|
@@ -463,7 +463,7 @@ def bar(w_heard, w):
|
|
|
|
|
|
def see_Line(x_trainData, y_trainData, w, w_sum, b):
|
|
|
y = y_trainData.tolist()
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
re = []
|
|
|
for i in range(len(x_data)):
|
|
|
x = x_data[i]
|
|
@@ -524,7 +524,7 @@ def make_Cat(x_data):
|
|
|
|
|
|
# 根据不同类别绘制x-x分类散点图(可以绘制更多的图)
|
|
|
def Training_visualization_More_NoCenter(x_trainData, class_, y):
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
Cat = make_Cat(x_data)
|
|
@@ -573,7 +573,7 @@ def Training_visualization_More_NoCenter(x_trainData, class_, y):
|
|
|
|
|
|
# 根据不同类别绘制x-x分类散点图(可以绘制更多的图)
|
|
|
def Training_visualization_More(x_trainData, class_, y, center):
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
Cat = make_Cat(x_data)
|
|
@@ -645,7 +645,7 @@ def Training_visualization_More(x_trainData, class_, y, center):
|
|
|
|
|
|
# 根据不同类别绘制x-x分类散点图(可以绘制更多的图)
|
|
|
def Training_visualization_Center(x_trainData, class_, y, center):
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
Cat = make_Cat(x_data)
|
|
@@ -717,7 +717,7 @@ def Training_visualization_Center(x_trainData, class_, y, center):
|
|
|
|
|
|
|
|
|
def Training_visualization(x_trainData, class_, y): # 根据不同类别绘制x-x分类散点图
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
Cat = make_Cat(x_data)
|
|
@@ -764,7 +764,7 @@ def Training_visualization(x_trainData, class_, y): # 根据不同类别绘制x
|
|
|
|
|
|
|
|
|
def Training_visualization_NoClass(x_trainData): # 根据绘制x-x分类散点图(无类别)
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
Cat = make_Cat(x_data)
|
|
@@ -801,7 +801,7 @@ def Training_visualization_NoClass(x_trainData): # 根据绘制x-x分类散点
|
|
|
|
|
|
|
|
|
def Training_W(x_trainData, class_, y, w_list, b_list, means: list): # 针对分类问题绘制决策边界
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
o_cList = []
|
|
@@ -862,7 +862,7 @@ def Training_W(x_trainData, class_, y, w_list, b_list, means: list): # 针对
|
|
|
|
|
|
|
|
|
def Regress_W(x_trainData, y, w: np.array, b, means: list): # 针对回归问题(y-x图)
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
o_cList = []
|
|
@@ -899,7 +899,7 @@ def Regress_W(x_trainData, y, w: np.array, b, means: list): # 针对回归问
|
|
|
|
|
|
|
|
|
def regress_visualization(x_trainData, y): # y-x数据图
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
y_con = is_continuous(y)
|
|
|
Cat = make_Cat(x_data)
|
|
|
o_cList = []
|
|
@@ -944,7 +944,7 @@ def regress_visualization(x_trainData, y): # y-x数据图
|
|
|
|
|
|
def Feature_visualization(x_trainData, data_name=''): # x-x数据图
|
|
|
seeting = global_Set if data_name else global_Leg
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
only = False
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
@@ -983,7 +983,7 @@ def Feature_visualization(x_trainData, data_name=''): # x-x数据图
|
|
|
|
|
|
def Feature_visualization_Format(x_trainData, data_name=''): # x-x数据图
|
|
|
seeting = global_Set if data_name else global_Leg
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
only = False
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
@@ -1029,7 +1029,7 @@ def Feature_visualization_Format(x_trainData, data_name=''): # x-x数据图
|
|
|
|
|
|
def Discrete_Feature_visualization(x_trainData, data_name=''): # 必定离散x-x数据图
|
|
|
seeting = global_Set if data_name else global_Leg
|
|
|
- x_data = x_trainData.T
|
|
|
+ x_data = x_trainData.transpose
|
|
|
if len(x_data) == 1:
|
|
|
x_data = np.array([x_data[0], np.zeros(len(x_data[0]))])
|
|
|
o_cList = []
|
|
@@ -1098,10 +1098,10 @@ def Conversion_SeparateWH(w_data, h_data, tab): # 并列显示两x-x图
|
|
|
if isinstance(w_data, np.ndarray) and isinstance(w_data, np.ndarray):
|
|
|
get_x = Feature_visualization_Format(w_data, 'W矩阵数据') # 原来
|
|
|
get_y = Feature_visualization(
|
|
|
- h_data.T, 'H矩阵数据') # 转换(先转T,再转T变回原样,W*H是横对列)
|
|
|
+ h_data.transpose, 'H矩阵数据') # 转换(先转T,再转T变回原样,W*H是横对列)
|
|
|
print(h_data)
|
|
|
print(w_data)
|
|
|
- print(h_data.T)
|
|
|
+ print(h_data.transpose)
|
|
|
for i in range(len(get_x)):
|
|
|
try:
|
|
|
tab.add(get_x[i], f'[{i}]W矩阵x-x散点图')
|
|
@@ -1313,7 +1313,7 @@ class Learner:
|
|
|
def T(self, name, Func: list):
|
|
|
sheet = self.get_Sheet(name)
|
|
|
if sheet.ndim <= 2:
|
|
|
- self.Add_Form(sheet.T.copy(), f'{name}.T')
|
|
|
+ self.Add_Form(sheet.transpose.copy(), f'{name}.T')
|
|
|
else:
|
|
|
self.Add_Form(np.transpose(sheet, Func).copy(), f'{name}.T')
|
|
|
|
|
@@ -1908,7 +1908,7 @@ class Cluster_Tree(To_PyeBase): # 聚类树状图
|
|
|
class Class_To_Bar(To_PyeBase): # 类型柱状图
|
|
|
def Des(self, Dic, *args, **kwargs):
|
|
|
tab = Tab()
|
|
|
- x_data = self.x_trainData.T
|
|
|
+ x_data = self.x_trainData.transpose
|
|
|
y_data = self.y_trainData
|
|
|
class_ = np.unique(y_data).tolist() # 类型
|
|
|
class_list = []
|
|
@@ -2004,7 +2004,7 @@ class Numpy_To_HeatMap(To_PyeBase): # Numpy矩阵绘制热力图
|
|
|
pos_right='3%')) # 显示
|
|
|
)
|
|
|
tab.add(c, '矩阵热力图')
|
|
|
- tab.add(make_Tab(x, data.T.tolist()), f'矩阵热力图:表格')
|
|
|
+ tab.add(make_Tab(x, data.transpose.tolist()), f'矩阵热力图:表格')
|
|
|
|
|
|
save = Dic + r'/矩阵热力图.HTML'
|
|
|
tab.render(save) # 生成HTML
|
|
@@ -2066,7 +2066,7 @@ class Predictive_HeatMap_Base(To_PyeBase): # 绘制预测型热力图
|
|
|
except BaseException:
|
|
|
pass
|
|
|
get = Decision_boundary(
|
|
|
- x_range, x_means, self.Learner.Predict, class_, Type)
|
|
|
+ x_range, x_means, self.Learner.predict, class_, Type)
|
|
|
for i in range(len(get)):
|
|
|
tab.add(get[i], f'{i}预测热力图')
|
|
|
|
|
@@ -2078,7 +2078,7 @@ class Predictive_HeatMap_Base(To_PyeBase): # 绘制预测型热力图
|
|
|
get, x_means, x_range, Type = regress_visualization(x_data, y)
|
|
|
|
|
|
get = Prediction_boundary(
|
|
|
- x_range, x_means, self.Learner.Predict, Type)
|
|
|
+ x_range, x_means, self.Learner.predict, Type)
|
|
|
for i in range(len(get)):
|
|
|
tab.add(get[i], f'{i}预测热力图')
|
|
|
|
|
@@ -2170,7 +2170,7 @@ class Near_feature_scatter_class(To_PyeBase): # 临近特征散点图:分类
|
|
|
class Near_feature_scatter(To_PyeBase): # 临近特征散点图:连续数据
|
|
|
def Des(self, Dic, *args, **kwargs):
|
|
|
tab = Tab()
|
|
|
- x_data = self.x_trainData.T
|
|
|
+ x_data = self.x_trainData.transpose
|
|
|
y = self.y_trainData
|
|
|
|
|
|
get, x_means, x_range, Type = Training_visualization_NoClass(x_data)
|
|
@@ -3869,8 +3869,8 @@ class MLP_Model(Study_MachineBase): # 神经网络(多层感知机),有监督
|
|
|
pos_right='3%')) # 显示
|
|
|
)
|
|
|
tab.add(c, name)
|
|
|
- tab.add(make_Tab(x, data.T.tolist()), f'{name}:表格')
|
|
|
- desTo_CSV(Dic, f'{name}:表格', data.T.tolist(), x, y)
|
|
|
+ tab.add(make_Tab(x, data.transpose.tolist()), f'{name}:表格')
|
|
|
+ desTo_CSV(Dic, f'{name}:表格', data.transpose.tolist(), x, y)
|
|
|
|
|
|
get, x_means, x_range, Type = regress_visualization(x_data, y_data)
|
|
|
for i in range(len(get)):
|
|
@@ -4530,7 +4530,7 @@ class Machine_Learner(Learner): # 数据处理者
|
|
|
def Predict(self, x_name, Learner, Text='', **kwargs):
|
|
|
x_data = self.get_Sheet(x_name)
|
|
|
model = self.get_Learner(Learner)
|
|
|
- y_data, name = model.Predict(
|
|
|
+ y_data, name = model.predict(
|
|
|
x_data, x_name=x_name, Add_Func=self.Add_Form)
|
|
|
self.Add_Form(y_data, f'{x_name}:{name}')
|
|
|
return y_data
|