFrom_Model, self).__init__(*args, **kwargs) self.Model = Learner.Model self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit) self.max_features = args_use['k'] self.estimator=Learner.Model self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit} self.have_Fit = Learner.have_Fit self.Model_Name = 'SelectFrom_Model' self.Learner = Learner def Fit(self, x_data,y_data,split=0.3, *args, **kwargs): y_data = y_data.ravel() if not self.have_Fit: # 不允许第二次训练 self.Select_Model.fit(x_data, y_data) self.have_Fit = True return 'None','None' def Predict(self, x_data, *args, **kwargs): try: self.x_testData = x_data.copy() x_Predict = self.Select_Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'模型特征工程' except: self.have_Predict = True return np.array([]),'无结果工程' def Des(self,Dic,*args,**kwargs): tab = Tab() support = self.Select_Model.get_support() y_data = self.y_testData x_data = self.x_testData if type(x_data) is np.ndarray: get = Feature_visualization(x_data) for i in range(len(get)): tab.add(get[i],f'[{i}]数据x-x散点图') if type(y_data) is np.ndarray: get = Feature_visualization(y_data) for i in range(len(get)): tab.add(get[i],f'[{i}]保留数据x-x散点图') def make_Bar(score): Choose = [] UnChoose = [] for i in range(len(score)): if support[i]: Choose.append(abs(score[i])) UnChoose.append(0) # 占位 else: UnChoose.append(abs(score[i])) Choose.append(0) c = ( Bar() .add_xaxis([f'[{i}]特征' for i in range(len(score))]) .add_yaxis('选中特征', Choose, **Label_Set) .add_yaxis('抛弃特征', UnChoose, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set) ) tab.add(c,'单变量重要程度') try: make_Bar(self.Model.coef_) except: try: make_Bar(self.Model.feature_importances_) except:pass save = Dic + r'/模型特征选择.HTML' tab.render(save) # 生成HTML return save, class Standardization_Model(Unsupervised):#z-score标准化 无监督 def __init__(self, args_use, model, *args, **kwargs): super(Standardization_Model, self).__init__(*args, **kwargs) self.Model = StandardScaler() self.k = {} self.Model_Name = 'StandardScaler' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData var = self.Model.var_.tolist() means = self.Model.mean_.tolist() scale = self.Model.scale_.tolist() Conversion_control(y_data,x_data,tab) make_bar('标准差',var,tab) make_bar('方差',means,tab) make_bar('Scale',scale,tab) save = Dic + r'/z-score标准化.HTML' tab.render(save) # 生成HTML return save, class MinMaxScaler_Model(Unsupervised):#离差标准化 def __init__(self, args_use, model, *args, **kwargs): super(MinMaxScaler_Model, self).__init__(*args, **kwargs) self.Model = MinMaxScaler(feature_range=args_use['feature_range']) self.k = {} self.Model_Name = 'MinMaxScaler' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData scale = self.Model.scale_.tolist() max_ = self.Model.data_max_.tolist() min_ = self.Model.data_min_.tolist() Conversion_control(y_data,x_data,tab) make_bar('Scale',scale,tab) tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))], row=[max_ + min_]), '数据表格') save = Dic + r'/离差标准化.HTML' tab.render(save) # 生成HTML return save, class LogScaler_Model(prep_Base):#对数标准化 def __init__(self, args_use, model, *args, **kwargs): super(LogScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'LogScaler' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.max_logx = np.log(x_data.max()) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): try: max_logx = self.max_logx except: self.have_Fit = False self.Fit(x_data) max_logx = self.max_logx self.x_testData = x_data.copy() x_Predict = (np.log(x_data)/max_logx) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'对数变换' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格') save = Dic + r'/对数标准化.HTML' tab.render(save) # 生成HTML return save, class atanScaler_Model(prep_Base):#atan标准化 def __init__(self, args_use, model, *args, **kwargs): super(atanScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'atanScaler' def Fit(self, x_data, *args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = (np.arctan(x_data)*(2/np.pi)) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'atan变换' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData Conversion_control(y_data,x_data,tab) save = Dic + r'/反正切函数标准化.HTML' tab.render(save) # 生成HTML return save, class decimalScaler_Model(prep_Base):#小数定标准化 def __init__(self, args_use, model, *args, **kwargs): super(decimalScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'Decimal_normalization' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())]) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() try: j = self.j except: self.have_Fit = False self.Fit(x_data) j = self.j x_Predict = (x_data/(10**j)) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'小数定标标准化' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData j = self.j Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格') save = Dic + r'/小数定标标准化.HTML' tab.render(save) # 生成HTML return save, class Mapzoom_Model(prep_Base):#映射标准化 def __init__(self, args_use, model, *args, **kwargs): super(Mapzoom_Model, self).__init__(*args, **kwargs) self.Model = None self.feature_range = args_use['feature_range'] self.k = {} self.Model_Name = 'Decimal_normalization' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.max = x_data.max() self.min = x_data.min() self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() try: max = self.max min = self.min except: self.have_Fit = False self.Fit(x_data) max = self.max min = self.min x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'映射标准化' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData max = self.max min = self.min Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格') save = Dic + r'/映射标准化.HTML' tab.render(save) # 生成HTML return save, class sigmodScaler_Model(prep_Base):#sigmod变换 def __init__(self, args_use, model, *args, **kwargs): super(sigmodScaler_Model, self).__init__(*args, **kwargs) self.Model = None self.k = {} self.Model_Name = 'sigmodScaler_Model' def Fit(self, x_data, *args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data:np.array,*args,**kwargs): self.x_testData = x_data.copy() x_Predict = (1/(1+np.exp(-x_data))) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'Sigmod变换' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData Conversion_control(y_data,x_data,tab) save = Dic + r'/Sigmoid变换.HTML' tab.render(save) # 生成HTML return save, class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化 def __init__(self, args_use, model, *args, **kwargs): super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs) self.Model = None self.feature_range = args_use['feature_range'] self.k = {} self.Model_Name = 'Fuzzy_quantization' def Fit(self, x_data, *args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.max = x_data.max() self.min = x_data.min() self.have_Fit = True return 'None', 'None' def Predict(self, x_data,*args,**kwargs): self.x_testData = x_data.copy() try: max = self.max min = self.min except: self.have_Fit = False self.Fit(x_data) max = self.max min = self.min x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2)) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'模糊量化标准化' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_trainData x_data = self.x_trainData max = self.max min = self.min Conversion_control(y_data,x_data,tab) tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格') save = Dic + r'/模糊量化标准化.HTML' tab.render(save) # 生成HTML return save, class Regularization_Model(Unsupervised):#正则化 def __init__(self, args_use, model, *args, **kwargs): super(Regularization_Model, self).__init__(*args, **kwargs) self.Model = Normalizer(norm=args_use['norm']) self.k = {'norm':args_use['norm']} self.Model_Name = 'Regularization' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData.copy() x_data = self.x_testData.copy() Conversion_control(y_data,x_data,tab) save = Dic + r'/正则化.HTML' tab.render(save) # 生成HTML return save, #离散数据 class Binarizer_Model(Unsupervised):#二值化 def __init__(self, args_use, model, *args, **kwargs): super(Binarizer_Model, self).__init__(*args, **kwargs) self.Model = Binarizer(threshold=args_use['threshold']) self.k = {} self.Model_Name = 'Binarizer' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换 for i in range(len(get_y)): tab.add(get_y[i],f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard,x_data.tolist()),f'原数据') tab.add(make_Tab(heard,y_data.tolist()), f'编码数据') tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据') save = Dic + r'/二值离散化.HTML' tab.render(save) # 生成HTML return save, class Discretization_Model(prep_Base):#n值离散 def __init__(self, args_use, model, *args, **kwargs): super(Discretization_Model, self).__init__(*args, **kwargs) self.Model = None range_ = args_use['split_range'] if range_ == []:raise Exception elif len(range_) == 1:range_.append(range_[0]) self.range = range_ self.k = {} self.Model_Name = 'Discretization' def Fit(self,*args,**kwargs): #t值在模型创建时已经保存 self.have_Fit = True return 'None','None' def Predict(self,x_data,*args,**kwargs): self.x_testData = x_data.copy() x_Predict = x_data.copy()#复制 range_ = self.range bool_list = [] max_ = len(range_) - 1 o_t = None for i in range(len(range_)): try: t = float(range_[i]) except:continue if o_t == None:#第一个参数 bool_list.append(x_Predict <= t) else: bool_list.append((o_t <= x_Predict) == (x_Predict < t)) if i == max_: bool_list.append(t <= x_Predict) o_t = t for i in range(len(bool_list)): x_Predict[bool_list[i]] = i self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,f'{len(bool_list)}值离散化' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard,x_data.tolist()),f'原数据') tab.add(make_Tab(heard,y_data.tolist()), f'编码数据') tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据') save = Dic + r'/多值离散化.HTML' tab.render(save) # 生成HTML return save, class Label_Model(prep_Base):#数字编码 def __init__(self, args_use, model, *args, **kwargs): super(Label_Model, self).__init__(*args, **kwargs) self.Model = [] self.k = {} self.Model_Name = 'LabelEncoder' def Fit(self,x_data,*args, **kwargs): if not self.have_Predict: # 不允许第二次训练 self.Model = [] if x_data.ndim == 1:x_data = np.array([x_data]) for i in range(x_data.shape[1]): self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器(每个特征一个学习器) self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = x_data.copy() if x_data.ndim == 1: x_data = np.array([x_data]) for i in range(x_data.shape[1]): x_Predict[:,i] = self.Model[i].transform(x_data[:,i]) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'数字编码' def Des(self, Dic, *args, **kwargs): tab = Tab() x_data = self.x_testData y_data = self.y_testData get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard,x_data.tolist()),f'原数据') tab.add(make_Tab(heard,y_data.tolist()), f'编码数据') tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据') save = Dic + r'/数字编码.HTML' tab.render(save) # 生成HTML return save, class OneHotEncoder_Model(prep_Base):#独热编码 def __init__(self, args_use, model, *args, **kwargs): super(OneHotEncoder_Model, self).__init__(*args, **kwargs) self.Model = [] self.ndim_up = args_use['ndim_up'] self.k = {} self.Model_Name = 'OneHotEncoder' self.OneHot_Data = None#三维独热编码 def Fit(self,x_data,*args, **kwargs): if not self.have_Predict: # 不允许第二次训练 if x_data.ndim == 1:x_data = [x_data] for i in range(x_data.shape[1]): data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维 self.Model.append(OneHotEncoder().fit(data))#训练机器 self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_new = [] for i in range(x_data.shape[1]): data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维 oneHot = self.Model[i].transform(data).toarray().tolist() x_new.append(oneHot)#添加到列表中 x_new = np.array(x_new)#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法) x_Predict = [] for i in range(x_new.shape[1]): x_Predict.append(x_new[:,i]) x_Predict = np.array(x_Predict)#转换回array self.OneHot_Data = x_Predict.copy() # 保存未降维数据 if not self.ndim_up:#压缩操作 new_xPredict = [] for i in x_Predict: new_list = [] list_ = i.tolist() for a in list_: new_list += a new = np.array(new_list) new_xPredict.append(new) self.y_testData = np.array(new_xPredict) return self.y_testData.copy(),'独热编码' self.y_testData = self.OneHot_Data self.have_Predict = True return x_Predict,'独热编码' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData oh_data = self.OneHot_Data if not self.ndim_up: get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换 for i in range(len(get_y)): tab.add(get_y[i], f'[{i}]数据x-x离散散点图') heard = [f'特征:{i}' for i in range(len(x_data[0]))] tab.add(make_Tab(heard,x_data.tolist()),f'原数据') tab.add(make_Tab(heard,oh_data.tolist()), f'编码数据') tab.add(make_Tab(heard,np.dstack((oh_data,x_data)).tolist()), f'合成[原数据,编码]数据') tab.add(make_Tab([f'编码:{i}' for i in range(len(y_data[0]))], y_data.tolist()), f'数据') save = Dic + r'/独热编码.HTML' tab.render(save) # 生成HTML return save, class Missed_Model(Unsupervised):#缺失数据补充 def __init__(self, args_use, model, *args, **kwargs): super(Missed_Model, self).__init__(*args, **kwargs) self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'], fill_value=args_use['fill_value']) self.k = {} self.Model_Name = 'Missed' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'填充缺失' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData statistics = self.Model.statistics_.tolist() Conversion_control(y_data,x_data,tab) tab.add(make_Tab([f'特征[{i}]' for i in range(len(statistics))],[statistics]),'填充值') save = Dic + r'/缺失数据填充.HTML' tab.render(save) # 生成HTML return save, class PCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(PCA_Model, self).__init__(*args, **kwargs) self.Model = PCA(n_components=args_use['n_components'],whiten=args_use['white_PCA']) self.whiten=args_use['white_PCA'] self.n_components = args_use['n_components'] self.k = {'n_components':args_use['n_components'],'whiten':args_use['white_PCA']} self.Model_Name = 'PCA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'PCA' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData importance = self.Model.components_.tolist() var = self.Model.explained_variance_.tolist()#方量差 Conversion_Separate_Format(y_data,tab) x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分 y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分 value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))] c = (HeatMap() .add_xaxis(x_data) .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1, min_=int(self.Model.components_.min()), pos_right='3%')) # 显示 ) tab.add(c,'成分热力图') c = ( Bar() .add_xaxis([f'第[{i}]主成分' for i in range(len(var))]) .add_yaxis('方量差', var, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set) ) desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data]) desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))]) tab.add(c, '方量差柱状图') save = Dic + r'/主成分分析.HTML' tab.render(save) # 生成HTML return save, class RPCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(RPCA_Model, self).__init__(*args, **kwargs) self.Model = IncrementalPCA(n_components=args_use['n_components'],whiten=args_use['white_PCA']) self.n_components = args_use['n_components'] self.whiten=args_use['white_PCA'] self.k = {'n_components': args_use['n_components'],'whiten':args_use['white_PCA']} self.Model_Name = 'RPCA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'RPCA' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_trainData importance = self.Model.components_.tolist() var = self.Model.explained_variance_.tolist() # 方量差 Conversion_Separate_Format(y_data, tab) x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分 y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分 value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))] c = (HeatMap() .add_xaxis(x_data) .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1, min_=int(self.Model.components_.min()), pos_right='3%')) # 显示 ) tab.add(c, '成分热力图') c = ( Bar() .add_xaxis([f'第[{i}]主成分' for i in range(len(var))]) .add_yaxis('放量差', var, **Label_Set) .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set) ) tab.add(c, '方量差柱状图') desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data]) desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))]) save = Dic + r'/RPCA(主成分分析).HTML' tab.render(save) # 生成HTML return save, class KPCA_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(KPCA_Model, self).__init__(*args, **kwargs) self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel']) self.n_components = args_use['n_components'] self.kernel = args_use['kernel'] self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']} self.Model_Name = 'KPCA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'KPCA' def Des(self, Dic, *args, **kwargs): tab = Tab() y_data = self.y_testData Conversion_Separate_Format(y_data, tab) save = Dic + r'/KPCA(主成分分析).HTML' tab.render(save) # 生成HTML return save, class LDA_Model(prep_Base):#有监督学习 def __init__(self, args_use, model, *args, **kwargs): super(LDA_Model, self).__init__(*args, **kwargs) self.Model = LDA(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components': args_use['n_components']} self.Model_Name = 'LDA' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'LDA' def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_testData y_data = self.y_testData Conversion_Separate_Format(y_data,tab) w_list = self.Model.coef_.tolist() # 变为表格 b = self.Model.intercept_ tab = Tab() x_means = make_Cat(x_data).get()[0] get = Regress_W(x_data, None, w_list, b, x_means.copy())#回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据) for i in range(len(get)): tab.add(get[i].overlap(get[i]), f'类别:{i}LDA映射曲线') save = Dic + r'/render.HTML' tab.render(save) # 生成HTML return save, class NMF_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(NMF_Model, self).__init__(*args, **kwargs) self.Model = NMF(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components':args_use['n_components']} self.Model_Name = 'NFM' self.h_testData = None #x_trainData保存的是W,h_trainData和y_trainData是后来数据 def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.transform(x_data) self.y_testData = x_Predict.copy() self.h_testData = self.Model.components_ if Add_Func != None and x_name != '': Add_Func(self.h_testData, f'{x_name}:V->NMF[H]') self.have_Predict = True return x_Predict,'V->NMF[W]' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData x_data = self.x_testData h_data = self.h_testData Conversion_SeparateWH(y_data,h_data,tab) wh_data = np.matmul(y_data, h_data) difference_data = x_data - wh_data def make_HeatMap(data,name,max_,min_): x = [f'数据[{i}]' for i in range(len(data))] # 主成分 y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分 value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_, min_=min_, pos_right='3%'))#显示 ) tab.add(c,name) max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1 min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min())) make_HeatMap(x_data,'原始数据热力图',max_,min_) make_HeatMap(wh_data,'W * H数据热力图',max_,min_) make_HeatMap(difference_data,'数据差热力图',max_,min_) desTo_CSV(Dic, '权重矩阵', y_data) desTo_CSV(Dic, '系数矩阵', h_data) desTo_CSV(Dic, '系数*权重矩阵', wh_data) save = Dic + r'/非负矩阵分解.HTML' tab.render(save) # 生成HTML return save, class TSNE_Model(Unsupervised): def __init__(self, args_use, model, *args, **kwargs): super(TSNE_Model, self).__init__(*args, **kwargs) self.Model = TSNE(n_components=args_use['n_components']) self.n_components = args_use['n_components'] self.k = {'n_components':args_use['n_components']} self.Model_Name = 't-SNE' def Fit(self,*args, **kwargs): self.have_Fit = True return 'None', 'None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() x_Predict = self.Model.fit_transform(x_data) self.y_testData = x_Predict.copy() self.have_Predict = True return x_Predict,'SNE' def Des(self,Dic,*args,**kwargs): tab = Tab() y_data = self.y_testData Conversion_Separate_Format(y_data,tab) save = Dic + r'/T-SNE.HTML' tab.render(save) # 生成HTML return save, class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习 def __init__(self,args_use,model,*args,**kwargs): super(MLP_Model, self).__init__(*args,**kwargs) Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model] self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'], solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter']) #记录这两个是为了克隆 self.hidden_layer_sizes = args_use['hidden_size'] self.activation = args_use['activation'] self.max_iter = args_use['max_iter'] self.solver = args_use['solver'] self.alpha = args_use['alpha'] self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'], 'solver':args_use['solver'],'alpha':args_use['alpha']} self.Model_Name = model def Des(self,Dic,*args,**kwargs): tab = Tab() x_data = self.x_testData y_data = self.y_testData coefs = self.Model.coefs_ class_ = self.Model.classes_ n_layers_ = self.Model.n_layers_ def make_HeatMap(data,name): x = [f'特征(节点)[{i}]' for i in range(len(data))] y = [f'节点[{i}]' for i in range(len(data[0]))] value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))] c = (HeatMap() .add_xaxis(x) .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg, yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category' xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()), min_=float(data.min()), pos_right='3%'))#显示 ) tab.add(c,name) tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格') desTo_CSV(Dic,f'{name}:表格',data.T.tolist(),x,y) get, x_means, x_range, Type = regress_visualization(x_data, y_data) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = ['神经网络层数'] data = [n_layers_] for i in range(len(coefs)): make_HeatMap(coefs[i],f'{i}层权重矩阵') heard.append(f'第{i}层节点数') data.append(len(coefs[i][0])) if self.Model_Name == 'MLP_class': heard += [f'[{i}]类型' for i in range(len(class_))] data += class_.tolist() tab.add(make_Tab(heard,[data]),'数据表') save = Dic + r'/多层感知机.HTML' tab.render(save) # 生成HTML return save, class kmeans_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(kmeans_Model, self).__init__(*args, **kwargs) self.Model = KMeans(n_clusters=args_use['n_clusters']) self.class_ = [] self.n_clusters = args_use['n_clusters'] self.k = {'n_clusters':args_use['n_clusters']} self.Model_Name = 'k-means' def Fit(self, x_data, *args, **kwargs): re = super().Fit(x_data,*args,**kwargs) self.class_ = list(set(self.Model.labels_.tolist())) self.have_Fit = True return re def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.predict(x_data) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict,'k-means' def Des(self,Dic,*args,**kwargs): tab = Tab() y = self.y_testData x_data = self.x_testData class_ = self.class_ center = self.Model.cluster_centers_ class_heard = [f'簇[{i}]' for i in range(len(class_))] Func = Training_visualization_More if More_Global else Training_visualization_Center get,x_means,x_range,Type = Func(x_data,class_,y,center) for i in range(len(get)): tab.add(get[i],f'{i}数据散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/k-means聚类.HTML' tab.render(save) # 生成HTML return save, class Agglomerative_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(Agglomerative_Model, self).__init__(*args, **kwargs) self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means self.class_ = [] self.n_clusters = args_use['n_clusters'] self.k = {'n_clusters':args_use['n_clusters']} self.Model_Name = 'Agglomerative' def Fit(self, x_data, *args, **kwargs): re = super().Fit(x_data,*args,**kwargs) self.class_ = list(set(self.Model.labels_.tolist())) self.have_Fit = True return re def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.fit_predict(x_data) self.y_trainData = y_Predict.copy() self.have_Predict = True return y_Predict,'Agglomerative' def Des(self, Dic, *args, **kwargs): tab = Tab() y = self.y_testData x_data = self.x_testData class_ = self.class_ class_heard = [f'簇[{i}]' for i in range(len(class_))] Func = Training_visualization_More_NoCenter if More_Global else Training_visualization get, x_means, x_range, Type = Func(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') get = Decision_boundary(x_range, x_means, self.Predict, class_, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') linkage_array = ward(self.x_trainData)#self.y_trainData是结果 dendrogram(linkage_array) plt.savefig(Dic + r'/Cluster_graph.png') image = Image() image.add( src=Dic + r'/Cluster_graph.png', ).set_global_opts( title_opts=opts.ComponentTitleOpts(title="聚类树状图") ) tab.add(image,'聚类树状图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/层次聚类.HTML' tab.render(save) # 生成HTML return save, class DBSCAN_Model(UnsupervisedModel): def __init__(self, args_use, model, *args, **kwargs): super(DBSCAN_Model, self).__init__(*args, **kwargs) self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples']) #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数) # min_samples self.eps = args_use['eps'] self.min_samples = args_use['min_samples'] self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']} self.class_ = [] self.Model_Name = 'DBSCAN' def Fit(self, x_data, *args, **kwargs): re = super().Fit(x_data,*args,**kwargs) self.class_ = list(set(self.Model.labels_.tolist())) self.have_Fit = True return re def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() y_Predict = self.Model.fit_predict(x_data) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict,'DBSCAN' def Des(self, Dic, *args, **kwargs): #DBSCAN没有预测的必要 tab = Tab() y = self.y_testData.copy() x_data = self.x_testData.copy() class_ = self.class_ class_heard = [f'簇[{i}]' for i in range(len(class_))] Func = Training_visualization_More_NoCenter if More_Global else Training_visualization get, x_means, x_range, Type = Func(x_data, class_, y) for i in range(len(get)): tab.add(get[i], f'{i}训练数据散点图') heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] data = class_ + [f'{i}' for i in x_means] c = Table().add(headers=heard, rows=[data]) tab.add(c, '数据表') desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))]) save = Dic + r'/密度聚类.HTML' tab.render(save) # 生成HTML return save, class Fast_Fourier(Study_MachineBase):#快速傅里叶变换 def __init__(self, args_use, model, *args, **kwargs): super(Fast_Fourier, self).__init__(*args, **kwargs) self.Model = None self.Fourier = None#fft复数 self.Frequency = None#频率range self.angular_Frequency = None#角频率range self.Phase = None#相位range self.Breadth = None#震幅range self.N = None#样本数 def Fit(self, y_data, *args, **kwargs): y_data = y_data.ravel() # 扯平为一维数组 try: if self.y_trainData is None:raise Exception self.y_trainData = np.hstack(y_data,self.x_trainData) except: self.y_trainData = y_data.copy() Fourier = fft(y_data) self.N = len(y_data) self.Frequency = np.linspace(0,1,self.N)#频率N_range self.angular_Frequency = self.Frequency / ( np.pi * 2 )#角频率w self.Phase = np.angle(Fourier) self.Breadth = np.abs(Fourier) self.Fourier = Fourier self.have_Fit = True return 'None','None' def Predict(self, x_data, *args, **kwargs): return np.array([]),'' def Des(self, Dic, *args, **kwargs): #DBSCAN没有预测的必要 tab = Tab() y = self.y_trainData.copy() N = self.N Phase = self.Phase#相位range Breadth = self.Breadth#震幅range normalization_Breadth = Breadth/N def line(name,value,s=slice(0,None)) -> Line: c = ( Line() .add_xaxis(self.Frequency[s].tolist()) .add_yaxis('', value,**Label_Set,symbol='none' if self.N >= 500 else None) .set_global_opts(title_opts=opts.TitleOpts(title=name),**global_Leg, xaxis_opts=opts.AxisOpts(type_='value'), yaxis_opts=opts.AxisOpts(type_='value')) ) return c tab.add(line('原始数据',y.tolist()),'原始数据') tab.add(line('双边振幅谱',Breadth.tolist()),'双边振幅谱') tab.add(line('双边振幅谱(归一化)',normalization_Breadth.tolist()),'双边振幅谱(归一化)') tab.add(line('单边相位谱',Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱') tab.add(line('单边相位谱(归一化)',normalization_Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱(归一化)') tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱') tab.add(line('单边相位谱', Phase[:int(N/2)].tolist(),slice(0,int(N/2))), '单边相位谱') tab.add(make_Tab(self.Frequency.tolist(),[Breadth.tolist()]),'双边振幅谱') tab.add(make_Tab(self.Frequency.tolist(),[Phase.tolist()]),'双边相位谱') tab.add(make_Tab(self.Frequency.tolist(),[self.Fourier.tolist()]),'快速傅里叶变换') save = Dic + r'/快速傅里叶.HTML' tab.render(save) # 生成HTML return save, class Reverse_Fast_Fourier(Study_MachineBase):#快速傅里叶变换 def __init__(self, args_use, model, *args, **kwargs): super(Reverse_Fast_Fourier, self).__init__(*args, **kwargs) self.Model = None self.N = None self.y_testData_real = None self.Phase = None self.Breadth = None def Fit(self, y_data, *args, **kwargs): return 'None','None' def Predict(self, x_data,x_name='', Add_Func=None, *args, **kwargs): self.x_testData = x_data.ravel().astype(np.complex_) Fourier = ifft(self.x_testData) self.y_testData = Fourier.copy() self.y_testData_real = np.real(Fourier) self.N = len(self.y_testData_real) self.Phase = np.angle(self.x_testData) self.Breadth = np.abs(self.x_testData) Add_Func(self.y_testData_real.copy(), f'{x_name}:逆向快速傅里叶变换[实数]') return Fourier,'逆向快速傅里叶变换' def Des(self, Dic, *args, **kwargs): #DBSCAN没有预测的必要 tab = Tab() y = self.y_testData_real.copy() y_data = self.y_testData.copy() N = self.N range_N = np.linspace(0,1,N).tolist() Phase = self.Phase#相位range Breadth = self.Breadth#震幅range def line(name,value,s=slice(0,None)) -> Line: c = ( Line() .add_xaxis(range_N[s]) .add_yaxis('', value,**Label_Set,symbol='none' if N >= 500 else None) .set_global_opts(title_opts=opts.TitleOpts(title=name),**global_Leg, xaxis_opts=opts.AxisOpts(type_='value'), yaxis_opts=opts.AxisOpts(type_='value')) ) return c tab.add(line('逆向傅里叶变换', y.tolist()), '逆向傅里叶变换[实数]') tab.add(make_Tab(range_N,[y_data.tolist()]),'逆向傅里叶变换数据') tab.add(make_Tab(range_N,[y.tolist()]),'逆向傅里叶变换数据[实数]') tab.add(line('双边振幅谱',Breadth.tolist()),'双边振幅谱') tab.add(line('单边相位谱',Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱') tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱') tab.add(line('单边相位谱', Phase[:int(N/2)].tolist(),slice(0,int(N/2))), '单边相位谱') save = Dic + r'/快速傅里叶.HTML' tab.render(save) # 生成HTML return save, class Reverse_Fast_Fourier_TwoNumpy(Reverse_Fast_Fourier):#2快速傅里叶变换 def Fit(self, x_data,y_data=None,x_name='', Add_Func=None, *args, **kwargs): r = np.multiply(np.cos(x_data),y_data) j = np.multiply(np.sin(x_data),y_data) * 1j super(Reverse_Fast_Fourier_TwoNumpy, self).Predict(r + j,x_name=x_name, Add_Func=Add_Func, *args, **kwargs) return 'None','None' class Curve_fitting(Study_MachineBase):#曲线拟合 def __init__(self,Name, str_, model, *args, **kwargs): super(Curve_fitting, self).__init__(*args, **kwargs) def ndimDown(data:np.ndarray): if data.ndim == 1:return data new_data = [] for i in data: new_data.append(np.sum(i)) return np.array(new_data) NAME = {'np':np,'Func':model,'ndimDown':ndimDown} DEF = f''' def FUNC({",".join(model.__code__.co_varnames)}): answer = Func({",".join(model.__code__.co_varnames)}) return ndimDown(answer) ''' exec(DEF,NAME) self.Func = NAME['FUNC'] self.Fit_data = None self.Name = Name self.Func_Str = str_ def Fit(self, x_data:np.ndarray,y_data:np.ndarray, *args, **kwargs): y_data = y_data.ravel() x_data = x_data.astype(np.float64) try: if self.x_trainData is None:raise Exception self.x_trainData = np.vstack(x_data,self.x_trainData) self.y_trainData = np.vstack(y_data,self.y_trainData) except: self.x_trainData = x_data.copy() self.y_trainData = y_data.copy() self.Fit_data = optimize.curve_fit(self.Func,self.x_trainData,self.y_trainData) self.Model = self.Fit_data[0].copy() return 'None','None' def Predict(self, x_data, *args, **kwargs): self.x_testData = x_data.copy() Predict = self.Func(x_data,*self.Model) y_Predict = [] for i in Predict: y_Predict.append(np.sum(i)) y_Predict = np.array(y_Predict) self.y_testData = y_Predict.copy() self.have_Predict = True return y_Predict,self.Name def Des(self, Dic, *args, **kwargs): #DBSCAN没有预测的必要 tab = Tab() y = self.y_testData.copy() x_data = self.x_testData.copy() get, x_means, x_range,Type = regress_visualization(x_data, y) for i in range(len(get)): tab.add(get[i], f'{i}预测类型图') get = Prediction_boundary(x_range, x_means, self.Predict, Type) for i in range(len(get)): tab.add(get[i], f'{i}预测热力图') tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [[f'{i}' for i in x_means]]),'普适预测特征数据') tab.add(make_Tab([f'参数[{i}]' for i in range(len(self.Model))], [[f'{i}' for i in self.Model]]), '拟合参数') save = Dic + r'/曲线拟合.HTML' tab.render(save) # 生成HTML return save, class Machine_Learner(Learner):#数据处理者 def __init__(self,*args, **kwargs): super().__init__(*args, **kwargs) self.Learner = {}#记录机器 self.Learn_Dic = {'Line':Line_Model, 'Ridge':Line_Model, 'Lasso':Line_Model, 'LogisticRegression':LogisticRegression_Model, 'Knn_class':Knn_Model, 'Knn': Knn_Model, 'Tree_class': Tree_Model, 'Tree': Tree_Model, 'Forest':Forest_Model, 'Forest_class': Forest_Model, 'GradientTree_class':GradientTree_Model, 'GradientTree': GradientTree_Model, 'Variance':Variance_Model, 'SelectKBest':SelectKBest_Model, 'Z-Score':Standardization_Model, 'MinMaxScaler':MinMaxScaler_Model, 'LogScaler':LogScaler_Model, 'atanScaler':atanScaler_Model, 'decimalScaler':decimalScaler_Model, 'sigmodScaler':sigmodScaler_Model, 'Mapzoom':Mapzoom_Model, 'Fuzzy_quantization':Fuzzy_quantization_Model, 'Regularization':Regularization_Model, 'Binarizer':Binarizer_Model, 'Discretization':Discretization_Model, 'Label':Label_Model, 'OneHotEncoder':OneHotEncoder_Model, 'Missed':Missed_Model, 'PCA':PCA_Model, 'RPCA':RPCA_Model, 'KPCA':KPCA_Model, 'LDA':LDA_Model, 'SVC':SVC_Model, 'SVR':SVR_Model, 'MLP':MLP_Model, 'MLP_class': MLP_Model, 'NMF':NMF_Model, 't-SNE':TSNE_Model, 'k-means':kmeans_Model, 'Agglomerative':Agglomerative_Model, 'DBSCAN':DBSCAN_Model, 'ClassBar':Class_To_Bar, 'FeatureScatter':Near_feature_scatter, 'FeatureScatterClass': Near_feature_scatter_class, 'FeatureScatter_all':Near_feature_scatter_More, 'FeatureScatterClass_all':Near_feature_scatter_class_More, 'HeatMap':Numpy_To_HeatMap, 'FeatureY-X':Feature_scatter_YX, 'ClusterTree':Cluster_Tree, 'MatrixScatter':MatrixScatter, 'Correlation':CORR, 'Statistics':Des, 'Fast_Fourier':Fast_Fourier, 'Reverse_Fast_Fourier':Reverse_Fast_Fourier, '[2]Reverse_Fast_Fourier':Reverse_Fast_Fourier_TwoNumpy, } self.Learner_Type = {}#记录机器的类型 def p_Args(self,Text,Type):#解析参数 args = {} args_use = {} #输入数据 exec(Text,args) #处理数据 if Type in ('MLP','MLP_class'): args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用 else: args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用 args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用 if Type in ('MLP','MLP_class'): args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用 else: args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用 args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同) args_use['p'] = int(args.get('p', 2)) # 距离计算方式 args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维 if Type in ('Tree','Forest','GradientTree'): args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度 else: args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度 args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优 args_use['max_features'] = args.get('max_features', None) # 选用最多特征数 args_use['max_depth'] = args.get('max_depth', None) # 最大深度 args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合) args_use['P'] = float(args.get('min_samples_split', 0.8)) args_use['k'] = args.get('k',1) args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif, 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}. get(args.get('score_func','f_classif'),f_classif)) args_use['feature_range'] = tuple(args.get('feature_range',(0,1))) args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2 args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征 args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征 args_use['ndim_up'] = bool(args.get('ndim_up', False)) args_use['miss_value'] = args.get('miss_value',np.nan) args_use['fill_method'] = args.get('fill_method','mean') args_use['fill_value'] = args.get('fill_value',None) args_use['n_components'] = args.get('n_components',1) args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVC') else 'linear') args_use['n_Tree'] = args.get('n_Tree',100) args_use['gamma'] = args.get('gamma',1) args_use['hidden_size'] = tuple(args.get('hidden_size',(100,))) args_use['activation'] = str(args.get('activation','relu')) args_use['solver'] = str(args.get('solver','adam')) if Type in ('k-means',): args_use['n_clusters'] = int(args.get('n_clusters',8)) else: args_use['n_clusters'] = int(args.get('n_clusters', 2)) args_use['eps'] = float(args.get('n_clusters', 0.5)) args_use['min_samples'] = int(args.get('n_clusters', 5)) args_use['white_PCA'] = bool(args.get('white_PCA', False)) return args_use def Add_Learner(self,Learner,Text=''): get = self.Learn_Dic[Learner] name = f'Le[{len(self.Learner)}]{Learner}' #参数调节 args_use = self.p_Args(Text,Learner) #生成学习器 self.Learner[name] = get(model=Learner,args_use=args_use) self.Learner_Type[name] = Learner def Add_Curve_Fitting(self,Learner_text,Text=''): NAME = {} exec(Learner_text,NAME) name = f'Le[{len(self.Learner)}]{NAME.get("name","SELF")}' func = NAME.get('f',lambda x,k,b:k * x + b) self.Learner[name] = Curve_fitting(name,Learner_text,func) self.Learner_Type[name] = 'Curve_fitting' def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}' #参数调节 args_use = self.p_Args(Text,'SelectFrom_Model') #生成学习器 self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic) self.Learner_Type[name] = 'SelectFrom_Model' def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}' #生成学习器 args_use = self.p_Args(Text, 'Predictive_HeatMap') self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use) self.Learner_Type[name] = 'Predictive_HeatMap' def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}' #生成学习器 args_use = self.p_Args(Text, 'Predictive_HeatMap_More') self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use) self.Learner_Type[name] = 'Predictive_HeatMap_More' def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器 model = self.get_Learner(Learner) name = f'Le[{len(self.Learner)}]View_data:{Learner}' #生成学习器 args_use = self.p_Args(Text, 'View_data') self.Learner[name] = View_data(Learner=model,args_use=args_use) self.Learner_Type[name] = 'View_data' def Return_Learner(self): return self.Learner.copy() def get_Learner(self,name): return self.Learner[name] def get_Learner_Type(self,name): return self.Learner_Type[name] def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs): x_data = self.get_Sheet(x_name) y_data = self.get_Sheet(y_name) model = self.get_Learner(Learner) return model.Fit(x_data,y_data,split = split, x_name=x_name, Add_Func=self.Add_Form) def Predict(self,x_name,Learner,Text='',**kwargs): x_data = self.get_Sheet(x_name) model = self.get_Learner(Learner) y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form) self.Add_Form(y_data,f'{x_name}:{name}') return y_data def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作 model = self.get_Learner(Learner) x = self.get_Sheet(name_x) y = self.get_Sheet(name_y) return model.Score(x,y) def Show_Score(self,Learner,Dic,name_x,name_y,Func=0):#显示参数 x = self.get_Sheet(name_x) y = self.get_Sheet(name_y) if NEW_Global: dic = Dic + f'/{Learner}分类评分[CoTan]' new_dic = dic a = 0 while exists(new_dic):#直到他不存在 —— False new_dic = dic + f'[{a}]' a += 1 mkdir(new_dic) else: new_dic = Dic model = self.get_Learner(Learner) #打包 func = [model.Class_Score, model.Regression_Score, model.Clusters_Score][Func] save = func(new_dic,x,y)[0] if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic) return save,new_dic def Show_Args(self,Learner,Dic):#显示参数 if NEW_Global: dic = Dic + f'/{Learner}数据[CoTan]' new_dic = dic a = 0 while exists(new_dic):#直到他不存在 —— False new_dic = dic + f'[{a}]' a += 1 mkdir(new_dic) else: new_dic = Dic model = self.get_Learner(Learner) if (not(model.Model is None) or not(model.Model is list)) and CLF_Global: joblib.dump(model.Model,new_dic + '/MODEL.model')#保存模型 # pickle.dump(model,new_dic + f'/{Learner}.pkl')#保存学习器 #打包 save = model.Des(new_dic)[0] if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic) return save,new_dic def Del_Leaner(self,Leaner): del self.Learner[Leaner] del self.Learner_Type[Leaner] def make_targz(output_filename, source_dir): with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=basename(source_dir)) return output_filename def set_Global(More=More_Global,All=All_Global,CSV=CSV_Global,CLF=CLF_Global,TAR=TAR_Global,NEW=NEW_Global): global More_Global,All_Global,CSV_Global,CLF_Global,TAR_Global,NEW_Global More_Global = More # 是否使用全部特征绘图 All_Global = All # 是否导出charts CSV_Global = CSV # 是否导出CSV CLF_Global = CLF # 是否导出模型 TAR_Global = TAR # 是否打包tar NEW_Global = NEW # 是否新建目录