|
@@ -0,0 +1,3947 @@
|
|
|
+from os.path import split as path_split
|
|
|
+from os.path import exists,basename,splitext
|
|
|
+from os import mkdir,getcwd
|
|
|
+import tarfile
|
|
|
+import pickle
|
|
|
+import joblib
|
|
|
+from pyecharts.globals import CurrentConfig
|
|
|
+CurrentConfig.ONLINE_HOST = f"{getcwd()}/assets/"
|
|
|
+from pyecharts.components import Table as Table_Fisrt#绘制表格
|
|
|
+from pyecharts.components import Image
|
|
|
+from pyecharts import options as opts
|
|
|
+from random import randint
|
|
|
+from pyecharts.charts import *
|
|
|
+from pyecharts.charts import Tab as tab_First
|
|
|
+from pyecharts.options.series_options import JsCode
|
|
|
+from scipy.cluster.hierarchy import dendrogram, ward
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from pandas import DataFrame,read_csv
|
|
|
+import numpy as np
|
|
|
+import re
|
|
|
+from sklearn.model_selection import train_test_split
|
|
|
+from sklearn.linear_model import *
|
|
|
+from sklearn.neighbors import KNeighborsClassifier,KNeighborsRegressor
|
|
|
+from sklearn.tree import DecisionTreeClassifier,DecisionTreeRegressor,export_graphviz
|
|
|
+from sklearn.ensemble import (RandomForestClassifier,RandomForestRegressor,GradientBoostingClassifier,
|
|
|
+ GradientBoostingRegressor)
|
|
|
+from sklearn.metrics import *
|
|
|
+from sklearn.feature_selection import *
|
|
|
+from sklearn.preprocessing import *
|
|
|
+from sklearn.impute import SimpleImputer
|
|
|
+from sklearn.decomposition import PCA, IncrementalPCA,KernelPCA,NMF
|
|
|
+from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
|
|
|
+from sklearn.svm import SVC,SVR#SVC是svm分类,SVR是svm回归
|
|
|
+from sklearn.neural_network import MLPClassifier,MLPRegressor
|
|
|
+from sklearn.manifold import TSNE
|
|
|
+from sklearn.cluster import KMeans,AgglomerativeClustering,DBSCAN
|
|
|
+from scipy import optimize
|
|
|
+from scipy.fftpack import fft,ifft,ifftn,fftn#快速傅里叶变换
|
|
|
+
|
|
|
+
|
|
|
+#设置
|
|
|
+np.set_printoptions(threshold=np.inf)
|
|
|
+global_Set = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(pos_bottom='3%',type_='scroll'))
|
|
|
+global_Leg = dict(toolbox_opts=opts.ToolboxOpts(is_show=True),legend_opts=opts.LegendOpts(is_show=False))
|
|
|
+Label_Set = dict(label_opts=opts.LabelOpts(is_show=False))
|
|
|
+
|
|
|
+More_Global = False#是否使用全部特征绘图
|
|
|
+All_Global = True#是否导出charts
|
|
|
+CSV_Global = True#是否导出CSV
|
|
|
+CLF_Global = True#是否导出模型
|
|
|
+TAR_Global = True#是否打包tar
|
|
|
+NEW_Global = True#是否新建目录
|
|
|
+
|
|
|
+class Tab(tab_First):
|
|
|
+ def __init__(self, *args,**kwargs):
|
|
|
+ super(Tab, self).__init__(*args,**kwargs)
|
|
|
+ self.element = {}#记录tab组成元素 name:charts
|
|
|
+
|
|
|
+ def add(self, chart, tab_name):
|
|
|
+ self.element[tab_name] = chart
|
|
|
+ return super(Tab, self).add(chart, tab_name)
|
|
|
+
|
|
|
+ def render(self,path: str = "render.html",template_name: str = "simple_tab.html",*args,**kwargs,) -> str:
|
|
|
+ if All_Global:
|
|
|
+ Dic = path_split(path)[0]
|
|
|
+ for i in self.element:
|
|
|
+ self.element[i].render(Dic + '/' + i + '.html')
|
|
|
+ return super(Tab, self).render(path,template_name,*args,**kwargs)
|
|
|
+
|
|
|
+class Table(Table_Fisrt):
|
|
|
+ def __init__(self,*args,**kwargs):
|
|
|
+ super(Table, self).__init__(*args,**kwargs)
|
|
|
+ self.HEADERS = []
|
|
|
+ self.ROWS = [[]]
|
|
|
+
|
|
|
+ def add(self, headers, rows, attributes = None):
|
|
|
+ if len(rows) == 1:
|
|
|
+ new_headers = ['数据类型','数据']
|
|
|
+ new_rows = list(zip(headers,rows[0]))
|
|
|
+ self.HEADERS = new_headers
|
|
|
+ self.ROWS = new_rows
|
|
|
+ return super().add(new_headers,new_rows,attributes)
|
|
|
+ else:
|
|
|
+ self.HEADERS = headers
|
|
|
+ self.ROWS = rows
|
|
|
+ return super().add(headers, rows, attributes)
|
|
|
+
|
|
|
+ def render(self,path= "render.html",*args,**kwargs,) -> str:
|
|
|
+ if CSV_Global:
|
|
|
+ Dic,name = path_split(path)
|
|
|
+ name = splitext(name)[0]
|
|
|
+ try:
|
|
|
+ DataFrame(self.ROWS,columns = self.HEADERS).to_csv(Dic + '/' + name + '.csv')
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+ return super().render(path,*args,**kwargs)
|
|
|
+
|
|
|
+def make_list(first,end,num=35):
|
|
|
+ n = num / (end - first)
|
|
|
+ if n == 0: n = 1
|
|
|
+ re = []
|
|
|
+ n_first = first * n
|
|
|
+ n_end = end * n
|
|
|
+ while n_first <= n_end:
|
|
|
+ cul = n_first / n
|
|
|
+ re.append(round(cul,2))
|
|
|
+ n_first += 1
|
|
|
+ return re
|
|
|
+
|
|
|
+def list_filter(list_,num=70):
|
|
|
+ #假设列表已经不重复
|
|
|
+ if len(list_) <= num:return list_
|
|
|
+ n = int(num / len(list_))
|
|
|
+ re = list_[::n]
|
|
|
+ return re
|
|
|
+
|
|
|
+def Prediction_boundary(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
|
|
|
+ #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
|
|
|
+ # a-特征x,b-特征x-1,c-其他特征
|
|
|
+ o_cList = []
|
|
|
+ if len(x_means) == 1:
|
|
|
+ return o_cList
|
|
|
+ for i in range(len(x_means)):
|
|
|
+ for j in range(len(x_means)):
|
|
|
+ if j <= i:continue
|
|
|
+ n_ra = x_range[j]
|
|
|
+ Type_ra = Type[j]
|
|
|
+ n_rb = x_range[i]
|
|
|
+ Type_rb = Type[i]
|
|
|
+ if Type_ra == 1:
|
|
|
+ ra = make_list(n_ra[0],n_ra[1],70)
|
|
|
+ else:
|
|
|
+ ra = list_filter(n_ra)#可以接受最大为70
|
|
|
+
|
|
|
+ if Type_rb == 1:
|
|
|
+ rb = make_list(n_rb[0],n_rb[1],35)
|
|
|
+ else:
|
|
|
+ rb = list_filter(n_rb)#可以接受最大为70
|
|
|
+ a = np.array([i for i in ra for _ in rb]).T
|
|
|
+ b = np.array([i for _ in ra for i in rb]).T
|
|
|
+ data = np.array([x_means for _ in ra for i in rb])
|
|
|
+ data[:, j] = a
|
|
|
+ data[:, i] = b
|
|
|
+ y_data = Predict_Func(data)[0].tolist()
|
|
|
+ value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(np.unique(a))
|
|
|
+ .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
|
|
|
+ pos_right='3%'))#显示
|
|
|
+ )
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Prediction_boundary_More(x_range,x_means,Predict_Func,Type):#绘制回归型x-x热力图
|
|
|
+ #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调
|
|
|
+ # a-特征x,b-特征x-1,c-其他特征
|
|
|
+ o_cList = []
|
|
|
+ if len(x_means) == 1:
|
|
|
+ return o_cList
|
|
|
+ for i in range(len(x_means)):
|
|
|
+ if i == 0:
|
|
|
+ continue
|
|
|
+ n_ra = x_range[i - 1]
|
|
|
+ Type_ra = Type[i - 1]
|
|
|
+ n_rb = x_range[i]
|
|
|
+ Type_rb = Type[i]
|
|
|
+ if Type_ra == 1:
|
|
|
+ ra = make_list(n_ra[0],n_ra[1],70)
|
|
|
+ else:
|
|
|
+ ra = list_filter(n_ra)#可以接受最大为70
|
|
|
+
|
|
|
+ if Type_rb == 1:
|
|
|
+ rb = make_list(n_rb[0],n_rb[1],35)
|
|
|
+ else:
|
|
|
+ rb = list_filter(n_rb)#可以接受最大为70
|
|
|
+ a = np.array([i for i in ra for _ in rb]).T
|
|
|
+ b = np.array([i for _ in ra for i in rb]).T
|
|
|
+ data = np.array([x_means for _ in ra for i in rb])
|
|
|
+ data[:, i - 1] = a
|
|
|
+ data[:, i] = b
|
|
|
+ y_data = Predict_Func(data)[0].tolist()
|
|
|
+ value = [[float(a[i]), float(b[i]), y_data[i]] for i in range(len(a))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(np.unique(a))
|
|
|
+ .add_yaxis(f'数据', np.unique(b), value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(max(y_data))+1, min_=int(min(y_data)),
|
|
|
+ pos_right='3%'))#显示
|
|
|
+ )
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
|
|
|
+ #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
|
|
|
+ # a-特征x,b-特征x-1,c-其他特征
|
|
|
+ #规定,i-1是x轴,a是x轴,x_1是x轴
|
|
|
+ class_dict = dict(zip(class_,[i for i in range(len(class_))]))
|
|
|
+ if not nono:
|
|
|
+ v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
|
|
|
+ else:v_dict = []
|
|
|
+ for i in class_dict:
|
|
|
+ v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
|
|
|
+ o_cList = []
|
|
|
+ if len(x_means) == 1:
|
|
|
+ n_ra = x_range[0]
|
|
|
+ if Type[0] == 1:
|
|
|
+ ra = make_list(n_ra[0], n_ra[1], 70)
|
|
|
+ else:
|
|
|
+ ra = n_ra
|
|
|
+
|
|
|
+ a = np.array([i for i in ra]).reshape(-1,1)
|
|
|
+ y_data = Predict_Func(a)[0].tolist()
|
|
|
+ value = [[0,float(a[i]), class_dict.get(y_data[i], -1)] for i in range(len(a))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(['None'])
|
|
|
+ .add_yaxis(f'数据', np.unique(a), value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max(class_dict.values()),
|
|
|
+ min_=-1,
|
|
|
+ is_piecewise=True, pieces=v_dict,
|
|
|
+ orient='horizontal', pos_bottom='3%'))
|
|
|
+ )
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+ #如果x_means长度不等于1则执行下面
|
|
|
+ for i in range(len(x_means)):
|
|
|
+ if i == 0:
|
|
|
+ continue
|
|
|
+
|
|
|
+ n_ra = x_range[i-1]
|
|
|
+ Type_ra = Type[i-1]
|
|
|
+ n_rb = x_range[i]
|
|
|
+ Type_rb = Type[i]
|
|
|
+ if Type_ra == 1:
|
|
|
+ ra = make_list(n_ra[0],n_ra[1],70)
|
|
|
+ else:
|
|
|
+ ra = n_ra
|
|
|
+
|
|
|
+ if Type_rb == 1:
|
|
|
+ rb = make_list(n_rb[0],n_rb[1],35)
|
|
|
+ else:
|
|
|
+ rb = n_rb
|
|
|
+ a = np.array([i for i in ra for _ in rb]).T
|
|
|
+ b = np.array([i for _ in ra for i in rb]).T
|
|
|
+ data = np.array([x_means for _ in ra for i in rb])
|
|
|
+ data[:, i - 1] = a
|
|
|
+ data[:, i] = b
|
|
|
+ y_data = Predict_Func(data)[0].tolist()
|
|
|
+ value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(np.unique(a))
|
|
|
+ .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
|
|
|
+ is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
|
|
|
+ )
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Decision_boundary_More(x_range,x_means,Predict_Func,class_,Type,nono=False):#绘制分类型预测图x-x热力图
|
|
|
+ #r是绘图大小列表,x_means是其余值,Predict_Func是预测方法回调,class_是分类,add_o是可以合成的图
|
|
|
+ # a-特征x,b-特征x-1,c-其他特征
|
|
|
+ #规定,i-1是x轴,a是x轴,x_1是x轴
|
|
|
+ class_dict = dict(zip(class_,[i for i in range(len(class_))]))
|
|
|
+ if not nono:
|
|
|
+ v_dict = [{'min':-1.5,'max':-0.5,'label':'未知'}]#分段显示
|
|
|
+ else:v_dict = []
|
|
|
+ for i in class_dict:
|
|
|
+ v_dict.append({'min':class_dict[i]-0.5,'max':class_dict[i]+0.5,'label':str(i)})
|
|
|
+ o_cList = []
|
|
|
+ if len(x_means) == 1:
|
|
|
+ return Decision_boundary(x_range,x_means,Predict_Func,class_,Type,nono)
|
|
|
+ #如果x_means长度不等于1则执行下面
|
|
|
+ for i in range(len(x_means)):
|
|
|
+ for j in range(len(x_means)):
|
|
|
+ if j <= i:continue
|
|
|
+
|
|
|
+ n_ra = x_range[j]
|
|
|
+ Type_ra = Type[j]
|
|
|
+ n_rb = x_range[i]
|
|
|
+ Type_rb = Type[i]
|
|
|
+ if Type_ra == 1:
|
|
|
+ ra = make_list(n_ra[0],n_ra[1],70)
|
|
|
+ else:
|
|
|
+ ra = n_ra
|
|
|
+
|
|
|
+ if Type_rb == 1:
|
|
|
+ rb = make_list(n_rb[0],n_rb[1],35)
|
|
|
+ else:
|
|
|
+ rb = n_rb
|
|
|
+ a = np.array([i for i in ra for _ in rb]).T
|
|
|
+ b = np.array([i for _ in ra for i in rb]).T
|
|
|
+ data = np.array([x_means for _ in ra for i in rb])
|
|
|
+ data[:, j] = a
|
|
|
+ data[:, i] = b
|
|
|
+ y_data = Predict_Func(data)[0].tolist()
|
|
|
+ value = [[float(a[i]), float(b[i]), class_dict.get(y_data[i],-1)] for i in range(len(a))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(np.unique(a))
|
|
|
+ .add_yaxis(f'数据', np.unique(b), value, **Label_Set)#value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),#'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True,type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(class_dict.values()),min_=-1,
|
|
|
+ is_piecewise=True,pieces=v_dict,orient='horizontal',pos_bottom='3%'))
|
|
|
+ )
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def SeeTree(Dic):
|
|
|
+ node_re = re.compile('^([0-9]+) \[label="(.+)"\] ;$') # 匹配节点正则表达式
|
|
|
+ link_re = re.compile('^([0-9]+) -> ([0-9]+) (.*);$') # 匹配节点正则表达式
|
|
|
+ node_Dict = {}
|
|
|
+ link_list = []
|
|
|
+
|
|
|
+ with open(Dic, 'r') as f: # 貌似必须分开w和r
|
|
|
+ for i in f:
|
|
|
+ try:
|
|
|
+ get = re.findall(node_re, i)[0]
|
|
|
+ if get[0] != '':
|
|
|
+ try:
|
|
|
+ v = float(get[0])
|
|
|
+ except:
|
|
|
+ v = 0
|
|
|
+ node_Dict[get[0]] = {'name': get[1].replace('\\n', '\n'), 'value': v, 'children': []}
|
|
|
+ continue
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+ try:
|
|
|
+ get = re.findall(link_re, i)[0]
|
|
|
+ if get[0] != '' and get[1] != '':
|
|
|
+ link_list.append((get[0], get[1]))
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+
|
|
|
+ father_list = [] # 已经有父亲的list
|
|
|
+ for i in link_list:
|
|
|
+ father = i[0] # 父节点
|
|
|
+ son = i[1] # 子节点
|
|
|
+ try:
|
|
|
+ node_Dict[father]['children'].append(node_Dict[son])
|
|
|
+ father_list.append(son)
|
|
|
+ if int(son) == 0: print('F')
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+
|
|
|
+ father = list(set(node_Dict.keys()) - set(father_list))
|
|
|
+
|
|
|
+ c = (
|
|
|
+ Tree()
|
|
|
+ .add("", [node_Dict[father[0]]], is_roam=True)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title="决策树可视化"),
|
|
|
+ toolbox_opts=opts.ToolboxOpts(is_show=True))
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+def make_Tab(heard,row):
|
|
|
+ return Table().add(headers=heard, rows=row)
|
|
|
+
|
|
|
+def scatter(w_heard,w):
|
|
|
+ c = (
|
|
|
+ Scatter()
|
|
|
+ .add_xaxis(w_heard)
|
|
|
+ .add_yaxis('', w, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='系数w散点图'), **global_Set)
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+def bar(w_heard,w):
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis(w_heard)
|
|
|
+ .add_yaxis('', abs(w).tolist(), **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+# def line(w_sum,w,b):
|
|
|
+# x = np.arange(-5, 5, 1)
|
|
|
+# c = (
|
|
|
+# Line()
|
|
|
+# .add_xaxis(x.tolist())
|
|
|
+# .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
|
|
|
+# )
|
|
|
+# for i in range(len(w)):
|
|
|
+# y = x * w[i] + b
|
|
|
+# c.add_yaxis(f"系数w[{i}]", y.tolist(), is_smooth=True, **Label_Set)
|
|
|
+# return c
|
|
|
+
|
|
|
+def see_Line(x_trainData,y_trainData,w,w_sum,b):
|
|
|
+ y = y_trainData.tolist()
|
|
|
+ x_data = x_trainData.T
|
|
|
+ re = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x = x_data[i]
|
|
|
+ p = int(x.max() - x.min()) / 5
|
|
|
+ x_num = np.arange(x.min(), x.min() + p * 6, p) # 固定5个点,并且正好包括端点
|
|
|
+ y_num = x_num * w[i] + (w[i] / w_sum) * b
|
|
|
+ c = (
|
|
|
+ Line()
|
|
|
+ .add_xaxis(x_num.tolist())
|
|
|
+ .add_yaxis(f"{i}预测曲线", y_num.tolist(), is_smooth=True, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set)
|
|
|
+ )
|
|
|
+ t = (
|
|
|
+ Scatter()
|
|
|
+ .add_xaxis(x.tolist())
|
|
|
+ .add_yaxis(f'{i}特征', y, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='类型划分图'), **global_Set)
|
|
|
+ )
|
|
|
+ t.overlap(c)
|
|
|
+ re.append(t)
|
|
|
+ return re
|
|
|
+
|
|
|
+def get_Color():
|
|
|
+ # 随机颜色,雷达图默认非随机颜色
|
|
|
+ rgb = [randint(0, 255), randint(0, 255), randint(0, 255)]
|
|
|
+ color = '#'
|
|
|
+ for a in rgb:
|
|
|
+ color += str(hex(a))[-2:].replace('x', '0').upper() # 转换为16进制,upper表示小写(规范化)
|
|
|
+ return color
|
|
|
+
|
|
|
+def is_continuous(data:np.array,f:float=0.1):
|
|
|
+ data = data.tolist()
|
|
|
+ l = np.unique(data).tolist()
|
|
|
+ try:
|
|
|
+ re = len(l)/len(data)>=f or len(data) <= 3
|
|
|
+ return re
|
|
|
+ except:return False
|
|
|
+
|
|
|
+def make_Cat(x_data):
|
|
|
+ Cat = Categorical_Data()
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ Cat(x1)
|
|
|
+ return Cat
|
|
|
+
|
|
|
+def Training_visualization_More_NoCenter(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ Cat = make_Cat(x_data)
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ for a in range(len(x_data)):
|
|
|
+ if a <= i: continue
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ x2 = x_data[a] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+
|
|
|
+ o_c = None # 旧的C
|
|
|
+ for class_num in range(len(class_)):
|
|
|
+ n_class = class_[class_num]
|
|
|
+ x_1 = x1[y == n_class].tolist()
|
|
|
+ x_2 = x2[y == n_class]
|
|
|
+ x_2_new = np.unique(x_2)
|
|
|
+ x_2 = x2[y == n_class].tolist()
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x_2)
|
|
|
+ .add_yaxis(f'{n_class}', x_1, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x_2_new)
|
|
|
+
|
|
|
+ if o_c == None:
|
|
|
+ o_c = c
|
|
|
+ else:
|
|
|
+ o_c = o_c.overlap(c)
|
|
|
+ o_cList.append(o_c)
|
|
|
+ means,x_range,Type = Cat.get()
|
|
|
+ return o_cList,means,x_range,Type
|
|
|
+
|
|
|
+def Training_visualization_More(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ Cat = make_Cat(x_data)
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ for a in range(len(x_data)):
|
|
|
+ if a <= i: continue
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ x2 = x_data[a] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+
|
|
|
+ o_c = None # 旧的C
|
|
|
+ for class_num in range(len(class_)):
|
|
|
+ n_class = class_[class_num]
|
|
|
+ x_1 = x1[y == n_class].tolist()
|
|
|
+ x_2 = x2[y == n_class]
|
|
|
+ x_2_new = np.unique(x_2)
|
|
|
+ x_2 = x2[y == n_class].tolist()
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x_2)
|
|
|
+ .add_yaxis(f'{n_class}', x_1, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'[{a}-{i}]训练数据散点图'), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x_2_new)
|
|
|
+
|
|
|
+ #添加簇中心
|
|
|
+ try:
|
|
|
+ center_x_2 = [center[class_num][a]]
|
|
|
+ except:
|
|
|
+ center_x_2 = [0]
|
|
|
+ b = (Scatter()
|
|
|
+ .add_xaxis(center_x_2)
|
|
|
+ .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.overlap(b)
|
|
|
+
|
|
|
+ if o_c == None:
|
|
|
+ o_c = c
|
|
|
+ else:
|
|
|
+ o_c = o_c.overlap(c)
|
|
|
+ o_cList.append(o_c)
|
|
|
+ means,x_range,Type = Cat.get()
|
|
|
+ return o_cList,means,x_range,Type
|
|
|
+
|
|
|
+def Training_visualization_Center(x_trainData,class_,y,center):#根据不同类别绘制x-x分类散点图(可以绘制更多的图)
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ Cat = make_Cat(x_data)
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+
|
|
|
+ if i == 0:continue
|
|
|
+
|
|
|
+ x2 = x_data[i - 1] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+
|
|
|
+ o_c = None # 旧的C
|
|
|
+ for class_num in range(len(class_)):
|
|
|
+ n_class = class_[class_num]
|
|
|
+ x_1 = x1[y == n_class].tolist()
|
|
|
+ x_2 = x2[y == n_class]
|
|
|
+ x_2_new = np.unique(x_2)
|
|
|
+ x_2 = x2[y == n_class].tolist()
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x_2)
|
|
|
+ .add_yaxis(f'{n_class}', x_1, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i-1}-{i}]训练数据散点图'), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x_2_new)
|
|
|
+
|
|
|
+ #添加簇中心
|
|
|
+ try:
|
|
|
+ center_x_2 = [center[class_num][i-1]]
|
|
|
+ except:
|
|
|
+ center_x_2 = [0]
|
|
|
+ b = (Scatter()
|
|
|
+ .add_xaxis(center_x_2)
|
|
|
+ .add_yaxis(f'[{n_class}]中心',[center[class_num][i]], **Label_Set,symbol='triangle')
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='簇中心'), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.overlap(b)
|
|
|
+
|
|
|
+ if o_c == None:
|
|
|
+ o_c = c
|
|
|
+ else:
|
|
|
+ o_c = o_c.overlap(c)
|
|
|
+ o_cList.append(o_c)
|
|
|
+ means,x_range,Type = Cat.get()
|
|
|
+ return o_cList,means,x_range,Type
|
|
|
+
|
|
|
+def Training_visualization(x_trainData,class_,y):#根据不同类别绘制x-x分类散点图
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ Cat = make_Cat(x_data)
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+
|
|
|
+ if i == 0:continue
|
|
|
+
|
|
|
+ x2 = x_data[i - 1] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+
|
|
|
+ o_c = None # 旧的C
|
|
|
+ for n_class in class_:
|
|
|
+ x_1 = x1[y == n_class].tolist()
|
|
|
+ x_2 = x2[y == n_class]
|
|
|
+ x_2_new = np.unique(x_2)
|
|
|
+ x_2 = x2[y == n_class].tolist()
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x_2)
|
|
|
+ .add_yaxis(f'{n_class}', x_1, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x_2_new)
|
|
|
+ if o_c == None:
|
|
|
+ o_c = c
|
|
|
+ else:
|
|
|
+ o_c = o_c.overlap(c)
|
|
|
+ o_cList.append(o_c)
|
|
|
+ means,x_range,Type = Cat.get()
|
|
|
+ return o_cList,means,x_range,Type
|
|
|
+
|
|
|
+def Training_visualization_NoClass(x_trainData):#根据绘制x-x分类散点图(无类别)
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ Cat = make_Cat(x_data)
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+
|
|
|
+ if i == 0:continue
|
|
|
+
|
|
|
+ x2 = x_data[i - 1] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+ x2_new = np.unique(x2)
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x2)
|
|
|
+ .add_yaxis('', x1.tolist(), **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='训练数据散点图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x2_new)
|
|
|
+ o_cList.append(c)
|
|
|
+ means,x_range,Type = Cat.get()
|
|
|
+ return o_cList,means,x_range,Type
|
|
|
+
|
|
|
+def Training_W(x_trainData,class_,y,w_list,b_list,means:list):#针对分类问题绘制决策边界
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ o_cList = []
|
|
|
+ means.append(0)
|
|
|
+ means = np.array(means)
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ if i == 0:continue
|
|
|
+
|
|
|
+ x1_con = is_continuous(x_data[i])
|
|
|
+ x2 = x_data[i - 1] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+
|
|
|
+ o_c = None # 旧的C
|
|
|
+ for class_num in range(len(class_)):
|
|
|
+ n_class = class_[class_num]
|
|
|
+ x2_new = np.unique(x2[y == n_class])
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+
|
|
|
+ #加入这个判断是为了解决sklearn历史遗留问题
|
|
|
+ if len(class_) == 2:#二分类问题
|
|
|
+ if class_num == 0:continue
|
|
|
+ w = w_list[0]
|
|
|
+ b = b_list[0]
|
|
|
+ else:#多分类问题
|
|
|
+ w = w_list[class_num]
|
|
|
+ b = b_list[class_num]
|
|
|
+
|
|
|
+ if x2_con:
|
|
|
+ x2_new = np.array(make_list(x2_new.min(), x2_new.max(), 5))
|
|
|
+
|
|
|
+ w = np.append(w, 0)
|
|
|
+ y_data = -(x2_new * w[i - 1]) / w[i] + b + (means[:i - 1] * w[:i - 1]).sum() + (means[i + 1:] * w[i + 1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
|
|
|
+ c = (
|
|
|
+ Line()
|
|
|
+ .add_xaxis(x2_new)
|
|
|
+ .add_yaxis(f"决策边界:{n_class}=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ if o_c == None:
|
|
|
+ o_c = c
|
|
|
+ else:
|
|
|
+ o_c = o_c.overlap(c)
|
|
|
+ #下面不要接任何代码,因为上面会continue
|
|
|
+ o_cList.append(o_c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Regress_W(x_trainData,y,w:np.array,b,means:list):#针对回归问题(y-x图)
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ o_cList = []
|
|
|
+ means.append(0)#确保mean[i+1]不会超出index
|
|
|
+ means = np.array(means)
|
|
|
+ w = np.append(w,0)
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x1 = x_data[i]
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ if x1_con:
|
|
|
+ x1 = np.array(make_list(x1.min(), x1.max(), 5))
|
|
|
+ x1_new = np.unique(x1)
|
|
|
+ y_data = x1_new * w[i] + b + (means[:i] * w[:i]).sum() + (means[i+1:] * w[i+1:]).sum()#假设除了两个特征意外,其余特征均为means列表的数值
|
|
|
+ y_con = is_continuous(y_data)
|
|
|
+ c = (
|
|
|
+ Line()
|
|
|
+ .add_xaxis(x1_new)
|
|
|
+ .add_yaxis(f"拟合结果=>[{i}]", y_data.tolist(), is_smooth=True, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f"系数w曲线"), **global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if y_con else None,is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x1_con else None,is_scale=True))
|
|
|
+ )
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def regress_visualization(x_trainData,y):#y-x数据图
|
|
|
+ x_data = x_trainData.T
|
|
|
+ y_con = is_continuous(y)
|
|
|
+ Cat = make_Cat(x_data)
|
|
|
+ o_cList = []
|
|
|
+ try:
|
|
|
+ visualmap_opts = opts.VisualMapOpts(is_show=True, max_=int(y.max()) + 1, min_=int(y.min()),
|
|
|
+ pos_right='3%')
|
|
|
+ except:
|
|
|
+ visualmap_opts = None
|
|
|
+ y_con = False
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ #不转换成list因为保持dtype的精度,否则绘图会出现各种问题(数值重复)
|
|
|
+ if not y_con and x1_con:#y不是连续的但x1连续,ry和ry_con是保护y的
|
|
|
+ ry_con,x1_con = x1_con,y_con
|
|
|
+ x1,ry = y,x1
|
|
|
+ else:
|
|
|
+ ry_con = y_con
|
|
|
+ ry = y
|
|
|
+ c = (
|
|
|
+ Scatter()
|
|
|
+ .add_xaxis(x1.tolist())#研究表明,这个是横轴
|
|
|
+ .add_yaxis('数据',ry.tolist(),**Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title="预测类型图"),**global_Set,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if ry_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ visualmap_opts=visualmap_opts
|
|
|
+ )
|
|
|
+ )
|
|
|
+ c.add_xaxis(np.unique(x1))
|
|
|
+ o_cList.append(c)
|
|
|
+ means,x_range,Type = Cat.get()
|
|
|
+ return o_cList,means,x_range,Type
|
|
|
+
|
|
|
+def Feature_visualization(x_trainData,data_name=''):#x-x数据图
|
|
|
+ seeting = global_Set if data_name else global_Leg
|
|
|
+ x_data = x_trainData.T
|
|
|
+ only = False
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ only = True
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ for a in range(len(x_data)):
|
|
|
+ if a <= i: continue#重复内容,跳过
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ x2 = x_data[a] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+ x2_new = np.unique(x2)
|
|
|
+ if only:x2_con = False
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x2)
|
|
|
+ .add_yaxis(data_name, x1, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x2_new)
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Feature_visualization_Format(x_trainData,data_name=''):#x-x数据图
|
|
|
+ seeting = global_Set if data_name else global_Leg
|
|
|
+ x_data = x_trainData.T
|
|
|
+ only = False
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ only = True
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ for a in range(len(x_data)):
|
|
|
+ if a <= i: continue#重复内容,跳过(a读取的是i后面的)
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ x2 = x_data[a] # y坐标
|
|
|
+ x2_con = is_continuous(x2)
|
|
|
+ x2_new = np.unique(x2)
|
|
|
+ x1_list = x1.astype(np.str).tolist()
|
|
|
+ for i in range(len(x1_list)):
|
|
|
+ x1_list[i] = [x1_list[i],f'特征{i}']
|
|
|
+ if only:x2_con = False
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x2)
|
|
|
+ .add_yaxis(data_name, x1_list, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value' if x1_con else 'category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value' if x2_con else 'category',is_scale=True),
|
|
|
+ tooltip_opts=opts.TooltipOpts(is_show = True,axis_pointer_type = "cross",formatter="{c}"))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x2_new)
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Discrete_Feature_visualization(x_trainData,data_name=''):#必定离散x-x数据图
|
|
|
+ seeting = global_Set if data_name else global_Leg
|
|
|
+ x_data = x_trainData.T
|
|
|
+ if len(x_data) == 1:
|
|
|
+ x_data = np.array([x_data[0],np.zeros(len(x_data[0]))])
|
|
|
+ o_cList = []
|
|
|
+ for i in range(len(x_data)):
|
|
|
+ for a in range(len(x_data)):
|
|
|
+ if a <= i: continue#重复内容,跳过
|
|
|
+ x1 = x_data[i] # x坐标
|
|
|
+ x2 = x_data[a] # y坐标
|
|
|
+ x2_new = np.unique(x2)
|
|
|
+
|
|
|
+ #x与散点图不同,这里是纵坐标
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis(x2)
|
|
|
+ .add_yaxis(data_name, x1, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'[{i}-{a}]数据散点图'), **seeting,
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='category',is_scale=True),
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='category',is_scale=True))
|
|
|
+ )
|
|
|
+ c.add_xaxis(x2_new)
|
|
|
+ o_cList.append(c)
|
|
|
+ return o_cList
|
|
|
+
|
|
|
+def Conversion_control(y_data,x_data,tab):#合并两x-x图
|
|
|
+ if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
|
|
|
+ get_x = Feature_visualization(x_data,'原数据')#原来
|
|
|
+ get_y = Feature_visualization(y_data,'转换数据')#转换
|
|
|
+ for i in range(len(get_x)):
|
|
|
+ tab.add(get_x[i].overlap(get_y[i]),f'[{i}]数据x-x散点图')
|
|
|
+ return tab
|
|
|
+
|
|
|
+def Conversion_Separate(y_data,x_data,tab):#并列显示两x-x图
|
|
|
+ if type(x_data) is np.ndarray and type(y_data) is np.ndarray:
|
|
|
+ get_x = Feature_visualization(x_data,'原数据')#原来
|
|
|
+ get_y = Feature_visualization(y_data,'转换数据')#转换
|
|
|
+ for i in range(len(get_x)):
|
|
|
+ try:
|
|
|
+ tab.add(get_x[i],f'[{i}]数据x-x散点图')
|
|
|
+ except IndexError:pass
|
|
|
+ try:
|
|
|
+ tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
|
|
|
+ except IndexError:pass
|
|
|
+ return tab
|
|
|
+
|
|
|
+def Conversion_Separate_Format(y_data,tab):#并列显示两x-x图
|
|
|
+ if type(y_data) is np.ndarray:
|
|
|
+ get_y = Feature_visualization_Format(y_data,'转换数据')#转换
|
|
|
+ for i in range(len(get_y)):
|
|
|
+ tab.add(get_y[i],f'[{i}]变维数据x-x散点图')
|
|
|
+ return tab
|
|
|
+
|
|
|
+def Conversion_SeparateWH(w_data,h_data,tab):#并列显示两x-x图
|
|
|
+ if type(w_data) is np.ndarray and type(w_data) is np.ndarray:
|
|
|
+ get_x = Feature_visualization_Format(w_data,'W矩阵数据')#原来
|
|
|
+ get_y = Feature_visualization(h_data.T,'H矩阵数据')#转换(先转T,再转T变回原样,W*H是横对列)
|
|
|
+ print(h_data)
|
|
|
+ print(w_data)
|
|
|
+ print(h_data.T)
|
|
|
+ for i in range(len(get_x)):
|
|
|
+ try:
|
|
|
+ tab.add(get_x[i],f'[{i}]W矩阵x-x散点图')
|
|
|
+ except IndexError:pass
|
|
|
+ try:
|
|
|
+ tab.add(get_y[i],f'[{i}]H.T矩阵x-x散点图')
|
|
|
+ except IndexError:pass
|
|
|
+ return tab
|
|
|
+
|
|
|
+def make_bar(name, value,tab):#绘制柱状图
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis([f'[{i}]特征' for i in range(len(value))])
|
|
|
+ .add_yaxis(name, value, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+ tab.add(c, name)
|
|
|
+
|
|
|
+def judging_Digits(num:(int,float)):#查看小数位数
|
|
|
+ a = str(abs(num)).split('.')[0]
|
|
|
+ if a == '':raise ValueError
|
|
|
+ return len(a)
|
|
|
+
|
|
|
+class Learner:
|
|
|
+ def __init__(self,*args,**kwargs):
|
|
|
+ self.numpy_Dic = {}#name:numpy
|
|
|
+ self.Fucn_Add()#制作Func_Dic
|
|
|
+
|
|
|
+ def Add_Form(self,data:np.array,name):
|
|
|
+ name = f'{name}[{len(self.numpy_Dic)}]'
|
|
|
+ self.numpy_Dic[name] = data
|
|
|
+
|
|
|
+ def read_csv(self,Dic,name,encoding='utf-8',str_must=False,sep=','):
|
|
|
+ type_ = np.str if str_must else np.float
|
|
|
+ pf_data = read_csv(Dic,encoding=encoding,delimiter=sep,header=None)
|
|
|
+ try:
|
|
|
+ data = pf_data.to_numpy(dtype=type_)
|
|
|
+ except ValueError:
|
|
|
+ data = pf_data.to_numpy(dtype=np.str)
|
|
|
+ if data.ndim == 1: data = np.expand_dims(data, axis=1)
|
|
|
+ self.Add_Form(data,name)
|
|
|
+ return data
|
|
|
+
|
|
|
+ def Add_Python(self, Text, sheet_name):
|
|
|
+ name = {}
|
|
|
+ name.update(globals().copy())
|
|
|
+ name.update(locals().copy())
|
|
|
+ exec(Text, name)
|
|
|
+ exec('get = Creat()', name)
|
|
|
+ if isinstance(name['get'], np.array): # 已经是DataFram
|
|
|
+ get = name['get']
|
|
|
+ else:
|
|
|
+ try:
|
|
|
+ get = np.array(name['get'])
|
|
|
+ except:
|
|
|
+ get = np.array([name['get']])
|
|
|
+ self.Add_Form(get, sheet_name)
|
|
|
+ return get
|
|
|
+
|
|
|
+ def get_Form(self) -> dict:
|
|
|
+ return self.numpy_Dic.copy()
|
|
|
+
|
|
|
+ def get_Sheet(self,name) -> np.array:
|
|
|
+ return self.numpy_Dic[name].copy()
|
|
|
+
|
|
|
+ def to_CSV(self,Dic:str,name,sep) -> str:
|
|
|
+ get = self.get_Sheet(name)
|
|
|
+ np.savetxt(Dic, get, delimiter=sep)
|
|
|
+ return Dic
|
|
|
+
|
|
|
+ def to_Html_One(self,name,Dic=''):
|
|
|
+ if Dic == '': Dic = f'{name}.html'
|
|
|
+ get = self.get_Sheet(name)
|
|
|
+ if get.ndim == 1: get = np.expand_dims(get, axis=1)
|
|
|
+ get = get.tolist()
|
|
|
+ for i in range(len(get)):
|
|
|
+ get[i] = [i+1] + get[i]
|
|
|
+ headers = [i for i in range(len(get[0]))]
|
|
|
+ table = Table_Fisrt()
|
|
|
+ table.add(headers, get).set_global_opts(
|
|
|
+ title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
|
|
|
+ table.render(Dic)
|
|
|
+ return Dic
|
|
|
+
|
|
|
+ def to_Html(self, name, Dic='', type_=0):
|
|
|
+ if Dic == '': Dic = f'{name}.html'
|
|
|
+ # 把要画的sheet放到第一个
|
|
|
+ Sheet_Dic = self.get_Form()
|
|
|
+ del Sheet_Dic[name]
|
|
|
+ Sheet_list = [name] + list(Sheet_Dic.keys())
|
|
|
+
|
|
|
+ class TAB_F:
|
|
|
+ def __init__(self, q):
|
|
|
+ self.tab = q # 一个Tab
|
|
|
+
|
|
|
+ def render(self, Dic):
|
|
|
+ return self.tab.render(Dic)
|
|
|
+
|
|
|
+ # 生成一个显示页面
|
|
|
+ if type_ == 0:
|
|
|
+ class TAB(TAB_F):
|
|
|
+ def add(self, table, k, *f):
|
|
|
+ self.tab.add(table, k)
|
|
|
+
|
|
|
+ tab = TAB(tab_First(page_title='CoTan:查看表格')) # 一个Tab
|
|
|
+ elif type_ == 1:
|
|
|
+ class TAB(TAB_F):
|
|
|
+ def add(self, table, *k):
|
|
|
+ self.tab.add(table)
|
|
|
+
|
|
|
+ tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.DraggablePageLayout))
|
|
|
+ else:
|
|
|
+ class TAB(TAB_F):
|
|
|
+ def add(self, table, *k):
|
|
|
+ self.tab.add(table)
|
|
|
+
|
|
|
+ tab = TAB(Page(page_title='CoTan:查看表格', layout=Page.SimplePageLayout))
|
|
|
+ # 迭代添加内容
|
|
|
+ for name in Sheet_list:
|
|
|
+ get = self.get_Sheet(name)
|
|
|
+ if get.ndim == 1: get = np.expand_dims(get, axis=1)
|
|
|
+ get = get.tolist()
|
|
|
+ for i in range(len(get)):
|
|
|
+ get[i] = [i+1] + get[i]
|
|
|
+ headers = [i for i in range(len(get[0]))]
|
|
|
+ table = Table_Fisrt()
|
|
|
+ table.add(headers, get).set_global_opts(
|
|
|
+ title_opts=opts.ComponentTitleOpts(title=f"表格:{name}", subtitle="CoTan~机器学习:查看数据"))
|
|
|
+ tab.add(table, f'表格:{name}')
|
|
|
+ tab.render(Dic)
|
|
|
+ return Dic
|
|
|
+
|
|
|
+ def Merge(self,name,axis=0):#aiis:0-横向合并(hstack),1-纵向合并(vstack),2-深度合并
|
|
|
+ sheet_list = []
|
|
|
+ for i in name:
|
|
|
+ sheet_list.append(self.get_Sheet(i))
|
|
|
+ get = {0:np.hstack,1:np.vstack,2:np.dstack}[axis](sheet_list)
|
|
|
+ self.Add_Form(np.array(get),f'{name[0]}合成')
|
|
|
+
|
|
|
+ def Split(self,name,split=2,axis=0):#aiis:0-横向分割(hsplit),1-纵向分割(vsplit)
|
|
|
+ sheet = self.get_Sheet(name)
|
|
|
+ get = {0:np.hsplit,1:np.vsplit,2:np.dsplit}[axis](sheet,split)
|
|
|
+ for i in get:
|
|
|
+ self.Add_Form(i,f'{name[0]}分割')
|
|
|
+
|
|
|
+ def Two_Split(self,name,split,axis):#二分切割(0-横向,1-纵向)
|
|
|
+ sheet = self.get_Sheet(name)
|
|
|
+ try:
|
|
|
+ split = float(eval(split))
|
|
|
+ if split < 1:
|
|
|
+ split = int(split * len(sheet) if axis == 1 else len(sheet[0]))
|
|
|
+ else:
|
|
|
+ raise Exception
|
|
|
+ except:
|
|
|
+ split = int(split)
|
|
|
+ if axis == 0:
|
|
|
+ self.Add_Form(sheet[:,split:], f'{name[0]}分割')
|
|
|
+ self.Add_Form(sheet[:,:split], f'{name[0]}分割')
|
|
|
+
|
|
|
+ def Deep(self,sheet:np.ndarray):
|
|
|
+ return sheet.ravel()
|
|
|
+
|
|
|
+ def Down_Ndim(self,sheet:np.ndarray):#横向
|
|
|
+ down_list = []
|
|
|
+ for i in sheet:
|
|
|
+ down_list.append(i.ravel())
|
|
|
+ return np.array(down_list)
|
|
|
+
|
|
|
+ def LongitudinalDown_Ndim(self,sheet:np.ndarray):#纵向
|
|
|
+ down_list = []
|
|
|
+ for i in range(len(sheet[0])):
|
|
|
+ down_list.append(sheet[:,i].ravel())
|
|
|
+ return np.array(down_list).T
|
|
|
+
|
|
|
+ def Reval(self,name,axis):#axis:0-横向,1-纵向(带.T),2-深度
|
|
|
+ sheet = self.get_Sheet(name)
|
|
|
+ self.Add_Form({0:self.Down_Ndim,1:self.LongitudinalDown_Ndim,2:self.Deep}[axis](sheet).copy(),f'{name}伸展')
|
|
|
+
|
|
|
+ def Del_Ndim(self,name):#删除无用维度
|
|
|
+ sheet = self.get_Sheet(name)
|
|
|
+ self.Add_Form(np.squeeze(sheet), f'{name}降维')
|
|
|
+
|
|
|
+ def T(self,name,Func:list):
|
|
|
+ sheet = self.get_Sheet(name)
|
|
|
+ if sheet.ndim <= 2:
|
|
|
+ self.Add_Form(sheet.T.copy(), f'{name}.T')
|
|
|
+ else:
|
|
|
+ self.Add_Form(np.transpose(sheet,Func).copy(), f'{name}.T')
|
|
|
+
|
|
|
+ def reShape(self,name,shape:list):
|
|
|
+ sheet = self.get_Sheet(name)
|
|
|
+ self.Add_Form(sheet.reshape(shape).copy(), f'{name}.r')
|
|
|
+
|
|
|
+ def Fucn_Add(self):
|
|
|
+ self.Func_Dic = {
|
|
|
+ 'abs':lambda x,y:np.abs(x),
|
|
|
+ 'sqrt':lambda x,y:np.sqrt(x),
|
|
|
+ 'pow':lambda x,y:x**y,
|
|
|
+ 'loge':lambda x,y:np.log(x),
|
|
|
+ 'log10':lambda x,y:np.log10(x),
|
|
|
+ 'ceil':lambda x,y:np.ceil(x),
|
|
|
+ 'floor':lambda x,y:np.floor(x),
|
|
|
+ 'rint':lambda x,y:np.rint(x),
|
|
|
+ 'sin':lambda x,y:np.sin(x),
|
|
|
+ 'cos':lambda x,y:np.cos(x),
|
|
|
+ 'tan':lambda x,y:np.tan(x),
|
|
|
+ 'tanh':lambda x,y:np.tanh(x),
|
|
|
+ 'sinh':lambda x,y:np.sinh(x),
|
|
|
+ 'cosh':lambda x,y:np.cosh(x),
|
|
|
+ 'asin': lambda x, y: np.arcsin(x),
|
|
|
+ 'acos': lambda x, y: np.arccos(x),
|
|
|
+ 'atan': lambda x, y: np.arctan(x),
|
|
|
+ 'atanh': lambda x, y: np.arctanh(x),
|
|
|
+ 'asinh': lambda x, y: np.arcsinh(x),
|
|
|
+ 'acosh': lambda x, y: np.arccosh(x),
|
|
|
+ 'add': lambda x, y: x + y,#矩阵或元素
|
|
|
+ 'sub': lambda x, y: x - y,#矩阵或元素
|
|
|
+ 'mul': lambda x, y: np.multiply(x,y),#元素级别
|
|
|
+ 'matmul': lambda x, y: np.matmul(x,y),#矩阵
|
|
|
+ 'dot': lambda x, y: np.dot(x,y),#矩阵
|
|
|
+ 'div': lambda x, y: x / y,
|
|
|
+ 'div_floor': lambda x, y: np.floor_divide(x,y),
|
|
|
+ 'power': lambda x, y: np.power(x,y),#元素级
|
|
|
+ }
|
|
|
+
|
|
|
+ def Cul_Numpy(self,data,data_type,Func):
|
|
|
+ if not 1 in data_type:raise Exception
|
|
|
+ func = self.Func_Dic.get(Func,lambda x,y:x)
|
|
|
+ args_data = []
|
|
|
+ for i in range(len(data)):
|
|
|
+ if data_type[i] == 0:
|
|
|
+ args_data.append(data[i])
|
|
|
+ else:
|
|
|
+ args_data.append(self.get_Sheet(data[i]))
|
|
|
+ get = func(*args_data)
|
|
|
+ self.Add_Form(get,f'{Func}({data[0]},{data[1]})')
|
|
|
+ return get
|
|
|
+
|
|
|
+class Study_MachineBase:
|
|
|
+ def __init__(self,*args,**kwargs):
|
|
|
+ self.Model = None
|
|
|
+ self.have_Fit = False
|
|
|
+ self.have_Predict = False
|
|
|
+ self.x_trainData = None
|
|
|
+ self.y_trainData = None
|
|
|
+ #有监督学习专有的testData
|
|
|
+ self.x_testData = None
|
|
|
+ self.y_testData = None
|
|
|
+ #记录这两个是为了克隆
|
|
|
+
|
|
|
+ def Fit(self,x_data,y_data,split=0.3,Increment=True,**kwargs):
|
|
|
+ y_data = y_data.ravel()
|
|
|
+ try:
|
|
|
+ if self.x_trainData is None or not Increment:raise Exception
|
|
|
+ self.x_trainData = np.vstack(x_data,self.x_trainData)
|
|
|
+ self.y_trainData = np.vstack(y_data,self.y_trainData)
|
|
|
+ except:
|
|
|
+ self.x_trainData = x_data.copy()
|
|
|
+ self.y_trainData = y_data.copy()
|
|
|
+ x_train,x_test,y_train,y_test = train_test_split(x_data,y_data,test_size=split)
|
|
|
+ try:#增量式训练
|
|
|
+ if not Increment:raise Exception
|
|
|
+ self.Model.partial_fit(x_data,y_data)
|
|
|
+ except:
|
|
|
+ self.Model.fit(self.x_trainData, self.y_trainData)
|
|
|
+ train_score = self.Model.score(x_train,y_train)
|
|
|
+ test_score = self.Model.score(x_test,y_test)
|
|
|
+ self.have_Fit = True
|
|
|
+ return train_score,test_score
|
|
|
+
|
|
|
+ def Score(self,x_data,y_data):
|
|
|
+ Score = self.Model.score(x_data,y_data)
|
|
|
+ return Score
|
|
|
+
|
|
|
+ def Class_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray):
|
|
|
+ y_Really = y_Really.ravel()
|
|
|
+ y_Predict = self.Predict(x_data)[0]
|
|
|
+
|
|
|
+ Accuracy = self._Accuracy(y_Predict,y_Really)
|
|
|
+
|
|
|
+ Recall,class_ = self._Macro(y_Predict,y_Really)
|
|
|
+ Precision,class_ = self._Macro(y_Predict,y_Really,1)
|
|
|
+ F1,class_ = self._Macro(y_Predict,y_Really,2)
|
|
|
+
|
|
|
+ Confusion_matrix,class_ = self._Confusion_matrix(y_Predict,y_Really)
|
|
|
+ kappa = self._Kappa_score(y_Predict,y_Really)
|
|
|
+
|
|
|
+ tab = Tab()
|
|
|
+ def gauge_base(name:str,value:float) -> Gauge:
|
|
|
+ c = (
|
|
|
+ Gauge()
|
|
|
+ .add("", [(name, round(value*100,2))],min_ = 0, max_ = 100)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name))
|
|
|
+ )
|
|
|
+ return c
|
|
|
+ tab.add(gauge_base('准确率',Accuracy),'准确率')
|
|
|
+ tab.add(gauge_base('kappa',kappa),'kappa')
|
|
|
+
|
|
|
+ def Bar_base(name,value) -> Bar:
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis(class_)
|
|
|
+ .add_yaxis(name, value, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set)
|
|
|
+ )
|
|
|
+ return c
|
|
|
+ tab.add(Bar_base('精确率',Precision.tolist()),'精确率')
|
|
|
+ tab.add(Bar_base('召回率',Recall.tolist()),'召回率')
|
|
|
+ tab.add(Bar_base('F1',F1.tolist()),'F1')
|
|
|
+
|
|
|
+ def heatmap_base(name,value,max_,min_,show) -> HeatMap:
|
|
|
+ c = (
|
|
|
+ HeatMap()
|
|
|
+ .add_xaxis(class_)
|
|
|
+ .add_yaxis(name, class_, value, label_opts=opts.LabelOpts(is_show=show,position='inside'))
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set,visualmap_opts=
|
|
|
+ opts.VisualMapOpts(max_=max_,min_=min_,pos_right='3%'))
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+ value = [[class_[i],class_[j],float(Confusion_matrix[i,j])] for i in range(len(class_)) for j in range(len(class_))]
|
|
|
+ tab.add(heatmap_base('混淆矩阵',value,float(Confusion_matrix.max()),float(Confusion_matrix.min()),len(class_)<7), '混淆矩阵')
|
|
|
+
|
|
|
+ desTo_CSV(Dic,'混淆矩阵',Confusion_matrix,class_,class_)
|
|
|
+ desTo_CSV(Dic,'评分',[Precision,Recall,F1],class_,['精确率','召回率','F1'])
|
|
|
+ save = Dic + r'/分类模型评估.HTML'
|
|
|
+ tab.render(save)
|
|
|
+ return save,
|
|
|
+
|
|
|
+ def _Accuracy(self,y_Predict,y_Really):#准确率
|
|
|
+ return accuracy_score(y_Really, y_Predict)
|
|
|
+
|
|
|
+ def _Macro(self,y_Predict,y_Really,func=0):
|
|
|
+ Func = [recall_score,precision_score,f1_score]#召回率,精确率和f1
|
|
|
+ class_ = np.unique(y_Really).tolist()
|
|
|
+ result = (Func[func](y_Really,y_Predict,class_,average=None))
|
|
|
+ return result,class_
|
|
|
+
|
|
|
+ def _Confusion_matrix(self,y_Predict,y_Really):#混淆矩阵
|
|
|
+ class_ = np.unique(y_Really).tolist()
|
|
|
+ return confusion_matrix(y_Really, y_Predict),class_
|
|
|
+
|
|
|
+ def _Kappa_score(self,y_Predict,y_Really):
|
|
|
+ return cohen_kappa_score(y_Really, y_Predict)
|
|
|
+
|
|
|
+ def Regression_Score(self,Dic,x_data:np.ndarray,y_Really:np.ndarray):
|
|
|
+ y_Really = y_Really.ravel()
|
|
|
+ y_Predict = self.Predict(x_data)[0]
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ MSE = self._MSE(y_Predict,y_Really)
|
|
|
+ MAE = self._MAE(y_Predict,y_Really)
|
|
|
+ r2_Score = self._R2_Score(y_Predict,y_Really)
|
|
|
+ RMSE = self._RMSE(y_Predict,y_Really)
|
|
|
+
|
|
|
+ tab.add(make_Tab(['MSE','MAE','RMSE','r2_Score'],[[MSE,MAE,RMSE,r2_Score]]), '评估数据')
|
|
|
+
|
|
|
+ save = Dic + r'/回归模型评估.HTML'
|
|
|
+ tab.render(save)
|
|
|
+ return save,
|
|
|
+
|
|
|
+ def Clusters_Score(self,Dic,x_data:np.ndarray,*args):
|
|
|
+ y_Predict = self.Predict(x_data)[0]
|
|
|
+ tab = Tab()
|
|
|
+ Coefficient,Coefficient_array = self._Coefficient_clustering(x_data,y_Predict)
|
|
|
+
|
|
|
+ def gauge_base(name:str,value:float) -> Gauge:
|
|
|
+ c = (
|
|
|
+ Gauge()
|
|
|
+ .add("", [(name, round(value*100,2))],min_ = 0, max_ = 10**(judging_Digits(value*100)))
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name))
|
|
|
+ )
|
|
|
+ return c
|
|
|
+ def Bar_base(name,value,xaxis) -> Bar:
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis(xaxis)
|
|
|
+ .add_yaxis(name, value, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Set)
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+ tab.add(gauge_base('平均轮廓系数', Coefficient),'平均轮廓系数')
|
|
|
+
|
|
|
+ def Bar_(Coefficient_array,name='数据轮廓系数'):
|
|
|
+ xaxis = [f'数据{i}' for i in range(len(Coefficient_array))]
|
|
|
+ value = Coefficient_array.tolist()
|
|
|
+ tab.add(Bar_base(name,value,xaxis),name)
|
|
|
+
|
|
|
+ n = 20
|
|
|
+ if len(Coefficient_array) <= n:
|
|
|
+ Bar_(Coefficient_array)
|
|
|
+ elif len(Coefficient_array) <= n**2:
|
|
|
+ a = 0
|
|
|
+ while a <= len(Coefficient_array):
|
|
|
+ b = a + n
|
|
|
+ if b >= len(Coefficient_array):b = len(Coefficient_array) + 1
|
|
|
+ Cofe_array = Coefficient_array[a:b]
|
|
|
+ Bar_(Cofe_array,f'{a}-{b}数据轮廓系数')
|
|
|
+ a += n
|
|
|
+ else:
|
|
|
+ split = np.hsplit(Coefficient_array,n)
|
|
|
+ a = 0
|
|
|
+ for Cofe_array in split:
|
|
|
+ Bar_(Cofe_array, f'{a}%-{a + n}%数据轮廓系数')
|
|
|
+ a += n
|
|
|
+
|
|
|
+ save = Dic + r'/聚类模型评估.HTML'
|
|
|
+ tab.render(save)
|
|
|
+ return save,
|
|
|
+
|
|
|
+ def _MSE(self,y_Predict,y_Really):#均方误差
|
|
|
+ return mean_squared_error(y_Really, y_Predict)
|
|
|
+
|
|
|
+ def _MAE(self,y_Predict,y_Really):#中值绝对误差
|
|
|
+ return median_absolute_error(y_Really, y_Predict)
|
|
|
+
|
|
|
+ def _R2_Score(self,y_Predict,y_Really):#中值绝对误差
|
|
|
+ return r2_score(y_Really, y_Predict)
|
|
|
+
|
|
|
+ def _RMSE(self,y_Predict,y_Really):#中值绝对误差
|
|
|
+ return self._MSE(y_Predict,y_Really) ** 0.5
|
|
|
+
|
|
|
+ def _Coefficient_clustering(self,x_data,y_Predict):
|
|
|
+ means_score = silhouette_score(x_data,y_Predict)
|
|
|
+ outline_score = silhouette_samples(x_data,y_Predict)
|
|
|
+ return means_score, outline_score
|
|
|
+
|
|
|
+ def Predict(self,x_data,*args,**kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ y_Predict = self.Model.predict(x_data)
|
|
|
+ self.y_testData = y_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return y_Predict,'预测'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ return (Dic,)
|
|
|
+
|
|
|
+class prep_Base(Study_MachineBase):#不允许第二次训练
|
|
|
+ def __init__(self,*args,**kwargs):
|
|
|
+ super(prep_Base, self).__init__(*args,**kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ def Fit(self, x_data,y_data,Increment=True, *args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ y_data = y_data.ravel()
|
|
|
+ try:
|
|
|
+ if self.x_trainData is None or not Increment: raise Exception
|
|
|
+ self.x_trainData = np.vstack(x_data, self.x_trainData)
|
|
|
+ self.y_trainData = np.vstack(y_data, self.y_trainData)
|
|
|
+ except:
|
|
|
+ self.x_trainData = x_data.copy()
|
|
|
+ self.y_trainData = y_data.copy()
|
|
|
+ try: # 增量式训练
|
|
|
+ if not Increment: raise Exception
|
|
|
+ self.Model.partial_fit(x_data, y_data)
|
|
|
+ except:
|
|
|
+ self.Model.fit(self.x_trainData, self.y_trainData)
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'特征工程'
|
|
|
+
|
|
|
+ def Score(self, x_data, y_data):
|
|
|
+ return 'None' # 没有score
|
|
|
+
|
|
|
+class Unsupervised(prep_Base):#无监督,不允许第二次训练
|
|
|
+ def Fit(self, x_data,Increment=True, *args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ self.y_trainData = None
|
|
|
+ try:
|
|
|
+ if self.x_trainData is None or not Increment: raise Exception
|
|
|
+ self.x_trainData = np.vstack(x_data, self.x_trainData)
|
|
|
+ except:
|
|
|
+ self.x_trainData = x_data.copy()
|
|
|
+ try: # 增量式训练
|
|
|
+ if not Increment: raise Exception
|
|
|
+ self.Model.partial_fit(x_data)
|
|
|
+ except:
|
|
|
+ self.Model.fit(self.x_trainData, self.y_trainData)
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+class UnsupervisedModel(prep_Base):#无监督
|
|
|
+ def Fit(self, x_data, Increment=True,*args, **kwargs):
|
|
|
+ self.y_trainData = None
|
|
|
+ try:
|
|
|
+ if self.x_trainData is None or not Increment: raise Exception
|
|
|
+ self.x_trainData = np.vstack(x_data, self.x_trainData)
|
|
|
+ except:
|
|
|
+ self.x_trainData = x_data.copy()
|
|
|
+ try: # 增量式训练
|
|
|
+ if not Increment: raise Exception
|
|
|
+ self.Model.partial_fit(x_data)
|
|
|
+ except:
|
|
|
+ self.Model.fit(self.x_trainData, self.y_trainData)
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+class To_PyeBase(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):
|
|
|
+ super(To_PyeBase, self).__init__(*args,**kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Fit(self, x_data,y_data, *args, **kwargs):
|
|
|
+ self.x_trainData = x_data.copy()
|
|
|
+ self.y_trainData = y_data.ravel().copy()
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.have_Predict = True
|
|
|
+ return np.array([]),'请使用训练'
|
|
|
+
|
|
|
+ def Score(self, x_data, y_data):
|
|
|
+ return 'None' # 没有score
|
|
|
+
|
|
|
+def num_str(num,f):
|
|
|
+ num = str(round(float(num),f))
|
|
|
+ if len(num.replace('.','')) == f:
|
|
|
+ return num
|
|
|
+ n = num.split('.')
|
|
|
+ if len(n) == 0:#无小数
|
|
|
+ return num + '.' + '0' * (f - len(num))
|
|
|
+ else:
|
|
|
+ return num + '0' * (f - len(num) + 1)#len(num)多算了一位小数点
|
|
|
+
|
|
|
+def desTo_CSV(Dic,name,data,columns=None,row=None):
|
|
|
+ Dic = Dic + '/' + name + '.csv'
|
|
|
+ DataFrame(data,columns=columns,index=row).to_csv(Dic,header=False if columns is None else True,
|
|
|
+ index=False if row is None else True)
|
|
|
+ return data
|
|
|
+
|
|
|
+class Des(To_PyeBase):#数据分析
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ data = self.x_trainData
|
|
|
+ def Cumulative_calculation(data,func,name,tab):
|
|
|
+ sum_list = []
|
|
|
+ for i in range(len(data)):#按行迭代数据
|
|
|
+ sum_list.append([])
|
|
|
+ for a in range(len(data[i])):
|
|
|
+ s = num_str(func(data[:i+1,a]),8)
|
|
|
+ sum_list[-1].append(s)
|
|
|
+ desTo_CSV(Dic,f'{name}',sum_list)
|
|
|
+ tab.add(make_Tab([f'[{i}]' for i in range(len(sum_list[0]))],sum_list),f'{name}')
|
|
|
+
|
|
|
+ Geometric_mean = lambda x:np.power(np.prod(x),1/len(x))#几何平均数
|
|
|
+ Square_mean = lambda x:np.sqrt(np.sum(np.power(x,2)) / len(x))#平方平均数
|
|
|
+ Harmonic_mean = lambda x:len(x)/np.sum(np.power(x,-1))#调和平均数
|
|
|
+
|
|
|
+ Cumulative_calculation(data,np.sum,'累计求和',tab)
|
|
|
+ Cumulative_calculation(data,np.var,'累计方差',tab)
|
|
|
+ Cumulative_calculation(data,np.std,'累计标准差',tab)
|
|
|
+ Cumulative_calculation(data,np.mean,'累计算术平均值',tab)
|
|
|
+ Cumulative_calculation(data,Geometric_mean,'累计几何平均值',tab)
|
|
|
+ Cumulative_calculation(data,Square_mean,'累计平方平均值',tab)
|
|
|
+ Cumulative_calculation(data,Harmonic_mean,'累计调和平均值',tab)
|
|
|
+ Cumulative_calculation(data,np.median,'累计中位数',tab)
|
|
|
+ Cumulative_calculation(data,np.max,'累计最大值',tab)
|
|
|
+ Cumulative_calculation(data,np.min,'累计最小值',tab)
|
|
|
+
|
|
|
+ save = Dic + r'/数据分析.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class CORR(To_PyeBase):#相关性和协方差
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ data = DataFrame(self.x_trainData)
|
|
|
+ corr = data.corr().to_numpy()#相关性
|
|
|
+ cov = data.cov().to_numpy()#协方差
|
|
|
+
|
|
|
+ def HeatMAP(data,name:str,max_,min_):
|
|
|
+ x = [f'特征[{i}]' for i in range(len(data))]
|
|
|
+ y = [f'特征[{i}]' for i in range(len(data[0]))]
|
|
|
+ value = [(f'特征[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(x)
|
|
|
+ .add_yaxis(f'数据', y, value, label_opts=opts.LabelOpts(is_show= True if len(x) <= 10 else False,position='inside'))#如果特征太多则不显示标签
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,min_=min_,pos_right='3%'))#显示
|
|
|
+ )
|
|
|
+ tab.add(c,name)
|
|
|
+
|
|
|
+ HeatMAP(corr,'相关性热力图',1,-1)
|
|
|
+ HeatMAP(cov,'协方差热力图',float(cov.max()),float(cov.min()))
|
|
|
+
|
|
|
+ desTo_CSV(Dic, f'相关性矩阵', corr)
|
|
|
+ desTo_CSV(Dic, f'协方差矩阵', cov)
|
|
|
+ save = Dic + r'/数据相关性.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class View_data(To_PyeBase):#绘制预测型热力图
|
|
|
+ def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(View_data, self).__init__(args_use,Learner,*args, **kwargs)
|
|
|
+
|
|
|
+ self.Model = Learner.Model
|
|
|
+ self.Select_Model = None
|
|
|
+ self.have_Fit = Learner.have_Fit
|
|
|
+ self.Model_Name = 'Select_Model'
|
|
|
+ self.Learner = Learner
|
|
|
+ self.Learner_name = Learner.Model_Name
|
|
|
+
|
|
|
+ def Fit(self,*args,**kwargs):
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Predict(self,x_data,Add_Func=None,*args, **kwargs):
|
|
|
+ x_trainData = self.Learner.x_trainData
|
|
|
+ y_trainData = self.Learner.y_trainData
|
|
|
+ x_name = self.Learner_name
|
|
|
+ if not x_trainData is None:
|
|
|
+ Add_Func(x_trainData, f'{x_name}:x训练数据')
|
|
|
+
|
|
|
+ try:
|
|
|
+ x_testData = self.x_testData
|
|
|
+ if not x_testData is None:
|
|
|
+ Add_Func(x_testData, f'{x_name}:x测试数据')
|
|
|
+ except:pass
|
|
|
+
|
|
|
+ try:
|
|
|
+ y_testData = self.y_testData.copy()
|
|
|
+ if not y_testData is None:
|
|
|
+ Add_Func(y_testData, f'{x_name}:y测试数据')
|
|
|
+ except:pass
|
|
|
+
|
|
|
+ self.have_Fit = True
|
|
|
+ if y_trainData is None:
|
|
|
+ return np.array([]), 'y训练数据'
|
|
|
+ return y_trainData,'y训练数据'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ return Dic,
|
|
|
+
|
|
|
+class MatrixScatter(To_PyeBase):#矩阵散点图
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ data = self.x_trainData
|
|
|
+ if data.ndim <= 2:#维度为2
|
|
|
+ c = (Scatter()
|
|
|
+ .add_xaxis([f'{i}' for i in range(data.shape[1])])
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'), **global_Leg)
|
|
|
+ )
|
|
|
+ if data.ndim == 2:
|
|
|
+ for num in range(len(data)):
|
|
|
+ i = data[num]
|
|
|
+ c.add_yaxis(f'{num}',[[f'{num}',x] for x in i],color='#FFFFFF')
|
|
|
+ else:
|
|
|
+ c.add_yaxis(f'0', [[0,x]for x in data],color='#FFFFFF')
|
|
|
+ c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
|
|
|
+ formatter=JsCode("function(params){return params.data[2];}"),
|
|
|
+ ))
|
|
|
+ elif data.ndim == 3:
|
|
|
+ c = (Scatter3D()
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=f'矩阵散点图'),**global_Leg)
|
|
|
+ )
|
|
|
+ for num in range(len(data)):
|
|
|
+ i = data[num]
|
|
|
+ for s_num in range(len(i)):
|
|
|
+ s = i[s_num]
|
|
|
+ y_data = [[num,s_num,x,float(s[x])] for x in range(len(s))]
|
|
|
+ c.add(f'{num}',y_data,zaxis3d_opts = opts.Axis3DOpts(type_="category"))
|
|
|
+ c.set_series_opts(label_opts=opts.LabelOpts(is_show=True,color='#000000',position='inside',
|
|
|
+ formatter=JsCode("function(params){return params.data[3];}")))
|
|
|
+ else:
|
|
|
+ c = Scatter()
|
|
|
+ tab.add(c,'矩阵散点图')
|
|
|
+
|
|
|
+ save = Dic + r'/矩阵散点图.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Cluster_Tree(To_PyeBase):#聚类树状图
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData
|
|
|
+ linkage_array = ward(x_data)#self.y_trainData是结果
|
|
|
+ dendrogram(linkage_array)
|
|
|
+ plt.savefig(Dic + r'/Cluster_graph.png')
|
|
|
+
|
|
|
+ image = Image()
|
|
|
+ image.add(src=Dic + r'/Cluster_graph.png',).set_global_opts(title_opts=opts.ComponentTitleOpts(title="聚类树状图"))
|
|
|
+ tab.add(image,'聚类树状图')
|
|
|
+
|
|
|
+ save = Dic + r'/聚类树状图.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Class_To_Bar(To_PyeBase):#类型柱状图
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData.T
|
|
|
+ y_data = self.y_trainData
|
|
|
+ class_ = np.unique(y_data).tolist()#类型
|
|
|
+ class_list = []
|
|
|
+ for n_class in class_: # 生成class_list(class是1,,也就是二维的,下面会压缩成一维)
|
|
|
+ class_list.append(y_data == n_class)
|
|
|
+ for num_i in range(len(x_data)):#迭代每一个特征
|
|
|
+ i = x_data[num_i]
|
|
|
+ i_con = is_continuous(i)
|
|
|
+ if i_con and len(i) >= 11:
|
|
|
+ c_list = [[0] * 10 for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
|
|
|
+ start = i.min()
|
|
|
+ end = i.max()
|
|
|
+ n = (end - start) / 10#生成10条柱子
|
|
|
+ x_axis = []#x轴
|
|
|
+ num_startEND = 0#迭代到第n个
|
|
|
+ while num_startEND <= 9:#把每个特征分为10类进行迭代
|
|
|
+ x_axis.append(f'({num_startEND})[{round(start, 2)}-{round((start + n) if (start + n) <= end or not num_startEND == 9 else end, 2)}]')#x_axis添加数据
|
|
|
+ try:
|
|
|
+ if num_startEND == 9:raise Exception#执行到第10次时,直接获取剩下的所有
|
|
|
+ s = (start <= i) == (i < end)#布尔索引
|
|
|
+ except:#因为start + n有超出end的风险
|
|
|
+ s = (start <= i) == (i <= end)#布尔索引
|
|
|
+ # n_data = i[s] # 取得现在的特征数据
|
|
|
+
|
|
|
+ for num in range(len(class_list)):#根据类别进行迭代
|
|
|
+ now_class = class_list[num]#取得布尔数组:y_data == n_class也就是输出值为指定类型的bool矩阵,用于切片
|
|
|
+ bool_class = now_class[s].ravel()#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
|
|
|
+ c_list[num][num_startEND] = (int(np.sum(bool_class))) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
|
|
|
+ num_startEND += 1
|
|
|
+ start += n
|
|
|
+ else :
|
|
|
+ iter_np = np.unique(i)
|
|
|
+ c_list = [[0] * len(iter_np) for _ in class_list] # 存放绘图数据,每一层列表是一个类(leg),第二层是每个x_data
|
|
|
+ x_axis = [] # 添加x轴数据
|
|
|
+ for i_num in range(len(iter_np)):#迭代每一个i(不重复)
|
|
|
+ i_data = iter_np[i_num]
|
|
|
+ # n_data= i[i == i_data]#取得现在特征数据
|
|
|
+ x_axis.append(f'[{i_data}]')
|
|
|
+ for num in range(len(class_list)):# 根据类别进行迭代
|
|
|
+ now_class = class_list[num]#取得class_list的布尔数组
|
|
|
+ bool_class = now_class[i == i_data]#切片成和n_data一样的位置一样的形状(now_class就是一个bool矩阵)
|
|
|
+ c_list[num][i_num] = (int(np.sum(bool_class).tolist())) #用len计数 c_list = [[class1的数据],[class2的数据],[]]
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis(x_axis)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='类型-特征统计柱状图'), **global_Set,xaxis_opts=opts.AxisOpts(type_='category'),
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value')))
|
|
|
+ y_axis = []
|
|
|
+ for i in range(len(c_list)):
|
|
|
+ y_axis.append(f'{class_[i]}')
|
|
|
+ c.add_yaxis(f'{class_[i]}', c_list[i], **Label_Set)
|
|
|
+ desTo_CSV(Dic, f'类型-[{num_i}]特征统计柱状图', c_list, x_axis, y_axis)
|
|
|
+ tab.add(c, f'类型-[{num_i}]特征统计柱状图')
|
|
|
+
|
|
|
+ #未完成
|
|
|
+ save = Dic + r'/特征统计.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Numpy_To_HeatMap(To_PyeBase):#Numpy矩阵绘制热力图
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ data = self.x_trainData
|
|
|
+ x = [f'横[{i}]' for i in range(len(data))]
|
|
|
+ y = [f'纵[{i}]' for i in range(len(data[0]))]
|
|
|
+ value = [(f'横[{i}]', f'纵[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(x)
|
|
|
+ .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='矩阵热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
|
|
|
+ min_=float(data.min()),
|
|
|
+ pos_right='3%'))#显示
|
|
|
+ )
|
|
|
+ tab.add(c,'矩阵热力图')
|
|
|
+ tab.add(make_Tab(x,data.T.tolist()),f'矩阵热力图:表格')
|
|
|
+
|
|
|
+ save = Dic + r'/矩阵热力图.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Predictive_HeatMap_Base(To_PyeBase):#绘制预测型热力图
|
|
|
+ def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Predictive_HeatMap_Base, self).__init__(args_use,Learner,*args, **kwargs)
|
|
|
+
|
|
|
+ self.Model = Learner.Model
|
|
|
+ self.Select_Model = None
|
|
|
+ self.have_Fit = Learner.have_Fit
|
|
|
+ self.Model_Name = 'Select_Model'
|
|
|
+ self.Learner = Learner
|
|
|
+ self.x_trainData = Learner.x_trainData.copy()
|
|
|
+ self.y_trainData = Learner.y_trainData.copy()
|
|
|
+ self.means = []
|
|
|
+
|
|
|
+ def Fit(self,x_data,*args,**kwargs):
|
|
|
+ try:
|
|
|
+ self.means = x_data.ravel()
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Des(self,Dic,Decision_boundary,Prediction_boundary,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ try:#如果没有class
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ #获取数据
|
|
|
+ get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
|
|
|
+ #可使用自带的means,并且nan表示跳过
|
|
|
+ for i in range(min([len(x_means),len(self.means)])):
|
|
|
+ try:
|
|
|
+ g = self.means[i]
|
|
|
+ if g == np.nan:raise Exception
|
|
|
+ x_means[i] = g
|
|
|
+ except:pass
|
|
|
+ get = Decision_boundary(x_range,x_means,self.Learner.Predict,class_,Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+ except:
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Learner.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/预测热力图.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Predictive_HeatMap(Predictive_HeatMap_Base):#绘制预测型热力图
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ return super().Des(Dic,Decision_boundary,Prediction_boundary)
|
|
|
+
|
|
|
+class Predictive_HeatMap_More(Predictive_HeatMap_Base):#绘制预测型热力图_More
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ return super().Des(Dic,Decision_boundary_More,Prediction_boundary_More)
|
|
|
+
|
|
|
+class Near_feature_scatter_class_More(To_PyeBase):
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData
|
|
|
+ y = self.y_trainData
|
|
|
+ class_ = np.unique(y).ravel().tolist()
|
|
|
+ class_heard = [f'簇[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ get, x_means, x_range, Type = Training_visualization_More_NoCenter(x_data, class_, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/数据特征散点图(分类).HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Near_feature_scatter_More(To_PyeBase):
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData
|
|
|
+ x_means = make_Cat(x_data).get()[0]
|
|
|
+ get_y = Feature_visualization(x_data, '数据散点图') # 转换
|
|
|
+ for i in range(len(get_y)):
|
|
|
+ tab.add(get_y[i], f'[{i}]数据x-x散点图')
|
|
|
+
|
|
|
+ heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/数据特征散点图.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Near_feature_scatter_class(To_PyeBase):#临近特征散点图:分类数据
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ #获取数据
|
|
|
+ class_ = np.unique(self.y_trainData).ravel().tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}临近特征散点图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/临近数据特征散点图(分类).HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Near_feature_scatter(To_PyeBase):#临近特征散点图:连续数据
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData.T
|
|
|
+ y = self.y_trainData
|
|
|
+
|
|
|
+ get, x_means, x_range,Type = Training_visualization_NoClass(x_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}临近特征散点图')
|
|
|
+
|
|
|
+ columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
+ tab.add(make_Tab(columns,[data]), '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/临近数据特征散点图.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Feature_scatter_YX(To_PyeBase):#y-x图
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData
|
|
|
+ y = self.y_trainData
|
|
|
+
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data,y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}特征x-y散点图')
|
|
|
+
|
|
|
+ columns = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
+ tab.add(make_Tab(columns,[data]), '数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/特征y-x图像.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Line_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Line_Model, self).__init__(*args,**kwargs)
|
|
|
+ Model = {'Line':LinearRegression,'Ridge':Ridge,'Lasso':Lasso}[
|
|
|
+ model]
|
|
|
+ if model == 'Line':
|
|
|
+ self.Model = Model()
|
|
|
+ self.k = {}
|
|
|
+ else:
|
|
|
+ self.Model = Model(alpha=args_use['alpha'],max_iter=args_use['max_iter'])
|
|
|
+ self.k = {'alpha':args_use['alpha'],'max_iter':args_use['max_iter']}
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.Alpha = args_use['alpha']
|
|
|
+ self.max_iter = args_use['max_iter']
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData
|
|
|
+ y = self.y_trainData
|
|
|
+ w_list = self.Model.coef_.tolist()
|
|
|
+ w_heard = [f'系数w[{i}]' for i in range(len(w_list))]
|
|
|
+ b = self.Model.intercept_.tolist()
|
|
|
+
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(scatter(w_heard,w_list),'系数w散点图')
|
|
|
+ tab.add(bar(w_heard,self.Model.coef_),'系数柱状图')
|
|
|
+
|
|
|
+ columns = [f'普适预测第{i}特征' for i in range(len(x_means))] + w_heard + ['截距b']
|
|
|
+ data = [f'{i}' for i in x_means] + w_list + [b]
|
|
|
+ if self.Model_Name != 'Line':
|
|
|
+ columns += ['阿尔法','最大迭代次数']
|
|
|
+ data += [self.Model.alpha,self.Model.max_iter]
|
|
|
+ tab.add(make_Tab(columns,[data]), '数据表')
|
|
|
+
|
|
|
+ desTo_CSV(Dic, '系数表', [w_list] + [b], [f'系数W[{i}]' for i in range(len(w_list))] + ['截距'])
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+
|
|
|
+ save = Dic + r'/线性回归模型.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class LogisticRegression_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(LogisticRegression_Model, self).__init__(*args,**kwargs)
|
|
|
+ self.Model = LogisticRegression(C=args_use['C'],max_iter=args_use['max_iter'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.C = args_use['C']
|
|
|
+ self.max_iter = args_use['max_iter']
|
|
|
+ self.k = {'C':args_use['C'],'max_iter':args_use['max_iter']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic='render.html',*args,**kwargs):
|
|
|
+ #获取数据
|
|
|
+ w_array = self.Model.coef_
|
|
|
+ w_list = w_array.tolist() # 变为表格
|
|
|
+ b = self.Model.intercept_
|
|
|
+ c = self.Model.C
|
|
|
+ max_iter = self.Model.max_iter
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
|
|
|
+ get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
|
|
|
+
|
|
|
+ for i in range(len(w_list)):
|
|
|
+ w = w_list[i]
|
|
|
+ w_heard = [f'系数w[{i},{j}]' for j in range(len(w))]
|
|
|
+ tab.add(scatter(w_heard, w), f'系数w[{i}]散点图')
|
|
|
+ tab.add(bar(w_heard, w_array[i]), f'系数w[{i}]柱状图')
|
|
|
+
|
|
|
+ columns = class_heard + [f'截距{i}' for i in range(len(b))] + ['C', '最大迭代数']
|
|
|
+ data = class_ + b.tolist() + [c, max_iter]
|
|
|
+ c = Table().add(headers=columns, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+ c = Table().add(headers=[f'系数W[{i}]' for i in range(len(w_list[0]))], rows=w_list)
|
|
|
+ tab.add(c, '系数数据表')
|
|
|
+
|
|
|
+ c = Table().add(headers=[f'普适预测第{i}特征' for i in range(len(x_means))], rows=[[f'{i}' for i in x_means]])
|
|
|
+ tab.add(c, '普适预测数据表')
|
|
|
+
|
|
|
+ desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
|
|
|
+ desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+
|
|
|
+ save = Dic + r'/逻辑回归.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Categorical_Data:#数据统计助手
|
|
|
+ def __init__(self):
|
|
|
+ self.x_means = []
|
|
|
+ self.x_range = []
|
|
|
+ self.Type = []
|
|
|
+
|
|
|
+ def __call__(self,x1, *args, **kwargs):
|
|
|
+ get = self.is_continuous(x1)
|
|
|
+ return get
|
|
|
+
|
|
|
+ def is_continuous(self,x1:np.array):
|
|
|
+ try:
|
|
|
+ x1_con = is_continuous(x1)
|
|
|
+ if x1_con:
|
|
|
+ self.x_means.append(np.mean(x1))
|
|
|
+ self.add_Range(x1)
|
|
|
+ else:
|
|
|
+ raise Exception
|
|
|
+ return x1_con
|
|
|
+ except:#找出出现次数最多的元素
|
|
|
+ new = np.unique(x1)#去除相同的元素
|
|
|
+ count_list = []
|
|
|
+ for i in new:
|
|
|
+ count_list.append(np.sum(x1 == i))
|
|
|
+ index = count_list.index(max(count_list))#找出最大值的索引
|
|
|
+ self.x_means.append(x1[index])
|
|
|
+ self.add_Range(x1,False)
|
|
|
+ return False
|
|
|
+
|
|
|
+ def add_Range(self,x1:np.array,range_=True):
|
|
|
+ try:
|
|
|
+ if not range_ : raise Exception
|
|
|
+ min_ = int(x1.min()) - 1
|
|
|
+ max_ = int(x1.max()) + 1
|
|
|
+ #不需要复制列表
|
|
|
+ self.x_range.append([min_,max_])
|
|
|
+ self.Type.append(1)
|
|
|
+ except:
|
|
|
+ self.x_range.append(list(set(x1.tolist())))#去除多余元素
|
|
|
+ self.Type.append(2)
|
|
|
+
|
|
|
+ def get(self):
|
|
|
+ return self.x_means,self.x_range,self.Type
|
|
|
+
|
|
|
+class Knn_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Knn_Model, self).__init__(*args,**kwargs)
|
|
|
+ Model = {'Knn_class':KNeighborsClassifier,'Knn':KNeighborsRegressor}[model]
|
|
|
+ self.Model = Model(p=args_use['p'],n_neighbors=args_use['n_neighbors'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.n_neighbors = args_use['n_neighbors']
|
|
|
+ self.p = args_use['p']
|
|
|
+ self.k = {'n_neighbors':args_use['n_neighbors'],'p':args_use['p']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ y_test = self.y_testData
|
|
|
+ x_test = self.x_testData
|
|
|
+ if self.Model_Name == 'Knn_class':
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ if not y_test is None:
|
|
|
+ get = Training_visualization(x_test,class_,y_test)[0]
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'{i}测试数据散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+ else:
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = regress_visualization(x_test, y_test)[0]
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}测试数据类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/K.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Tree_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Tree_Model, self).__init__(*args,**kwargs)
|
|
|
+ Model = {'Tree_class':DecisionTreeClassifier,'Tree':DecisionTreeRegressor}[model]
|
|
|
+ self.Model = Model(criterion=args_use['criterion'],splitter=args_use['splitter'],max_features=args_use['max_features']
|
|
|
+ ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.criterion = args_use['criterion']
|
|
|
+ self.splitter = args_use['splitter']
|
|
|
+ self.max_features = args_use['max_features']
|
|
|
+ self.max_depth = args_use['max_depth']
|
|
|
+ self.min_samples_split = args_use['min_samples_split']
|
|
|
+ self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
|
|
|
+ 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ importance = self.Model.feature_importances_.tolist()
|
|
|
+
|
|
|
+ with open(Dic + r"\Tree_Gra.dot", 'w') as f:
|
|
|
+ export_graphviz(self.Model, out_file=f)
|
|
|
+
|
|
|
+ make_bar('特征重要性',importance,tab)
|
|
|
+ desTo_CSV(Dic, '特征重要性', [importance], [f'[{i}]特征' for i in range(len(importance))])
|
|
|
+ tab.add(SeeTree(Dic + r"\Tree_Gra.dot"),'决策树可视化')
|
|
|
+
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ y_test = self.y_testData
|
|
|
+ x_test = self.x_testData
|
|
|
+ if self.Model_Name == 'Tree_class':
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = Training_visualization(x_test, class_, y_test)[0]
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}测试数据散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
|
|
|
+ [class_ + [f'{i}' for i in x_means] + importance]), '数据表')
|
|
|
+ else:
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = regress_visualization(x_test, y_test)[0]
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}测试数据类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))] + [f'特征{i}重要性' for i in range(len(importance))],
|
|
|
+ [[f'{i}' for i in x_means] + importance]), '数据表')
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/决策树.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Forest_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Forest_Model, self).__init__(*args,**kwargs)
|
|
|
+ Model = {'Forest_class':RandomForestClassifier,'Forest':RandomForestRegressor}[model]
|
|
|
+ self.Model = Model(n_estimators=args_use['n_Tree'],criterion=args_use['criterion'],max_features=args_use['max_features']
|
|
|
+ ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.n_estimators = args_use['n_Tree']
|
|
|
+ self.criterion = args_use['criterion']
|
|
|
+ self.max_features = args_use['max_features']
|
|
|
+ self.max_depth = args_use['max_depth']
|
|
|
+ self.min_samples_split = args_use['min_samples_split']
|
|
|
+ self.k = {'n_estimators':args_use['n_Tree'],'criterion':args_use['criterion'],'max_features':args_use['max_features'],
|
|
|
+ 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ #多个决策树可视化
|
|
|
+ for i in range(len(self.Model.estimators_)):
|
|
|
+ with open(Dic + f"\Tree_Gra[{i}].dot", 'w') as f:
|
|
|
+ export_graphviz(self.Model.estimators_[i], out_file=f)
|
|
|
+
|
|
|
+ tab.add(SeeTree(Dic + f"\Tree_Gra[{i}].dot"),f'[{i}]决策树可视化')
|
|
|
+
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ if self.Model_Name == 'Forest_class':
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
|
|
|
+ [class_ + [f'{i}' for i in x_means]]), '数据表')
|
|
|
+ else:
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/随机森林.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class GradientTree_Model(Study_MachineBase):#继承Tree_Model主要是继承Des
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(GradientTree_Model, self).__init__(*args,**kwargs)#不需要执行Tree_Model的初始化
|
|
|
+ Model = {'GradientTree_class':GradientBoostingClassifier,'GradientTree':GradientBoostingRegressor}[model]
|
|
|
+ self.Model = Model(n_estimators=args_use['n_Tree'],max_features=args_use['max_features']
|
|
|
+ ,max_depth=args_use['max_depth'],min_samples_split=args_use['min_samples_split'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.criterion = args_use['criterion']
|
|
|
+ self.splitter = args_use['splitter']
|
|
|
+ self.max_features = args_use['max_features']
|
|
|
+ self.max_depth = args_use['max_depth']
|
|
|
+ self.min_samples_split = args_use['min_samples_split']
|
|
|
+ self.k = {'criterion':args_use['criterion'],'splitter':args_use['splitter'],'max_features':args_use['max_features'],
|
|
|
+ 'max_depth':args_use['max_depth'],'min_samples_split':args_use['min_samples_split']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ #多个决策树可视化
|
|
|
+ for a in range(len(self.Model.estimators_)):
|
|
|
+ for i in range(len(self.Model.estimators_[a])):
|
|
|
+ with open(Dic + f"\Tree_Gra[{a},{i}].dot", 'w') as f:
|
|
|
+ export_graphviz(self.Model.estimators_[a][i], out_file=f)
|
|
|
+
|
|
|
+ tab.add(SeeTree(Dic + f"\Tree_Gra[{a},{i}].dot"),f'[{a},{i}]决策树可视化')
|
|
|
+
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ if self.Model_Name == 'Tree_class':
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ get,x_means,x_range,Type = Training_visualization(x_data,class_,y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range,x_means,self.Predict,class_,Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab(class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))],
|
|
|
+ [class_ + [f'{i}' for i in x_means]]), '数据表')
|
|
|
+ else:
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/梯度提升回归树.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class SVC_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(SVC_Model, self).__init__(*args,**kwargs)
|
|
|
+ self.Model = SVC(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.C = args_use['C']
|
|
|
+ self.gamma = args_use['gamma']
|
|
|
+ self.kernel = args_use['kernel']
|
|
|
+ self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ try:
|
|
|
+ w_list = self.Model.coef_.tolist() # 未必有这个属性
|
|
|
+ b = self.Model.intercept_.tolist()
|
|
|
+ U = True
|
|
|
+ except:
|
|
|
+ U = False
|
|
|
+ class_ = self.Model.classes_.tolist()
|
|
|
+ class_heard = [f'类别[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ y = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ get, x_means, x_range, Type = Training_visualization(x_data, class_, y)
|
|
|
+ if U:get_Line = Training_W(x_data, class_, y, w_list, b, x_means.copy())
|
|
|
+ for i in range(len(get)):
|
|
|
+ if U:tab.add(get[i].overlap(get_Line[i]), f'{i}决策边界散点图')
|
|
|
+ else:tab.add(get[i], f'{i}决策边界散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ dic = {2:'离散',1:'连续'}
|
|
|
+ tab.add(make_Tab(class_heard + [f'普适预测第{i}特征:{dic[Type[i]]}' for i in range(len(x_means))],
|
|
|
+ [class_ + [f'{i}' for i in x_means]]), '数据表')
|
|
|
+
|
|
|
+ if U:desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
|
|
|
+ if U:desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+
|
|
|
+ save = Dic + r'/支持向量机分类.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class SVR_Model(Study_MachineBase):
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(SVR_Model, self).__init__(*args,**kwargs)
|
|
|
+ self.Model = SVR(C=args_use['C'],gamma=args_use['gamma'],kernel=args_use['kernel'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.C = args_use['C']
|
|
|
+ self.gamma = args_use['gamma']
|
|
|
+ self.kernel = args_use['kernel']
|
|
|
+ self.k = {'C':args_use['C'],'gamma':args_use['gamma'],'kernel':args_use['kernel']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_trainData
|
|
|
+ y = self.y_trainData
|
|
|
+ try:
|
|
|
+ w_list = self.Model.coef_.tolist()#未必有这个属性
|
|
|
+ b = self.Model.intercept_.tolist()
|
|
|
+ U = True
|
|
|
+ except:
|
|
|
+ U = False
|
|
|
+
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ if U:get_Line = Regress_W(x_data, y, w_list, b, x_means.copy())
|
|
|
+ for i in range(len(get)):
|
|
|
+ if U:tab.add(get[i].overlap(get_Line[i]), f'{i}预测类型图')
|
|
|
+ else:tab.add(get[i], f'{i}预测类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ if U: desTo_CSV(Dic, '系数表', w_list, [f'系数W[{i}]' for i in range(len(w_list[0]))])
|
|
|
+ if U: desTo_CSV(Dic, '截距表', [b], [f'截距{i}' for i in range(len(b))])
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+
|
|
|
+ tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))],[[f'{i}' for i in x_means]]), '数据表')
|
|
|
+ save = Dic + r'/支持向量机回归.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Variance_Model(Unsupervised):#无监督
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):#model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(Variance_Model, self).__init__(*args,**kwargs)
|
|
|
+ self.Model = VarianceThreshold(threshold=(args_use['P'] * (1 - args_use['P'])))
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.threshold = args_use['P']
|
|
|
+ self.k = {'threshold':args_use['P']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ var = self.Model.variances_#标准差
|
|
|
+ y_data = self.y_testData
|
|
|
+ if type(y_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(self.y_testData)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]数据x-x散点图')
|
|
|
+
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis([f'[{i}]特征' for i in range(len(var))])
|
|
|
+ .add_yaxis('标准差', var.tolist(), **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+ tab.add(c,'数据标准差')
|
|
|
+ save = Dic + r'/方差特征选择.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class SelectKBest_Model(prep_Base):#有监督
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(SelectKBest_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = SelectKBest(k=args_use['k'],score_func=args_use['score_func'])
|
|
|
+ # 记录这两个是为了克隆
|
|
|
+ self.k_ = args_use['k']
|
|
|
+ self.score_func=args_use['score_func']
|
|
|
+ self.k = {'k':args_use['k'],'score_func':args_use['score_func']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ score = self.Model.scores_.tolist()
|
|
|
+ support = self.Model.get_support()
|
|
|
+ y_data = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ if type(x_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(x_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]训练数据x-x散点图')
|
|
|
+
|
|
|
+ if type(y_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(y_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]保留训练数据x-x散点图')
|
|
|
+
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ if type(x_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(x_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]数据x-x散点图')
|
|
|
+
|
|
|
+ if type(y_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(y_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]保留数据x-x散点图')
|
|
|
+
|
|
|
+ Choose = []
|
|
|
+ UnChoose = []
|
|
|
+ for i in range(len(score)):
|
|
|
+ if support[i]:
|
|
|
+ Choose.append(score[i])
|
|
|
+ UnChoose.append(0)#占位
|
|
|
+ else:
|
|
|
+ UnChoose.append(score[i])
|
|
|
+ Choose.append(0)
|
|
|
+
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis([f'[{i}]特征' for i in range(len(score))])
|
|
|
+ .add_yaxis('选中特征', Choose, **Label_Set)
|
|
|
+ .add_yaxis('抛弃特征', UnChoose, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+ tab.add(c,'单变量重要程度')
|
|
|
+
|
|
|
+ save = Dic + r'/单一变量特征选择.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class SelectFrom_Model(prep_Base):#有监督
|
|
|
+ def __init__(self, args_use, Learner, *args, **kwargs): # model表示当前选用的模型类型,Alpha针对正则化的参数
|
|
|
+ super(SelectFrom_Model, self).__init__(*args, **kwargs)
|
|
|
+
|
|
|
+ self.Model = Learner.Model
|
|
|
+ self.Select_Model = SelectFromModel(estimator=Learner.Model,max_features=args_use['k'],prefit=Learner.have_Fit)
|
|
|
+ self.max_features = args_use['k']
|
|
|
+ self.estimator=Learner.Model
|
|
|
+ self.k = {'max_features':args_use['k'],'estimator':Learner.Model,'have_Fit':Learner.have_Fit}
|
|
|
+ self.have_Fit = Learner.have_Fit
|
|
|
+ self.Model_Name = 'SelectFrom_Model'
|
|
|
+ self.Learner = Learner
|
|
|
+
|
|
|
+ def Fit(self, x_data,y_data,split=0.3, *args, **kwargs):
|
|
|
+ y_data = y_data.ravel()
|
|
|
+ if not self.have_Fit: # 不允许第二次训练
|
|
|
+ self.Select_Model.fit(x_data, y_data)
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ try:
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Select_Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'模型特征工程'
|
|
|
+ except:
|
|
|
+ self.have_Predict = True
|
|
|
+ return np.array([]),'无结果工程'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ support = self.Select_Model.get_support()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ if type(x_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(x_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]数据x-x散点图')
|
|
|
+
|
|
|
+ if type(y_data) is np.ndarray:
|
|
|
+ get = Feature_visualization(y_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'[{i}]保留数据x-x散点图')
|
|
|
+
|
|
|
+ def make_Bar(score):
|
|
|
+ Choose = []
|
|
|
+ UnChoose = []
|
|
|
+ for i in range(len(score)):
|
|
|
+ if support[i]:
|
|
|
+ Choose.append(abs(score[i]))
|
|
|
+ UnChoose.append(0) # 占位
|
|
|
+ else:
|
|
|
+ UnChoose.append(abs(score[i]))
|
|
|
+ Choose.append(0)
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis([f'[{i}]特征' for i in range(len(score))])
|
|
|
+ .add_yaxis('选中特征', Choose, **Label_Set)
|
|
|
+ .add_yaxis('抛弃特征', UnChoose, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='系数w柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+ tab.add(c,'单变量重要程度')
|
|
|
+
|
|
|
+ try:
|
|
|
+ make_Bar(self.Model.coef_)
|
|
|
+ except:
|
|
|
+ try:
|
|
|
+ make_Bar(self.Model.feature_importances_)
|
|
|
+ except:pass
|
|
|
+
|
|
|
+ save = Dic + r'/模型特征选择.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Standardization_Model(Unsupervised):#z-score标准化 无监督
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Standardization_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = StandardScaler()
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'StandardScaler'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ var = self.Model.var_.tolist()
|
|
|
+ means = self.Model.mean_.tolist()
|
|
|
+ scale = self.Model.scale_.tolist()
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+
|
|
|
+ make_bar('标准差',var,tab)
|
|
|
+ make_bar('方差',means,tab)
|
|
|
+ make_bar('Scale',scale,tab)
|
|
|
+
|
|
|
+ save = Dic + r'/z-score标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class MinMaxScaler_Model(Unsupervised):#离差标准化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(MinMaxScaler_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = MinMaxScaler(feature_range=args_use['feature_range'])
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'MinMaxScaler'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ scale = self.Model.scale_.tolist()
|
|
|
+ max_ = self.Model.data_max_.tolist()
|
|
|
+ min_ = self.Model.data_min_.tolist()
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+ make_bar('Scale',scale,tab)
|
|
|
+ tab.add(make_Tab(heard= [f'[{i}]特征最大值' for i in range(len(max_))] + [f'[{i}]特征最小值' for i in range(len(min_))],
|
|
|
+ row=[max_ + min_]), '数据表格')
|
|
|
+
|
|
|
+ save = Dic + r'/离差标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class LogScaler_Model(prep_Base):#对数标准化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(LogScaler_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'LogScaler'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ self.max_logx = np.log(x_data.max())
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ try:
|
|
|
+ max_logx = self.max_logx
|
|
|
+ except:
|
|
|
+ self.have_Fit = False
|
|
|
+ self.Fit(x_data)
|
|
|
+ max_logx = self.max_logx
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = (np.log(x_data)/max_logx)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'对数变换'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+ tab.add(make_Tab(heard=['最大对数值(自然对数)'],row=[[str(self.max_logx)]]),'数据表格')
|
|
|
+
|
|
|
+ save = Dic + r'/对数标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class atanScaler_Model(prep_Base):#atan标准化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(atanScaler_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'atanScaler'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = (np.arctan(x_data)*(2/np.pi))
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'atan变换'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+
|
|
|
+ save = Dic + r'/反正切函数标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class decimalScaler_Model(prep_Base):#小数定标准化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(decimalScaler_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'Decimal_normalization'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ self.j = max([judging_Digits(x_data.max()),judging_Digits(x_data.min())])
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ try:
|
|
|
+ j = self.j
|
|
|
+ except:
|
|
|
+ self.have_Fit = False
|
|
|
+ self.Fit(x_data)
|
|
|
+ j = self.j
|
|
|
+ x_Predict = (x_data/(10**j))
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'小数定标标准化'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ j = self.j
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+ tab.add(make_Tab(heard=['小数位数:j'], row=[[j]]), '数据表格')
|
|
|
+
|
|
|
+ save = Dic + r'/小数定标标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Mapzoom_Model(prep_Base):#映射标准化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Mapzoom_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ self.feature_range = args_use['feature_range']
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'Decimal_normalization'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ self.max = x_data.max()
|
|
|
+ self.min = x_data.min()
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ try:
|
|
|
+ max = self.max
|
|
|
+ min = self.min
|
|
|
+ except:
|
|
|
+ self.have_Fit = False
|
|
|
+ self.Fit(x_data)
|
|
|
+ max = self.max
|
|
|
+ min = self.min
|
|
|
+ x_Predict = (x_data * (self.feature_range[1] - self.feature_range[0])) / (max - min)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'映射标准化'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ max = self.max
|
|
|
+ min = self.min
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+ tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
|
|
|
+
|
|
|
+ save = Dic + r'/映射标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class sigmodScaler_Model(prep_Base):#sigmod变换
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(sigmodScaler_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'sigmodScaler_Model'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data:np.array,*args,**kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = (1/(1+np.exp(-x_data)))
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'Sigmod变换'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+
|
|
|
+ save = Dic + r'/Sigmoid变换.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Fuzzy_quantization_Model(prep_Base):#模糊量化标准化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Fuzzy_quantization_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ self.feature_range = args_use['feature_range']
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'Fuzzy_quantization'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ self.max = x_data.max()
|
|
|
+ self.min = x_data.min()
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data,*args,**kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ try:
|
|
|
+ max = self.max
|
|
|
+ min = self.min
|
|
|
+ except:
|
|
|
+ self.have_Fit = False
|
|
|
+ self.Fit(x_data)
|
|
|
+ max = self.max
|
|
|
+ min = self.min
|
|
|
+ x_Predict = 1 / 2 + (1 / 2) * np.sin(np.pi / (max - min) * (x_data - (max-min) / 2))
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'模糊量化标准化'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_trainData
|
|
|
+ x_data = self.x_trainData
|
|
|
+ max = self.max
|
|
|
+ min = self.min
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+ tab.add(make_Tab(heard=['最大值','最小值'], row=[[max,min]]), '数据表格')
|
|
|
+
|
|
|
+ save = Dic + r'/模糊量化标准化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Regularization_Model(Unsupervised):#正则化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Regularization_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = Normalizer(norm=args_use['norm'])
|
|
|
+
|
|
|
+ self.k = {'norm':args_use['norm']}
|
|
|
+ self.Model_Name = 'Regularization'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData.copy()
|
|
|
+ x_data = self.x_testData.copy()
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+
|
|
|
+ save = Dic + r'/正则化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+#离散数据
|
|
|
+class Binarizer_Model(Unsupervised):#二值化
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Binarizer_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = Binarizer(threshold=args_use['threshold'])
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'Binarizer'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ get_y = Discrete_Feature_visualization(y_data,'转换数据')#转换
|
|
|
+ for i in range(len(get_y)):
|
|
|
+ tab.add(get_y[i],f'[{i}]数据x-x离散散点图')
|
|
|
+
|
|
|
+ heard = [f'特征:{i}' for i in range(len(x_data[0]))]
|
|
|
+ tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
|
|
|
+ tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
|
|
|
+ tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
|
|
|
+
|
|
|
+ save = Dic + r'/二值离散化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Discretization_Model(prep_Base):#n值离散
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Discretization_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+
|
|
|
+ range_ = args_use['split_range']
|
|
|
+ if range_ == []:raise Exception
|
|
|
+ elif len(range_) == 1:range_.append(range_[0])
|
|
|
+ self.range = range_
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'Discretization'
|
|
|
+
|
|
|
+ def Fit(self,*args,**kwargs):
|
|
|
+ #t值在模型创建时已经保存
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Predict(self,x_data,*args,**kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = x_data.copy()#复制
|
|
|
+ range_ = self.range
|
|
|
+ bool_list = []
|
|
|
+ max_ = len(range_) - 1
|
|
|
+ o_t = None
|
|
|
+ for i in range(len(range_)):
|
|
|
+ try:
|
|
|
+ t = float(range_[i])
|
|
|
+ except:continue
|
|
|
+ if o_t == None:#第一个参数
|
|
|
+ bool_list.append(x_Predict <= t)
|
|
|
+ else:
|
|
|
+ bool_list.append((o_t <= x_Predict) == (x_Predict < t))
|
|
|
+ if i == max_:
|
|
|
+ bool_list.append(t <= x_Predict)
|
|
|
+ o_t = t
|
|
|
+ for i in range(len(bool_list)):
|
|
|
+ x_Predict[bool_list[i]] = i
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,f'{len(bool_list)}值离散化'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
|
|
|
+ for i in range(len(get_y)):
|
|
|
+ tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
|
|
|
+
|
|
|
+ heard = [f'特征:{i}' for i in range(len(x_data[0]))]
|
|
|
+ tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
|
|
|
+ tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
|
|
|
+ tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
|
|
|
+
|
|
|
+ save = Dic + r'/多值离散化.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Label_Model(prep_Base):#数字编码
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Label_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = []
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'LabelEncoder'
|
|
|
+
|
|
|
+ def Fit(self,x_data,*args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ self.Model = []
|
|
|
+ if x_data.ndim == 1:x_data = np.array([x_data])
|
|
|
+ for i in range(x_data.shape[1]):
|
|
|
+ self.Model.append(LabelEncoder().fit(np.ravel(x_data[:,i])))#训练机器(每个特征一个学习器)
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = x_data.copy()
|
|
|
+ if x_data.ndim == 1: x_data = np.array([x_data])
|
|
|
+ for i in range(x_data.shape[1]):
|
|
|
+ x_Predict[:,i] = self.Model[i].transform(x_data[:,i])
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'数字编码'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ x_data = self.x_testData
|
|
|
+ y_data = self.y_testData
|
|
|
+ get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
|
|
|
+ for i in range(len(get_y)):
|
|
|
+ tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
|
|
|
+
|
|
|
+ heard = [f'特征:{i}' for i in range(len(x_data[0]))]
|
|
|
+ tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
|
|
|
+ tab.add(make_Tab(heard,y_data.tolist()), f'编码数据')
|
|
|
+ tab.add(make_Tab(heard,np.dstack((x_data,y_data)).tolist()), f'合成[原数据,编码]数据')
|
|
|
+
|
|
|
+ save = Dic + r'/数字编码.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class OneHotEncoder_Model(prep_Base):#独热编码
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(OneHotEncoder_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = []
|
|
|
+
|
|
|
+ self.ndim_up = args_use['ndim_up']
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'OneHotEncoder'
|
|
|
+ self.OneHot_Data = None#三维独热编码
|
|
|
+
|
|
|
+ def Fit(self,x_data,*args, **kwargs):
|
|
|
+ if not self.have_Predict: # 不允许第二次训练
|
|
|
+ if x_data.ndim == 1:x_data = [x_data]
|
|
|
+ for i in range(x_data.shape[1]):
|
|
|
+ data = np.expand_dims(x_data[:,i], axis=1)#独热编码需要升维
|
|
|
+ self.Model.append(OneHotEncoder().fit(data))#训练机器
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_new = []
|
|
|
+ for i in range(x_data.shape[1]):
|
|
|
+ data = np.expand_dims(x_data[:, i], axis=1) # 独热编码需要升维
|
|
|
+ oneHot = self.Model[i].transform(data).toarray().tolist()
|
|
|
+ x_new.append(oneHot)#添加到列表中
|
|
|
+ x_new = np.array(x_new)#新列表的行数据是原data列数据的独热码(只需要ndim=2,暂时没想到numpy的做法)
|
|
|
+ x_Predict = []
|
|
|
+ for i in range(x_new.shape[1]):
|
|
|
+ x_Predict.append(x_new[:,i])
|
|
|
+ x_Predict = np.array(x_Predict)#转换回array
|
|
|
+ self.OneHot_Data = x_Predict.copy() # 保存未降维数据
|
|
|
+ if not self.ndim_up:#压缩操作
|
|
|
+ new_xPredict = []
|
|
|
+ for i in x_Predict:
|
|
|
+ new_list = []
|
|
|
+ list_ = i.tolist()
|
|
|
+ for a in list_:
|
|
|
+ new_list += a
|
|
|
+ new = np.array(new_list)
|
|
|
+ new_xPredict.append(new)
|
|
|
+
|
|
|
+ self.y_testData = np.array(new_xPredict)
|
|
|
+ return self.y_testData.copy(),'独热编码'
|
|
|
+
|
|
|
+ self.y_testData = self.OneHot_Data
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'独热编码'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ oh_data = self.OneHot_Data
|
|
|
+ if not self.ndim_up:
|
|
|
+ get_y = Discrete_Feature_visualization(y_data, '转换数据') # 转换
|
|
|
+ for i in range(len(get_y)):
|
|
|
+ tab.add(get_y[i], f'[{i}]数据x-x离散散点图')
|
|
|
+
|
|
|
+ heard = [f'特征:{i}' for i in range(len(x_data[0]))]
|
|
|
+ tab.add(make_Tab(heard,x_data.tolist()),f'原数据')
|
|
|
+ tab.add(make_Tab(heard,oh_data.tolist()), f'编码数据')
|
|
|
+ tab.add(make_Tab(heard,np.dstack((oh_data,x_data)).tolist()), f'合成[原数据,编码]数据')
|
|
|
+ tab.add(make_Tab([f'编码:{i}' for i in range(len(y_data[0]))], y_data.tolist()), f'数据')
|
|
|
+ save = Dic + r'/独热编码.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Missed_Model(Unsupervised):#缺失数据补充
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Missed_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = SimpleImputer(missing_values=args_use['miss_value'], strategy=args_use['fill_method'],
|
|
|
+ fill_value=args_use['fill_value'])
|
|
|
+
|
|
|
+ self.k = {}
|
|
|
+ self.Model_Name = 'Missed'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'填充缺失'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ statistics = self.Model.statistics_.tolist()
|
|
|
+ Conversion_control(y_data,x_data,tab)
|
|
|
+ tab.add(make_Tab([f'特征[{i}]' for i in range(len(statistics))],[statistics]),'填充值')
|
|
|
+ save = Dic + r'/缺失数据填充.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class PCA_Model(Unsupervised):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(PCA_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = PCA(n_components=args_use['n_components'],whiten=args_use['white_PCA'])
|
|
|
+
|
|
|
+ self.whiten=args_use['white_PCA']
|
|
|
+ self.n_components = args_use['n_components']
|
|
|
+ self.k = {'n_components':args_use['n_components'],'whiten':args_use['white_PCA']}
|
|
|
+ self.Model_Name = 'PCA'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'PCA'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ importance = self.Model.components_.tolist()
|
|
|
+ var = self.Model.explained_variance_.tolist()#方量差
|
|
|
+ Conversion_Separate_Format(y_data,tab)
|
|
|
+
|
|
|
+ x_data = [f'第{i+1}主成分' for i in range(len(importance))]#主成分
|
|
|
+ y_data = [f'特征[{i}]' for i in range(len(importance[0]))]#主成分
|
|
|
+ value = [(f'第{i+1}主成分',f'特征[{j}]',importance[i][j]) for i in range(len(importance)) for j in range(len(importance[i]))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(x_data)
|
|
|
+ .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=int(self.Model.components_.max()) + 1,
|
|
|
+ min_=int(self.Model.components_.min()),
|
|
|
+ pos_right='3%')) # 显示
|
|
|
+ )
|
|
|
+ tab.add(c,'成分热力图')
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
|
|
|
+ .add_yaxis('方量差', var, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+
|
|
|
+ desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data])
|
|
|
+ desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
|
|
|
+
|
|
|
+ tab.add(c, '方量差柱状图')
|
|
|
+ save = Dic + r'/主成分分析.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class RPCA_Model(Unsupervised):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(RPCA_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = IncrementalPCA(n_components=args_use['n_components'],whiten=args_use['white_PCA'])
|
|
|
+
|
|
|
+ self.n_components = args_use['n_components']
|
|
|
+ self.whiten=args_use['white_PCA']
|
|
|
+ self.k = {'n_components': args_use['n_components'],'whiten':args_use['white_PCA']}
|
|
|
+ self.Model_Name = 'RPCA'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'RPCA'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_trainData
|
|
|
+ importance = self.Model.components_.tolist()
|
|
|
+ var = self.Model.explained_variance_.tolist() # 方量差
|
|
|
+ Conversion_Separate_Format(y_data, tab)
|
|
|
+
|
|
|
+ x_data = [f'第{i + 1}主成分' for i in range(len(importance))] # 主成分
|
|
|
+ y_data = [f'特征[{i}]' for i in range(len(importance[0]))] # 主成分
|
|
|
+ value = [(f'第{i + 1}主成分', f'特征[{j}]', importance[i][j]) for i in range(len(importance)) for j in
|
|
|
+ range(len(importance[i]))]
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(x_data)
|
|
|
+ .add_yaxis(f'', y_data, value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='预测热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True,
|
|
|
+ max_=int(self.Model.components_.max()) + 1,
|
|
|
+ min_=int(self.Model.components_.min()),
|
|
|
+ pos_right='3%')) # 显示
|
|
|
+ )
|
|
|
+ tab.add(c, '成分热力图')
|
|
|
+ c = (
|
|
|
+ Bar()
|
|
|
+ .add_xaxis([f'第[{i}]主成分' for i in range(len(var))])
|
|
|
+ .add_yaxis('放量差', var, **Label_Set)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='方量差柱状图'), **global_Set)
|
|
|
+ )
|
|
|
+ tab.add(c, '方量差柱状图')
|
|
|
+ desTo_CSV(Dic, '成分重要性', importance, [x_data],[y_data])
|
|
|
+ desTo_CSV(Dic, '方量差', [var], [f'第[{i}]主成分' for i in range(len(var))])
|
|
|
+ save = Dic + r'/RPCA(主成分分析).HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class KPCA_Model(Unsupervised):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(KPCA_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = KernelPCA(n_components=args_use['n_components'], kernel=args_use['kernel'])
|
|
|
+ self.n_components = args_use['n_components']
|
|
|
+ self.kernel = args_use['kernel']
|
|
|
+ self.k = {'n_components': args_use['n_components'],'kernel':args_use['kernel']}
|
|
|
+ self.Model_Name = 'KPCA'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'KPCA'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ Conversion_Separate_Format(y_data, tab)
|
|
|
+
|
|
|
+ save = Dic + r'/KPCA(主成分分析).HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class LDA_Model(prep_Base):#有监督学习
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(LDA_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = LDA(n_components=args_use['n_components'])
|
|
|
+ self.n_components = args_use['n_components']
|
|
|
+ self.k = {'n_components': args_use['n_components']}
|
|
|
+ self.Model_Name = 'LDA'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'LDA'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ x_data = self.x_testData
|
|
|
+ y_data = self.y_testData
|
|
|
+ Conversion_Separate_Format(y_data,tab)
|
|
|
+
|
|
|
+ w_list = self.Model.coef_.tolist() # 变为表格
|
|
|
+ b = self.Model.intercept_
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ x_means = make_Cat(x_data).get()[0]
|
|
|
+ get = Regress_W(x_data, None, w_list, b, x_means.copy())#回归的y是历史遗留问题 不用分类回归:因为得不到分类数据(predict结果是降维数据不是预测数据)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i].overlap(get[i]), f'类别:{i}LDA映射曲线')
|
|
|
+
|
|
|
+ save = Dic + r'/render.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class NMF_Model(Unsupervised):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(NMF_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = NMF(n_components=args_use['n_components'])
|
|
|
+
|
|
|
+ self.n_components = args_use['n_components']
|
|
|
+ self.k = {'n_components':args_use['n_components']}
|
|
|
+ self.Model_Name = 'NFM'
|
|
|
+ self.h_testData = None
|
|
|
+ #x_trainData保存的是W,h_trainData和y_trainData是后来数据
|
|
|
+
|
|
|
+ def Predict(self, x_data,x_name='',Add_Func=None,*args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.h_testData = self.Model.components_
|
|
|
+ if Add_Func != None and x_name != '':
|
|
|
+ Add_Func(self.h_testData, f'{x_name}:V->NMF[H]')
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'V->NMF[W]'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ h_data = self.h_testData
|
|
|
+ Conversion_SeparateWH(y_data,h_data,tab)
|
|
|
+
|
|
|
+ wh_data = np.matmul(y_data, h_data)
|
|
|
+ difference_data = x_data - wh_data
|
|
|
+
|
|
|
+ def make_HeatMap(data,name,max_,min_):
|
|
|
+ x = [f'数据[{i}]' for i in range(len(data))] # 主成分
|
|
|
+ y = [f'特征[{i}]' for i in range(len(data[0]))] # 主成分
|
|
|
+ value = [(f'数据[{i}]', f'特征[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
|
|
|
+
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(x)
|
|
|
+ .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title='原始数据热力图'), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=max_,
|
|
|
+ min_=min_,
|
|
|
+ pos_right='3%'))#显示
|
|
|
+ )
|
|
|
+ tab.add(c,name)
|
|
|
+
|
|
|
+ max_ = max(int(x_data.max()),int(wh_data.max()),int(difference_data.max())) + 1
|
|
|
+ min_ = min(int(x_data.min()),int(wh_data.min()),int(difference_data.min()))
|
|
|
+
|
|
|
+ make_HeatMap(x_data,'原始数据热力图',max_,min_)
|
|
|
+ make_HeatMap(wh_data,'W * H数据热力图',max_,min_)
|
|
|
+ make_HeatMap(difference_data,'数据差热力图',max_,min_)
|
|
|
+
|
|
|
+ desTo_CSV(Dic, '权重矩阵', y_data)
|
|
|
+ desTo_CSV(Dic, '系数矩阵', h_data)
|
|
|
+ desTo_CSV(Dic, '系数*权重矩阵', wh_data)
|
|
|
+
|
|
|
+ save = Dic + r'/非负矩阵分解.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class TSNE_Model(Unsupervised):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(TSNE_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = TSNE(n_components=args_use['n_components'])
|
|
|
+
|
|
|
+ self.n_components = args_use['n_components']
|
|
|
+ self.k = {'n_components':args_use['n_components']}
|
|
|
+ self.Model_Name = 't-SNE'
|
|
|
+
|
|
|
+ def Fit(self,*args, **kwargs):
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None', 'None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ x_Predict = self.Model.fit_transform(x_data)
|
|
|
+ self.y_testData = x_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return x_Predict,'SNE'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y_data = self.y_testData
|
|
|
+ Conversion_Separate_Format(y_data,tab)
|
|
|
+
|
|
|
+ save = Dic + r'/T-SNE.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class MLP_Model(Study_MachineBase):#神经网络(多层感知机),有监督学习
|
|
|
+ def __init__(self,args_use,model,*args,**kwargs):
|
|
|
+ super(MLP_Model, self).__init__(*args,**kwargs)
|
|
|
+ Model = {'MLP':MLPRegressor,'MLP_class':MLPClassifier}[model]
|
|
|
+ self.Model = Model(hidden_layer_sizes=args_use['hidden_size'],activation=args_use['activation'],
|
|
|
+ solver=args_use['solver'],alpha=args_use['alpha'],max_iter=args_use['max_iter'])
|
|
|
+ #记录这两个是为了克隆
|
|
|
+ self.hidden_layer_sizes = args_use['hidden_size']
|
|
|
+ self.activation = args_use['activation']
|
|
|
+ self.max_iter = args_use['max_iter']
|
|
|
+ self.solver = args_use['solver']
|
|
|
+ self.alpha = args_use['alpha']
|
|
|
+ self.k = {'hidden_layer_sizes':args_use['hidden_size'],'activation':args_use['activation'],'max_iter':args_use['max_iter'],
|
|
|
+ 'solver':args_use['solver'],'alpha':args_use['alpha']}
|
|
|
+ self.Model_Name = model
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+
|
|
|
+ x_data = self.x_testData
|
|
|
+ y_data = self.y_testData
|
|
|
+ coefs = self.Model.coefs_
|
|
|
+ class_ = self.Model.classes_
|
|
|
+ n_layers_ = self.Model.n_layers_
|
|
|
+ def make_HeatMap(data,name):
|
|
|
+ x = [f'特征(节点)[{i}]' for i in range(len(data))]
|
|
|
+ y = [f'节点[{i}]' for i in range(len(data[0]))]
|
|
|
+ value = [(f'特征(节点)[{i}]', f'节点[{j}]', float(data[i][j])) for i in range(len(data)) for j in range(len(data[i]))]
|
|
|
+
|
|
|
+ c = (HeatMap()
|
|
|
+ .add_xaxis(x)
|
|
|
+ .add_yaxis(f'数据', y, value, **Label_Set) # value的第一个数值是x
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name), **global_Leg,
|
|
|
+ yaxis_opts=opts.AxisOpts(is_scale=True, type_='category'), # 'category'
|
|
|
+ xaxis_opts=opts.AxisOpts(is_scale=True, type_='category'),
|
|
|
+ visualmap_opts=opts.VisualMapOpts(is_show=True, max_=float(data.max()),
|
|
|
+ min_=float(data.min()),
|
|
|
+ pos_right='3%'))#显示
|
|
|
+ )
|
|
|
+ tab.add(c,name)
|
|
|
+ tab.add(make_Tab(x,data.T.tolist()),f'{name}:表格')
|
|
|
+ desTo_CSV(Dic,f'{name}:表格',data.T.tolist(),x,y)
|
|
|
+
|
|
|
+ get, x_means, x_range, Type = regress_visualization(x_data, y_data)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = ['神经网络层数']
|
|
|
+ data = [n_layers_]
|
|
|
+ for i in range(len(coefs)):
|
|
|
+ make_HeatMap(coefs[i],f'{i}层权重矩阵')
|
|
|
+ heard.append(f'第{i}层节点数')
|
|
|
+ data.append(len(coefs[i][0]))
|
|
|
+
|
|
|
+ if self.Model_Name == 'MLP_class':
|
|
|
+ heard += [f'[{i}]类型' for i in range(len(class_))]
|
|
|
+ data += class_.tolist()
|
|
|
+
|
|
|
+ tab.add(make_Tab(heard,[data]),'数据表')
|
|
|
+
|
|
|
+ save = Dic + r'/多层感知机.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class kmeans_Model(UnsupervisedModel):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(kmeans_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = KMeans(n_clusters=args_use['n_clusters'])
|
|
|
+
|
|
|
+ self.class_ = []
|
|
|
+ self.n_clusters = args_use['n_clusters']
|
|
|
+ self.k = {'n_clusters':args_use['n_clusters']}
|
|
|
+ self.Model_Name = 'k-means'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ re = super().Fit(x_data,*args,**kwargs)
|
|
|
+ self.class_ = list(set(self.Model.labels_.tolist()))
|
|
|
+ self.have_Fit = True
|
|
|
+ return re
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ y_Predict = self.Model.predict(x_data)
|
|
|
+ self.y_testData = y_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return y_Predict,'k-means'
|
|
|
+
|
|
|
+ def Des(self,Dic,*args,**kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ class_ = self.class_
|
|
|
+ center = self.Model.cluster_centers_
|
|
|
+ class_heard = [f'簇[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ Func = Training_visualization_More if More_Global else Training_visualization_Center
|
|
|
+ get,x_means,x_range,Type = Func(x_data,class_,y,center)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i],f'{i}数据散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/k-means聚类.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Agglomerative_Model(UnsupervisedModel):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Agglomerative_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = AgglomerativeClustering(n_clusters=args_use['n_clusters'])#默认为2,不同于k-means
|
|
|
+
|
|
|
+ self.class_ = []
|
|
|
+ self.n_clusters = args_use['n_clusters']
|
|
|
+ self.k = {'n_clusters':args_use['n_clusters']}
|
|
|
+ self.Model_Name = 'Agglomerative'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ re = super().Fit(x_data,*args,**kwargs)
|
|
|
+ self.class_ = list(set(self.Model.labels_.tolist()))
|
|
|
+ self.have_Fit = True
|
|
|
+ return re
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ y_Predict = self.Model.fit_predict(x_data)
|
|
|
+ self.y_trainData = y_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return y_Predict,'Agglomerative'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_testData
|
|
|
+ x_data = self.x_testData
|
|
|
+ class_ = self.class_
|
|
|
+ class_heard = [f'簇[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
|
|
|
+ get, x_means, x_range, Type = Func(x_data, class_, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ get = Decision_boundary(x_range, x_means, self.Predict, class_, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ linkage_array = ward(self.x_trainData)#self.y_trainData是结果
|
|
|
+ dendrogram(linkage_array)
|
|
|
+ plt.savefig(Dic + r'/Cluster_graph.png')
|
|
|
+
|
|
|
+ image = Image()
|
|
|
+ image.add(
|
|
|
+ src=Dic + r'/Cluster_graph.png',
|
|
|
+ ).set_global_opts(
|
|
|
+ title_opts=opts.ComponentTitleOpts(title="聚类树状图")
|
|
|
+ )
|
|
|
+
|
|
|
+ tab.add(image,'聚类树状图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/层次聚类.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class DBSCAN_Model(UnsupervisedModel):
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(DBSCAN_Model, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = DBSCAN(eps = args_use['eps'], min_samples = args_use['min_samples'])
|
|
|
+ #eps是距离(0.5),min_samples(5)是簇与噪音分界线(每个簇最小元素数)
|
|
|
+ # min_samples
|
|
|
+ self.eps = args_use['eps']
|
|
|
+ self.min_samples = args_use['min_samples']
|
|
|
+ self.k = {'min_samples':args_use['min_samples'],'eps':args_use['eps']}
|
|
|
+ self.class_ = []
|
|
|
+ self.Model_Name = 'DBSCAN'
|
|
|
+
|
|
|
+ def Fit(self, x_data, *args, **kwargs):
|
|
|
+ re = super().Fit(x_data,*args,**kwargs)
|
|
|
+ self.class_ = list(set(self.Model.labels_.tolist()))
|
|
|
+ self.have_Fit = True
|
|
|
+ return re
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ y_Predict = self.Model.fit_predict(x_data)
|
|
|
+ self.y_testData = y_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return y_Predict,'DBSCAN'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ #DBSCAN没有预测的必要
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_testData.copy()
|
|
|
+ x_data = self.x_testData.copy()
|
|
|
+ class_ = self.class_
|
|
|
+ class_heard = [f'簇[{i}]' for i in range(len(class_))]
|
|
|
+
|
|
|
+ Func = Training_visualization_More_NoCenter if More_Global else Training_visualization
|
|
|
+ get, x_means, x_range, Type = Func(x_data, class_, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}训练数据散点图')
|
|
|
+
|
|
|
+ heard = class_heard + [f'普适预测第{i}特征' for i in range(len(x_means))]
|
|
|
+ data = class_ + [f'{i}' for i in x_means]
|
|
|
+ c = Table().add(headers=heard, rows=[data])
|
|
|
+ tab.add(c, '数据表')
|
|
|
+
|
|
|
+ desTo_CSV(Dic, '预测表', [[f'{i}' for i in x_means]], [f'普适预测第{i}特征' for i in range(len(x_means))])
|
|
|
+ save = Dic + r'/密度聚类.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Fast_Fourier(Study_MachineBase):#快速傅里叶变换
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Fast_Fourier, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+ self.Fourier = None#fft复数
|
|
|
+ self.Frequency = None#频率range
|
|
|
+ self.angular_Frequency = None#角频率range
|
|
|
+ self.Phase = None#相位range
|
|
|
+ self.Breadth = None#震幅range
|
|
|
+ self.N = None#样本数
|
|
|
+
|
|
|
+ def Fit(self, y_data, *args, **kwargs):
|
|
|
+ y_data = y_data.ravel() # 扯平为一维数组
|
|
|
+ try:
|
|
|
+ if self.y_trainData is None:raise Exception
|
|
|
+ self.y_trainData = np.hstack(y_data,self.x_trainData)
|
|
|
+ except:
|
|
|
+ self.y_trainData = y_data.copy()
|
|
|
+ Fourier = fft(y_data)
|
|
|
+ self.N = len(y_data)
|
|
|
+ self.Frequency = np.linspace(0,1,self.N)#频率N_range
|
|
|
+ self.angular_Frequency = self.Frequency / ( np.pi * 2 )#角频率w
|
|
|
+ self.Phase = np.angle(Fourier)
|
|
|
+ self.Breadth = np.abs(Fourier)
|
|
|
+ self.Fourier = Fourier
|
|
|
+ self.have_Fit = True
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ return np.array([]),''
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ #DBSCAN没有预测的必要
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_trainData.copy()
|
|
|
+ N = self.N
|
|
|
+ Phase = self.Phase#相位range
|
|
|
+ Breadth = self.Breadth#震幅range
|
|
|
+ normalization_Breadth = Breadth/N
|
|
|
+ def line(name,value,s=slice(0,None)) -> Line:
|
|
|
+ c = (
|
|
|
+ Line()
|
|
|
+ .add_xaxis(self.Frequency[s].tolist())
|
|
|
+ .add_yaxis('', value,**Label_Set,symbol='none' if self.N >= 500 else None)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name),**global_Leg,
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value'),
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value'))
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+ tab.add(line('原始数据',y.tolist()),'原始数据')
|
|
|
+ tab.add(line('双边振幅谱',Breadth.tolist()),'双边振幅谱')
|
|
|
+ tab.add(line('双边振幅谱(归一化)',normalization_Breadth.tolist()),'双边振幅谱(归一化)')
|
|
|
+ tab.add(line('单边相位谱',Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱')
|
|
|
+ tab.add(line('单边相位谱(归一化)',normalization_Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱(归一化)')
|
|
|
+ tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱')
|
|
|
+ tab.add(line('单边相位谱', Phase[:int(N/2)].tolist(),slice(0,int(N/2))), '单边相位谱')
|
|
|
+
|
|
|
+ tab.add(make_Tab(self.Frequency.tolist(),[Breadth.tolist()]),'双边振幅谱')
|
|
|
+ tab.add(make_Tab(self.Frequency.tolist(),[Phase.tolist()]),'双边相位谱')
|
|
|
+ tab.add(make_Tab(self.Frequency.tolist(),[self.Fourier.tolist()]),'快速傅里叶变换')
|
|
|
+
|
|
|
+ save = Dic + r'/快速傅里叶.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Reverse_Fast_Fourier(Study_MachineBase):#快速傅里叶变换
|
|
|
+ def __init__(self, args_use, model, *args, **kwargs):
|
|
|
+ super(Reverse_Fast_Fourier, self).__init__(*args, **kwargs)
|
|
|
+ self.Model = None
|
|
|
+ self.N = None
|
|
|
+ self.y_testData_real = None
|
|
|
+ self.Phase = None
|
|
|
+ self.Breadth = None
|
|
|
+
|
|
|
+ def Fit(self, y_data, *args, **kwargs):
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Predict(self, x_data,x_name='', Add_Func=None, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.ravel().astype(np.complex_)
|
|
|
+ Fourier = ifft(self.x_testData)
|
|
|
+ self.y_testData = Fourier.copy()
|
|
|
+ self.y_testData_real = np.real(Fourier)
|
|
|
+ self.N = len(self.y_testData_real)
|
|
|
+ self.Phase = np.angle(self.x_testData)
|
|
|
+ self.Breadth = np.abs(self.x_testData)
|
|
|
+ Add_Func(self.y_testData_real.copy(), f'{x_name}:逆向快速傅里叶变换[实数]')
|
|
|
+ return Fourier,'逆向快速傅里叶变换'
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ #DBSCAN没有预测的必要
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_testData_real.copy()
|
|
|
+ y_data = self.y_testData.copy()
|
|
|
+ N = self.N
|
|
|
+ range_N = np.linspace(0,1,N).tolist()
|
|
|
+ Phase = self.Phase#相位range
|
|
|
+ Breadth = self.Breadth#震幅range
|
|
|
+
|
|
|
+ def line(name,value,s=slice(0,None)) -> Line:
|
|
|
+ c = (
|
|
|
+ Line()
|
|
|
+ .add_xaxis(range_N[s])
|
|
|
+ .add_yaxis('', value,**Label_Set,symbol='none' if N >= 500 else None)
|
|
|
+ .set_global_opts(title_opts=opts.TitleOpts(title=name),**global_Leg,
|
|
|
+ xaxis_opts=opts.AxisOpts(type_='value'),
|
|
|
+ yaxis_opts=opts.AxisOpts(type_='value'))
|
|
|
+ )
|
|
|
+ return c
|
|
|
+
|
|
|
+ tab.add(line('逆向傅里叶变换', y.tolist()), '逆向傅里叶变换[实数]')
|
|
|
+ tab.add(make_Tab(range_N,[y_data.tolist()]),'逆向傅里叶变换数据')
|
|
|
+ tab.add(make_Tab(range_N,[y.tolist()]),'逆向傅里叶变换数据[实数]')
|
|
|
+ tab.add(line('双边振幅谱',Breadth.tolist()),'双边振幅谱')
|
|
|
+ tab.add(line('单边相位谱',Breadth[:int(N/2)].tolist(),slice(0,int(N/2))),'单边相位谱')
|
|
|
+ tab.add(line('双边相位谱', Phase.tolist()), '双边相位谱')
|
|
|
+ tab.add(line('单边相位谱', Phase[:int(N/2)].tolist(),slice(0,int(N/2))), '单边相位谱')
|
|
|
+
|
|
|
+ save = Dic + r'/快速傅里叶.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Reverse_Fast_Fourier_TwoNumpy(Reverse_Fast_Fourier):#2快速傅里叶变换
|
|
|
+ def Fit(self, x_data,y_data=None,x_name='', Add_Func=None, *args, **kwargs):
|
|
|
+ r = np.multiply(np.cos(x_data),y_data)
|
|
|
+ j = np.multiply(np.sin(x_data),y_data) * 1j
|
|
|
+ super(Reverse_Fast_Fourier_TwoNumpy, self).Predict(r + j,x_name=x_name, Add_Func=Add_Func, *args, **kwargs)
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+class Curve_fitting(Study_MachineBase):#曲线拟合
|
|
|
+ def __init__(self,Name, str_, model, *args, **kwargs):
|
|
|
+ super(Curve_fitting, self).__init__(*args, **kwargs)
|
|
|
+ def ndimDown(data:np.ndarray):
|
|
|
+ if data.ndim == 1:return data
|
|
|
+ new_data = []
|
|
|
+ for i in data:
|
|
|
+ new_data.append(np.sum(i))
|
|
|
+ return np.array(new_data)
|
|
|
+ NAME = {'np':np,'Func':model,'ndimDown':ndimDown}
|
|
|
+ DEF = f'''
|
|
|
+def FUNC({",".join(model.__code__.co_varnames)}):
|
|
|
+ answer = Func({",".join(model.__code__.co_varnames)})
|
|
|
+ return ndimDown(answer)
|
|
|
+'''
|
|
|
+ exec(DEF,NAME)
|
|
|
+ self.Func = NAME['FUNC']
|
|
|
+ self.Fit_data = None
|
|
|
+ self.Name = Name
|
|
|
+ self.Func_Str = str_
|
|
|
+
|
|
|
+ def Fit(self, x_data:np.ndarray,y_data:np.ndarray, *args, **kwargs):
|
|
|
+ y_data = y_data.ravel()
|
|
|
+ x_data = x_data.astype(np.float64)
|
|
|
+ try:
|
|
|
+ if self.x_trainData is None:raise Exception
|
|
|
+ self.x_trainData = np.vstack(x_data,self.x_trainData)
|
|
|
+ self.y_trainData = np.vstack(y_data,self.y_trainData)
|
|
|
+ except:
|
|
|
+ self.x_trainData = x_data.copy()
|
|
|
+ self.y_trainData = y_data.copy()
|
|
|
+ self.Fit_data = optimize.curve_fit(self.Func,self.x_trainData,self.y_trainData)
|
|
|
+ self.Model = self.Fit_data[0].copy()
|
|
|
+ return 'None','None'
|
|
|
+
|
|
|
+ def Predict(self, x_data, *args, **kwargs):
|
|
|
+ self.x_testData = x_data.copy()
|
|
|
+ Predict = self.Func(x_data,*self.Model)
|
|
|
+ y_Predict = []
|
|
|
+ for i in Predict:
|
|
|
+ y_Predict.append(np.sum(i))
|
|
|
+ y_Predict = np.array(y_Predict)
|
|
|
+ self.y_testData = y_Predict.copy()
|
|
|
+ self.have_Predict = True
|
|
|
+ return y_Predict,self.Name
|
|
|
+
|
|
|
+ def Des(self, Dic, *args, **kwargs):
|
|
|
+ #DBSCAN没有预测的必要
|
|
|
+ tab = Tab()
|
|
|
+ y = self.y_testData.copy()
|
|
|
+ x_data = self.x_testData.copy()
|
|
|
+
|
|
|
+ get, x_means, x_range,Type = regress_visualization(x_data, y)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测类型图')
|
|
|
+
|
|
|
+ get = Prediction_boundary(x_range, x_means, self.Predict, Type)
|
|
|
+ for i in range(len(get)):
|
|
|
+ tab.add(get[i], f'{i}预测热力图')
|
|
|
+
|
|
|
+ tab.add(make_Tab([f'普适预测第{i}特征' for i in range(len(x_means))], [[f'{i}' for i in x_means]]),'普适预测特征数据')
|
|
|
+ tab.add(make_Tab([f'参数[{i}]' for i in range(len(self.Model))], [[f'{i}' for i in self.Model]]), '拟合参数')
|
|
|
+
|
|
|
+ save = Dic + r'/曲线拟合.HTML'
|
|
|
+ tab.render(save) # 生成HTML
|
|
|
+ return save,
|
|
|
+
|
|
|
+class Machine_Learner(Learner):#数据处理者
|
|
|
+ def __init__(self,*args, **kwargs):
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+ self.Learner = {}#记录机器
|
|
|
+ self.Learn_Dic = {'Line':Line_Model,
|
|
|
+ 'Ridge':Line_Model,
|
|
|
+ 'Lasso':Line_Model,
|
|
|
+ 'LogisticRegression':LogisticRegression_Model,
|
|
|
+ 'Knn_class':Knn_Model,
|
|
|
+ 'Knn': Knn_Model,
|
|
|
+ 'Tree_class': Tree_Model,
|
|
|
+ 'Tree': Tree_Model,
|
|
|
+ 'Forest':Forest_Model,
|
|
|
+ 'Forest_class': Forest_Model,
|
|
|
+ 'GradientTree_class':GradientTree_Model,
|
|
|
+ 'GradientTree': GradientTree_Model,
|
|
|
+ 'Variance':Variance_Model,
|
|
|
+ 'SelectKBest':SelectKBest_Model,
|
|
|
+ 'Z-Score':Standardization_Model,
|
|
|
+ 'MinMaxScaler':MinMaxScaler_Model,
|
|
|
+ 'LogScaler':LogScaler_Model,
|
|
|
+ 'atanScaler':atanScaler_Model,
|
|
|
+ 'decimalScaler':decimalScaler_Model,
|
|
|
+ 'sigmodScaler':sigmodScaler_Model,
|
|
|
+ 'Mapzoom':Mapzoom_Model,
|
|
|
+ 'Fuzzy_quantization':Fuzzy_quantization_Model,
|
|
|
+ 'Regularization':Regularization_Model,
|
|
|
+ 'Binarizer':Binarizer_Model,
|
|
|
+ 'Discretization':Discretization_Model,
|
|
|
+ 'Label':Label_Model,
|
|
|
+ 'OneHotEncoder':OneHotEncoder_Model,
|
|
|
+ 'Missed':Missed_Model,
|
|
|
+ 'PCA':PCA_Model,
|
|
|
+ 'RPCA':RPCA_Model,
|
|
|
+ 'KPCA':KPCA_Model,
|
|
|
+ 'LDA':LDA_Model,
|
|
|
+ 'SVC':SVC_Model,
|
|
|
+ 'SVR':SVR_Model,
|
|
|
+ 'MLP':MLP_Model,
|
|
|
+ 'MLP_class': MLP_Model,
|
|
|
+ 'NMF':NMF_Model,
|
|
|
+ 't-SNE':TSNE_Model,
|
|
|
+ 'k-means':kmeans_Model,
|
|
|
+ 'Agglomerative':Agglomerative_Model,
|
|
|
+ 'DBSCAN':DBSCAN_Model,
|
|
|
+ 'ClassBar':Class_To_Bar,
|
|
|
+ 'FeatureScatter':Near_feature_scatter,
|
|
|
+ 'FeatureScatterClass': Near_feature_scatter_class,
|
|
|
+ 'FeatureScatter_all':Near_feature_scatter_More,
|
|
|
+ 'FeatureScatterClass_all':Near_feature_scatter_class_More,
|
|
|
+ 'HeatMap':Numpy_To_HeatMap,
|
|
|
+ 'FeatureY-X':Feature_scatter_YX,
|
|
|
+ 'ClusterTree':Cluster_Tree,
|
|
|
+ 'MatrixScatter':MatrixScatter,
|
|
|
+ 'Correlation':CORR,
|
|
|
+ 'Statistics':Des,
|
|
|
+ 'Fast_Fourier':Fast_Fourier,
|
|
|
+ 'Reverse_Fast_Fourier':Reverse_Fast_Fourier,
|
|
|
+ '[2]Reverse_Fast_Fourier':Reverse_Fast_Fourier_TwoNumpy,
|
|
|
+ }
|
|
|
+ self.Learner_Type = {}#记录机器的类型
|
|
|
+
|
|
|
+ def p_Args(self,Text,Type):#解析参数
|
|
|
+ args = {}
|
|
|
+ args_use = {}
|
|
|
+ #输入数据
|
|
|
+ exec(Text,args)
|
|
|
+ #处理数据
|
|
|
+ if Type in ('MLP','MLP_class'):
|
|
|
+ args_use['alpha'] = float(args.get('alpha', 0.0001)) # MLP正则化用
|
|
|
+ else:
|
|
|
+ args_use['alpha'] = float(args.get('alpha',1.0))#L1和L2正则化用
|
|
|
+ args_use['C'] = float(args.get('C', 1.0)) # L1和L2正则化用
|
|
|
+ if Type in ('MLP','MLP_class'):
|
|
|
+ args_use['max_iter'] = int(args.get('max_iter', 200)) # L1和L2正则化用
|
|
|
+ else:
|
|
|
+ args_use['max_iter'] = int(args.get('max_iter', 1000)) # L1和L2正则化用
|
|
|
+ args_use['n_neighbors'] = int(args.get('K_knn', 5))#knn邻居数 (命名不同)
|
|
|
+ args_use['p'] = int(args.get('p', 2)) # 距离计算方式
|
|
|
+ args_use['nDim_2'] = bool(args.get('nDim_2', True)) # 数据是否降维
|
|
|
+
|
|
|
+ if Type in ('Tree','Forest','GradientTree'):
|
|
|
+ args_use['criterion'] = 'mse' if bool(args.get('is_MSE', True)) else 'mae' # 是否使用基尼不纯度
|
|
|
+ else:
|
|
|
+ args_use['criterion'] = 'gini' if bool(args.get('is_Gini', True)) else 'entropy' # 是否使用基尼不纯度
|
|
|
+ args_use['splitter'] = 'random' if bool(args.get('is_random', False)) else 'best' # 决策树节点是否随机选用最优
|
|
|
+ args_use['max_features'] = args.get('max_features', None) # 选用最多特征数
|
|
|
+ args_use['max_depth'] = args.get('max_depth', None) # 最大深度
|
|
|
+ args_use['min_samples_split'] = int(args.get('min_samples_split', 2)) # 是否继续划分(容易造成过拟合)
|
|
|
+
|
|
|
+ args_use['P'] = float(args.get('min_samples_split', 0.8))
|
|
|
+ args_use['k'] = args.get('k',1)
|
|
|
+ args_use['score_func'] = ({'chi2':chi2,'f_classif':f_classif,'mutual_info_classif':mutual_info_classif,
|
|
|
+ 'f_regression':f_regression,'mutual_info_regression':mutual_info_regression}.
|
|
|
+ get(args.get('score_func','f_classif'),f_classif))
|
|
|
+
|
|
|
+ args_use['feature_range'] = tuple(args.get('feature_range',(0,1)))
|
|
|
+ args_use['norm'] = args.get('norm','l2')#正则化的方式L1或者L2
|
|
|
+
|
|
|
+ args_use['threshold'] = float(args.get('threshold', 0.0)) # 二值化特征
|
|
|
+
|
|
|
+ args_use['split_range'] = list(args.get('split_range', [0])) # 二值化特征
|
|
|
+
|
|
|
+ args_use['ndim_up'] = bool(args.get('ndim_up', False))
|
|
|
+ args_use['miss_value'] = args.get('miss_value',np.nan)
|
|
|
+ args_use['fill_method'] = args.get('fill_method','mean')
|
|
|
+ args_use['fill_value'] = args.get('fill_value',None)
|
|
|
+
|
|
|
+ args_use['n_components'] = args.get('n_components',1)
|
|
|
+ args_use['kernel'] = args.get('kernel','rbf' if Type in ('SVR','SVC') else 'linear')
|
|
|
+
|
|
|
+ args_use['n_Tree'] = args.get('n_Tree',100)
|
|
|
+ args_use['gamma'] = args.get('gamma',1)
|
|
|
+ args_use['hidden_size'] = tuple(args.get('hidden_size',(100,)))
|
|
|
+ args_use['activation'] = str(args.get('activation','relu'))
|
|
|
+ args_use['solver'] = str(args.get('solver','adam'))
|
|
|
+ if Type in ('k-means',):
|
|
|
+ args_use['n_clusters'] = int(args.get('n_clusters',8))
|
|
|
+ else:
|
|
|
+ args_use['n_clusters'] = int(args.get('n_clusters', 2))
|
|
|
+ args_use['eps'] = float(args.get('n_clusters', 0.5))
|
|
|
+ args_use['min_samples'] = int(args.get('n_clusters', 5))
|
|
|
+ args_use['white_PCA'] = bool(args.get('white_PCA', False))
|
|
|
+ return args_use
|
|
|
+
|
|
|
+ def Add_Learner(self,Learner,Text=''):
|
|
|
+ get = self.Learn_Dic[Learner]
|
|
|
+ name = f'Le[{len(self.Learner)}]{Learner}'
|
|
|
+ #参数调节
|
|
|
+ args_use = self.p_Args(Text,Learner)
|
|
|
+ #生成学习器
|
|
|
+ self.Learner[name] = get(model=Learner,args_use=args_use)
|
|
|
+ self.Learner_Type[name] = Learner
|
|
|
+
|
|
|
+ def Add_Curve_Fitting(self,Learner_text,Text=''):
|
|
|
+ NAME = {}
|
|
|
+ exec(Learner_text,NAME)
|
|
|
+ name = f'Le[{len(self.Learner)}]{NAME.get("name","SELF")}'
|
|
|
+ func = NAME.get('f',lambda x,k,b:k * x + b)
|
|
|
+ self.Learner[name] = Curve_fitting(name,Learner_text,func)
|
|
|
+ self.Learner_Type[name] = 'Curve_fitting'
|
|
|
+
|
|
|
+ def Add_SelectFrom_Model(self,Learner,Text=''):#Learner代表选中的学习器
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ name = f'Le[{len(self.Learner)}]SelectFrom_Model:{Learner}'
|
|
|
+ #参数调节
|
|
|
+ args_use = self.p_Args(Text,'SelectFrom_Model')
|
|
|
+ #生成学习器
|
|
|
+ self.Learner[name] = SelectFrom_Model(Learner=model,args_use=args_use,Dic=self.Learn_Dic)
|
|
|
+ self.Learner_Type[name] = 'SelectFrom_Model'
|
|
|
+
|
|
|
+ def Add_Predictive_HeatMap(self,Learner,Text=''):#Learner代表选中的学习器
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ name = f'Le[{len(self.Learner)}]Predictive_HeatMap:{Learner}'
|
|
|
+ #生成学习器
|
|
|
+ args_use = self.p_Args(Text, 'Predictive_HeatMap')
|
|
|
+ self.Learner[name] = Predictive_HeatMap(Learner=model,args_use=args_use)
|
|
|
+ self.Learner_Type[name] = 'Predictive_HeatMap'
|
|
|
+
|
|
|
+ def Add_Predictive_HeatMap_More(self,Learner,Text=''):#Learner代表选中的学习器
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ name = f'Le[{len(self.Learner)}]Predictive_HeatMap_More:{Learner}'
|
|
|
+ #生成学习器
|
|
|
+ args_use = self.p_Args(Text, 'Predictive_HeatMap_More')
|
|
|
+ self.Learner[name] = Predictive_HeatMap_More(Learner=model,args_use=args_use)
|
|
|
+ self.Learner_Type[name] = 'Predictive_HeatMap_More'
|
|
|
+
|
|
|
+ def Add_View_data(self,Learner,Text=''):#Learner代表选中的学习器
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ name = f'Le[{len(self.Learner)}]View_data:{Learner}'
|
|
|
+ #生成学习器
|
|
|
+ args_use = self.p_Args(Text, 'View_data')
|
|
|
+ self.Learner[name] = View_data(Learner=model,args_use=args_use)
|
|
|
+ self.Learner_Type[name] = 'View_data'
|
|
|
+
|
|
|
+ def Return_Learner(self):
|
|
|
+ return self.Learner.copy()
|
|
|
+
|
|
|
+ def get_Learner(self,name):
|
|
|
+ return self.Learner[name]
|
|
|
+
|
|
|
+ def get_Learner_Type(self,name):
|
|
|
+ return self.Learner_Type[name]
|
|
|
+
|
|
|
+ def Fit(self,x_name,y_name,Learner,split=0.3,*args,**kwargs):
|
|
|
+ x_data = self.get_Sheet(x_name)
|
|
|
+ y_data = self.get_Sheet(y_name)
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ return model.Fit(x_data,y_data,split = split, x_name=x_name, Add_Func=self.Add_Form)
|
|
|
+
|
|
|
+ def Predict(self,x_name,Learner,Text='',**kwargs):
|
|
|
+ x_data = self.get_Sheet(x_name)
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ y_data,name = model.Predict(x_data, x_name=x_name, Add_Func=self.Add_Form)
|
|
|
+ self.Add_Form(y_data,f'{x_name}:{name}')
|
|
|
+ return y_data
|
|
|
+
|
|
|
+ def Score(self,name_x,name_y,Learner):#Score_Only表示仅评分 Fit_Simp 是普遍类操作
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ x = self.get_Sheet(name_x)
|
|
|
+ y = self.get_Sheet(name_y)
|
|
|
+ return model.Score(x,y)
|
|
|
+
|
|
|
+ def Show_Score(self,Learner,Dic,name_x,name_y,Func=0):#显示参数
|
|
|
+ x = self.get_Sheet(name_x)
|
|
|
+ y = self.get_Sheet(name_y)
|
|
|
+ if NEW_Global:
|
|
|
+ dic = Dic + f'/{Learner}分类评分[CoTan]'
|
|
|
+ new_dic = dic
|
|
|
+ a = 0
|
|
|
+ while exists(new_dic):#直到他不存在 —— False
|
|
|
+ new_dic = dic + f'[{a}]'
|
|
|
+ a += 1
|
|
|
+ mkdir(new_dic)
|
|
|
+ else:
|
|
|
+ new_dic = Dic
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ #打包
|
|
|
+ func = [model.Class_Score, model.Regression_Score, model.Clusters_Score][Func]
|
|
|
+ save = func(new_dic,x,y)[0]
|
|
|
+ if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic)
|
|
|
+ return save,new_dic
|
|
|
+
|
|
|
+ def Show_Args(self,Learner,Dic):#显示参数
|
|
|
+ if NEW_Global:
|
|
|
+ dic = Dic + f'/{Learner}数据[CoTan]'
|
|
|
+ new_dic = dic
|
|
|
+ a = 0
|
|
|
+ while exists(new_dic):#直到他不存在 —— False
|
|
|
+ new_dic = dic + f'[{a}]'
|
|
|
+ a += 1
|
|
|
+ mkdir(new_dic)
|
|
|
+ else:
|
|
|
+ new_dic = Dic
|
|
|
+ model = self.get_Learner(Learner)
|
|
|
+ if (not(model.Model is None) or not(model.Model is list)) and CLF_Global:
|
|
|
+ joblib.dump(model.Model,new_dic + '/MODEL.model')#保存模型
|
|
|
+ # pickle.dump(model,new_dic + f'/{Learner}.pkl')#保存学习器
|
|
|
+ #打包
|
|
|
+ save = model.Des(new_dic)[0]
|
|
|
+ if TAR_Global:make_targz(f'{new_dic}.tar.gz',new_dic)
|
|
|
+ return save,new_dic
|
|
|
+
|
|
|
+ def Del_Leaner(self,Leaner):
|
|
|
+ del self.Learner[Leaner]
|
|
|
+ del self.Learner_Type[Leaner]
|
|
|
+
|
|
|
+def make_targz(output_filename, source_dir):
|
|
|
+ with tarfile.open(output_filename, "w:gz") as tar:
|
|
|
+ tar.add(source_dir, arcname=basename(source_dir))
|
|
|
+ return output_filename
|
|
|
+
|
|
|
+def set_Global(More=More_Global,All=All_Global,CSV=CSV_Global,CLF=CLF_Global,TAR=TAR_Global,NEW=NEW_Global):
|
|
|
+ global More_Global,All_Global,CSV_Global,CLF_Global,TAR_Global,NEW_Global
|
|
|
+ More_Global = More # 是否使用全部特征绘图
|
|
|
+ All_Global = All # 是否导出charts
|
|
|
+ CSV_Global = CSV # 是否导出CSV
|
|
|
+ CLF_Global = CLF # 是否导出模型
|
|
|
+ TAR_Global = TAR # 是否打包tar
|
|
|
+ NEW_Global = NEW # 是否新建目录
|